

Open access • Posted Content • DOI:10.1101/2021.08.10.455807

Generation of iPSCs from endangered Grevy's zebra and comparative transcriptomic analysis of mammalian PSCs — Source link 🖸

Yoshinori Endo, Ken-ichiro Kamei, Ken-ichiro Kamei, Koichi Hasegawa ...+4 more authors

Institutions: Kyoto University, Shenyang Pharmaceutical University

Published on: 10 Aug 2021 - bioRxiv (Cold Spring Harbor Laboratory)

Related papers:

- The gene expression profiles of induced pluripotent stem cells (iPSCs) generated by a non-integrating method are more similar to embryonic stem cells than those of iPSCs generated by an integrating method
- Genetic Variation, Not Cell Type of Origin, Underlies Regulatory Differences in iPSCs
- Nascent Induced Pluripotent Stem Cells Efficiently Generate Entirely iPSC-Derived Mice while Expressing
 Differentiation-Associated Genes
- Generation of Induced Pluripotent Stem Cells from Mammalian Endangered Species.
- · Induced pluripotent stem cells versus embryonic stem cells: a comprehensive overview of differences and similarities

1	Generation of iPSCs from endangered Grevy's zebra and
2	comparative transcriptomic analysis of mammalian PSCs
3	
4	Yoshinori Endo ¹ , Ken-ichiro Kamei ^{2,3,4} *, Koichi Hasegawa ² , Keisuke Okita ⁵ , Hideyuki
5	Ito ⁶ , Shiho Terada ² , Miho Inoue-Murayama ^{1,2} *
6	
7	¹ Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo-ku, Kyoto,
8	606-8203, Japan
9	² Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University,
10	Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
11	³ Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning 110016,
12	People's Republic of China
13	⁴ Department of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning
14	110016, People's Republic of China
15	⁵ Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto,
16	606-8507, Japan
17	⁶ Kyoto City Zoo, Sakyo, Kyoto, 606-8333, Japan
18	
19	

20 *Corresponding authors

- 1 Ken-ichiro Kamei, Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto
- 2 University, Kyoto, Japan, +81-75-753-9774, +81-75-753-9761,
- 3 kamei.kenichiro.7r@kyoto-u.ac.jp
- 4 Miho Inoue-Murayama, Wildlife Research Center, Kyoto University, Kyoto, Japan,
- 5 +81-75-771-4375, +81-75-771-4394, murayama.miho.5n@kyoto-u.ac.jp

1 Abstract

2	Induced pluripotent stem cells (iPSCs) can provide a biological resource for functional
3	and conservation research in various species. This expectation has led to generation of
4	iPSCs from various species, including those identified as endangered species. However,
5	the understanding of species variation in mammalian iPSCs is largely unknown. Here,
6	to gain insight into the species variation in iPSCs, we the first generated iPSCs from the
7	endangered species Grevy's zebra (Equus grevyi; gz-iPSCs) for the first time in the
8	world. We isolated primary fibroblasts cell from an individual that had died of natural
9	causes at a zoo and reprogrammed the fibroblasts into iPSCs. We confirmed their
10	pluripotency and differentiation potential and performed RNA sequencing analysis. The
11	gz-iPSC transcriptome showed that the generated gz-iPSCs robustly expressed genes
12	associated with pluripotency and reprogramming processes, including
13	epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions. Comparative
14	transcriptomics with other species revealed patterns of gene expression among
15	mammalian PSCs and detected evolutionary conservation of pluripotency-associated
16	genes and the plausible importance of the translation process. This study provides new

- 1 insights into the evolution of mammalian PSCs, and the species conservation and
- 2 variation of PSCs will advance our understanding of the early development of
- 3 mammals.
- 4

5 Keywords

6 iPSCs, mammal, endangered species, conservation, cellular reprogramming

1 Introduction

2	Mammalian induced pluripotent stem cells (iPSCs), which show unlimited self-renewal
3	and differentiation capabilities into all three germ layers, can be potential sources of
4	differentiated tissue cells for fundamental research and conservation of diverse species,
5	especially those classified as endangered species. In general, biological materials of
6	non-model mammals are constrained because of ethical and technical concerns, and the
7	potential properties of PSCs enable the provision of resources for functional study and
8	assisted reproductive technologies ¹ . The development of iPSC technology ^{2,3} has
9	broadened the opportunity to study PSCs from a range of mammalian species. Given,
10	however, that even human and mice PSCs show different characteristics and the
11	foundation of PSCs is yet to be completely elucidated ⁴ , it is of profound importance to
12	understand the species variation and evolution of mammalian PSCs.
13	PSCs exhibit both similarities and differences in their characteristics between
14	species, highlighting the importance of understanding PSCs from various species.
15	Derivations of PSCs from a range of species have been reported, including cow ⁵ , pig ⁶ ,
16	horse $^{7-11}$, naked mole-rat ¹² , and other mammalian species ^{13,14} . In the reprogramming of

1	iPSCs, the defined combination of transcription factors can be effective with a wide
2	range of taxonomic groups, except for some species that may require alternative factors,
3	including bats, Tasmanian devils, platypus, and felids ^{15–19} . In most studies, PSCs have
4	been shown to satisfy many of the criteria for pluripotency, while the characteristics of
5	the cells are not completely defined ^{13,14} . PSCs can reside in various pluripotency states,
6	such as naive and primed pluripotency, and differences in pluripotency states and
7	configurations have been reported between humans and mice ²⁰ ; besides, other species
8	may exhibit alternative pluripotency states ¹³ . While biological processes and associated
9	genes that take crucial roles in PSCs have been extensively studied in humans and mice,
10	the molecular basis underlying the variation in mammalian PSCs is poorly explored.
11	The comparative genetic approach is a powerful tool for elucidating evolution ²¹ .
12	While we previously described the evolutionary pattern in the pluripotency gene
13	regulatory network from changes in protein-coding genes ²² , changes in gene expression
14	may enable further insights into the phenotypic differences and similarities between
15	species ²³ . Comparative PSC gene expression analysis has previously highlighted the
16	common regulation of signalling pathways between primates and mice ²⁴ ; evolutionary

1 patterns across broader taxonomic lineages are poorly explored.

2	Compared to other taxonomic groups, Perissodactyla PSCs are exclusively
3	limited in horse ^{7–11} , except for the Northern white rhinoceros ^{25,26} . Grevy's zebra (<i>Equus</i>)
4	grevyi) is one of the three extant zebra species and is the largest living wild equid.
5	Grevy's zebra has experienced a serious population decline of 54% over the last 30
6	years, leaving approximately 2,600 individuals ²⁷ and has been classified as the CITES
7	Appendix I and 'Endangered' in the IUCN Red List. Grevy's zebra belongs to the
8	family Equidae, the taxonomic group including horses, donkeys, and zebras; thus, the
9	adaptation of assisted reproduction techniques might be possible. Concerning the low
10	genetic diversity of this species ²⁸ , iPSCs from Grevy's zebra might aid conservation
11	efforts.
12	Here, we report the first generation of iPSCs from Grevy's zebra (gz-iPSCs).
13	We reprogrammed zebra fibroblasts by transducing four transcription factors, OCT3/4
14	(also known as POU5F1), SOX2, KLF4, and c-MYC, using retroviral vectors. gz-iPSCs
15	exhibited primed-type morphology and could be maintained under primed-type culture
16	conditions and expressed pluripotency markers. To understand the molecular basis of

1	the generated gz-iPSCs, we performed RNA sequencing (RNA-seq). In addition, we
2	compared the transcriptome of Grevy's zebra and other mammalian species and found
3	evolutionary conservation and variations in gene expression pattern among mammalian
4	PSCs. This study provides insights into the variations in mammalian PSCs and
5	contributes to the future conservation management of endangered species.
6	
7	Methods
8	Primary culture of Grevy's zebra fibroblast
9	This study was conducted in strict accordance with the guidelines for the ethics of
10	animal research by Kyoto University and the Wildlife Research Center of Kyoto
11	University (WRC-2021-0016A). The sampling and methods were approved by the
12	Kyoto City Zoo and the Wildlife Research Center of Kyoto University. Skin tissue
13	samples were obtained from a female Grevy's zebra that had died of natural causes at
14	the Kyoto City Zoo (Japan). Primary fibroblasts were established as previously
15	described ²⁹ . The sample was sterilised with 70% (v/v) ethanol and cut into $1-2 \text{ mm}^3$
16	pieces and was cultured in Dulbecco's modified Eagle medium (DMEM)

1	(Sigma-Aldrich, Merck, Darmstadt, Germany) with 10% (v/v) foetal bovine serum
2	(FBS) (CCB, Nichirei Bioscience, Tokyo, Japan), 100 U/mL penicillin/streptomycin
3	(Fujifilm Wako Pure Chemical Corporation, Osaka, Japan), 2.5 µg/mL amphotericin B
4	(Sigma-Aldrich), and 100 μ M non-essential amino acids (NEAA) (Sigma-Aldrich) in a
5	humidified incubator at 37 °C with 5% (v/v) CO ₂ . Fibroblast cultures at passage 3 were
6	cryopreserved by suspending cells in CELLBANKER 1 (Takara Bio, Shiga, Japan),
7	slowly cooled to -80 °C using a Mr. Frosty Freezing Container (Thermo Fisher
8	Scientific, Waltham, MA, United States) for at least 24 h, and subsequently transferred
9	to the liquid nitrogen vapour.
10	
11	Cell culture
12	Grevy's zebra fibroblasts (gz-fibroblasts) were cultured in DMEM supplemented with
13	10% (v/v) FBS, 100 units/mL penicillin/streptomycin, and 100 μ M NEAA on
14	gelatin-coated dishes. Primate ES Cell Medium (ReproCELL, Kanagawa, Japan) with
15	100 μM sodium butyrate (Fujifilm Wako) and 10 μM Rho-associated coiled-coil

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.10.455807; this version posted August 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

medium. 0.3 μ M glycogen synthase kinase-3 (GSK-3) inhibitor CultureSureR

2	CHIR99021 (Fujifilm Wako), 0.1 µM ATP-competitive inhibitor CultureSureR
3	(Fujifilm Wako) (correctively called 2i), and 1,000 U/mL leukaemia inhibitory factor
4	(LIF) (Millipore, Merck, Darmstadt, Germany), collectively called 2i/LIF, were used
5	with primary iPSC medium. After colonies appeared, putative gz-iPSCs were cultured
6	in mTeSR-1 (Stemcell Technologies, Vancouver, Canada) ³⁰ on Matrigel (Corning,
7	Corning, NY, United States)-coated dishes. Mouse embryonic fibroblasts (MEFs) were
8	isolated from embryonic day 13.5 embryos of C57BL/6-Slc mice. Mouse fibroblasts
9	SNL76/7 were clonally derived from a Sandos-inbred 6-thioguanine-resistant,
10	ouabain-resistant (STO) cell line and stably express a neomycin-resistant cassette and a
11	leukaemia inhibitory factor expression construct (MSTO) ³¹ . MEF and MSTO were
12	cultured in DMEM supplemented with 10% (v/v) FBS, 100 units/mL
13	penicillin/streptomycin, and 100 μ M NEAA on gelatin-coated dishes. Fibroblasts were
14	passaged using trypsin-EDTA (0.25%) (Thermo Fisher Scientific). gz-iPSCs were
15	passaged using TrypLE Express (Thermo Fisher Scientific) with the addition of ROCK
16	inhibitor at 10 μ M 24 h before and after passaging. The cells were cultured in a

1	humidified incubator at 37 °C with 5% (v/v) CO ₂ . Cellular samples were tested for
2	mycoplasma infection using the MycoAlert Mycoplasma Detection Kit (Lonza, Basel,
3	Switzerland) according to the manufacturer's protocol. All clones were expanded until
4	at least passage 10 and then cryopreserved by suspending cells in
5	STEM-CELLBANKER (Zenoaq, Fukushima, Japan), slowly cooled to -80 °C using a
6	Mr. Frosty Freezing Container for at least 24 h, and subsequently transferred to the
7	liquid nitrogen vapour.
8	
9	Virus production and generation of iPSCs
9 10	Virus production and generation of iPSCs Cellular reprogramming was conducted using retrovirus vectors, as previously
9 10 11	Virus production and generation of iPSCs Cellular reprogramming was conducted using retrovirus vectors, as previously described ^{2,3} . Briefly, pMXs-based retroviral vectors were prepared using human
9 10 11 12	Virus production and generation of iPSCs Cellular reprogramming was conducted using retrovirus vectors, as previously described ^{2,3} . Briefly, pMXs-based retroviral vectors were prepared using human <i>OCT3/4</i> , <i>SOX2</i> , <i>KLF4</i> , and <i>c-MYC</i> ² . Plat-GP packaging cells were seeded at 3 × 10 ⁵
9 10 11 12	 Virus production and generation of iPSCs Cellular reprogramming was conducted using retrovirus vectors, as previously described^{2,3}. Briefly, pMXs-based retroviral vectors were prepared using human <i>OCT3/4</i>, <i>SOX2</i>, <i>KLF4</i>, and <i>c-MYC</i>². Plat-GP packaging cells were seeded at 3 × 10⁵ cells per well in a 12-well plate³². The next day, 0.5 µg retroviral vectors were
9 10 11 12 13	Virus production and generation of iPSCs Cellular reprogramming was conducted using retrovirus vectors, as previously described ^{2,3} . Briefly, pMXs-based retroviral vectors were prepared using human <i>OCT3/4, SOX2, KLF4</i> , and <i>c-MYC</i> ² . Plat-GP packaging cells were seeded at 3 × 10 ⁵ cells per well in a 12-well plate ³² . The next day, 0.5 µg retroviral vectors were independently introduced into Plat-GP cells using 2.25 µL of FuGENE 6 transfection
9 10 11 12 13 14	Virus production and generation of iPSCs Cellular reprogramming was conducted using retrovirus vectors, as previously described ^{2,3} . Briefly, pMXs-based retroviral vectors were prepared using human <i>OCT3/4</i> , <i>SOX2</i> , <i>KLF4</i> , and <i>c-MYC</i> ² . Plat-GP packaging cells were seeded at 3 × 10 ⁵ cells per well in a 12-well plate ³² . The next day, 0.5 µg retroviral vectors were independently introduced into Plat-GP cells using 2.25 µL of FuGENE 6 transfection reagent (Promega, Madison, WI, United States). In addition, pMXs-EGFP was used to

1	were packaged with the VSV.G envelope protein using 0.25 μ g pMD2.G. After 24 h,
2	the medium was replaced with 1 mL of DMEM containing 10% FBS. Grevy's zebra
3	fibroblasts were seeded at 5×10^4 cells/well in a 12-well plate. The next day,
4	virus-containing supernatants from these Plat-GP cultures were collected and filtered
5	through a 0.45- μ m cellulose acetate filter. Virus-containing supernatants were either
6	collected or concentrated by mixing with quarter volumes of $5 \times PEG$ -it Virus
7	Precipitation Solution (System Biosciences, Palo Alto, CA, United States), followed by
8	centrifugation according to the manufacturer's protocol. The retroviral pellet was
9	suspended in DMEM and supplemented with polybrene at a final concentration of 4
10	μ g/mL. Grevy's zebra fibroblasts were transduced with viruses by incubating in a
11	virus/polybrene-containing medium for 24 h. The cells were trypsinized 3 days after
12	transduction, and $2-8 \times 10^3$ cells were re-seeded on 6-well plates, 60 mm or 100 mm
13	dishes coated with Matrigel, on mitomycin C-treated MSTO, or MEF feeder layer. The
14	culture medium was replaced the next day with a primary iPSC medium with or without
15	2i/LIF. The number of colonies was counted on Day 17. The formed colonies were
16	mechanically passaged in 96-well plates and individually expanded by further passaging.

- 1 Two independent reprogramming experiments were performed, and the reprogramming
- 2 conditions tested in this study are summarised in Table 1.
- 3

4 Karyotyping

- 5 Karyotyping of putative gz-iPSCs was performed by the Nihon Gene Research
- 6 Laboratories Inc. (Miyagi, Japan). The karyotypes of 50 cells were analysed using
- 7 G-band staining, and the number of cells was counted according to the number of
- 8 chromosomes.
- 9

10 Alkaline phosphatase staining

- 11 Alkaline phosphatase (AP) staining was performed using the AP Staining Kit,
- 12 AP100R-1 (System Biosciences) according to the manufacturer's instructions. The cells
- 13 were fixed with 4% (w/v) paraformaldehyde (Nisshin EM, Tokyo, Japan)/Dulbecco's
- 14 phosphate-buffered saline (DPBS) (Thermo Fisher Scientific) for 5 min at 24–26 °C and
- rinsed with DPBS. The cells were then stained with a freshly prepared staining solution
- 16 for 20 min in the dark.

1

2

Immunocytochemistry

3	Fluorescence immunocytochemistry was performed for the following pluripotency
4	markers: OCT3/4 and NANOG. The cells were cultured for 3 days on glass-bottom
5	dishes, fixed with 4% (w/v) paraformaldehyde/DPBS for 20 min at approximately
6	24–26 °C, rinsed twice with DPBS, and permeabilized with 0.5% (v/v) Triton
7	X-100/DPBS (MP Biomedicals, Santa Ana, CA, United States) overnight at 4 °C. The
8	cells were blocked with DPBS containing 5% (w/v) normal goat serum (Vector
9	Laboratories, Burlingame, CA, United States), 5% (w/v) normal donkey serum (Jackson
10	ImmunoResearch, West Grove, PA, United States), 3% (w/v) bovine serum albumin
11	(BSA) (Sigma-Aldrich), and 0.1% (v/v) Tween20 (Bio-Rad Laboratories, Hercules, CA,
12	United States) overnight at 4 °C and incubated with primary antibody diluted in
13	blocking buffer overnight at 4 °C. The cells were washed twice with 0.1% (v/v)
14	Tween20/D-PBS and incubated with secondary antibodies diluted in blocking buffer for
15	1 h at approximately 24–26 °C. After washing twice with 0.1% (v/v) Tween20/D-PBS,
16	the nuclei were counterstained with 300 nM 4 ,6-diamidino-2-phenylindole (DAPI)

1	(Fujifilm Wako). The following primary antibodies were used at the indicated dilutions:
2	mouse anti-OCT-3/4 (C-10 clone, #sc5279, 1:100) (Santa Cruz Biotechnology, Dallas,
3	TX, United States) and rabbit anti-Nanog (#4903, 1:400) (Cell Signalling Technology,
4	Danvers, MA, United States). The secondary antibodies used were labelled with
5	anti-mouse IgG Alexa-488 or anti-rabbit IgG Alexa-594 (#715-546-150, #711-586-152,
6	1:1,000) (Jackson ImmunoResearch). Three gz-iPSC lines were tested as biological
7	replicates. Grevy's zebra fibroblasts and human iPSCs (253G1) ³³ (Supplementary
8	method) were used as negative and positive controls for pluripotent markers,
9	respectively. The experimental negative controls were tested by staining samples with
10	only secondary antibodies.
11	
12	Gene expression of pluripotency markers
13	Total RNA was isolated using the RNeasy Mini Kit 50 (Qiagen, Hilden, Germany),
14	according to the manufacturer's instructions. DNA was eliminated with RNase-Free
15	DNase Set (Qiagen) in solution, followed by RNA clean-up. Complementary DNA
16	(cDNA) was synthesised using PrimeScript RT Master Mix (Takara Bio). Quantitative

1	reverse transcription-polymerase chain reaction (qRT-PCR) analysis was performed
2	using TB Green Premix Ex Taq II (Tli RNaseH Plus) (Takara Bio) on a Thermal Cycler
3	Dice Real Time System TP800 (Takara Bio). The cycling conditions for qRT-PCR were
4	as follows: 95 °C for 30 s, followed by 40 amplification cycles (95 °C, 5 s; 58 °C, 30 s).
5	The relative expression ratios of target genes were calculated using the comparative Ct
6	method and the expression levels of β -actin as the reference gene. The primers were
7	designed using equine genomes as a reference with Primer-BLAST ³⁴ because Grevy's
8	zebra genome assembly and annotation are lacking at this time. Primers were designed
9	to react specifically with the equine gene but not with humans for OCT3/4, SOX2, and
10	KLF4 (eOCT3/4, eSOX2, and eKLF4). Primers were also designed to react with both
11	equine and humans for OCT3/4, KLF4, and NANOG (ehOCT3/4, ehKLF4, and
12	ehNANOG). The primers used in this study are listed in Supplementary Table 1.
13	Expression of pluripotency markers was assessed using gz-iPSCs as test samples and
14	gz-fibroblasts as the somatic control sample. Dependency on 2i/LIF ^{35,36} was assessed by
15	comparing the expression levels of pluripotency markers between samples cultured with
16	or without 2i/LIF for three passages. Three independent experiments with three gz-iPSC

- 1 clones were performed using qRT-PCR.
- 2

3 In vitro embryoid body (EB) formation

4 Colonies of putative gz-iPSCs were mechanically cut into small aggregates of cells,

- 5 detached from the culture dish with pipetting, and allowed to grow in suspension on
- 6 ultra-low attachment culture dishes (Corning) in mTeSR-1 culture medium. After one
- 7 week, the medium was replaced with a differentiation medium, DMEM supplemented
- 8 with 20% (v/v) FBS, 100 units/mL penicillin/streptomycin, and 100 μ M NEAA. Two
- 9 weeks after the DMEM culture, samples were harvested for total RNA extraction. The
- 10 ability to form derivatives of the three germ layers was assessed by gene expression of
- 11 ectoderm, mesoderm, and endoderm markers using qRT-PCR, as previously described.
- 12

13 Nanopore RNA-seq

Total RNA from gz-iPSCs and fibroblasts, each at three alternative generations ($n_{PSC} =$ 3, $n_{fib} =$ 3), was extracted as previously described and quantified using a NanoDrop 16 1000 spectrophotometer (Thermo Fisher Scientific) and a Bioanalyzer 2100 (Agilent

1	Technologies, Santa Clara, CA, United States). RNA (40 ng) was used for library
2	preparation using Oxford Nanopore Technologies (ONT, Oxford, United Kingdom)
3	long-read cDNA sequencing. cDNA was generated using the PCR-cDNA Barcoding kit
4	(SQK-PCB109) of ONT according to the manufacturer's protocol. For sequencing,
5	libraries were applied to the Nanopore Flow Cell (v 9.4.1) and run for up to 72 h.
6	
7	RNA-seq analysis
8	Sequenced reads were base-called and demultiplexed using the ONT EPI2ME software.
9	Adapter sequences were trimmed from the reads using Porechop $(v. 0.2.4)^{37}$.
10	Low-quality reads were filtered using a NanoFilt included in the NanoPack $(v. 2.7.1)^{38}$.
11	The filtered reads were mapped to the horse transcriptome using the Minimap2 (v.
12	$(v. 1.3.0)^{40}$. The mapped reads were counted using Salmon $(v. 1.3.0)^{40}$. The transcriptome
13	data of cow ($n_{PSC} = 2$, $n_{fib} = 2$) (PRJNA432600) ⁵ , human ($n_{PSC} = 4$, $n_{fib} = 2$)
14	$(PRJNA230824)^{41}$, mouse $(n_{PSC} = 4, n_{fib} = 1)$ $(PRJNA564252)^{42}$, NMR $(n_{PSC} = 4, n_{fib} = 1)$
15	2) $(PRJDB4191)^{12}$, and pig $(n_{PSC} = 2, n_{fib} = 1) (PRJDB5113)^6$ PSCs and fibroblasts were
16	collected from the European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena)43

1	database. Because the transcriptome of horse PSCs was not available, the transcriptome
2	of horse inner cell mass (ICM) ($n_{PSC} = 3$) (PRJNA223157) ⁴⁴ was used and treated as
3	PSCs. The transcriptome data were sequenced using Illumina platforms. Illumina reads
4	were trimmed and filtered using a fastp $(v. 0.20.0)^{45}$. The filtered reads were mapped to
5	the transcriptome of each species and counted using salmon. The transcript reads were
6	converted to gene-level abundance using tximport (v. 3.13) ⁴⁶ and annotated with human
7	orthologues using the Biomart tool of Ensembl
8	(http://www.ensembl.org/biomart/martview/) ⁴⁷ . Differentially expressed genes (DEGs)
9	were identified using DESeq2 (v. $1.28.1$) ⁴⁸ with an FDR-adjusted <i>P</i> -value of 0.1, and
10	log2FoldChange > 1 as default ⁴⁹ . A volcano plot was constructed using
11	EnhancedVolcano (v. 1.6.0), in which log2FoldChnage values were shrunken using the
12	Apeglm method in DESeq2 ⁵⁰ and FDR lower than 10E-20 were compressed for
13	visualisation. Protein analysis through evolutionary relationships (PANTHER) provided
14	by the Gene Ontology Consortium (http://geneontology.org) ^{51–53} was used for gene
15	ontology (GO) analysis of biological processes enriched for DEGs with FDR < 0.05 .
16	For DEG analysis across species, we combined data from all study species, compared

the changes in gene expression between cell types, and used the top 1,000 DEGs

2	according to FDR for later analysis. Hierarchical clustering and heat maps were
3	constructed across species using the heatmap2 in gplots R package (v. 3.1.1) with the
4	rlog transformation in DESeq2. DEGs per species were identified using the top 1,000
5	DEGs across the species. Venn diagrams were constructed using the VennDiagram R
6	package (v. 1.6.0). Gene set enrichment analysis (GSEA) with Kyoto Encyclopedia of
7	Genes and Genomes (KEGG) pathways ⁵⁴ was performed using the clusterProfiler R
8	package (v. 3.16.1) ⁵⁵ .
9	

10 Statistics and reproducibility

11 The Welch two-sample t-test was conducted using R (v. 4.0.3). Box plots were

12 constructed using Python graphing packages Matplotlib (v. 3.3.4)⁵⁶ and Seaborn (v.

13 $(0.11.1)^{57}$. Centre lines indicate median and box limits indicate upper and lower quartiles.

14 Upper whisker = $min(max(x), Q_3 + 1.5 \times IQR)$, lower whisker = $max(min(x), Q_1 - 1)$

15 1.5 × IQR).

16

Results 1

2	Generation of Grevy's zebra iPSCs from primary fibroblasts
3	To acquire the source for gz-iPSCs, we obtained primary fibroblasts from the skin tissue
4	of an adult female Grevy's zebra (Figs. 1a and b). gz-fibroblasts grew in a commonly
5	used cell-culture medium, such as DMEM supplemented with 10% (v/v) FBS. We
6	confirmed that the gz-fibroblasts propagated until passage 10.
7	To identify an efficient method for transgene delivery, we transduced
8	gz-fibroblasts at passage three with retroviruses designed to express the human OCT3/4,
9	SOX2, KLF4, and c-MYC (Fig. 1c) with an unconcentrated or concentrated vector,
10	which has increased by viral titres and reduced toxicity ⁵⁸ . gz-fibroblasts were resistant
11	to viral toxicity, and the concentrated viral vectors exhibited higher transduction rates
12	(Supplementary Fig. 1). To identify the efficient culture conditions for the formation of
13	colonies, we reseeded transduced cells on Matrigel, which provides feeder-free surfaces
14	for PSCs ⁵⁹ , feeder layers, MEFs, and MSTOs, which secrete a variety of growth factors
15	and extracellular matrices and are widely used in establishing PSC lines from a variety
16	of species ^{2,13,60,61} . Whereas our primary iPSC medium can sustain primed-type PSCs ² ,

1	the formed colonies may exhibit naive-type characteristics, requiring distinct culture
2	condition ^{35,36} . To address this, we also tested the 2i/LIF condition in the cells after
3	transduction until colony formation. PSC-like colonies formed on day 11 after
4	transduction, followed by new colonies appearing periodically over the next 10 d
5	(Supplementary Fig. 2). PSC-like colonies formed under all conditions, except in
6	populations cultured with or without 2i/LIF on MEF, and the morphologies of the
7	colonies were similar between conditions (Fig. 1d, Supplementary Fig. 3). Finally, we
8	observed the highest number of colonies with a condition in which cells were
9	transduced with a concentrated vector and cultured without 2i/LIF on Matrigel (Table
10	1).
11	
12	Characterisation of the pluripotent status of Grevy's zebra iPSCs
13	To determine the culture conditions for maintaining gz-iPSCs, we compared cellular
14	growth in the primary iPSC medium and the alternative mTeSR-1 medium. Given the
15	high number of colonies observed in the Matrigel condition in our reprogramming
16	experiment, we tested the mTeSR-1 medium, which has been developed for feeder-free

1	culture of primed-type human PSCs ³⁰ . The mTeSR-1 medium enabled the putative
2	gz-iPSCs to grow stably, while the primary iPSC medium could not sustain colonies for
3	more than a few passages (Supplementary Fig. 4). To determine whether gz-iPSCs can
4	grow in naive-type condition ^{35,36} , we cultured the gz-iPSCs with 2i/LIF in mTeSR-1
5	medium and observed a decrease in pluripotency markers in the presence of 2i/LIF
6	(Supplementary Fig. 5). Therefore, we chose mTeSR-1 medium without 2i/LIF as the
7	maintenance culture condition. We initially selected a total of 48 colonies from the most
8	efficient condition in the reprogramming process, five of which could be maintained for
9	up to at least five passages. To select the primary clones for continuous culture and later
10	analyses, we performed preliminary pluripotency experiments. We selected three
11	primary clones (named A, D, and E) based on the AP activity and the expression of
12	pluripotency marker genes and the silencing of viral genes (Supplementary Fig. 6).
13	To determine whether the generated colonies exhibit the nature of mammalian
14	PSCs, we investigated the cellular characteristics of the putative gz-iPSCs. The
15	morphology of the gz-iPSCs resembled primed-type PSC colonies generated from
16	humans, such as a monolayer of cells with clear colony edges, rather than mouse iPSCs,

1	such as a semi-spherical colony (Fig. 2a). Nevertheless, the gz-iPSCs exhibited
2	abundant cytoplasm compared to large nuclei and scant cytoplasm in human and mouse
3	iPSCs ^{2,3} . In addition, the colonies of gz-iPSC showed lose and sharp edges compared to
4	that of human and mouse in which cell-cell tight junctions form round edges. The
5	gz-iPSCs could be passaged as single cells with TrypLE Express even without ROCK
6	inhibitor, which is required for survival of dissociated human ESCs ⁶² , while ROCK
7	inhibitor improved the survival of gz-iPSCs (Supplementary Fig. 7). During passage
8	from 24 to 28, gz-iPSCs showed doubling times of 22.6 ± 2.4 h, which is similar to that
9	of human ESCs ⁶³ . We investigated the chromosomal complement of the clone A and
10	found that gz-iPSCs (68%) had a normal karyotype at passage 13, while 32% of them
11	had one extra chromosome (Fig. 2b). The MycoAlert test on the supernatant of the
12	gz-iPSCs showed that all three clones were negative for mycoplasma (Supplementary
13	Fig. 8). To date, these gz-iPSC lines have been maintained for more than 30 passages.
14	To evaluate the expression of proteins associated with pluripotency, we
15	conducted molecular staining followed by microscopic observation. In one of the
16	pluripotent-associated proteins, the level of AP was observed after treatment with

red-coloured substrates that reacted with AP at passages 6, 8, and 10 for clones A, D,

2	and E, respectively (Fig. 2c and Supplementary Fig. 6a). Moreover,
3	immunocytochemistry revealed the expression of pluripotency marker proteins
4	(OCT3/4 and NANOG) with gz-iPSCs at passage 17 (Fig. 2d). We observed no
5	fluorescent expression in the fibroblasts and the negative controls (Supplementary Fig.
6	9). The fluorescent expression of NANOG, which had not been transduced by a
7	retroviral vector, supports the increase of the pluripotency marker protein in the
8	reprogrammed gz-iPSCs.
9	For further evaluation of pluripotency criteria, we analysed the gene expression of
10	pluripotency markers in gz-iPSCs using qRT-PCR. To determine whether the expressed
11	genes were endo-or exogenous, we designed equine-specific primers, eOCT3/4, eSOX2,
12	and eKLF4. We also designed multi-species-specific primers to react with both equine
13	and human genes, named ehOCT3/4, ehKLF4, and ehNANOG, to confirm the
14	expression of these markers. We observed higher expression levels of all the analysed
15	pluripotency markers with iPSC samples compared with fibroblasts with both
16	equine-specific and multi-species-specific primers at passage 25 (Fig. 2e). The

1	expression of virally transduced genes (vOCT3/4, vSOX2, vKLF4, and vcMYC) was not
2	completely silenced and was observed at low levels. However, the expression levels of
3	the endogenous genes (eOCT4, eSOX2, and eKLF4) were much higher than those of the
4	exogenous genes. Additionally, the generated gz-iPSCs expressed NANOG, which was
5	not introduced in the reprogramming process and not observed in the original
6	gz-fibroblasts. These results indicate that endogenous pluripotency genes were induced
7	by the reprogramming process and maintained the generated gz-iPSCs.
8	To examine the differentiation ability of gz-iPSCs, we conducted EB formation,
9	in which cells of all three germ layers were mixed (Fig. 2f). As observed in human
10	iPSCs, gz-iPSCs formed ball-like EBs in suspension culture for two weeks with a
11	differentiation medium. qRT-PCR analysis revealed increased expression of lineage
12	markers for the three germ layers, including ectoderm (NES, TUBB3, and PAX6),
13	mesoderm (SMA and BMP4), and endoderm (AFP, GATA4, SOX17, and CXCR4) ²⁹ (Fig.
14	2g and Supplementary Table 1).
15	

16 Identification of genes altered by the generation of gz-iPSCs

1	To investigate the comprehensive changes in gene expression by reprogramming, we
2	performed RNA-seq and analysed the DEGs between gz-iPSCs and fibroblasts. DEG
3	analysis revealed 1,144 upregulated and 1,495 downregulated DEGs with adjusted
4	<i>P</i> -values (false discovery rate [FDR] < 0.1) and $ \log 2$ FoldChange $ > 1$ by RNA-seq
5	(Fig. 3a, Supplementary Table 2). As expected, the upregulated genes included the
6	well-known pluripotency genes highly expressed compared to fibroblasts, such as
7	OCT3/4, DNMT3B, SALL4, ZFP42 (also known as REX1), and LIN28 ⁶⁴ . In contrast, the
8	downregulated genes included fibroblast genes VIM, DDR2, TGFBR2, COL1A1,
9	COL1A2, and FSP1 (also known as $S100A4$) ⁶⁵ .
10	To characterise the derived gz-iPSCs for representative biological functions,
11	we performed GO enrichment analysis (Fig. 3b and Supplementary Tables 3 and 4).
12	Among the hierarchically specific subclasses, the GO terms enriched with upregulated
13	DEC : included the target linterforce size alling another securities acceletion of call
	DEGs included the type I interferon signaling pathway, positive regulation of cell
14	population proliferation, embryo development, and telomere maintenance. GO analysis
14 15	population proliferation, embryo development, and telomere maintenance. GO analysis also revealed enrichment of the terms related to epithelial-to-mesenchymal and

1	included regulation of cell adhesion, epithelial cell differentiation, and tight junction
2	assembly, whereas the downregulated terms included positive regulation of EMT, and
3	epithelial cell migration. GO terms associated with metabolism included ATP metabolic
4	process, regulation of catabolic process, and regulation of generation of precursor
5	metabolites and energy with upregulated DEGs, as well as fatty acid beta-oxidation with
6	downregulated DEGs.
7	To gain insights into the molecular basis underlying the enriched biological
8	processes, we compared the transcripts per million (TPM) of the DEGs between
9	gz-iPSCs and fibroblasts (Fig. 3c). In addition to the pluripotency signature genes
10	shown in the volcano plot, we found upregulation of EPCAM and DPPA3. Among the
11	EMT-MET-related biological processes, we observed upregulation of CDH1 (also
12	known as E-cadherin), which promotes MET ⁶⁶ , ESRP1, which promotes MET via the
13	upregulation of <i>CDH1</i> ⁶⁷ , <i>CLDN4</i> ⁶⁸ and <i>GATA6</i> ⁶⁹ , which suppress EMT. We also
14	observed the downregulation of ZEB1, ZEB2, TWIST1, and TWIST2, that are highly
15	expressed in EMT and suppressed in MET ⁷⁰ . We also found upregulation of metabolic
16	and glucose transport-associated genes SLC2A1, SLC2A5, and SLC2A6 (GLUT1, 5, and

1	6, respectively) and downregulation of SIRT2. Furthermore, we found upregulation of
2	IFITM1, BST2 (CD317), and MOV10, which are involved in viral defence. To further
3	evaluate the expression changes in DEGs, we inspected log2FoldChanges and found
4	EMT-MET-related genes among the highly upregulated DEGs with log2FoldChange >
5	4, including <i>DMKN</i> , which is the key regulator of EMT ⁷¹ , <i>CDH1</i> , <i>CLDN4</i> , <i>EPCAM</i> ,
6	ESRP1, and GATA6 (Supplementary Table 2). In addition, highly upregulated DEGs
7	included markers of pluripotency state and germline cells, including GATA3, VGLL1,
8	TFAP2A, TFAP2C, and SOX15.
٩	
5	
10	Gene expression pattern of mammalian PSCs
10 11	Gene expression pattern of mammalian PSCs Comparative analysis of gene expression provides insights into the evolution of
10 11 12	Gene expression pattern of mammalian PSCs Comparative analysis of gene expression provides insights into the evolution of molecular basis among species ²³ . To understand gz-iPSCs from an evolutionary
10 11 12 13	Gene expression pattern of mammalian PSCs Comparative analysis of gene expression provides insights into the evolution of molecular basis among species ²³ . To understand gz-iPSCs from an evolutionary perspective, we compared the transcriptome of Grevy's zebra with other mammalian
10 11 12 13 14	Gene expression pattern of mammalian PSCs Comparative analysis of gene expression provides insights into the evolution of molecular basis among species ²³ . To understand gz-iPSCs from an evolutionary perspective, we compared the transcriptome of Grevy's zebra with other mammalian species, including human ⁴¹ , mouse ⁴² , naked mole-rat (NMR) ¹² , cow ⁵ , and pig ⁶ , for
10 11 12 13 14	Gene expression pattern of mammalian PSCs Comparative analysis of gene expression provides insights into the evolution of molecular basis among species ²³ . To understand gz-iPSCs from an evolutionary perspective, we compared the transcriptome of Grevy's zebra with other mammalian species, including human ⁴¹ , mouse ⁴² , naked mole-rat (NMR) ¹² , cow ⁵ , and pig ⁶ , for whom the transcriptomes of PSCs and fibroblasts were available in public databases. As
10 11 12 13 14 15 16	Gene expression pattern of mammalian PSCs Comparative analysis of gene expression provides insights into the evolution of molecular basis among species ²³ . To understand gz-iPSCs from an evolutionary perspective, we compared the transcriptome of Grevy's zebra with other mammalian species, including human ⁴¹ , mouse ⁴² , naked mole-rat (NMR) ¹² , cow ⁵ , and pig ⁶ , for whom the transcriptomes of PSCs and fibroblasts were available in public databases. As a reference for equine PSCs, we included the transcriptome of horse ICM ⁴⁴ because no

1	transcriptomic data of horse PSCs were available. We excluded genes that were found
2	in human samples only, putatively due to annotation bias, as these genes may cause
3	clustering problems (Supplementary Fig. 10). To investigate the patterns of gene
4	expression, we identified DEGs between fibroblasts and PSCs across species
5	(Supplementary Table 5). Hierarchical clustering separated samples by cell type rather
6	than by species (Fig. 4a). A visual inspection of the z-score shows that PSCs exhibited a
7	higher degree of dispersion between species than that between fibroblasts. The
8	hierarchical pattern does not reflect known phylogeny in both PSCs and fibroblasts,
9	except for pairs of Grevy's zebra-horse and cow-pig. The clade of PSCs contains two
10	major groups, one of which includes Grevy's zebra, most closely grouped with horse
11	next with NMR, and the other includes cows, pigs, humans, and mice.
12	To investigate the species differences in expression changes, we identified DEGs
13	per species using the top 1,000 significant DEGs across mammals. DEG analysis
14	revealed 74 commonly upregulated and 90 downregulated genes across the species (Fig.
15	4b and c). Among the DEGs with the lowest <i>P</i> -values, the commonly upregulated genes
16	included well-known pluripotency-associated genes in both humans and mice, such as

1 ESRP1, EPCAM, OCT3/4, DNMT3B, and DSG2 (Table 2 and Supplementary Table 6).

2	In addition, we found genes that are not generally associated with pluripotency,
3	including AP1M2, PLEKHA7, and MARVELD3. The commonly downregulated DEGs
4	include S100A4, which is a typical fibroblast marker ^{65} , and DCN, which inhibits ESC
5	self-renewal ⁷² . GO terms enriched with upregulated common DEGs included positive
6	regulation of transcription by RNA polymerase II, epithelial cell differentiation, and
7	regulation of cell cycle process (Fig. 4d). The downregulated GO terms included
8	collagen fibril organisation, positive regulation of cell differentiation, and sprouting
9	angiogenesis (Supplementary Tables 7 and 8).
10	To investigate the functional molecular networks regulating PSCs in each species,
11	we analysed the changes in biological KEGG pathways using GSEA (Fig. 5 and
12	Supplementary Table 6). In general, the activated and suppressed pathways differ
13	among species. Nevertheless, GSEA revealed common activation of translational
14	control pathways, such as ribosome, spliceosome, and nucleocytoplasmic transport.
15	GSEA also revealed frequent activation and suppression of cell adhesion pathways,
16	including focal adhesion, ECM-receptor interaction, and tight junctions in multiple

- 1 species. Together, our RNA-seq analysis revealed that the comprehensive gene
- 2 expression of gz-iPSCs had been changed compared to that of gz-fibroblasts by
- 3 reprogramming, supporting the successful generation of gz-iPSCs.
- 4

5 Discussion

- 6 In this study, we report the generation of the first iPSCs from an endangered species,
- Grevy's zebra. Primary gz-fibroblasts were obtained and successfully reprogrammed
 into gz-iPSCs. gz-iPSCs generated in this study exhibited PSC characteristics in terms
- 9 of morphology, expression of pluripotency markers, and differentiation potential into
- 10 three germ layers.

In light of RNA-seq results, we revealed molecular basis regulating the pluripotency characteristics of the gz-iPSCs. Similar to ESCs, iPSCs can differentiate into three germ layers, maintain high telomerase activity, and exhibit proliferative potential⁶⁰. The observed GO enrichment in embryo development, cell population proliferation, and telomere maintenance indicates that the derived gz-iPSCs have acquired general characteristics of PSCs as also shown with the differentiation

1 experiments into EB and doubling a time similar to that of human iPSCs.

2	As shown in the Fig. 3, the highly upregulated DEGs were associated with the
3	EMT-MET process that occur during the reprogramming process from fibroblasts to
4	iPSCs ⁷³ . This complicated transition of cell fate is referred to as EMT-MET, where
5	EMT is first activated, followed by its reversed process MET in the early phase of
6	reprogramming ^{70,74} . Our findings imply that EMT-MET may have occurred during the
7	reprogramming of gz-iPSCs and that the function and regulation of EMT-MET are
8	conserved in Grevy's zebra as in humans and mice.
9	PSCs can exist in multiple pluripotency states, including naïve, primed, and
10	formative state, that is observed in epiblast-like cells (EpiLCs) ⁷⁵ . Our experimental data
11	indicated that derived gz-iPSCs have primed type morphology and can be cultured in
12	primed conditions for human PSCs, such as mTeSR-1 medium ³⁰ . In our RNA-seq data,
13	we found upregulation of genes indicative of pluripotency and germline cells. In
14	humans, formative EpiLCs express $BST2$ at higher levels than the naïve cells ⁷⁶ and also
15	express GATA3, VGLL1, and CLDN4 uniquely compared to both naïve and primed
16	cells ⁷⁷ . Our findings, therefore, imply that the pluripotent state of gz-iPSCs may exhibit

1 a mixture of primed and formative states that differs between humans and mice,

2	addressing the complexity of pluripotency state among mammalian PSCs.
3	Comparative transcriptomics will shed light on the understanding of the
4	conservation and variations in mammalian PSCs, which share many of the criteria for
5	pluripotency but also differ in their characteristics ^{13,14,20} . We observed that hierarchical
6	clustering separates PSCs and fibroblasts, consistent with patterns of gene expression
7	differences between tissues ²³ . We found gz-iPSCs nested among other mammalian
8	PSCs, indicating that the global gene expression of the generated gz-iPSCs is similar to
9	those of other mammalian species. gz-iPSCs were most closely clustered with horse
10	ICM, indicating that the expression patterns, at least, partly resolve phylogenetic
11	relationships, as also observed between cows and pigs. The hierarchical pattern,
12	however, did not resolve phylogenetic relationships overall, constructing two major
13	hierarchal groups, one with Grevy's zebra, horse, and NMR, and the other with cows
14	and pigs, humans, and mice. The independent branch of the mouse, which is the only
15	naive type among the analysed species ⁴² , may reflect pluripotency status, which shows
16	distinct expression patterns within species ⁷⁷ . The sister clade includes Grevy's zebra,

1	horse, and NMR, implying that these species may have unique molecular mechanisms
2	for maintaining their PSCs compared with other widely studied species, addressing the
3	importance of comparative studies across taxonomic groups.
4	The common changes in gene expression provide insights into the evolutionary
5	conservation of pluripotency mechanisms in mammalian PSCs. We observed the
6	expression of well-known pluripotency-associated genes, including the core
7	pluripotency transcription factor $OCT3/4^{78,79}$, DNA methyltransferase $DNMT3B^{80}$,
8	RNA-binding <i>ESRP1</i> ⁸¹ , and cell adhesion molecules <i>EPCAM</i> ⁸² and <i>DSG2</i> ⁸³ , suggesting
9	that these genes play important roles across taxonomic lineages. The common
10	upregulation of cell adhesion molecules $EPCAM^{82}$ and $DSG2^{83}$, which are also used as
11	PSC-specific surface markers ^{82,83} , indicate that these genes are effective in
12	fluorescence-activated cell sorting for various species. Our GO analysis provided
13	insights into the conservation of biological processes that play important roles in PSCs.
14	For example, we found enrichment of GO terms associated with RNA polymerase II,
15	which regulates transcription in PSCs ⁸⁴ . As implied in Grevy's zebra, we also observed
16	enrichment of GO terms associated with the EMT-MET process across mammalian

1	PSCs ^{70,74} . Our analysis also revealed that the expression of genes that are not generally
2	associated with PSCs commonly across species, indicating potential functional
3	importance in mammalian PSCs. Together, the common changes in gene expression
4	across taxonomic lineages will provide insights into the principle of molecular
5	mechanisms regulating mammalian PSCs that have been limited to humans and mice.
6	The pluripotency state and properties of PSCs are maintained by a complex
7	gene network ⁸⁵ and require highly orchestrated translation control ⁸⁶ . We observed
8	common activation of translation control pathways, supporting the important role of the
9	translation process in mammalian PSCs. In addition, we also detected the upregulation
10	of ESRP1 across mammalian PSCs. ESRP1 is a splicing regulator and has been shown
11	to play controversial roles in human and mouse PSCs ^{81,87–89} . In mice, knockdown of
12	ESRP1 positively regulates the expression of core pluripotency genes, OCT3/4, SOX2,
13	and NANOG ⁸⁶ , whereas ESRP1 promotes the biogenesis of circular RNAs that maintain
14	pluripotency in human PSCs ⁸⁹ and enhances human PSC pluripotency ⁸⁸ . ESRP1 also
15	drives the EMT-MET process by regulating isoform splicing ^{67,90} . Collectively, our
16	findings indicate the evolutionary conservation of EMT-MET and associated translation

1	control pathways	across species,	implying th	at further understa	anding of these processe	2S
---	------------------	-----------------	-------------	---------------------	--------------------------	----

2	may be key to elucidating the principles of mammalian PSCs.
3	However, we found variations in activation and suppression in most other
4	biological pathways, as well as a high degree of dispersion in the gene expression
5	patterns of PSCs. These findings may shed light on the species differences in the
6	characteristics of mammalian PSCs and imply the evolution of the unique molecular
7	mechanisms of species for regulating PSCs. The protein-coding sequences of
8	pluripotency-regulating genes have been evolutionarily conserved across mammals ²² .
9	The high variations in gene expression patterns found in this study may suggest that the
10	characteristic variations in mammalian PSCs may be explained by the differences in
11	gene expression.
12	This report is one of the few cases of the generation of iPSCs from highly
13	endangered species of non-primate taxonomic group ^{16,25,26} . iPSCs derived from
14	endangered species provide biological resources for functionary research and disease
15	investigation. For example, equine piroplasmosis is a tick-borne disease of equids
16	caused by protozoan parasites ⁹¹ . When the anthrax outbreak occurred and killed 53

1	Grevy's zebras in Kenya, uncertainty with possible adverse effects of vaccination of
2	Grevy's zebras impeded the immediate application of medical treatment ⁹² . As safe and
3	effective protocols are especially important for species with declining populations,
4	iPSCs from endangered species could contribute to the development of therapeutic
5	applications ¹ .
6	One prospect of iPSC technology for conservation management is genetic
7	rescue ⁹³ . As the number of individuals declines, it is accompanied with the loss of
8	genetic variation, and the opportunity to preserve viable biomaterials will become
9	increasingly limited. Because the genetic diversity of Grevy's zebra has been
10	decreasing ²⁸ , cryopreservation of iPSCs from current individuals will contribute to
11	future conservation efforts.
12	
13	Conclusions
14	Grevy's zebra iPSCs established in this study have advanced our understanding of
15	mammalian PSCs. The effective reprogramming of gz-fibroblasts by human

16 transcription factors supports the plausible conservation of reprogramming mechanisms

1	between humans and equine. The transcriptome of gz-iPSCs allowed us to further
2	characterise the molecular basis of these newly established iPSCs. Comparative
3	transcriptomics with other species has provided new insights into the gene expression
4	patterns of mammalian PSCs, such as evolutionary conservation of the EMT-MET
5	process and translation control. gz-iPSCs will provide resources for future functional
6	studies and conservation management of this endangered species.
7	
8	Authors' contributions
9	Y. E., M. I-M., and K. K. designed the study and wrote the manuscript; Y. E. performed
10	the experiments and analysed the data; K. H. supervised the cellular experiments; K. O.
11	performed retrovirus reprogramming; H. I. acquired samples and supervised data
12	interpretation; S. T. performed RNA-seq experiments; M. I-M. and K. K. supervised the
13	project. All authors read and approved the final manuscript.
14	
15	Supplementary Material

Additional results supporting this article have been uploaded as part of the online 16

- 1 electronic supplementary material.
- 2

3 Acknowledgements

- 4 The authors thank N. Yoshida for providing technical support for the experiments; This
- 5 work was supported by JSPS KAKENHI Grant Numbers 17H03624, 20H00420 (M.
- 6 I-M.) and 17H02083 (K.K.), the Kyoto University Supporting Program for
- 7 Interaction-based Initiative Team Studies (SPIRITS) (M. I-M), and the Environment
- 8 Research and Technology Development Fund (FPMEERF20214001) of the
- 9 Environmental Restoration and Conservation Agency of Japan (M. I-M).

10

11 Competing interests

- 12 The authors declare no competing interests.
- 13

14 Data availability

- 15 RNA-seq data have been deposited under BioProject PRJNA748892 and GEO
- 16 GSE180619.

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.10.455807; this version posted August 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 2 Correspondence and requests for Grevy's zebra cells should be addressed to K.K.

Literature Cited

2	1.	Ryder, O. A. & Onuma, M. Viable cell culture banking for biodiversity
3		characterization and conservation. Annu Rev Anim Biosci 6, 83-98 (2018).
4	2.	Takahashi, K. et al. Induction of pluripotent stem cells from adult human
5		fibroblasts by defined factors. Cell 131, 861-872 (2007).
6	3.	Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse
7		embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676
8		(2006).
9	4.	Liu, G., David, B. T., Trawczynski, M. & Fessler, R. G. Advances in pluripotent
10		stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev
11		<i>Reports</i> 16 , 3–32 (2020).
12	5.	Bogliotti, Y. S. et al. Efficient derivation of stable primed pluripotent embryonic
13		stem cells from bovine blastocysts. Proc Natl Acad Sci 115, 2090–2095 (2018).
14	6.	Fukuda, T. et al. Global transcriptome analysis of pig induced pluripotent stem
15		cells derived from six and four reprogramming factors. Sci Data 6, 190034
16		(2019).
17	7.	Quattrocelli, M. et al. Equine-induced pluripotent stem cells retain lineage
18		commitment toward myogenic and chondrogenic fates. Stem Cell Reports 6,
19		55–63 (2016).
20	8.	Whitworth, D. J., Ovchinnikov, D. A., Sun, J., Fortuna, P. R. J. & Wolvetang, E.
21		J. Generation and characterization of leukemia inhibitory factor-dependent
22		equine induced pluripotent stem cells from adult dermal fibroblasts. Stem Cells
23		<i>Dev</i> 23 , 1515–1523 (2014).
24	9.	Nagy, K. et al. Induced pluripotent stem cell lines derived from equine
25		fibroblasts. Stem Cell Rev Reports 7, 693-702 (2011).
26	10.	Breton, A. et al. Derivation and characterization of induced pluripotent stem cells
27		from equine fibroblasts. Stem Cells Dev 22, 611-621 (2013).
28	11.	Khodadadi, K. et al. Induction of pluripotency in adult equine fibroblasts without
29		c-MYC. Stem Cells Int 2012, 429160 (2012).
30	12.	Miyawaki, S. et al. Tumour resistance in induced pluripotent stem cells derived
31		from naked mole-rats. Nat Commun 7, 11471 (2016).
32	13.	Ezashi, T., Yuan, Y. & Roberts, R. M. Pluripotent stem cells from domesticated
33		mammals. Annu Rev Anim Biosci 4, 223–253 (2016).

1	14.	Devika, A. S., Wruck, W., Adjaye, J. & Sudheer, S. The quest for pluripotency: a
2		comparative analysis across mammalian species. Reproduction 158, R97-R111
3		(2019).
4	15.	Mo, X., Li, N. & Wu, S. Generation and characterization of bat-induced
5		pluripotent stem cells. Theriogenology 82, 283-293 (2014).
6	16.	Weeratunga, P., Shahsavari, A., Ovchinnikov, D. A., Wolvetang, E. J. &
7		Whitworth, D. J. Induced pluripotent stem cells from a marsupial, the tasmanian
8		devil (Sarcophilus harrisii): Insight into the evolution of mammalian
9		pluripotency. Stem Cells Dev 27, 112-122 (2018).
10	17.	Whitworth, D. J. et al. Platypus induced pluripotent stem cells: the unique
11		pluripotency signature of a monotreme. Stem Cells Dev 28, 151-164 (2019).
12	18.	Verma, R., Holland, M., Temple-Smith, P. & Verma, P. Inducing pluripotency in
13		somatic cells from the snow leopard (Panthera uncia), an endangered felid.
14		Theriogenology 77, 220-228.e2 (2012).
15	19.	Verma, R. et al. Nanog is an essential factor for induction of pluripotency in
16		somatic cells from endangered felids. Biores Open Access 2, 72-76 (2013).
17	20.	Weinberger, L., Ayyash, M., Novershtern, N. & Hanna, J. H. Dynamic stem cell
18		states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell
19		<i>Biol</i> 17 , 155–169 (2016).
20	21.	Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint
21		using 29 mammals. Nature 478, 476-482 (2011).
22	22.	Endo, Y., Kamei, K. & Inoue-Murayama, M. Genetic signatures of evolution of
23		the pluripotency gene regulating network across mammals. Genome Biol Evol 12,
24		1806–1818 (2020).
25	23.	Brawand, D. et al. The evolution of gene expression levels in mammalian organs.
26		Nature 478, 343–348 (2011).
27	24.	Liu, Y. et al. Comparative gene expression signature of pig, human and mouse
28		induced pluripotent stem cell lines reveals insight into pig pluripotency gene
29		networks. Stem Cell Rev Reports 10, 162-176 (2014).
30	25.	Ben-Nun, I. F. et al. Induced pluripotent stem cells from highly endangered
31		species. Nat Methods 8, 829-831 (2011).
32	26.	Korody, M. L. et al. Rrewinding extinction in the northern white rhinoceros:
33		genetically diverse induced pluripotent stem cell bank for genetic rescue. Stem

1		<i>Cells Dev</i> 30 , 177–189 (2021).					
2	27.	Rubenstein, D., Low Mackey, B., Davidson, Z., Kebede, F. & King, S. R. B.					
3		Equus grevyi. IUCN Red List Threat Species 8235, (2016).					
4	28.	Ito, H., Langenhorst, T., Ogden, R. & Inoue-Murayama, M. Population genetic					
5		diversity and hybrid detection in captive zebras. Sci Rep 5, 13171 (2015).					
6	29.	Loring, J. F. & Peterson, S. E. Human Stem Cell Manual: A Laboratory Guide					
7		2nd Edition. (Elsevier Science, London, 2012).					
8	30.	Ludwig, T. E. et al. Feeder-independent culture of human embryonic stem cells.					
9		Nat Methods 3, 637–646 (2006).					
10	31.	McMahon, A. P. & Bradley, A. The Wnt-1 (int-1) proto-oncogene is required for					
11		development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).					
12	32.	Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for					
13		transient packaging of retroviruses. Gene Ther 7, 1063–1066 (2000).					
14	33.	Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc					
15		from mouse and human fibroblasts. Nat Biotechnol 26, 101-106 (2008).					
16	34.	Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for					
17		polymerase chain reaction. BMC Bioinformatics 13, 134 (2012).					
18	35.	Hanna, J. H., Saha, K. & Jaenisch, R. Pluripotency and cellular reprogramming:					
19		facts, hypotheses, unresolved issues. Cell 143, 508-525 (2010).					
20	36.	Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature					
21		453 , 519–523 (2008).					
22	37.	Wick, R., Volkening, J. & Loman, N. Porechop. Github https://github.					
23		com/rrwick/Porechop (2017).					
24	38.	De Coster, W., D'Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C.					
25		NanoPack: visualizing and processing long-read sequencing data. Bioinformatics					
26		34 , 2666–2669 (2018).					
27	39.	Li, H. Minimap2: pairwise alignment for nucleotide sequences. <i>Bioinformatics</i>					
28		34 , 3094–3100 (2018).					
29	40.	Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon					
30		provides fast and bias-aware quantification of transcript expression. Nat Methods					
31		14 , 417–419 (2017).					
32	41.	Ma, H. et al. Abnormalities in human pluripotent cells due to reprogramming					
33		mechanisms. Nature 511, 177-183 (2014).					

1	42.	Velychko, S. et al. Excluding Oct4 from Yamanaka cocktail unleashes the					
2		developmental potential of iPSCs. Cell Stem Cell 25, 737-753.e4 (2019).					
3	43.	Harrison, P. W. et al. The European Nucleotide Archive in 2020. Nucleic Acids					
4		<i>Res</i> 49 , D82–D85 (2021).					
5	44.	Iqbal, K., Chitwood, J. L., Meyers-Brown, G. A., Roser, J. F. & Ross, P. J.					
6		RNA-seq transcriptome profiling of equine inner cell mass and trophectoderm.					
7		<i>Biol Reprod</i> 90 , 61 (2014).					
8	45.	Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ					
9		preprocessor. Bioinformatics 34, i884-i890 (2018).					
10	46.	Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq:					
11		transcript-level estimates improve gene-level inferences. F1000Research 4, 1521					
12		(2016).					
13	47.	Kinsella, R. J. et al. Ensembl BioMarts: a hub for data retrieval across taxonomic					
14		space. Database 2011, bar030-bar030 (2011).					
15	48.	Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and					
16		dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014).					
17	49.	Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical					
18		and powerful approach to multiple testing. J R Stat Soc Ser B 57, 289–300					
19		(1995).					
20	50.	Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for					
21		sequence count data: removing the noise and preserving large differences.					
22		Bioinformatics 35, 2084–2092 (2019).					
23	51.	Mi, H. et al. PANTHER version 16: A revised family classification, tree-based					
24		classification tool, enhancer regions and extensive API. Nucleic Acids Res 49,					
25		D394–D403 (2021).					
26	52.	Carbon, S. et al. The Gene Ontology resource: enriching a GOld mine. Nucleic					
27		Acids Res 49, D325–D334 (2021).					
28	53.	Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat					
29		<i>Genet</i> 25 , 25–29 (2000).					
30	54.	Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG:					
31		new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res					
32		45 , D353–D361 (2017).					
33	55.	Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for					

1		comparing biological themes among gene clusters. OMICS 16, 284-287 (2012).					
2	56.	Hunter, J. D. Matplotlib: A 2D graphics environment. Comput Sci Eng 9, 90-95					
3		(2007).					
4	57.	Waskom, M. seaborn: statistical data visualization. J Open Source Softw 6, 3021					
5		(2021).					
6	58.	Kutner, R. H., Zhang, X. Y. & Reiser, J. Production, concentration and titration					
7		of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4, 495–505 (2009).					
8	59.	Sun, N. et al. Feeder-free derivation of induced pluripotent stem cells from adult					
9		human adipose stem cells. Proc Natl Acad Sci 106, 15720–15725 (2009).					
10	60.	Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts.					
11		Science 282, 1145–1147 (1998).					
12	61.	Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells					
13		from mouse embryos. Nature 292, 154–156 (1981).					
14	62.	Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human					
15		embryonic stem cells. Nat Biotechnol 25, 681-686 (2007).					
16	63.	Hanna, J. et al. Human embryonic stem cells with biological and epigenetic					
17		characteristics similar to those of mouse ESCs. Proc Natl Acad Sci 107,					
18		9222–9227 (2010).					
19	64.	Lowry, W. E. et al. Generation of human induced pluripotent stem cells from					
20		dermal fibroblasts. Proc Natl Acad Sci 105, 2883–2888 (2008).					
21	65.	Tanaka, Y. et al. Transcriptome signature and regulation in human somatic cell					
22		reprogramming. Stem Cell Reports 4, 1125–1139 (2015).					
23	66.	An, J., Zheng, Y. & Dann, C. T. Mesenchymal to Epithelial Transition Mediated					
24		by CDH1 Promotes Spontaneous Reprogramming of Male Germline Stem Cells					
25		to Pluripotency. Stem Cell Reports 8, 446-459 (2017).					
26	67.	Jeong, H. M. et al. ESRP1 is overexpressed in ovarian cancer and promotes					
27		switching from mesenchymal to epithelial phenotype in ovarian cancer cells.					
28		Oncogenesis 6, e389 (2017).					
29	68.	Lin, X., Shang, X., Manorek, G. & Howell, S. B. Regulation of the					
30		epithelial-mesenchymal transition by claudin-3 and claudin-4. PLoS One 8,					
31		e67496 (2013).					
32	69.	Martinelli, P. et al. GATA6 regulates EMT and tumour dissemination, and is a					
33		marker of response to adjuvant chemotherapy in pancreatic cancer. Gut 66,					

1 1665–1676 (2017).

2	70.	Shu, X. & Pei, D. The function and regulation of mesenchymal-to-epithelial
3		transition in somatic cell reprogramming. Curr Opin Genet Dev 28, 32-37
4		(2014).
5	71.	Huang, C. et al. Dermokine contributes to epithelial-mesenchymal transition
6		through increased activation of signal transducer and activator of transcription 3
7		in pancreatic cancer. Cancer Sci 108, 2130-2141 (2017).
8	72.	Nandi, P., Lim, H., Torres-Garcia, E. J. & Lala, P. K. Human trophoblast stem
9		cell self-renewal and differentiation: Role of decorin. Sci Rep 8, 8977 (2018).
10	73.	Samavarchi-Tehrani, P. et al. Functional genomics reveals a BMP-driven
11		mesenchymal-to-epithelial transition in the initiation of somatic cell
12		reprogramming. Cell Stem Cell 7, 64-77 (2010).
13	74.	Li, X., Pei, D. & Zheng, H. Transitions between epithelial and mesenchymal
14		states during cell fate conversions. Protein Cell 5, 580-591 (2014).
15	75.	Semi, K. & Takashima, Y. Pluripotent stem cells for the study of early human
16		embryology. Dev Growth Differ 63, 104-115 (2021).
17	76.	Yang, P. et al. Multi-omic profiling reveals dynamics of the phased progression
18		of pluripotency. Cell Syst 8, 427-445.e10 (2019).
19	77.	Messmer, T. et al. Transcriptional heterogeneity in naive and primed human
20		pluripotent stem cells at single-cell resolution. Cell Rep 26, 815-824.e4 (2019).
21	78.	Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines
22		differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24,
23		372–376 (2000).
24	79.	Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo
25		depends on the POU transcription factor Oct4. Cell 95, 379-391 (1998).
26	80.	Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a
27		and Dnmt3b are essential for de novo methylation and mammalian development.
28		<i>Cell</i> 99 , 247–257 (1999).
29	81.	Fagoonee, S. et al. The RNA binding protein ESRP1 fine-tunes the expression of
30		pluripotency-related factors in mouse embryonic stem cells. PLoS One 8, e72300
31		(2013).
32	82.	González, B., Denzel, S., Mack, B., Conrad, M. & Gires, O. EpCAM is involved
33		in maintenance of the murine embryonic stem cell phenotype. Stem Cells 27,

1 1782–1791 (2009).

2	83.	Park, J. et al. DSG2 is a functional cell surface marker for identification and
3		isolation of human pluripotent stem cells. Stem Cell Reports 11, 115–127 (2018).
4	84.	Tastemel, M. et al. Transcription pausing regulates mouse embryonic stem cell
5		differentiation. Stem Cell Res 25, 250-255 (2017).
6	85.	Li, M. & Belmonte, J. C. I. Ground rules of the pluripotency gene regulatory
7		network. Nat Rev Genet 18, 180–191 (2017).
8	86.	Gabut, M., Bourdelais, F. & Durand, S. Ribosome and translational control in
9		stem cells. Cells 9, 497 (2020).
10	87.	Cieply, B. et al. Multiphasic and dynamic changes in alternative splicing during
11		induction of pluripotency are coordinated by numerous RNA-binding proteins.
12		<i>Cell Rep</i> 15 , 247–255 (2016).
13	88.	Kim, Y. D. et al. ESRP1-induced CD44 v3 is important for controlling
14		pluripotency in human pluripotent stem cells. Stem Cells 36, 1525–1534 (2018).
15	89.	Yu, C. Y. et al. The circular RNA circBIRC6 participates in the molecular
16		circuitry controlling human pluripotency. Nat Commun 8, 1149 (2017).
17	90.	Warzecha, C. C., Sato, T. K., Nabet, B., Hogenesch, J. B. & Carstens, R. P.
18		ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing.
19		<i>Mol Cell</i> 33 , 591–601 (2009).
20	91.	Qablan, M. A. et al. Infections by Babesia caballi and Theileria equi in Jordanian
21		equids: epidemiology and genetic diversity. Parasitology 140, 1096-1103
22		(2013).
23	92.	Muoria, P. K. et al. Anthrax outbreak among Grevy's zebra (Equus grevyi) in
24		Samburu, Kenya. Afr J Ecol 45, 483–489 (2007).
25	93.	Lermen, D. et al. Cryobanking of viable biomaterials: implementation of new
26		strategies for conservation purposes. Mol Ecol 18, 1030-1033 (2009).
27		

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.10.455807; this version posted August 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figures

Fig. 1 | Generation of Grevy's zebra iPSCs from primary fibroblasts.

a, The Grevy's zebra. **b**, Morphology of zebra fibroblasts. **c**, Schematic of the induction protocol. **d**, Morphology of induced colonies on day 17–20 of reprogramming procedure in different conditions. No PCS-like colony was observed in MEF without 2i/LIF condition. The scale bar represents 1,000 μm. iPSCs, induced pluripotent stem cells; DMEM, Dulbecco's modified Eagle medium; FBS, fetal bovine serum; MEF, mouse embryonic fibroblasts; MSTO, mouse SNL-STO; 2i/LIF, CHIR99021, PD0325901 (2i), and leukaemia inhibitory factor (LIF). bioRxiv preprint doi: https://doi.org/10.1101/2021.08.10.455807; this version posted August 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig. 2 | Characterisation of the pluripotent status of Grevy's zebra iPSCs.

a, Morphology of gz-iPSCs at passage 32. **b**, Karyotype. **c**, Alkali phosphatase activity. Clone D at passage 8 is shown here. **d**, Immunofluorescence for pluripotency markers. Nuclei are stained with DAPI. Clone A at passage 17 is shown here. **e**, **f**, and **h**, Box plots showing qRT-PCR. **e**,

Comparison of pluripotency and viral marker expressions between gz-iPSCs at passage 25 and fibroblasts. **f**, Comparison of pluripotency marker expressions between gz-iPSCs cultured with or without 2i/LIF. g, Morphology of embryoid bodies after 7 days of differentiation in suspension culture. h, Comparison of three germ layer marker expressions between EBs and gz-iPSCs after two weeks of suspension culture in differentiation medium. A, D, and E represents independent clones of gz-iPSCs. Three independent experiments with three lines of iPSCs sample and fibroblasts (e) and three lines of EBs and undifferentiated gz-iPSC clone A (h) are shown here. Centre lines indicate median and box limits indicate upper and lower quartiles. Upper whisker = min(max(x), $Q_3 + 1.5 \times IQR$), lower whisker = max(min(x), $Q_1 - 1.5 \times IQR$). Statistical analyses were performed using the Welch two-sample t-test (* P < 0.05, ** P < 0.01, and *** P < 0.001). (e), eOCT3/4, A-Fib, df = 3.8059, $P = 4.97 \times 10^{-8}$, D-Fib, df = 3.9563, P = 2.6×10^{-8} , E-Fib, df = 3.5094, $P = 2.5 \times 10^{-7}$; *ehOCT3/4*, A-Fib, df = 2.1301, P = 0.0001701, D-Fib, df = 4.6057, $P = 4.16 \times 10^{-7}$, E-Fib, df = 2.2128, P = 0.0001407; eSOX2, A-Fib, df = $3.8859, P = 8.24 \times 10^{-5}, D$ -Fib, df = 3.9932, P = 0.0004939, E-Fib, df = 2.0059, P = 0.001494;*eKLF4*, A-Fib, df = 3.6083, *P* = 0.06292, D-Fib, df = 3.703, *P* = 0.0842, E-Fib, df = 2.3481, *P* = 0.02099; *ehKLF4*, A-Fib, df = 2.3778, *P* = 0.005432, D-Fib, df = 3.3346, *P* = 0.0007948, E-Fib, df = 2.6524, *P* = 0.006234. (g), *NES*, A-Undif, df = 2.1631, *P* = 0.0001675, D-Undif, df = 2.0486, *P* = 0.0005409, E-Undif, df = 2.0101, *P* = 0.006796; *TUBB3*, A-Undif, df = 2.1178, *P* =

 8.5×10^{-5} , D-Undif, df = 2.0881, P = 9.55×10^{-5} , E-Undif, df = 2.0758, P = 0.0001593; PAX6, A-Undif, df = 3.9738, P = 0.0001727, D-Undif, df = 3.4486, $P = 3.26 \times 10^{-5}$, E-Undif, df = 2.2265, *P* = 0.0004007; *SMA*, A-Undif, df = 2.1033, *P* = 0.000147, D-Undif, df = 2.0725, *P* = 0.0001293, E-Undif, df = 2.0387, P = 0.0005248; *BMP4*, A-Undif, df = 2.249, $P = 8.19 \times 10^{-5}$, D-Undif, df = 2.2438, $P = 3.13 \times 10^{-5}$, E-Undif, df = 2.466, $P = 8.63 \times 10^{-6}$; AFP, A-Undif, df = $3.4689, P = 4.86 \times 10^{-7}, D$ -Undif, df = $3.6565, P = 4.51 \times 10^{-7}, E$ -Undif, df = $2.9091, P = 1.76 \times 1$ 10^{-5} ; *GATA4*, A-Undif, df = 2.3655, *P* = 0.01166, D-Undif, df = 3.4792, *P* = 9.19 × 10^{-6} , E-Undif, df = 3.5874, $P = 6.68 \times 10^{-7}$; SOX17, A-Undif, df = 3.9355, $P = 6.68 \times 10^{-7}$, D-Undif, df = $3.7523, P = 1.15 \times 10^{-6}, E$ -Undif, df = 2.9946, $P = 4.14 \times 10^{-5}$; CXCR4, A-Undif, df = 2.028, P =0.002962, D-Undif, df = 2.0191, P = 0.002084, E-Undif, df = 2.946, $P = 2.26 \times 10^{-6}$; *eOCT3/4*, A-Undif, df = 2.23, *P* = 0.001477, D-Undif, df = 2.3194, *P* = 0.006164, E-Undif, df = 3.8573, *P* = 7.91×10^{-7} . In all statistical tests, sample size is n = 3, except *ehOCT3/4* with A, D, and E, n = 6. Scale bar represents 400 µm in **d** and **g**. 1,000 µm in **a** and **c**. iPSCs, induced pluripotent stem cells; Fib, fibroblasts; Undif, undifferentiated gz-iPSC clone A; DAPI, 4, 6-diamidino-2-phenylindole; 2i/LIF, CHIR99021, PD0325901 (2i), and leukaemia inhibitory

factor (LIF); EBs, embryoid bodies; ND, not detected; N/A, not analysed; df, degrees of freedom; *e*, *h*, and *v* represent genes of equine, human, and virus, respectively.

Fig. 3 | Differentially expressed gene (DEG) analysis of Grevy's zebra fibroblasts and iPSCs

transcriptome.

a, Volcano plot showing the significant DEGs. The coloured dot represents gene that is upregulated (*red*) and downregulated (*green*) in gz-iPSCs (FDR < 0.1, |log2FoldChange | > 1). Log2FoldChange values were shrunken with the apeglm method and FDR lower than 10E-20 were compressed for visualisation. **b**, GO terms that are enriched with DEGs upregulated or downregulated in gz-iPSCs (FDR < 0.05). **c**, Box plots showing TPM of individual DEGs. All DEGs shown here are significantly different between iPSC and fibroblasts. Centre lines indicate median and box limits indicate upper and lower quartiles. Upper whisker = $min(max(x), Q_3 +$

 $1.5 \times IQR$), lower whisker = max(min(x), Q_1 - 1.5 × IQR). gz-iPSCs, Grevy's zebra induced

PSCs; DEG, differentially expressed gene; GO, gene ontology; FDR, false discovery rate;

EMT-MET, epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions; TPM,

transcripts per million.

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.10.455807; this version posted August 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig. 4 | Gene expression pattern of mammalian PSCs.

a, Heat map with hierarchical clustering of DEGs between PSCs and fibroblasts across species.

The colour bars at the top indicate species, and the bars at the bottom indicate cell types. b and c,

Venn diagram showing unique and common DEGs per species. b, Upregulated. c,

Downregulated. Because it is difficult to include six or more elements in the Venn diagram, cow

is excluded here. The number in brackets represents gene number including cow. d, GO terms

that are significantly enriched with commonly upregulated or downregulated DEGs with FDR <

0.05. GO terms representative for PSC characteristics are shown here. Top 1,000 DEGs based on

FDR are used here. PSCs, pluripotent stem cells; DEGs, differentially expressed genes; NMR,

naked mole-rat; GO, gene ontology; FDR, false discovery rate.

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.10.455807; this version posted August 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig. 5 | Pathway enrichment of mammalian PSCs.

Significantly enriched activated and suppressed KEGG pathways in each species. The horizontal line represents the gene ratio, and the vertical items represent the KEGG terms in order of gene ratio up to 10 pathways each. The depth of the colour represents the adjusted *P*-value, and the size of the circle represents gene counts. PSC, pluripotent stem cells; NMR, naked mole-rat; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Tables

Ex. ID	Scale Num. cells Vector concentration		Layer	2i/LIF ^c	Num. colony		
1	6-well	2.00E+03	As collected	MEF ^a	-	0	
1	6-well	2.00E+03	As collected	MEF	+	3	
1	6-well	2.00E+03	As collected	MSTO ^b	-	1	
1	6-well	2.00E+03	As collected	MSTO	+	5	
1	60 mm	4.00E+03	As collected	Matrigel	-	2	
1	60 mm	4.00E+03	As collected	Matrigel	+	3	
1	6-well	2.00E+03	Concentrated	MEF	-	0	
1	6-well	2.00E+03	Concentrated	MEF	+	1	
1	6-well	2.00E+03	Concentrated	MSTO	-	2	
1	6-well	2.00E+03	Concentrated	MSTO	+	4	
1	100 mm	5.00E+03	Concentrated	MSTO	+	1	
1	60 mm	4.00E+03	Concentrated	Matrigel	-	30	
1	60 mm	4.00E+03	Concentrated	Matrigel	+	15	
2	60 mm	4.00E+03	Concentrated	Matrigel	-	16	
2	60 mm	8.00E+03	Concentrated	Matrigel	-	32	

Table 1 | Conditions of reprogramming experiments and number of iPSC-like colonies observed.

^aMouse embryonic fibroblasts, ^bSNL-STO ^cCHIR99021, PD0325901, and leukaemia inhibitory factor (LIF).

							Grevy's
Gene	FDR	Cow	Human	Mouse	NMR^{d}	Pig	zebra
ESRP1	2.19E-51	+	+	+	+	+	+
S100A4	1.28E-46	-	-	-	-	-	-
EPCAM	8.23E-37	+	+	+	+	+	+
DCN	3.15E-36	-	-	-	-	-	-
RFTN2	3.97E-34	-	-	-	-	-	-
AP1M2	2.43E-32	+	+	+	+	+	+
FAP	2.43E-32	-	-	-	-	-	-
COL6A3	1.11E-30	-	-	-	-	-	-
SRPX2	3.60E-27	-	-	-	-	-	-
GRB7	1.06E-26	+	+	+	+	Nd ^e	+
PRRX1	3.45E-26	-	-	-	-	-	-
CEMIP	3.45E-26	-	-	-	ND	-	-
CTSK	1.57E-25	-	-	-	-	NR^{f}	-
POU5F1	1.57E-25	+	+	+	+	+	+
MAP1A	3.45E-25	-	-	-	-	-	-
EHD2	6.00E-25	-	-	-	-	-	-
PDE1C	8.94E-25	-	-	-	-	-	-
VEGFC	1.44E-24	-	-	-	-	-	-
RUNX1	3.45E-24	-	-	-	-	-	-
OSR2	3.71E-24	-	-	-	-	-	-

Table 2 | List of top 20 DEGs^a across mammalian PSCs^b based on FDR^c by DESeq2. The expression changes per species are also shown.

^aDifferentially expressed genes. ^bPluripotent stem cells. ^cFalse discovery rate. ^dNaked mole-rat. ^eNo significant difference. ^fNo read detected.