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Abstract

Mixing in the abyssal ocean is known to play an important role in controlling the large-scale ocean circulation. In the

search for sources of mechanical energy for mixing, internal tides generated by the interaction of the barotropic tide

with bottom topography (mode conversion) have been implicated. However, estimates of the rate at which barotropic

tidal energy is converted into the internal wave field are quite uncertain. Here, I present analytical and numerical

calculations of internal tide generation in a fluid layer of finite depth to better understand the energetics of the wave

generation process. Previous theoretical models of wave generation have assumed an upper radiation boundary

condition (BC) appropriate for an ocean of infinite depth. But recent observations of internal tides at significant

distances from their generation region indicate that this BC is not always valid, and that reflection from the upper

surface is important. I show that the presence of an upper free-surface reduces the rate at which energy is fed into the

internal wave field (the power) and thus the energy available for mixing. This reduction increases with the horizontal

extent of the topography (relative to the wavelength of a mode-1 internal wave). Fully nonhydrostatic, nonlinear

numerical calculations are used to both test the theory and to explore more realistic parameters for which linear theories

are formally invalid. As bottom topography becomes steeper, linear theory underestimates mode conversion by an

increasing amount, although even at critical slope the difference is quite small (O(20%)). An important finding of this

study is that for certain topographic shapes the power input into the wave field can saturate as the topography becomes

supercritical. A comparison of model results with a recent finite amplitude theory suggests that even though finite depth

effects may be negligible in the linear regime, they may become important when the topography is of finite amplitude.

The results of process studies such as this should lead to improved estimates of mode conversion in the ocean.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The subject of diapycnal mixing in the abyssal
ocean has received much attention in recent years.

Munk and Wunsch (1998) have discussed its
importance in driving the meridional overturning
circulation. They estimate the power required to
return dense deep water, convectively formed at
high-latitudes, back to the surface as B2:1 TW;
and suggest that the mechanical energy required to
accomplish this could come only from the winds or
the tides. Winds can perhaps contribute B1 TW
(Wunsch, 1998). Tidal dissipation is known to be

*Corresponding author. Present address: Lamont–Doherty

Earth Observatory, Columbia University, Oceanography 201,

Palisades, NY 10964, USA. Fax: +1-845-365-8736.

E-mail address: spk@ldeo.columbia.edu (S. Khatiwala).

0967-0637/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

PII: S 0 9 6 7 - 0 6 3 7 ( 0 2 ) 0 0 1 3 2 - 2



B3:7 TW (2:5 TW from the semi-diurnal tide,
M2), but much of this dissipation has traditionally
been viewed as taking place in the bottom
boundary layers of marginal seas (see Munk,
1997, for a review). The Munk and Wunsch
(1998) estimate implies an average diapycnal
diffusivity, k; of about 10�4 m2 s�1 which has been
difficult to reconcile observationally; measurements
of the internal wave field (an important source of
energy for mixing) imply a diffusivity of
Oð10�5 m2 s�1). However, recent observations by
Polzin et al. (1997) and Ledwell et al. (2000) based
on measurements of microstructure and tracer
dispersion convincingly show that diapycnal mix-
ing (and the implied diffusivity) is strongly
enhanced over rough bottom topography. They
proposed that the enhanced mixing above rough
topography was associated with conversion of
barotropic tidal energy into baroclinic tidal energy
(termed ‘‘mode conversion’’ by Munk and
Wunsch, 1998), and the subsequent instability of
the waves leading to breaking. These results are
supported by more indirect inferences based on
comparing numerical simulations of the barotropic
tide with altimeter observations of sea-surface
height (Egbert and Ray, 2000; Jayne and St.
Laurent, 2001), suggesting that about 30% of tidal
dissipation ðB1 TWÞ takes place in the open ocean.
However, since we do not have reliable estimates of
the rate at which tidal energy is converted into the
internal wave field, it is not clear to what extent the
mechanism of mode conversion can contribute to
the required dissipation of 2:1 TW:
In this paper, I examine the problem of internal

wave generation by the interaction of an oscillat-
ing barotropic tidal flow with bottom topography
in a fluid of finite depth. I focus on the energetics
of the problem and present analytical expressions
for the rate at which energy is input to the internal
wave field (power). The power is related to the
horizontal flux of energy away from the generation
site and is a measure of the energy available for
mixing. The theoretical predictions are tested
against explicit numerical calculations of the wave
generation process in a nonhydrostatic, nonlinear,
hydrodynamic model. The numerical calculations
also allow me to examine regimes where the theory
is not formally valid.

In the next section, I briefly review existing
models of internal tide generation.

2. Wave generation models

A number of analytical models of internal tide
generation exist. These models, which are all linear
in the dynamics, have been used to predict the
energy input into the internal tides by a barotropic
tide interacting with bottom topography. For
conditions when the steepness parameter, e;
defined as the ratio of the topographic slope to
the ray slope (see Section 4.2), is less than one
(subcritical topography), models based on ray
tracing such as those developed by Baines (1973,
1982) are available. These models, which are
difficult to apply except for special topographic
shapes, do not include advection by the back-
ground flow, but impose the bottom boundary
condition (BC) at z ¼ hðxÞ:
When e is much less than 1, Bell’s (1975a, 1975b)

analysis has been widely applied (for e.g., St.
Laurent and Garrett, 2002; Polzin, submitted for
publication). Bell’s model linearizes the bottom
condition by applying it at z ¼ 0 rather than at the
bottom topography z ¼ hðxÞ: The theory can be
applied to arbitrary bottom topography. A crucial
element of this model is the inclusion of advection
by the background flow, which, as discussed in
detail by Polzin (submitted for publication), is
important for any realistic characterization of
dissipation. Essentially, mid-ocean ridge bathy-
metry can be described as fractal, that is, the
topographic slope variance is unbounded as smaller
and smaller scales are included in the slope estimate.
Polzin argues that a model which neglects advection
will predict a large, small-scale response (the shear
spectrum is ‘‘blue’’). As a consequence, the inte-
grated (over all wavenumbers) vertical shear and
energy are both infinite. In contrast, incorporating
the effect of advection has the effect of maintaining
a finite shear variance at high horizontal wavenum-
bers, with associated implications for studies of
mixing where an accurate specification of the
vertical shear in the wave field is essential.
The wave generation model to be presented

below is in part based on the work of Bell (1975a).
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My analysis too is applicable to ‘‘weak’’ topogra-
phy ðe51Þ; but with an important modification.
Bell’s theory is applicable for a fluid of infinite
depth in which energy input at the bottom can
radiate upward. Bell (1975b) argued that an upper
radiation condition was justified because most of
the energy traveling upward would be dissipated
through various processes, including shear in-
stability and wave–wave interactions (which trans-
fer energy to smaller scales). In the ocean,
however, it is not clear what fraction of the
internal wave energy generated at the ocean
bottom survives to reflect off the free-surface or
for that matter make multiple reflections between
the bottom and surface. For instance, St. Laurent
and Garrett (2002) have suggested that the
Richardson number of the internal tide is not
small enough to cause shear instability. Further-
more, they contend that the time scale for wave–
wave interaction is long relative to the propagation
time of the internal tide. Citing the work of Ray
and Mitchum (1996), who observed low-mode
internal tides at distances of Oð1000 kmÞ from
their generation site (the Hawaiian Ridge), they
conclude that dissipation is small enough for the
energy to undergo reflections from the free-surface
and the bottom. Dushaw et al. (1995) have also
found a significant internal tide signal in reciprocal
acoustic transmissions approximately 2000 km
north of the Hawaiian Islands. According to them
the likely source of these internal tides is the
Hawaiian Ridge. Thus, there is compelling evi-
dence to suggest that a radiation condition may
not be the appropriate upper BC, so in contrast to
Bell, I will impose an upper rigid lid BC. An
important goal of this paper is to explore the
consequences of this upper rigid-lid BC for mode
conversion. As will be shown below, this simple
change in BC not only makes the problem
mathematically more complex, but drastically
alters the energetics of the wave generation
process. In particular, the inclusion of an upper
reflecting surface can greatly reduce, relative to the
infinite-depth solution, the power input to the
wave field and thus the energy available for
mixing. It is thus not only of theoretical interest
to inquire into the effect of such a BC on the wave
generation process, but the results are also

potentially very relevant to quantifying tidal
dissipation in the ocean via mode conversion.
Two other studies that treat the finite-depth case

should be mentioned. Hibiya (1986) has examined
the transient problem of internal waves generated
by flow over topography of an impulsively started
mean flow in a fluid of finite depth, but the
mathematical formulation of the problem as well
as the results and focus of that paper are
fundamentally very different from the present
work. In particular, Hibiya (1986) does not
consider the steady state response to an oscillating
tidal mean flow or the energetics of the wave
generation process as is done here. After the
present study was completed, I became aware of a
recent paper by Llewellyn Smith and Young (2002)
submitted for publication. They too present an
analytical treatment of the problem of internal tide
generation in a fluid of finite depth (although their
mathematical approach is quite different), and
highlight the role of an upper BC in reducing
barotropic to baroclinic mode conversion. Unlike
the present study, however, they do not compare
their results with numerical calculations.
Some of the results to be presented here can be

anticipated from the simpler theory of lee waves,
which is briefly reviewed in the next section.

3. Steady background flow

It is useful to begin with the problem of internal
gravity waves generated by a steady mean flow
over topography. I will use this mathematically
simpler and better known setting of lee wave
generation to illustrate how different the wave
generation problem is in the presence of an upper
‘‘rigid lid’’ BC (as would be appropriate for a fluid
layer of finite depth) compared with the situation
when an upper ‘‘radiation’’ condition is imposed
(as in an infinitely deep fluid layer). Analytic
solutions will be derived for both periodic and
arbitrary topography.

3.1. Periodic topography

Consider a steady, background flow, U ; over
periodic topography, hðxÞ ¼ h0 cos kx (Fig. 1). For
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two-dimensional ðx; zÞ disturbances, the linearized
equations for momentum and buoyancy can be
combined to form a single equation for vorticity,

r2cþ
N2

U2
c ¼ 0; ð1Þ

where N is the (constant) buoyancy frequency, and
the streamfunction, c; is defined by

u0 ¼ �@c=@z; w0 ¼ @c=@x:

u0 and w0 are the horizontal and vertical velocity
components of the disturbance. For now we ignore
the influence of rotation. The lower BC, applied in
the linear theory at z ¼ 0; is

w0ðx; z ¼ 0Þ ¼ U
@h

@x

) cðx; z ¼ 0Þ ¼ UhðxÞ: ð2Þ

Substituting a separable solution of the form

cðx; zÞ ¼ #cðzÞeikx

(where the real part is implied) into Eq. (1) gives

d2 #c
dz2

þ
N2

U2
� k2

� �
#c ¼ 0: ð3Þ

The bottom BC, Eq. (2), becomes #cð0Þ ¼ Uh0: We
now contrast the two situations of interest.

Case I: Upper radiation boundary condition.
Depending on the values of N and U there are
two possibilities. When m2 	 k2 � N2=U2 > 0; the
medium cannot sustain internal waves (the in-
trinsic frequency, Uk; is larger than N). The
appropriate upper BC is that the disturbance

decays with height which then gives

c ¼ Uh0e
�mz cos kx; m ¼ k2 �

N2

U2

� �1=2

: ð4Þ

From the momentum equation, the perturbation
pressure, p0; is given by

p0 ¼ r0U@c=@z: ð5Þ

Eq. (4) then implies that the lows and highs of the
perturbation pressure coincide with the troughs
and crests of the topography and thus the force per
unit area on the topography

F ¼
k

2p

Z 2p=k

0

p0ðx; z ¼ 0Þ
dh

dx
dx ð6Þ

vanishes. Note that there is an equal and opposite
force exerted on the fluid (the drag) which, here, is
also zero. Equivalently, the vertical velocity, w0; is
901 out of phase with p0; and so the vertical energy
flux p0w0 ¼ r0Ucxcz ¼ 0 (where overbars repre-
sent a horizontal average over a wavelength 2p=k).
When m2 	 N2=U2 � k2 > 0; Eq. (3) admits

wave solutions of the form #cBexp im7z; where
m7 ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2=U2 � k2

p
: A radiation condition

must then be imposed to pick the correct solution,
i.e., the energy flux is required to be outward as
z-N ðp0w0 > 0Þ: This condition can be shown to
be equivalent to the requirement sgn m ¼ sgn k:
Assuming k > 0; the solution is then

c ¼ Uh0 cos ðkx þ mþzÞ:

The pressure field is now such that there is a net
force (Eq. (6)) exerted on the topography given by

F ¼ 1
2
r0U

2h20m
þk > 0:

The rate at which work is done on the fluid is
simply �FUðo0Þ; i.e., energy is removed from the
background flow at lower levels to generate
internal waves. The internal waves radiate this
energy upward at a rate per unit area

p0w0 ¼ 1
2
r0U

3h20k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2=U2 � k2

q
:

Case II: Upper rigid lid boundary condition. In
the presence of an upper rigid lid, the BC at z ¼ H

is

w0ðx; z ¼ HÞ ¼ 0

) #cðHÞ ¼ 0: ð7Þ

H

z=0

z=H

U

h(x)

Fig. 1. Schematic used to illustrate the situation being modeled

and to establish notation.
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The solution is then c ¼ #c cos kx with

#c ¼
Uh0

sinh mðH � zÞ
sinh mH

; if m2 	 k2 �
N2

U2
> 0

Uh0
sin mðH � zÞ

sin mH
; if m2 	

N2

U2
� k2 > 0:

8>>><
>>>:

Eqs. (5) and (6) then imply that the drag is once
again zero. The presence of an upper reflecting
boundary (and a periodic topography) traps the
energy in the vertical. This establishes a pressure
field resulting in zero net force on the topography;
in steady state, and in this inviscid system, no
energy is converted from the mean flow into
internal waves. This absence of wave drag when an
upper reflecting condition is imposed is in sharp
contrast to the presence of drag when an upper
radiation condition is imposed.

3.2. Arbitrary topography

Let us now examine the problem of internal
wave generation by a steady background flow over
arbitrary topography, hðxÞ (Fig. 1). The infinite-
depth solution is simply a superposition (over all
wavenumbers, k) of the solutions derived above
for periodic topography and will not be discussed
further. The finite-depth case is more interesting.
Introducing the Fourier transform,

#fðkÞ ¼
Z

N

�N

f ðxÞe�ikx dx; ð8Þ

the solution to Eq. (1) with BC Eqs. (2) and (7) is

c ¼
1

2p

Z
N

�N

#cðk; zÞeikx dk;

where

#cðk; zÞ ¼

U #hðkÞ
sinh mðH � zÞ
sinh mðkÞH

; if m2 	 k2 �
N2

U2
> 0

U #hðkÞ
sin mðH � zÞ
sin mðkÞH

; if m2 	
N2

U2
� k2 > 0:

8>>><
>>>:

ð9Þ

Invoking the two function version of Parseval’s
theorem, the net force on the topography can be

written as

F ¼
Z

N

�N

p0ðz ¼ 0Þ
dh

dx
dx

¼
1

2p

Z
N

�N

ðik #hÞn #p0 dk; ð10Þ

where * denotes complex conjugation. From
Eq. (5) it follows that

FE
ir0U

2

2p

Z
N

�N

j #hðkÞj2mðkÞk
cos mðkÞH
sin mðkÞH

dk: ð11Þ

The integrand in Eq. (11) has singularities when
the condition mðkÞH ¼ jp (j an integer) is met. This
condition implies that the poles of the integrand
are located at k ¼ 7kj ;

kj 	
N2

U2
�

j2p2

H2

� �1=2

; j ¼ 1; 2;y : ð12Þ

The ‘‘resonant’’ values of the vertical wave number
m ¼ jp=H correspond to the normal modes of a
resting layer of fluid with a flat bottom (e.g., Gill,
1982). Consideration of the initial value problem
McIntyre, 1972; Baines, 1995) (or equivalently
addition of friction to the steady problem; see
below) shows that the contour of integration must
be indented below the poles and, by Jordan’s
lemma (e.g., Carrier et al., 1966), closed in the
upper half of the complex k-plane. By Cauchy’s
residue theorem we have

F ¼ 2pi
X

residues enclosed:

Evaluating the residues by Taylor expanding the
denominator of Eq. (9) about k ¼ 7kj ; the drag is
found to be

F ¼ 2
r0U

2

H3

Xjmax
j¼1

j2p2j #hðkjÞj2;

where jmax is the largest integer less than NH=Up
(an inverse Froude number). It is important to
note that all the contributions to the force and
hence the energy flux into the wave field ðFUÞ
come from the ‘‘resonant’’ wavenumbers given by
Eq. (12). As will be shown in the next section, this
is also the case for an oscillating background flow.
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4. Oscillating background flow

The simple analytic solutions for a steady mean
flow discussed above clearly illustrate the impact
of an upper BC on the energetics of the wave field.
In this section, we will examine the more complex
problem of internal wave generation by the
interaction of an oscillating background flow
(the barotropic tide) with bottom topography in
the presence of rotation. The resulting internal tide
radiates energy away from the topography and
into the ocean interior. I will present solutions
for this energy flux by computing the rate at which
energy is converted from the oscillating back-
ground flow into internal waves in a fluid of finite
depth. As mentioned above, Bell (1975a) has
derived solutions for a fluid of infinite depth,
and while my derivation is based in part on that
earlier work, the presence of an upper reflecting
surface fundamentally changes the nature of the
solutions.

4.1. Basic solution

Consider small perturbations about a back-
ground flow UðtÞ ¼ U0 coso0t (Fig. 2) on an
f -plane in a uniformly stratified fluid of mean
depth H: The linearized equations of motion
for small perturbations from the background
flow are

Du0 � fv0 ¼ �
1

r0

@p0

@x
� ru0;

Dv0 þ fu0 ¼ �
1

r0

@p0

@y
� rv0;

Dw0 ¼ �
1

r0

@p0

@z
� b � rw0;

where u0; v0; and w0 are the zonal, meridional, and
vertical components of the wave velocity, b is the
buoyancy, f is the (constant) Coriolis parameter,
and r is an inverse time scale for damping. The
operator D is defined by

D ¼
@

@t
þ UðtÞ

@

@x
: ð13Þ

The buoyancy b is governed by

Db ¼ N2w0:

In this study, I am treating only the two-
dimensional situation, and will henceforth assume
there is no y-dependence, that is, @=@y 	 0: (Since
the topography is a function only of x; if the flow
is initially y-independent, it will remain so.
Furthermore, there is no inconsistency between
assuming y independence and including rotation
(v0 is not zero).) The continuity equation then
becomes

@u0

@x
þ

@w0

@z
¼ 0:

The presence of dissipation in the momentum
equations requires further explanation. As we will
see, dissipative terms are introduced for purely
mathematical reasons (to evaluate certain Fourier
integrals). This is a standard mathematical ex-
pedient frequently invoked in many wave pro-
blems (e.g., Carrier et al., 1966). Indeed, the
specific form of the dissipation (linear drag here)
is immaterial, since we are interested in an inviscid
theory, and the damping coefficient will eventually
be set to zero.
In a frame of reference moving with the back-

ground flow, the governing equation for the
vertical velocity, W 0ðx; z; tÞ; as observed in the
moving frame, is

@2

@t2
r2W 0 þ f 2

@2W 0

@z2

þ N2@
2W 0

@x2
þ r

@

@t
r2W 0 ¼ 0; ð14Þ

U(t) = Uo cos ω t

h(x)

z=0

z=H

x=x1 x=x2

EnergyEnergy

Fig. 2. Schematic to illustrate the generation of internal waves

by an oscillating flow and the subsequent propagation of wave

energy.
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where x is the horizontal coordinate in the moving
frame defined by

xðx; tÞ ¼ x �
Z t

0

U0 coso0t
0 dt0

¼ x �
U0

o0
sino0t: ð15Þ

The linearized lower BC on W 0 is

W 0ðx; z ¼ 0; tÞ ¼
@h0

@t
; ð16Þ

where h0ðx; tÞ is the height of the topography in the
moving frame. The Fourier transform of W 0 is
defined as

*wðk; z; tÞ ¼
Z

N

�N

W 0ðx; z; tÞe�ikx dx:

The lower BC (Eq. (16)) implies

*wðk; 0; tÞ ¼ #hðkÞ
XN

n¼�N

ino0Jn

U0k

o0

� �
eino0t; ð17Þ

where #hðkÞ is the Fourier transform of the
topography hðxÞ and I have made use of the
relation (Watson, 1966)

eiz sin y ¼
XN

n¼�N

JnðzÞeiny;

where Jn is a Bessel function of order n: Following
Bell (1975a), the BC Eq. (17) motivates us to seek
a series solution of the form

*wðk; z; tÞ ¼ #hðkÞ
XN

n¼�N

*Wnðk; zÞJn

U0k

o0

� �
eino0t: ð18Þ

Fourier transforming Eq. (14) and substituting
Eq. (18) we find

d2 *Wn

dz2
þ k2 N2 � n2o2

0 þ irno0

n2o2
0 � f 2 � irno0

� 

*Wn ¼ 0

*Wnðk; 0Þ ¼ ino0; *Wnðk;HÞ ¼ 0:

We will assume that foo0; which holds equator-
ward of about 751 latitude if o0 is the M2

frequency. Poleward of 751 internal tides of this
frequency are trapped. We will also restrict n to
integers on0; where n0 is the maximum integer
oN=o0: The solution to the above equation is

*Wnðk; zÞ ¼ ino0
sin mnðkÞðH � zÞ

sin mnðkÞH
;

where mnðkÞ is defined by

m2n ¼ k2 N2 � n2o2
0 þ irno0

n2o2
0 � f 2 � irno0

� 

:

In the limit r-0 we wish to recover the positive
root of mn; and we therefore define mn as

mnðkÞ 	 sgnðRe kÞk
N2 � n2o2

0 þ irno0

n2o2
0 � f 2 � irno0

� 
1=2
; ð19Þ

where k is now complex in general. The solution
can then be written as

w0ðx; z; tÞE
Xn0

n¼�n0
ðna0Þ

Z
N

�N

#wnðkÞ dk; ð20Þ

where

#wnðkÞ ¼
1

2p
#hðkÞino0

sin mnðH � zÞ
sin mnH

� Jn
U0k

o0

� �
eiðno0tþkxÞ ð21Þ

with x defined in Eq. (15). From Eq. (21) we see
that the integrand in Eq. (20) has singularities in
the complex k-plane. The addition of friction has
moved the poles off the Re k axis along which the
integration (Eq. (20)) is carried out. The poles of
the integrand satisfy mnðkÞH ¼ jp ðj ¼ 1; 2;yÞ;
and are thus located at k ¼ 7kjn; where

kjn 	
jp
H

n2o2
0 � f 2 � irno0

N2 � n2o2
0 þ irno0

� 
1=2
: ð22Þ

It can be shown that sgnðIm kjnÞ ¼ �sgn n: Fig. 3
shows the location of the poles in the complex k-
plane. To evaluate the Fourier integral we apply
Cauchy’s theorem to the contours shown in Fig. 3.
As is evident from Eq. (21), when x ¼ x �
ðU0=o0Þ sino0t > 0; the contour must be closed
in the upper half of the complex plane along the
path CR (Fig. 3) so that its contribution to the
integral vanishes, as R-N: Similarly, when xo0;
the contour must be closed in the lower half of the
complex plane along the path CR0 : For brevity only
the solution for x > 0 will be presented in detail. In
that case the contour encloses poles at k ¼ �kjn if
n > 0 and at k ¼ þkjn if no0 (Fig. 3). Defining,

R�
jn ¼ Residuef #wnðkÞ; k ¼ �kjng;

Rþ
jn ¼ Residuef #wnðkÞ; k ¼ þkjng;
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Cauchy’s theorem gives

w0ðx; z; tÞE2pi
XN
j¼1

Xn0

n¼1

R�
jn þ

X�1
n¼�n0

Rþ
jn

" #
:

The residues are readily evaluated by Taylor
expanding the denominator in Eq. (21) about

k ¼ 7kjn to give

R�
jn ¼

kjn

2jp2
#hð�kjnÞino0Jn

�U0kjn

o0

� �

� sin
jpz

H
eiðno0t�kjnxÞ;

Rþ
jn ¼ �

kjn

2jp2
#hðkjnÞino0Jn

U0kjn

o0

� �

� sin
jpz

H
eiðno0tþkjnxÞ:

Taking the limit r-0 and making use of the
relations (Watson, 1966)

J�nðzÞ ¼ ð�1ÞnJnðzÞ;

Jnð�zÞ ¼ ð�1ÞnJnðzÞ;

the various expressions can be combined to give
the vertical velocity:

x > 0: w0ðx; z; tÞ

E
XN
j¼1

�
1

jp

Xn0

n¼1

ð�1Þnkjnno0Jn

U0kjn

o0

� �
sin

jpz

H

� ½ #hð�kjnÞeiðno0t�kjnxÞ þ #hðkjnÞe�iðno0t�kjnxÞ�

xo0: w0ðx; z; tÞ

E
XN
j¼1

�
1

jp

Xn0

n¼1

kjnno0Jn

U0kjn

o0

� �
sin

jpz

H

� ½ #hðkjnÞeiðno0tþkjnxÞ þ #hð�kjnÞe�iðno0tþkjnxÞ�; ð23Þ

where

kjn ¼
jp
H

n2o2
0 � f 2

N2 � n2o2
0

� 
1=2
: ð24Þ

Evidently, Eq. (23) consists of waves with a
vertical modal structure propagating horizontally
away from the obstacle.

4.2. Conditions for validity of linear theory

A number of assumptions were made in the
derivation of the linear theory. In particular we
required that both u0 and w0 were both5U0: From
the bottom BC, Eq. (2), w0BU0h0k; where h0 and
1=k are characteristic vertical and horizontal
scales, respectively, of the topography. Continuity
then implies that u0kBw0m; or, u0BU0h0m; where m
is a characteristic vertical wavenumber of the

Re k

Im k

CR→∞

C

CR'→∞

n > 0

(ξ > 0)

(ξ < 0)

Re k

Im k

CR→∞

C

CR'→∞

n < 0

(ξ > 0)

(ξ < 0)

Fig. 3. Sketch of the complex k-plane showing location of poles

7kjn ð�Þ when n > 0 (top) and when no0 (bottom). Addition-

ally, when x > 0 the contour is closed in the upper part of the

complex plane ðCRÞ; and when xo0 it is closed in the lower half

ðCR0 Þ:
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wave. Thus,

u0
5U0 ) h0m51;

w0
5U0 ) h0k51:

We examine the first of the above conditions more
closely. There are two limiting cases. The quasi-
static or lee wave regime is realized when
o0=N-0; and from Section 3 we recall that
mBN=U0:When U0k=o0-0; we have the acoustic
limit (Bell, 1975a). In this limit, horizontal
excursions by the background flow (U0=o0) are
much smaller than the length-scale of the topo-
graphy. From Eq. (19), mBNk=o0: Thus,

h0m51 )
Nh0=U051 quasi-static limit;

Nh0k=o051 acoustic limit:

(

Defining a steepness parameter, e;

e 	
topographic slope

ray slope

and recognizing that the ray slope, which is the
angle of the wave characteristics, Bk=m; we can
conveniently summarize the above requirements
by the single condition: e51: In particular, I will
define e as

e ¼
h0kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðo2
0 � f 2Þ=ðN2 � o2

0Þ
q : ð25Þ

When eo1; the bottom topography is called
subcritical, and when e > 1 it is characterized as
being supercritical. The theory presented here is
valid for e51:

4.3. Power input

The pressure field associated with the internal
wave solution derived above exerts a net force
(Eq. (10)) on the bottom topography. As discussed
in Section 3, this implies that net work is done
by the background flow in generating the
internal wave field. The rate of working is the
power, P: To compute it we need an expression
for the force, F ; and hence the pressure p0:
Eliminating v0 from the horizontal momentum
equations gives

D2u0 þ f 2u0 ¼ �
1

r0

@

@x
Dp0:

Fourier transforming the above equation and the
continuity equation results in

#D2 #u0 þ f 2 #u0 ¼ �
ik

r0
#D #p0;

#u0 ¼
i

k

@ #w0

@z
;

where a # denotes a Fourier transform (Eq. (8))
and #D ¼ @=@t þ ikUðtÞ: Solving for #p0:

#p0 ¼ � r0
#hðkÞ
k2

Xn0

n¼�n0
ðna0Þ

mnðkÞðn
2o2

0 � f 2ÞJn

U0k

o0

� �

�
cos mnðkÞðH � zÞ

sin mnðkÞH
e
iðno0t�

U0k
o0

sin o0tÞ
; ð26Þ

where mn is defined in Eq. (19). Employing
Parseval’s theorem (Eq. (10)) the force on the
topography can be written as

F ðtÞ ¼
ir0
2p

Xn0

n¼�n0
ðna0Þ

Z
N

�N

j #hðkÞj2
kn

k2
mnðkÞðn

2o2
0 � f 2Þ

� Jn

U0k

o0

� �
cos mnðkÞH
sin mnðkÞH

� eiðno0t�ðU0k=o0Þ sin o0tÞ dk: ð27Þ

The integral above can be solved by the previous
method, but it is more convenient to directly
compute the power, which is defined as

PF 	
o0

2p

Z 2p=o0

0

F ðtÞU0 coso0t dt:

PF is the rate (per unit cross-stream distance) at
which energy is converted from the barotropic tide
into the internal tide in a fluid of finite depth.
From Watson (1966) we have the useful relation

JnðZÞ ¼
o0

2p

Z 2p=o0

0

eiðno0t�Z sin o0tÞ dt

and hence

PF ¼
ir0
2p

Xn0

n¼�n0
ðna0Þ

Z
N

�N

j #hðkÞj2
kn

k3
mnðkÞno0

� ðn2o2
0 � f 2ÞJ2

n

U0k

o0

� �
cos mnðkÞH
sin mnðkÞH

dk:

An application of Cauchy’s theorem similar
to that above finally gives the desired expression
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for PF:

PF ¼
2r0
p

XN
j¼1

Xn0

n¼1

j #hðkjnÞj2

j
J2

n

U0kjn

o0

� �

� no0ðn2o2
0 � f 2Þ1=2ðN2 � n2o2

0Þ
1=2: ð28Þ

As in the lee wave problem, all the contributions to
the power come from the resonant wavenumbers
kjn (Eq. (24)). Thus for a ‘‘long’’ obstacle (i.e., one
with a Fourier transform dominated by small
wavenumbers) the power can vanish.
In a fluid of finite depth, the energy being fed

into the internal wave field is trapped between the
bottom and the free-surface at z ¼ H; but can
radiate horizontally away from the generation site.
To better understand this, it is useful to construct
an energy budget for the internal wave field. The
wave energy density, E (sum of kinetic and
potential energy) is defined as

E ¼
r0
2
ðu02 þ v02 þ w02 þ N2Z2Þ;

where Z is the vertical displacement of fluid
particles (w0 ¼ DZ in a linear theory). The mo-
mentum and buoyancy equations can then be
combined to form an energy equation:

DE ¼ �
@

@x
p0u0 �

@

@z
p0w0 þ qðx; z; tÞ;

where q is a source (or sink) of energy. Integrating
the above equation vertically from z ¼ 0 to H; and
horizontally from x ¼ x1 to x2 (from one side of
the obstacle to the other; see Fig. 2) the total
energy in that region is governed by

@

@t

Z H

0

Z x2

x1

Eðx; z; tÞ dx dz

¼ �UðtÞ
Z H

0

½Eðx2; z; tÞ � Eðx1; z; tÞ� dz

�
Z H

0

½p0u0jx2 � p0u0jx1 � dz

þ
Z H

0

Z x2

x1

qðx; z; tÞ dx dz:

Averaged over a period, the term on the LHS
vanishes, while the final term on the RHS can be
identified with the average energy input ðPFÞ due
to the work done by the background flow against
the pressure force. (This last assertion can be

demonstrated explicitly.) The energy relation then
becomes

PF ¼
o0

2p

Z 2p=o0

0

UðtÞ

�
Z H

0

½Eðx2; z; tÞ � Eðx1; z; tÞ� dz dt

þ
o0

2p

Z 2p=o0

0

Z H

0

½p0u0jx2 � p0u0jx1 � dz dt:

The above expression says that the power input
into the wave field is balanced by the horizontal
flux of energy away from the obstacle (Fig. 2). This
flux is due to advection by the background flow as
well as by the pressure work (which dominates the
flux).

4.4. Comparison with the infinite-depth solution

It is useful to compare the expression for power
derived above (Eq. (28)) with Bell’s solution (Bell,
1975a,b) for an infinitely deep fluid:

PN ¼
2r0
p

Xn0

n¼1

no0ðn2o2
0 � f 2Þ1=2ðN2 � n2o2

0Þ
1=2

�
Z

N

0

j #hðkÞj2

k
J2

n

U0k

o0

� �
dk: ð29Þ

In an infinitely deep fluid, the power ðPNÞ can be
related to the vertical flux of energy, p0w0: the
power input at the bottom is radiated vertically
upward. Note that Eq. (29) can be recovered as a
limiting case of the finite-depth solution, Eq. (28),
by letting the depth, H ; of the fluid to go to infinity
in the latter. To see this, we write

kjn ¼ jdkn;

where

dkn ¼
p
H

n2o2
0 � f 2

N2 � n2o2
0

� 
1=2
:

In the limit H-N; the spacing, dkn; between the
resonant wavenumbers goes to zero, and the sum
(over j) in Eq. (28) can be replaced by an integral,
and we recover the infinite-depth expression
Eq. (29) ð1=j ¼ dkn=kjnÞ:
To contrast the finite- and infinite-depth

solutions, I will employ an idealized bottom
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topography represented by a truncated sine wave
(Fig. 4) consisting of an integer, m; number of
wavelengths ðl ¼ 12 kmÞ: The bottom is flat on
either side of this truncated sine, which has an
amplitude of 50 m: For reasons that will become
clear, I will characterize this topography by L 	
ml: For reference, Fig. 5 shows the power
spectrum, j #hðkÞj2; of the topography for m ¼ 9:
Also shown (circles) is the power spectrum
evaluated at the discrete resonant wavenumbers,
kjn; which contribute to the power in the finite-
depth theory. The nominal depth of the fluid
is H ¼ 4700 m; basic state stratification is

N ¼ 8� 10�4 s�1; and the Coriolis parameter is
f ¼ 8� 10�5 s�1: The assumed background flow
has an amplitude U0 ¼ 2 cm s�1 and oscillates in
time at the M2 frequency ðo0 ¼ 1:4� 10�4 s�1Þ:
These values are representative of open ocean
conditions. For these parameter values, U0=o0l;
which is a measure of advection by the back-
ground flow relative to the length scale of the
topography, is E0:01; and the steepness para-
meter, eE0:18: We now examine how the power
input, PF and PN; vary as a function of the ratio
L=l1; where l1 ðE65 km; here) is the wavelength
of the mode-1 wave of the internal tide, i.e.,
2p=k11:
Fig. 6 shows the finite-depth mode conversion

rate, normalized by the corresponding infinite-
depth value (i.e., PF=PN), as a function of L=l1:
The inset shows the absolute infinite-depth power
input per unit area ðPN=LÞ: Physically, isolated
topographic features (for e.g., seamounts) would
be characterized by small values of L=l1; while
more aerially extended features such as mid-ocean
ridges would be represented by large values. As the
ratio L=l1 increases the power input predicted
by infinite-depth theory (inset) remains roughly
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Fig. 4. Schematic of idealized topography used to illustrate the
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constant. In contrast, in a finite-depth ocean, the
predicted power input rapidly decreases. This
result can be readily understood if we recall the
results of Section 3. For a fluid of finite depth, it
was shown that in the presence of a periodic
bottom topography, the power input is exactly
zero. The topography here is not periodic (it has a
finite bandwidth of Oð1=LÞÞ; but as L becomes
greater than l1; it begins to ‘‘look’’ periodic on the
length scale of the wave (in a WKB sense).
More physically, waves are generated near the

bottom, propagate upward, and reflect back down.
The pressure field in the region where the reflected
waves encounter the bottom will be different from
that in an infinitely deep fluid (where the energy is
continuously radiated upward). However, if this
reflected wave encounters a flat bottom (small
L=l1), the resulting power input is very similar to
the infinite-depth value (since that region does not
contribute to the work). On the other hand, if the
downward propagating waves encounter a slop-
ping bottom topography ðL=l1 > 1Þ; the force and
power characteristics will be modified as seen in
Fig. 6. It is important to note that I could have
chosen, say, a sequence of Gaussian bumps and
obtained the same qualitative behavior.
The ratio L=l1 emerges as a fundamental

parameter in the finite-depth theory. For large
values of L=l1 (extended topography), mode
conversion in a finite-depth ocean ðPFÞ will be
substantially smaller than in an infinitely deep
ocean ðPNÞ: Conversely, as L=l1-0 (isolated
topography), PF will approach PN:
Having examined finite depth effects, I next

discuss the effect of nonlinearities.

5. Numerical calculations

In this section, I present results of simulations of
internal tides in a numerical model. In contrast to
previous numerical investigations of internal tide
generation in the open ocean (for e.g., Holloway
and Merrifield, 1999; Merrifield et al., 2001), my
goals are more process oriented. In particular,
I will use the numerical results both to assess
the theoretical analysis and to explore parameters
for which the theory is formally invalid. To

my knowledge, such a systematic comparison
between theory and numerical calculations has
not been previously attempted for internal tide
generation.

5.1. Model formulation

To study the generation of internal waves by
tidal flow over topography, I use the MIT general
circulation model (GCM) (Marshall et al., 1997).
The MIT GCM solves the nonhydrostatic, non-
linear primitive equations using a finite-volume
formulation. Topography is represented by lopped
cells (partial steps) (Adcroft et al., 1997). This
feature is essential for accurately representing the
interaction of the barotropic tide with the topo-
graphy and hence the wave generation process.
The partial step formulation also allows for more
accurate diagnoses of topographic drag and power
input, which are an important motivation for
performing these calculations. The model has an
implicit free-surface formulation.
To model a barotropic tide of amplitude U0 and

frequency o0; a spatially uniform body force,
Fbody ¼ U0o0 coso0t; is added to the zonal mo-
mentum equation. In the presence of topography
and a time-dependent mean flow it no longer
makes sense to decompose the motions into
barotropic and baroclinic ‘‘modes’’ (although I
continue to use the term ‘‘barotropic’’ in the sense
of being independent of the vertical coordinate).
Instead, ‘‘wave’’ motions are defined via,

u0ðx; z; tÞ 	 uðx; z; tÞ � Uðx; tÞ;

where u is the zonal velocity, U is defined as

Uðx; tÞ 	
1

H � hðxÞ

Z H

hðxÞ
uðx; z; tÞ dz

and H is the nominal depth of the fluid layer and
the bottom is at z ¼ hðxÞ (Fig. 2). I have found
that Uðx; tÞ is practically independent of x; and is
typically within a few percent of its desired value,
U0 coso0t:
An important issue in numerical solutions of

wave problems is the treatment of open bound-
aries. Here, we would like to impose the require-
ment that the energy flux be outward from the
generation site. This is the Sommerfeld radiation
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condition. This mathematical requirement was
implicitly imposed when I solved the linear wave
generation problem above (see, for example,
Carrier et al., 1966). For consistency, radiation
conditions (described in the appendix) have been
implemented for the eastern and western open
boundaries which permit the wave energy to leave
the domain with minimal reflection. I have also
found that radiation conditions (which are applied
only to the ‘‘waves’’) work much better than
‘‘sponge layers’’ which tend to generate spurious
reflections. In the meridional direction, periodic
BC are imposed.

5.2. Model parameters

Numerical calculations using two idealized
bottom topographies will be discussed: a truncated
sine wave (wavelength fixed at 12 km and variable
amplitude) similar to that discussed in the previous
section (Fig. 4), and a Gaussian bump (variable
width and amplitude). The horizontal and vertical
grid spacing, Dx and Dz; respectively, were
adjusted to place the highest resolution near the
topography. For the truncated sine, Dx was fixed
at 200 m near the obstacle (60 grid points per
wavelength) and then gradually increased to
E1500 m toward the boundaries (see Table 1).
For the Gaussian bump experiments, horizontal
resolution near the obstacle was varied according
to the width of the bump which ranged from
500 m ðDx ¼ 20 mÞ to 20 km ðDx ¼ 200 mÞ: In
both cases, Dz was fixed at 5 m near the
topography and then gradually increased to
E60 m near the surface. The nominal depth of
the domain, H; was 4700 m: The fluid is tempera-
ture stratified.
To compare the predictions of the inviscid

theory with the numerical results, the diffusivity
and viscosity were chosen so as to minimize
explicit diffusion and dissipation. Note, however,
that to maintain numerical stability, there must be
a finite amount of explicit dissipation (in addition
to numerical dissipation), and this should be kept
in mind when comparing the numerical results
with theory. In particular, a nonzero dissipation
will enhance mode conversion relative to the
inviscid theory.

All calculations were initiated from a state of
rest, and the model integrated for 20 forcing
periods ð2p=o0Þ: There was no noticeable erosion
of the basic state stratification at the end of the
integration. A steady state was generally achieved
within 4–5 forcing periods. All diagnostics pre-
sented below represent suitable averages between
forcing periods 8 and 12.

5.3. Diagnosing the force and energy flux

The presence of an obstacle results in a
substantial sea-surface height (SSH) response,
which must be taken into account when the
bottom pressure is computed. To separate the
SSH signal due to the ‘‘background’’ flow, UðtÞ;
from the (substantial) SSH response due to the
internal tides, each model simulation was preceded
by a ‘‘barotropic’’ simulation employing a single
layer (i.e., no stratification). All other parameters
were identical, and the instantaneous zonal velo-
city field in the barotropic calculation was the
same as the background flow, UðtÞ; in the full
model. The SSH response of the barotropic model,
ZBT; was subtracted from the SSH response of the
full model, Z; when the pressure was computed.
The perturbation pressure, p0; is thus defined as

p0ðx; z; tÞ 	 r0gðZ� ZBTÞ þ pðx; z; tÞ � P0ðzÞ;

where, p is the actual pressure field (not including
the free-surface contribution), r0 a reference
density, g ¼ 9:81 m s�2 the acceleration due to
gravity, and P0ðzÞ; the hydrostatic reference

Table 1

Model parameters for the numerical experiments

Parameter Value

N 8� 10�4 s�1

f 8� 10�5 s�1

U0 2 cm s�1

o0 1:4� 10�4 s�1

H (nominal depth) 4700 m

nH (horizontal biharmonic viscosity) 0:2� 5� 103 m4 s�1

kH (horizontal biharmonic diffusivity) 0:2� 5� 103 m4 s�1

nv (vertical viscosity) 1� 10�5 m2 s�1

kv (vertical diffusivity) 1� 10�6 m2 s�1

Dt 10–100 s
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pressure when the fluid is at rest. The force on the
topography was then calculated according to

F ðtÞ ¼
Z

p0ðx; z ¼ hðxÞ; tÞ
dh

dx
dx;

where the (zonal) integration is over the entire
domain. In numerically evaluating the integral I
account for the topographic slope appearing in the
integrand by exploiting the lopped cell representa-
tion of the bottom topography. The power per
unit cross-stream length is then simply,

PN 	
o0

2p

Z 2p=o0

0

F ðtÞUðtÞ dt:

It should be emphasized that including the
contribution of the sea-surface displacement due
to the internal tides to p0 is crucial for accurately
diagnosing the topographic force, and hence the
power. This component of p0 is of course the same
as would be exerted by a ‘‘rigid lid’’, which is
the assumption made in deriving the analytical
solutions.

5.4. Model results

5.4.1. Linear regime

As a first step, I have used the numerical model
to validate the linear, finite-depth theory derived
above. A series of calculations were performed
with the weak ðeE0:18Þ truncated sine topography
of the previous section. Fig. 6 (circles) shows the
power (normalized by PN) diagnosed in the
numerical model. As discussed above, finite-depth
theory predicts a substantially different energy flux
compared to Bell’s (1975a) infinite-depth solution.
This prediction, and in particular the sharp
decrease in mode conversion as L=l1 increases, is
well reproduced in the model. Overall, there is very

good agreement between the numerical calcula-
tions and the finite-depth theory.

5.4.2. Nonlinear regime

Linear theory is valid only for e much less than
1, but the numerical model allows us to explore a
more nonlinear regime. A series of model runs,
with two different bottom topographies, were
performed to examine how the power input varies
with the steepness parameter, e: Table 2 sum-
marizes various parameters for the different
experiments (labeled S-1, S-2, G-1, and G-2).

Truncated sine topography. Two sets of calcula-
tions were performed with this topography. The
first set (S-1) has L=l1E0:19; for which the finite-
and infinite-depth theories predict the same power.
The second set (S-2) has L=l1E1:7; for which the
two theories predict very different conversion rates
(Fig. 6). In both S-1 and S-2, e was varied between
0.18 and 1.8 by varying h0 between 50 and 500 m:
Figs. 7 (S-1) and 8 (S-2) show the zonal ‘‘wave’’
velocity, u0; for eE0:9 ðh0 ¼ 250 mÞ: The topogra-
phy is close to critical. In S-1, the length, L; of the
obstacle is much smaller than the wavelength of
the mode-1 wave and the response (Fig. 7, top
panel) is distinctly ‘‘ray’’ like. Reflection from the
free surface is clearly visible. In contrast, S-2
ðL > l1Þ displays a more ‘‘modal’’ structure in the
vertical (Fig. 8, top panel) as predicted by the
theory. (The dominant vertical mode excited will
of course depend on the details of the bottom
topography.) The bottom panels in Figs. 7 and 8
give a close-up view of u0 near the topography.
Note, that the amplitude of u0 is much greater than
that of the barotropic flow, U ð2 cm s�1Þ; and we
should not expect linear theory to hold for these
parameters. There is also much more vertical
structure in the u0 field just above the topography

Table 2

Characteristics of idealized bottom topographies used in the 4 numerical experiments

Experiment Topography L=l1 eBh0=l Parameters

S-1 Truncated sine: h0 sinð2px=lÞ 0.19 0.18–1.8 l ¼ 12 km (fixed); h0 (50–500 m)

S-2 Truncated sine: h0 sinð2px=lÞ 1.7 0.18–1.8 l ¼ 12 km (fixed); h0 (50–500 m)

G-1 Gaussian bump: h0 expð�x2=2l2Þ 0.62–0.016 0.04–1.65 h0 ¼ 200 m (fixed); l (20 km–500 m)

G-2 Gaussian bump: h0 expð�x2=2l2Þ 0.19 0.04–1.6 l ¼ 6 km (fixed); h0 (50–2300 m)
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than is predicted by linear theory (the fine scale
features are likely a result of the numerics, and in
particular the very low diffusivity and viscosity).
We might thus expect the vertical shear in this
region to lead to wave breaking, although no
overturning events have been observed in these
calculations. For steeper topography, u0 near the
topography was found to be as large as 10–
12 cm s�1:
Figs. 9 and 10 show the power diagnosed in

experiments S-1 and S-2 as a function of e: Also
shown is the conversion rate predicted by finite-
depth theory. All values are normalized by PN: It
is interesting to note that the ratio PF=PN

remains constant in both S-1 and S-2, suggesting
that the finite-depth power can be written as PF ¼
PN � f ðL=l1Þ; where the specific form of f will
depend on the topography. Llewellyn Smith and
Young (2002) have made a similar observation,

and have also derived the form of f for some
specific topographic shapes.
In both S-1 and S-2, the mode conversion rate

predicted by linear theory is a monotonically
increasing function of e (see inset for absolute
value of power per unit area). At first, the
numerical power also increases with e; and at a
faster rate compared to theory. In S-1, at critical
slope ðe ¼ 1Þ; finite-depth and infinite-depth theo-
ries both underestimate mode conversion by
E20% relative to the numerical model. In S-2,
the corresponding underestimates are about 90%
and 6%, respectively. (In S-2, for e51; the
numerical value is in better agreement with the
finite-depth theory.) As the topography becomes
supercritical ðe > 1Þ; the numerical power decreases

relative to the theoretical value. Note, though, that
the absolute power per unit area (inset) saturates
and remains roughly constant with e:
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The saturation of power for supercritical topo-
graphy is an important finding of this study. It was
initially suspected that power saturation was
caused by a decrease in the stratification. As
shown by Balmforth et al. (2002), in a linear,
inviscid theory, as e-1; the wave field develops
very small spatial scales, and when e ¼ 1 the
solutions formally become singular. (Retaining
advection by the basic state in the governing

equations may change this behavior, although this
remains to be seen.) The progressively smaller
vertical scales in the wave field as the topography
became steeper could lead to overturning and
mixing. However, the diagnosed Richardson num-
ber in the model was always large, and no
overturning events were observed. Furthermore,
the stratification did not discernibly change from
its initial value over the course of the integration.
(Balmforth et al. suggest that physical processes
such as nonlinearity and dissipation, which are
both present in the numerical model, may be
required to remove the singularity at the transition
e ¼ 1:) This raises the question of whether the
saturation effect is peculiar to this topography or
the manner in which e is changed. For instance, it
is possible that in the nonlinear regime the
amplitude of the topography relative to the mean
depth of the fluid plays a role in halting the power
increase. To investigate this, e could be varied by
changing the wavelength ðlÞ of the topography,
while keeping its amplitude fixed. This could be
done, but interpreting the results would not be
entirely straightforward. This is because L is
related to l ðL ¼ mlÞ and, as shown above, any
changes in the ratio L=l1 will also modify the
energetics of the wave generation. Alternatively, if
we insist on keeping L fixed, the number of sines,
m; must correspondingly be increased as l is
decreased. This both increases the computational
expense and introduces its own complications
because of reflection and interference of multiple
rays. To avoid these complications and address the
issue of power saturation, two additional sets of
calculations were performed with a different
bottom topography, namely a Gaussian bump.

Gaussian topography. Results from experiments
with a Gaussian bump, G-1 and G-2, are shown in
Figs. 11 and 12. In G-1, the height was fixed at
200 m; and the half-width, l varied between 20 km
and 500 m (e ranges between 0.04 and 1.65). In G-
2, the half-width was fixed at 6 km; and the height
increased from 50 to 2300 m (e varies from 0.04 to
1.6). Note that in G-1 the ratio L=l1 is not
constant and varies with e ðB1=LÞ: For e51; the
finite depth has a significant influence on the
energetics ðPF5PNÞ; an effect also captured by
the numerical model.
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As in the previous experiments, linear theory
underestimates the mode conversion rate (by
E10–20%). There is, however, a significant
difference between these calculations and the
previous ones, in that with a Gaussian topography
there is no evidence of power saturation as the
topography becomes supercritical. This is true
regardless of the manner in which e is changed.
The most straightforward explanation for this
difference is the trapping of energy in the troughs
of the sinusoidal topography: once the topography
is supercritical, there is downward energy propa-

gation. No such effect is possible with a single
Gaussian bump (although a set of Gaussian
bumps should qualitatively display the same
behavior as the sinusoidal topography).

Comparison with a finite amplitude theory.
Balmforth et al. (2002) (hereafter BIY) have
recently developed an analytical theory of internal
tide generation in a fluid of infinite depth which is
valid for 0pep1: Applying this theory to a
sinusoidal topography and a Gaussian bump they
find that at critical slope ðe ¼ 1Þ mode conversion
is enhanced (relative to linear, infinite-depth
theory) by 56% and 14%, respectively. The latter
value is comparable to the enhancement factors
observed in G-1 and G-2 (10–20%), although it is
important to recognize that the BIY theory is valid
only for an infinitely deep fluid. In both G-1 and
G-2, the ratio L=l1 is small, and from the point of
view of a linear theory, the fluid is effectively of
infinite depth ðPFEPNÞ; so arguably a compar-
ison with the BIY theory is not unreasonable.
Although this is also the case in experiment S-1,
the topography there is a truncated sine and not an
infinite sinusoidal one for which linear, finite-
depth theory predicts zero conversion. Thus it is
not clear whether a comparison between S-1 and
the results of BIY is justified. Nonetheless, the
numerical experiments presented here give an
enhancement of E20%; which is much smaller
than the 56% enhancement predicted by BIY. One
possible explanation for this difference is as
follows. Linear theory showed that when the
parameter L=l1j is small, the fluid is effectively of
infinite depth. For their theory to be applicable,
BIY assume that this remains true even when the
topography is of finite amplitude. But the numer-
ical results (to the extent they can be compared
with BIY) suggest that even though finite-depth
effects may be negligible in the linear regime, they
may become important when the topography is of
finite amplitude.

6. Conclusions

In this paper, analytical and numerical techni-
ques have been applied to better understand the
process of internal tide generation in the ocean by
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the interaction of the barotropic tide with bottom
topography. A new analytical theory has been
developed for the generation of internal tides in an
ocean of finite depth. Previous theoretical studies
of internal tide generation in the ocean have often
assumed that dissipation processes are sufficiently
strong to justify treating the ocean as a fluid of
infinite depth (Bell, 1975b). Mathematically, this is
equivalent to applying an upper radiation BC.
However, recent observations indicate that reflec-
tion of wave energy from the upper surface is
significant, and therefore treating the ocean as a
fluid of infinite depth is not always justified. I have
shown here that the presence of an upper reflecting
surface can significantly reduce, relative to the
infinite-depth theory of (Bell 1975a), the rate of
transfer of barotropic tidal energy into the internal
wave field. This reduction is particularly large for
extended topographic features.
I have also compared the power input predicted

by linear theory with the conversion rate diag-
nosed in a nonhydrostatic, nonlinear, hydrody-
namic model. Two model topographies, a
truncated sine and a Gaussian bump, are used to
explore the internal tide response. There is good
agreement between the theory and model for small
values of the steepness parameter e for which the
theory is formally valid. As e becomes O(1), linear
theory underestimates the power by an increasing
amount, although the theory still provides reason-
ably accurate estimates of mode conversion. As
the topography becomes supercritical, the power
saturates for the truncated sine topography, but
not the Gaussian bump.
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Appendix A. Implementation of radiation boundary

conditions

The implementation of the radiation BCs is
based on that proposed by Orlanski (1976).
Consider a variable f governed by the hyperbolic
equation

@f
@t

þ C
@f
@x

¼ 0; ðA:1Þ

where C is the phase speed. Eq. (A.1) carries
information about f in the þx direction if C > 0
and the �x direction if Co0: The waves we are
numerically modeling are much more complicated
and in general their dispersion properties are not
known either. To practically implement the Som-
merfeld radiation condition, Orlanski (1976) pro-
posed using an equation of the form (A.1) to
predict the value of model variables on open
boundaries. The phase speed, C; is different for
each variable and is to be diagnosed from the
tendency and spatial gradients of the model fields as

Cf ¼
�@f=@t

@f=@x
:

Given a Cf; Eq. (A.1) can be used to prognos-
tically determine values on the open boundary.
The actual numerical implementation of the

above ideas must be consistent with the specific
time-stepping scheme used in the model. In the
MIT GCM, this is a 2d order Adams–Bashforth
scheme (AB-II). As example, I give the discretiza-
tion for an eastern open boundary (a subscript is
the zonal index; a superscript the time step). For
each grid point along the eastern boundary in the
meridional and vertical directions we have

Cn
B�1 ¼

�½fn
B�1 � fn�1

B�1�

½a1ðf
n�1
B�1 � fn�1

B�2Þ þ a2ðf
n�2
B�1 � fn�2

B�2Þ�

Dx

Dt
;

where B is the boundary grid point, Dx the
horizontal resolution and Dt the time step, a1 ¼
1:5þ e and a2 ¼ �0:5� e are AB-II coefficients
(e is a small number). For stability reasons, Cf is
not allowed to exceed the value 0:5Dx=Dt: (The
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prefactor, 0.5, is due to the more stringent Courant
condition on the AB-II scheme). In addition, if
Cn

B�1o0; Cn
B�1 is set equal to 0. The value of f on

the open boundary is then calculated according to

fnþ1
B ¼fn

B � Cn
B�1

Dt

Dx

� ½a1ðf
n
B � fn

B�1Þ þ a2ðf
n�1
B � fn�1

B�1Þ�:

I have found that the scheme just described is quite
prone to numerical instability and also gives rise to
spurious reflections. Apparently, the diagnosed
phase speed fluctuates in time and frequently
exceeds the allowable maximum speed (to which
it is then clamped). A simple way to overcome this
difficulty is to low-pass filter (in time) the phase
speed. This is implemented as

Cn 	
Dt

T
CnðdiagnosedÞ þ 1�

Dt

T

� �
Cn�1;

where T is an averaging period. Setting T to the
period of the dominant waves appears to work
very well.
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