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Background/Aims: Chronic liver disease is a major wide-

spread cause of death, and whole liver transplantation is 
the only definitive treatment for patients with end-stage liver 
diseases. However, many problems, including donor short-
age, surgical complications and cost, hinder their usage. 
Recently, tissue-engineering technology provided a potential 
breakthrough for solving these problems. Three-dimensional 
(3D) printing technology has been used to mimic tissues 
and organs suitable for transplantation, but applications for 
the liver have been rare. Methods: A 3D bioprinting system 
was used to construct 3D printed hepatic structures using 
alginate. HepG2 cells were cultured on these 3D structures 
for 3 weeks and examined by fluorescence microscopy, his-

tology and immunohistochemistry. The expression of liver-
specific markers was quantified on days 1, 7, 14, and 21. 
Results: The cells grew well on the alginate scaffold, and 
liver-specific gene expression increased. The cells grew more 
extensively in 3D culture than two-dimensional culture and 
exhibited better structural aspects of the liver, indicating that 
the 3D bioprinting method recapitulates the liver architec-

ture. Conclusions: The 3D bioprinting of hepatic structures 
appears feasible. This technology may become a major tool 
and provide a bridge between basic science and the clinical 
challenges for regenerative medicine of the liver. (Gut Liver 

2017;11:121-128)
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INTRODUCTION

For patients suffering from end-stage liver disease including 

chronic liver fibrosis or alcoholic cirrhosis, whole liver trans-

plantation is the only definitive treatment. Although thousands 

of liver transplants have been performed over recent decades, 

most patients die while waiting their turn due to a shortage of 

livers for transplantation. To overcome this, many scientists 

have suggested the use of hepatocyte transplantation instead of 

liver organ transplantation. However, hepatocyte transplanta-

tion requires an unlimited source of hepatocytes. Furthermore, 

the utilization of primary hepatocytes has limitation by itself for 

the application due to their extremely slow proliferation, and is 

rarely optimal for long-term culture systems. 

To obtain a number of hepatocytes, direct differentiation 

technology using pluripotent stem cells (PSCs) has been de-

veloped.1-4 Since PSCs can replicate themselves infinitely and 

differentiate into most of cell types including hepatocytes, they 

are considered as an alternative cell source for supplying un-

limited number of hepatocytes for transplantation.5-8 However, 

although PSC-derived hepatocyte-like cells have representative 

features of primary hepatocytes, repopulation capacity in vivo, 

as well as restoration of the liver function,9-11 most researchers 

are aware of the inherent limitations of cells grown under two-

dimensional (2D) conditions.12-14

In general, tissues and organs have characteristic surfaces of 

unique shape, and are composed of cells interacting physiologi-

cally and biochemically. In order to better understand disease 

mechanisms and obtain cells for disease modelling and drug 

screening, three-dimensional (3D) structures are desirable15,16 
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since the true 3D microenvironment of target tissues and organs 

can never be mimicked by 2D models.

3D tissue-engineering technology has been advanced and 

considered to solve the problems of 2D culture system and bet-

ter capture the complexity of in vivo environments. As a gen-

eral rule, in 3D modelling the formation of a scaffold is a pre-

requisite step for reconstructing the unique structures of target 

tissues and organs for determining cell behavior and controlling 

physical cell-to-cell connections.17-19 Recently tissue-engineering 

methods combined with 3D printing technology have emerged 

as the most useful and efficient tools for producing compli-

cated scaffold structures.20-22 Therefore, 3D bioprinting tech-

nology may successfully mimic complicating complex organs 

with systemic 3D microarchitecture including liver suitable for 

transplantation, and eventually overcome a plenty of obstacles 

including donor shortage, surgical complications and exorbitant 

cost for liver transplantation.20-22

In the present study, we utilized 3D bioprinting technology 

for reconstructing liver tissues or organs. To achieve this goal, 

we used HepG2 cells, one of the liver cancer-derived cells to be 

applied to 3D printing technology. Newly fabricated, multiple 

layered-3D structures were efficiently modeled by mixing algi-

nate with HepG2 cells. Finally, we suggest that mimicking the 

3D hepatic structure by using 3D printing technology not only 

assists the HepG2 cells to stably repopulate, but also improves 

their gene expression profiles.

MATERIALS AND METHODS

1. Cell culture and maintenance

HepG2 cells, human hepatoblastoma cells derived from hepa-

tocellular carcinoma were cultured in in 75T Flasks in DMEM 

(11965; Gibco, Carlsbad, CA, USA) supplemented with 10% fetal 

bovine serum and 1% penicillin/streptomycin (10378; Gibco) at 

37oC in a CO2 incubator. The medium was changed every 2 to 3 

days and the cells were used after about 14 passages.

2. Lentivirus production

Lentiviruses were produced as previously described. mCherry 

was packaged by cotransfection with psPAX2 lentiviral packag-

ing plasmid and pCMV-VSV-G plasmid in human embryonic 

kidney 293T cells. Culture supernatants were harvested after 48 

hours and 72 hours. The virus was resuspended in the culture 

medium, aliquoted and stored at –80oC. Lentiviral transduction 

of the mCherry was carried out in culture medium supplemented 

with 4 μg/mL polybrene.

3. Three-dimensional bioprinting of HepG2 cells with alginate

Three-dimensional printed strands of encapsulated cells were 

made with a 3D bioprinting system fabricated by the Korea In-

stitute of Machinery and Materials (KIMM). Before 3D printing, 

liver cells were prepared in 3% alginate solution. The nozzle 

size of the printer was 400 μm, the strand pitch was 1,000 μm 

and the 3D printed hydrogel structures measured 25 mm by 25 

mm. For cell printing, a continuous air pressure of 300 kPa was 

supplied to the dispenser, and cell-encapsulated alginate was 

extruded onto 10 cm2 culture dish. After printing, the 3D algi-

nate hydrogel was soaked with 1% calcium chloride solution for 

solid crosslinking, washed with phosphate buffered saline (PBS) 

and placed in HepG2 culture medium.

Table 1. Oligonucleotide Primers for Real-Time PCR

Gene Primer Primer Sequence (5′-3′) PCR product (bp)

Albumin Forward GCACAGAATCCTTGGTGAACAG 100

Reverse ATGGAAGGTGAATGTTTCAGCA

ASGR1 Forward CAGCAACTTCACAGCGACCA  96

Reverse AGCTGGGACTCTAGCGACTT

AFP Forward AGACTGCTGCAGCCAAAGTGA  80

Reverse GTGGGATCGATGCTGGAGTG

CK19 Forward TCCGAACCAAGTTTGAGACG 186

Reverse CCCTCAGCGTACTGATTTCC

Cyp1A2 Forward CGGACAGCACTTCCCTGAGA 124

Reverse AGGCAGGTAGCGAAGGATGG

TAT Forward TGGGGACCCTACTGTGTTTGG 105

Reverse ATGGATGGGGCATAGCCATT

GAPDH Forward TGCACCACCAACTGCTTAGC  87

Reverse GGCATGGACTGTGGTCATGAG

PCR, polymerase chain reaction; ASGR1, asialoglycoprotein receptor 1; AFP, alpha-fetoprotein; CK19, cytokeratin 19; Cyp1A2, cytochrome P450 
superfamily of enzymes 1A2; TAT, tyrosine amino-transferase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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4. Quantitative polymerase chain reaction analysis

Total RNAs were isolated using TRIZOL Reagent (Gibco) 

Samples of 2 μg RNA were reverse transcribed with a Transcrip-

tor First Strand cDNA Synthesis Kit (Roche; Branford, CT, USA), 

and real-time PCR was performed using 10 μL of LightCycler 

480 SYBR Green1 Master (Roche, Branford, CT, USA), 1 μL of 

cDNA and oligonucleotide primers, on an LC488 qPCR system 

(Roche). Reactions were carried out in triplicate; the primers 

used for human Albumin, ASGPR1, AFP, CK19, Cyp1A2, TAT 

and GAPDH are listed in Table 1. The PCR cycles consisted of 

45 cycles of 95oC, 60oC, and 72oC for 15 seconds each. Melting 

curves and melting peak data were obtained to characterize the 

PCR products. 

5. Immunocytochemistry

For immunofluorescence staining, cultured HepG2 cells were 

fixed in 4% paraformaldehyde in PBS for 15 minutes at room 

temperature. After washing three times with PBS, the cells were 

incubated with PBS containing 0.3% Triton X-100 (Sigma-

Aldrich, St. Louis, MO, USA) for 10 minutes at room tempera-

ture followed by blocking of nonspecific binding sites with 

5% goat serum (S-1000; Vector Laboratories, Inc., Burlingame, 

CA, USA) in PBS for 40 minutes. After washing, the samples in 

wells were incubated with primary antibodies as follows: rabbit 

antihuman albumin antibody (CL2513A; Cedarlane, Burlington, 

ON, Canada) and rabbit antihuman α-1-fetoprotein (A0008; 

DAKO, Glostrup, Denmark) in 350 μL of 2% goat serum at 4oC 

overnight. Next, they were incubated with goat antimouse or 

antirabbit secondary antibody for 1h. After washing, they were 

counterstained with 3 μM DAPI (D-1306; Invitrogen, Carlsbad, 

CA, USA) for 4 minutes with shaking 70 to 80 rpm. Cells in the 

culture dishes were mounted with mounting solution (0100-01; 

Southern Biotech, Birmingham, AL, USA), and examined under 

a fluorescence microscope or a Thermo confocal laser scanning 

microscope.

6. Hematoxylin & eosin staining and immunohistochemistry

Sections were deparaffinized by immersion in xylene for 10 

minutes and ethanol three times for 7 minutes, and stained with 

hematoxylin (Sigma-Aldrich) for 5 minutes. They were then 

counterstained with eosin for 1 minute, after washing with run-

ning water for 5 minutes. Finally, they were washed with run-

ning water and dehydrated in 95% ethanol for 5 minutes. 

The 3D printed mCherry-HepG2 alginate scaffolds were fixed 

in 4% buffered formalin and embedded in paraffin. Four-mi-

crometer thick sections were cut and mounted on silane-coated 

glass slides. All sections were deparaffinized and rehydrated 

with graded alcohols. After washing endogenous peroxidase 

was blocked with 3% H2O2 diluted in methanol for 15 minutes 

at room temperature. Antigen retrieval was performed by treat-

ing the slides in pH 6.0 citric acid buffer in an autoclave. The 

slides were incubated in a moist chamber with rabbit antihuman 

albumin antibody (CL2513A, 1:200; CEDARLANE), rabbit anti-

human α-fetoprotein (A0008, 1:200; DAKO), and Ki-67 (1:200), 

overnight at 4oC. After one day, the slides were washed with 

Tris buffer pH 7.6 and incubated with postantibody at room 

temperature for 30 minutes. After thorough washing, the slides 

were incubated with polymer for 30 minutes. After washing, the 

slides were incubated for 3 minutes with 3, 3′-diaminobenze-

dine tetrahydrochloride solution (0.05%) (DAB; Leica, Wetzlar, 

Germany) together with 0.03% hydrogen peroxide to produce 

a brown reaction product, counterstained with hematoxylin, 

washed in running tap water, then dehydrated, cleared and 

mounted. 

7. Statistical analysis

Quantitative data are presented as means±standard deviations 

(SD) and inferential statistics (p-values). Statistical significance 

was evaluated with two-tailed t-test with significance set at 

p<0.05, p<0.01, or p <0.001.

RESULTS

1. Morphology and characteristics of mCherry-tagged 

HepG2 cells 

Immortalized liver-derived cells such as HepG2 cells are con-

sidered ideal for studying drug metabolism due to their unlim-

ited availability and phenotypic stability. However, HepG2 cells 

exhibit relatively limited hepatic functionality compared with 

primary human hepatocytes in terms of genotoxic sensitivity, 

due to lack of drug-metabolizing enzymes, cytochromes (CYPs), 

and secretory functions as shown by relatively low expression 

of albumin, α-fetoprotein (AFP), and α-1 antitrypsin. Therefore, 

we mainly used HepG2 cells as a target cell source for improv-

ing their hepatic functionality in the current study. In conven-

tional 2D monolayer culture the HepG2 cells typically displayed 

epithelial cell-like morphology (Fig. 1A). The HepG2 cells tagged 

with the red fluorescent protein, mCherry, for effectively trac-

ing their localization and visualizing proliferative capacity were 

strongly positive for hepatic markers albumin and AFP (Fig. 

1B-D) indicating that they had basic hepatic features under 2D 

monolayer culture conditions.

2. Construction of 3D printed mCherry-HepG2 hepatic 

structures with alginate scaffolds 

In an attempt to improve the hepatic function of the HepG2 

cells, we used 3D bioprinting technology to construct 3D-

printed mCherry-HepG2 hepatic structures (Fig. 2A-E). The 

alginate was mixed with mCherry-HepG2 cells and extruded 

through nozzle pressure (Fig. 2B). After crosslinking, 25 mm×25 

mm structures were formed (Fig. 2C). Phase contrast microscope 

images revealed monolayers of compact HepG2 cells within the 

alginate scaffold of the designated pattern (Fig. 2D). mCherry-
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Fig. 1. Expression of hepatic genes 
in HepG2 cells. (A) Morphology of 
HepG2 cells grown in two-dimen-
sional culture. (B) HepG2 cells labeled 
with mCherry. (C, D) Immunofluores-
cence microscopy image of HepG2 
cells incubated with anti-ALBUMIN 
and anti-AFP antibodies (green). Nuclei 
are stained with DAPI. Bar, 100 μm.

C D

A B

Fig. 2. Construction of three-dimensional (3D) printed mCherry-HepG2 hepatic structures. (A) Instrument for 3D-bioprinting. (B) Alginate contain-
ing mCherry-HepG2 cells were extruded by nozzle pressure. (C) Cross-linked structures were deposited layer-by-layer in 25 mm×25 mm square 
arrays. (D) Phase contrast microscopy images of a confluent monolayer of HepG2 cells. Bar, 100 μm. (E) Fluorescence micrograph of mCherry-
HepG2 cells inside the alginate scaffold. Bar, 100 μm. (F) Multilayered mCherry-HepG2 cells repetitively solidified and layered upon each other. 
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expressing cells were observed inside the alginate scaffold under 

a fluorescence microscope (Fig. 2E). Multiple layers of mCherry-

HepG2 cells were constructed by repetitively adding and so-

lidifying monolayers to be intersected at right angles (Fig. 2F). 

Throughout 3D bioprinting method, we can readily establish 

3D-printed mCherry-HepG2 hepatic structures for mimicking 

liver architecture. 

3. Proliferation and repopulation of mCherry-HepG2 cells in 

3D-printed hepatic structure

Next, we have investigated whether the 3D-printed hepatic 

structures functionally assisted the HepG2 cells to proliferate 

and populate the structures. As expected, the number of mCher-

ry-HepG2 cells was stably amplified in time course manner (Fig. 

3A), and we confirmed the proliferation of the cells by fluores-

cence microscope images (Fig. 3B). The HepG2 cells appeared to 

be highly compact by days 14 and 21 after seeding, indicating 

that they stably proliferated and repopulated to form 3D-printed 

hepatic structures, as revealed by hematoxylin and eosin stain-

ing analysis (Fig. 3C). Surprisingly, the cells strongly expressed 

ALBUMIN, AFP, and also Ki-67, demonstrating that the highly 

proliferating HepG2 cells hold the typical hepatic property in 

3D-printed hepatic structure (Fig. 3D-F). These data suggest that 

the 3D-printed framework helps the HepG2 cells to proliferate 

without losing their hepatic identity.

4. Real-time PCR analysis of the 3D hepatic structures

Finally, we tested if the 3D structure improved the hepatic 

function of HepG2 cells in terms of gene expression. To the end, 

we evaluated the mRNA levels of the representative hepatic 

markers, ALBUMIN, ASGR1, and AFP. The expression of ASGR1 

and AFP had modestly increased by day 21 after seeding (Fig. 

4), but the expression of ALBUMIN had already increased sig-

nificantly after only 3 days of seeding (Fig. 4). Taken together, 

these data and those described previously show that the 3D-

printed structures not only assist the HepG2 cells to multiply 

but also enhance their hepatic function. 

Fig. 3. Proliferation of HepG2 cells in the three-dimensional (3D) culture system. (A1-5, B1-5) Bright field image of HepG2 cells grown in 3D cul-
ture (A1-5) and immunofluorescence image of HepG2 cells labeled with mCherry (B1-5). Bar, 500 μm. (C1-5, D1-5) Images of H&E staining (C1-5) 
and immunohistochemistry using antibodies against ALBUMIN (D1-5), AFP (E1-5), and Ki-67 (F1-5). Bar, 400 μm. The images were captured on 
days 1, 3, 7, 14, and 21 after seeding the HepG2 cells on 3D-printed scaffolds.

D
a
y

1
D

a
y

3
D

a
y

7
D

a
y

1
4

D
a
y

2
1

Bright field mCherry H&E stain ALBUMIN AFP Ki-67



126  Gut and Liver, Vol. 11, No. 1, January 2017

DISCUSSION

End stage of liver diseases such as cirrhosis causes severe 

liver failure and portal hypertension. To deal with the liver fail-

ure at the end stage, liver transplantation is ultimately the only 

treatment at the terminal stages of disease, but the demand for 

liver transplantation is more than number of provision cadav-

eric livers or liver tissues from living donors. Therefore, human 

hepatocytes are considered as the most desirable source for the 

therapy, instead of liver organ transplantation. However, the 

transplantation of hepatocytes requires a number of cells in 

therapy, indicating that it needs an unlimited source of hepato-

cytes.23 

Due to infinite replication capacity and differentiation poten-

tial into most of cells and tissues in our body, PSCs including 

embryonic stem cells or induced PSCs are regarded as alterna-

tive cell sources for therapeutic applications such as regenera-

tive medicine and drug discovery. So far, many of strategies 

have been recently well developed for generating PSC-derived 

hepatocyte-like cells in vitro with high purity and maturity.1-4 

The PSC-derived hepatocyte-like cells hold typical characters 

of hepatocytes with primary hepatocytes in terms of secretory 

functions, xenobiotic activity and detoxification functions. 

Moreover, they are able to repopulate after transplantation in 

vivo and restore the liver functions.5,7-11,24

Although the strategies for obtaining pure and high quality of 

hepatocyte-like cells from PSCs have been improved, however, 

it cannot be perfectly ruled out the risk of oncogenicity origi-

nated from residually undifferentiated cells upon differentiation. 

To overcome this issue, direct conversion technology of which 

directly convert a terminally differentiated somatic cells into 

another types of cells in our interest without passing through 

pluripotent state has been reported. In recent, several groups 

successfully developed the protocols of generating hepatocyte-

like cells (so called as induced hepatocyte-like cells; iHeps) from 

somatic cells in human and mouse by ectopically expressing the 

defined sets of tissue-specific transcription factors.24-27 The iHeps 

also share hepatic properties with primary hepatocytes like as 

PSC-derived hepatocyte-like cells do in vitro.24-27 Similar with 

PSC-derived hepatocyte-like cells, the iHeps transplanted into 
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Fig. 4. Enhanced expression of hepatic markers in HepG2 cells in three-dimensional (3D) culture. Expression levels of the hepatic markers ALBU-
MIN, ASGPR1, AFP, CYP1A2, and TAT in HepG2 cells after culture under 3D conditions. The expression levels were normalized to those of mouse 
embryonic fibroblasts. *p<0.05; †p<0.01; ‡p<0.001.
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mouse liver failure model are capable of repopulating the liver 

and restores normal liver structure without fusion with recipient 

cells.24-27

For many years, 2D culture systems have been widely used 

in biological research and drug screening. However, since 2D 

culture system cannot truly mimic the physiological environ-

ment in 3D tissues and organs including liver, the cells cultured 

in 2D inevitably lacks the micro-environmental influences pres-

ent in natural 3D tissues.22,28 This factor has contributed to the 

poor predictive power of preclinical cell-based drug and toxicity 

screening assays.22,29,30 Furthermore, most candidate drugs pass-

ing through in vitro preclinical trials have failed to meet the 

desired efficacy or safety margins prior to entering subsequent 

clinical trials, perhaps partly for the same reason. To overcome 

the limitation of 2D culture system, 3D bioprinting culture mod-

els has been developed, which can reproduce true 3D pathologi-

cal architecture of tissue and organs by fabricating scaffolds 

with a novel micro- and macro-architecture.22 Recently, Duan 

et al.31 have described 3D bioprinted aortic valve conduits com-

posed of dual cell types, aortic root sinus smooth muscle cells 

(SMCs) and aortic valve leaflet interstitial cells (VICs), using 

fabricated alginate/gelatin hydrogel discs. Both SMCs and VICs 

were able to survive for over 7 days and displayed elevated 

levels of alpha-smooth muscle actin and vimentin expression, 

respectively. These results suggest that constructing 3D culture 

environment and fabricating natural structure complexity with 

cellular heterogeneity can be achieved by 3D bioprinting tech-

nology.

In the current study, we utilized 3D printing technology for 

mimicking liver tissues or organs.32-34 Multilayered-3D hepatic 

structures were efficiently constructed by mixing the alginate 

with HepG2 cells. As a consequence, we observed that mimick-

ing the 3D hepatic structure via 3D printing technology herein 

not only assists the HepG2 cells to stably repopulate, but also 

improves their gene expression profiles. Taken together, our 

findings show that 3D bioprinting of liver tissue suitable for 

transplantation may be a realistic option for overcoming the 

problems of donor shortage and surgical complications and 

thereby offer a new paradigm in the field of liver regenerative 

medicine.
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