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Generation of Large Flavor Mixing from Radiative Corrections
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We provide a model independent criterion which would guarantee a large flavor mixing of two quasi-
degenerate Majorana neutrinos at the low scale, irrespective of the mixing at the high scale. We also
show that such a situation is realizable for a phenomenologically interesting range of parameters of
the weak scale theory. We further claim that for a similar condition to be implementable for the three
generation case, the CP parity of one of the neutrinos needs to be opposite to that of the others.
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I. Introduction.—The observed atmospheric and solar
neutrino anomalies from the terrestrial experiments [1,2]
seem to provide strong evidence in favor of neutrino flavor
conversions, implying that neutrinos are massive and they
mix among themselves. While the details are fuzzy at this
stage, it is clear that the atmospheric neutrino data require a
large mixing of nm $ nt or nm $ ns, although the latter
possibility is beginning to look less and less likely [3].
Regarding the solar neutrino anomaly, the mixing angle
(between ne and nm,t or ns) could be small, as in the small
angle MSW scenario, or large, as in the large angle MSW
or vacuum oscillation scenarios [2].

Since large mixing angles are involved in the possible
solutions of both the anomalies, a great deal of theo-
retical work has gone in the understanding of the maxi-
mal mixing. There are two complementary approaches:
(i) searching for scenarios and symmetries beyond the stan-
dard model, and (ii) establishing general model indepen-
dent criteria which guarantee the stability at the weak scale
of the masses and mixing pattern that emerge at the high
scale. The second approach has the advantage that it may
not only narrow down the search for new physics scenar-
ios to a manageable level, but it may also throw light on
the parameters of the theory at the high scale, and on the
value of the high scale itself. In this paper, we present some
model independent criteria for such theories, first focusing
on the two flavor case and subsequently on the three flavor
models.

If neutrinos contribute even a small fraction of the dark
matter [4] of the universe, the oscillation observations im-
ply a situation where at least two neutrinos (and pos-
sibly even three) are quasidegenerate in mass. If the
neutrino mass hierarchy is inverted (m3 , m1, m2 where
jDm2

32j ¿ jDm2
21j), the neutrinos n1 and n2 are necessar-
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ily quasidegenerate. The study of scenarios where two or
even three neutrinos are nearly degenerate is therefore of
crucial importance.

The two flavor quasidegenerate neutrino scenarios fall
in two classes: the neutrino flavors in the degenerate limit
can be (i) in the same CP eigenstate or (ii) in opposite CP
eigenstates. It turns out that not only does one need to in-
voke different kinds of symmetries to understand the two
cases, but the radiative corrections to the tree level degen-
eracy at the high scale can have very different implications
for the two cases. For instance, it has been noted in [5–7]
that in the case (ii), the radiative corrections (such as those
through the RGE evolution from the seesaw to the weak
scale) do not substantially affect the maximal mixing and
quasidegeneracy predicted by the theory at a high scale.

In this analysis, we point out that in the case (i), an ar-
bitrary mixing at the high scale can get “magnified” to a
large mixing, and even possibly maximal mixing, at the
low scale. We find this interesting because (a) it enables
a model builder to avoid any fine tuning for the values
of mixing angles at the high scale, and hence relaxes the
constraints on the parameters of the high scale physics,
(b) it brings a certain unity in the understanding of the
quark and lepton mixings. This is arrived at by relating
the radiative corrections and the degree of mass degener-
acy ( dm

m ), regardless of the mixing pattern at the high scale.
In the context of specific models, this also leads to rela-
tionships between the degree of degeneracy, the value of
the high scale, and the model parameters (e.g., tanb for
the MSSM). We further extend the results to the three gen-
eration scenario and find that the constraint on Ue3 from
the CHOOZ experiment [8] indicates that the CP parity of
one of the neutrinos must be opposite to that of the others
for our scheme to be implementable.
© 2000 The American Physical Society
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Our paper is organized in the following form: in the
next section, we derive our main result for the two flavor
mixing. In section III, we present implications of the two
flavor result for the case of the standard model and the
MSSM. In section IV, we consider the extension to three
generation case.

II. Basic formalism for two flavors.—Consider the mix-
ing of two neutrinos. The 2 3 2 Majorana matrix in the
mass basis is of the form

MD �

µ
m1 0
0 m2

∂
. (1)

The unitary matrix which takes MD to the flavor basis can
be written as

U �

µ
Cu Su

2Su Cu

∂ µ
1 0
0 eif�2

∂
, (2)

where u is the mixing angle and f is the CP phase. All
the quantities are defined at the high scale L. The two
neutrino flavors are related to the mass eigenstates in the
conventional form

nf � Ufini , f � a, b; i � 1, 2 . (3)

We define the convention for the “numbering” of n1 and
n2 as follows. Let na and nb be the SU�2�L partners
of the charged leptons �a and �b , respectively, such that
m�a

, m�b
. Then we define n1 (n2) as the state with a

larger component of the flavor a (b) at the high scale.
With this convention, 0 # u # p�4.

The mass matrix in the flavor basis can be written as
MF � U�MDUy

�

µ
Cu Su

2Su Cu

∂ µ
m1 0
0 m2e2if

∂ µ
Cu 2Su

Su Cu

∂
.

(4)

Let us examine the situation when f � 0, which corre-
sponds to the case when the neutrinos n1 and n2 are in the
same CP eigenstate. Because of the presence of radiative
corrections to m1 and m2, the matrix MF gets modified to

MF !

µ
1 1 da 0

0 1 1 db

∂
MF

µ
1 1 da 0

0 1 1 db

∂
.

(5)

In the above, da and db denote the corrections to the
masses in the flavor basis. The above general structure for
MF has been motivated by the RGE structure for radiative
corrections [9]. We define

e � 2�db 2 da� , (6)

which is the net difference in the radiative corrections for
the masses of the two neutrino flavors.

The mixing angle u that now diagonalizes the matrix
MF at the low scale m (after radiative corrections) can
be related to the old mixing angle u through the following
expression:

tan2u � tan2u�1 1 da 1 db�
1
l

, (7)

where
l �
�m2 2 m1�C2u 1 2db�m1S2

u 1 m2C2
u� 2 2da�m1C2

u 1 m2S2
u�

�m2 2 m1�C2u

. (8)
In the case of near degeneracy: m1 � m2 � m, we have

l �
me

�m2 2 m1�C2u

1 1 , (9)

where m is the common mass scale of the neutrinos.
If

jmej ¿ j�m2 2 m1�C2uj , (10)

then l ! ` and we have tan2u ! 0. Under this condi-
tion, any mixing angle tends to zero after radiative correc-
tions, i.e., a large mixing is unstable under radiative cor-
rections. Note that this is true only for two neutrinos with
the same CP parity. If they had different CP parities, i.e.,
f � p , quasidegeneracy would imply jm1j � jm2j � m,
however jm1 2 m2j � 2m. Then the radiative correc-
tions (which are small) cannot give the inequality (10).
In this case, jmej ø j�m2 2 m1�C2uj, so that l � 1 and
the mixing angle does not change much. The mixing at
the high scale then remains stable. This reproduces the
observations made in [5,6] regarding the stability of the
Maki-Nakagawa-Sakata (MNS) mixing matrix [10], when
the mixing angle is close to p�4. In addition, our analy-
sis shows that the same conclusions remain valid for any
arbitrary nonzero u of the MNS matrix.
If

�m1 2 m2�C2u �2db�m1S2
u 1 m2C2

u�

2 2da�m1C2
u 1 m2S2

u� , (11)

then l � 0 or equivalently u � p�4; i.e., maximal mix-
ing. Given the mass hierarchy of the charged leptons:
mla

ø mlb
, we expect jdaj ø jdbj, which reduces (11)

to a simpler form:

e �
dmC2u

�m1S2
u 1 m2C2

u�
, (12)

where dm � m1 2 m2. In the quasidegenerate case,

e �
dm
m

C2u . (13)

The above expression can be translated in terms of the
mass-squared difference (which is the quantity measured
in the oscillation experiments) as

e �
Dm2�L�

2m2 C2u , (14)

where Dm2�L� � m2
1�L� 2 m2

2�L�. If the condition (14)
is satisfied, the mixing at the scale m tends to become
5035
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maximal regardless of the value of the mixing at the scale
L. Several points are worth emphasizing here.

(i) The above relation between e and the neutrino pa-
rameters u, m1, and m2 is a model independent result
and has profound implications for model building. For
instance, it will relax the domain of parameters of the
high scale theory compared to what was believed earlier
for f � 0.

(ii) From (14), the sign of e must be the same as that
of Dm2�L� for getting maximal mixing at the low scale.
This preference is of a phenomenological importance since
the sign of Dm2 at low scales is measured by experiments:
if the solar neutrino solution is MSW, the identity of the
heavier neutrino is known, and the heavy/light nature of
the third neutrino may be determined through the long
baseline experiments [11] or the observations of a galactic
supernova [12]. The model needs to be able to reproduce
this sign from the values of the masses at the high scale
through the RGE. The results of this paper can thus be
used to discriminate between various models for a large
flavor mixing.

(iii) The condition (14) is not to be mistaken for a fine
tuning. Though maximal mixing at the low scale requires
an exact equality (14), the condition can be slackened if we
need only a large mixing. Indeed, the SK data [1] indicate
jtan2uj . 2 at 90% C.L. In Fig. 1, we show the range of
e that allows a large mixing at the scale m as a function
of the mixing angle at the scale L. The region enclosed
within the “leaf” gives the range of e which generates a
large mixing (jtan2uj . 2). The value of the degree of
degeneracy j

dm
m j chosen for the figure is 0.1. From (13),

changing this value would just change the scale of e by a
factor proportional to j

dm
m j. The figure shows that a large

mixing at the scale m is indeed possible for a large range
of neutrino parameters. The condition on the signs of e

and Dm2 is also relaxed if the mixing at the high scale is
already large.

III. Applications to the standard model and the
MSSM.—In this section, we analyze the implications of
(14) for the case of the standard model (SM) and MSSM
to see whether it is satisfied for acceptable values of the
model parameters. In the case of the SM, the value of
eSM from the RGE evolution is

eSM �
h2

b

32p2 ln

µ
L

MZ

∂
, (15)

where hb corresponds to the Yukawa coupling of the heav-
ier charged lepton. Equation (13) and the sign of eSM in
(15) imply that for large flavor mixing to be generated in
the SM through radiative corrections, we require m1 . m2.
In addition, from (14) and (15), the strength of hb needs
to be

hb�SM� �

vuut16p2jDm2�L�jC2u

ln� L

MZ
�m2

. (16)

This is a relation between Dm2�L� and the scale L that
needs to be obeyed. As an illustration, taking b � m (for
5036
FIG. 1. The radiative correction e that can generate a large
mixing at the scale m for j

dm
m j � 0.1. Here x � u for m1 ,

m2 and x � p

2 2 u for m1 . m2. The central short-dashed
line corresponds to maximal mixing (ū �

p

4 ). The solid (long-
dashed) line denotes tan2ū � 2�22�.

ne $ nm, for example), with hm � 6 3 1024 and the high
scale as L � 1012 GeV, for degenerate neutrino mass of
m � 1 eV, we get jDm2�L�j � 1027 eV2.

In the case of MSSM, we have

eMSSM � 2
h2

b

16p2 ln

µ
L

m

∂
. (17)

Equation (13) and the sign of eMSSM in (17) imply that
we need m1 , m2 for large flavor mixing to be generated
through radiative corrections in the MSSM. In addition,
from (14) and (17), the strength of hb has to be of the
order of

hb�MSSM� �

vuut8p2jDm2�L�jC2u

ln� L

m �m2
. (18)

Taking b � t (for nm $ nt mixing, for example), and
using

ht �
mt

y cosb
, (19)

we get a relation between L, tanb and m, the common
mass scale of the neutrinos. From (18) and (19), for given
m and L, we can infer the desirable value of ht and hence
of tanb. For example, for m � 1 eV and L � 1012 GeV,
taking jDm2�L�j � 1023 eV2, we get tanb � 5.

IV. Extension to three generations.—Let us now make
a few comments on the possible extension to the case of
three quasidegenerate Majorana neutrinos. If mab are the
elements of the neutrino mass matrix in the flavor basis,
then in the approximation of the decoupling of the third
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FIG. 2. Log-Log plot of e vs L for a few values of hl2 � hb

in the MSSM.

flavor, a large mixing between flavors a and b is guaran-
teed at the low scale if

eab � 2�db 2 da� �
2�maa 2 mbb� �1 1 da 1 db�

�maa 1 mbb�
,

(20)

where no summation over repeated indices is implied. As-
suming that the Dm2 hierarchy observed at the low scale is
true at the high scale also (small radiative corrections), we
have jm1 2 m2j ø jm2 2 m3j. The condition for Um3 to
be maximal is then

emt �
�m3 2 m2� �jUt3j

2 2 jUt2j
2�

m
. (21)

In all the models in which ht dominates over he and hm,
we have eet � emt . Then, the condition for the enhance-
ment of Um3 (21) is similar to the condition for the en-
hancement of Ue3 (with the replacement �m ! e, 2 ! 1�)
if all the neutrinos have the same CP parity, assuming that
both Ut1, Ut2 ø Ut3. That would imply that when Um3
is magnified due to radiative corrections, so is Ue3. Then
one cannot naturally get a small value of Ue3 at the low
scale, as is suggested by the CHOOZ data [8]. Thus, in
the three generation case with quasidegenerate Majorana
neutrinos, we need the CP phase of one neutrino opposite
to that of the other two in order for our condition to be
implementable. It should be noted that satisfying this con-
dition still does not guarantee the stability of small Ue3.
In conclusion, we have derived a model independent
condition that guarantees a large mixing at the low scale
irrespective of the mixing angle at the high scale, for two
quasidegenerate Majorana neutrinos with the same CP
parity. The condition relates the masses at the high scale
to the radiative corrections. In the case of SM and MSSM,
this predicts the sign of the mass difference between the
neutrinos and also gives a range for its magnitude. In
MSSM, it translates into a relation between the value of
the high scale L, tanb, and the common mass of the neu-
trinos. Extending the argument to three quasidegenerate
Majorana neutrinos, we again show in a model indepen-
dent way that the CP parity of one of the neutrinos should
be opposite to that of the others for our conditions to be
implementable at the phenomenological level.
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