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Abstract

Background: High molecular weight glutenin subunits (HMW-GS) have been proved to be mostly

correlated with the processing quality of common wheat (Triticum aestivum). But wheat cultivars

have limited number of high quality HMW-GS. However, novel HMW-GS were found to be

present in many wheat asymmetric somatic hybrid introgression lines of common wheat/Agropyron

elongatum.

Results: To exploit how these new subunits were generated, we isolated HMW-GS genes from

two sib hybrid lines (II-12 and 11-4-6) and compared them with those from their parents. The

result shows that two genes of hybrid (H11-3-3 and H11-4-3) are directly introgressed from the

donor parent Agropyron elongatum; one hybrid gene (H1Dx5) comes from point mutation of a

parental wheat gene (1Dx2.1); two other hybrid genes (H1By8 and H1By16) are likely resulting from

unequal crossover or slippage of a parental wheat gene (1By9.1); and the sixth novel hybrid gene

(H1Dy12) may come from recombination between two parental genes.

Conclusion: Therefore, we demonstrate that novel HMW-GS genes can be rapidly created

through asymmetric somatic hybridization in a manner similar with the evolution mechanism of

these genes supposed before. We also described gene shuffling as a new mechanism of novel

HMW-GS gene formation in hybrids. The results suggest that asymmetric somatic hybridization is

an important approach for widening HMW-GS genebank of wheat quality improvement.

Background
High molecular weight glutenin subunits are important
component of wheat gluten proteins which are mainly
responsible for dough viscosity and elasticity in wheat
processing [1]. The HMW-GS accounts for up to about
12% of the total protein in the endosperm of common
wheat (Triticum aestivum L.), while their allelic variation
explains about 45% to 70% of the variation in bread mak-
ing performance within European wheat cultivars [2-4].
Thus, their coding sequences are the prime candidates for

molecular modification to enhance grain-processing qual-
ity [5].

The genes encoding the wheat HMW-GS are located on
the long arms of the homoeologous group 1 chromo-
somes [6-9]. Each locus consists of two tightly linked
genes, termed x- and y-type genes according to their differ-
ent molecular weights. So far, the structural characteristics
of more than ten HMW-GS alleles have been revealed by
DNA sequencing [10-18]. All of these HMW-GS contain a
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central repetitive domain flanked by non-repetitive N-
and C-terminal domains. The central domain of both the
x- and the y-type subunits comprises hexapeptide and
nonapeptide motifs, but the x-type subunits also contain
tripeptide motifs. The presence of such a large repetitive
central domain probably provides the basis for major and
rapid structural changes via duplication and/or deletion
of large segments as a result of unequal cross over [19].

The HMW-GS proteins are important for wheat processing
quality; however, the number of HMW-GS alleles with
good quality is very limited in wheat cultivars. So, peoples
turn to wheat-related grasses for new good quality HMW-
GS allele for wheat quality improvement. But many
HMW-GS in wheat-related grasses are smaller than those
of normal wheat [20-24], while the length of HMW-GS
has been proved to be positively correlated with dough
strength. Thus, the simple introgression or transformation
of HMW-GS from grasses is not sufficient for the wheat
quality breeding.

Asymmetric somatic hybridization between protoplast of
common wheat (Triticum aestivum L cv. Jinan 177) and
UV-irradiated protoplast of Agropyron elongatum can gen-
erate fertile introgression lines with superior agronomic
traits, in particular the bread-making quality [25-27].
About 35% of the 175 somatic hybrids express novel high
quality HMW-GS subunits not present in Jinan177
(1Bx7.1+1By9.1, 1Dx2.1+1Dy12.1) or both parents [28].
For example, line II-12 has good bread-making quality,
and its HMW-GS profile is H1Ax2*, H1Bx13+H1By16,
H1Dx5+H1Dy12 [26]. The identification of the origina-
tion of these new subunits will benefit the understanding
of the process and guide us to identify and produce more
new HMW-GS genes through the somatic hybridization.
We speculated the possible formation process of novel
genes previously by sequencing the H1Bx13+H1By16 and
H1Ay genes of introgression line II-12 [26]. In this report,
we isolated and sequenced all the HMW-GS genes of both
II-12 and another sib introgression line, which also has a
special HMW-GS profile different from Jinan177, and the
origination of novel HMW-GS genes in hybrid wheat was
discussed.

Results and discussion
SDS-PAGE profile of HMW-GS

The SDS-PAGE profile of HMW-GS showed that the par-
ent wheat Jinan177 has the combination of
"1Bx7.1+1By9.1; 1Dx2.1+1Dy12.1" while another parent
A. elongatum contains nine HMW-GS in seeds; the HMW-
GS composition of hybrid line II-12 and 11-4-6 appeared
to be "H1Ax2*; H1Bx13+H1By16; H1Dx5+H1Dy12" and
"H1Ax1; H1Bx7+H1By8; H1Dx5+H1Dy12" similar to
bread wheat, respectively (Figure 1).

HMW-GS genes from both parents and two introgression 

lines

The amplified product of parent wheat Jinan177 and two
introgression lines II-12 and 11-4-6 ranged from 1.8 kb to
2.5 kb, but two smaller fragments also appeared in the 11-
4-6; the amplicon of another parent A. elongatum ranged
from 1.1 kb to 2.4 kb (Figure 2). All the amplified prod-
ucts of both parents and the two hybrid lines were cloned
and a lot of inserts with different sizes were obtained.
After sequencing the terminal region of these inserts we
ascertained the identity of these inserts. We selected some
inserts to represent the coding region of subunits of par-
ents and the two hybrids, then, we obtained their full
length sequences by nested deletion. Through compari-
son of the mobility of proteins expressed in E. coli directed
by some sequences with those of subunits in seeds and
alignment of these sequences with those published
HMW-GS alleles (date not shown) of common wheat,
four sequences were designated 1Dx2.1 (GenBank:
DQ478570), 1Bx7.1 (GenBank: DQ478571), 1By9.1

(GenBank: DQ000162) and 1Dy12.1 (GenBank:
DQ000161) to represent the ORFs of 1Bx7.1+1By9.1 and
1Dx2.1+1Dy12.1 of parent Jinan177 respectively (Table
1); H1Dx5 (GenBank: DQ478572), H1Dy12 (GenBank:
DQ478573) and H1By8 (GenBank: DQ646520) were
designated as the coding sequences of H1Dx5+H1Dy12 of
II-12 and H1By8 of hybrid 11-4-6, the character H in these

SDS-PAGE analysis of high-molecular-weight glutenin subu-nits (HMW-GS) of some common wheats and introgression linesFigure 1
SDS-PAGE analysis of high-molecular-weight glutenin subu-
nits (HMW-GS) of some common wheats and introgression 
lines. Seeds of A. elongatum contain nine subunits. The HMW-
GS composition of different genotypes of common wheat is 
listed as following: JN177 is 1Bx7.1+1By9.1 and 
1Dx2.1+1Dy12.1; CS (Chinese Spring) is 1Bx7+1By8 and 
1Dx2+1Dy12; 4072 is 1Ax1, 1Bx13+1By16 and 
1Dx5+1Dy10. The HMW-GS composition of hybrid II-12 
and 11-4-6 are "H1Ax2*, H1Bx13+H1By16, 
H1Dx5+H1Dy12" and "H1Ax1, H1Bx7+H1By8, 
H1Dx5+H1Dy12" respectively.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ478570
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ478571
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ000162
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ000161
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ478572
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ478573
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ646520
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names means that these sequences come from hybrid
introgression lines. We also acquired two sequences from
hybrid 11-4-6 which were different from any of the four
HMW-GS alleles cloned from parent Jinan177 and we
named them H11-3-3 (GenBank: DQ656419) and H11-4-

3 (GenBank: DQ646521). However, both of them were
very similar to Aey1 (GenBank: AY899822) and Aex4

(GenBank: DQ534448) cloned from A. elongatum respec-
tively. The other two smaller fragments cloned in the
amplicon of 11-4-6 were 1333 bp and 1260 bp, respec-
tively. After sequence alignment, we found that they came
from deletion of large fragments of H1By8. Therefore, we
inferred that they were artifacts of PCR amplification and
did not select them for further analyzes. There are no cor-
responding subunits of H11-3-3 and H11-4-3 in hybrid
11-4-6. The H11-3-3 contains in frame stop codon and
frame shift mutation in its' ORF, therefore it can not
express intact proteins in the seed. The reason why pro-
teins encoded by H11-4-3 absent from seeds of 11-4-6 is
unknown, we suggest that H11-4-3 was silenced in
hybrids via DNA methylation because we have found that
about 12% loci of the hybrids were hypermethylated
using MSAP platform (Liu et al., personal communica-
tion). The other alleles cloned from A. elongatum were not
shown in this paper. Amino acid sequences derived from
all these sequences possessed the characteristic of HMW-
GS of bread wheat, with a 21 amino acid residues signal
peptide, N- and C-terminal conserved regions and a cen-
tral repetitive region. The detailed structures of subunits
derived from these sequences and some representative
subunits of bread wheat were shown in Table 1.

Novel HMW-GS genes from the introgression of donor to 

receptor

H11-3-3 and H11-4-3 of hybrid wheat 11-4-6 displayed a
high similarity with Aey1 and Aex4 of A. elongatum, but
low similarity with all HMW-GS alleles of Jinan177 (Fig-
ure 3), which confirmed that these two sequences might
be transferred from A. elongatum to hybrid wheat genome
during somatic hybridization. GISH analysis of hybrid
wheat genome in our lab revealed that different hybrid
lines had different sites of translocation or insertion of
chromatin [29,30]. Wang et al. [31] located introgression
small-chromosome-segments of A. elongatum on hybrid
wheat chromosomes 2AL, 1BL, 5BS, 1DL, 2DL and 6DS,
using GISH/FISH/SSR analysis combined with karyotype
data. However, there is no direct evidence concerning the
hybrid introgression line contains gene from donor on the
molecular level. The sequence data of these two genes pro-
vided further evidence that asymmetric somatic hybridi-
zation can transfer alien gene(s) from donor to the
receptor genome, and the potential as a genetic/genomic
tool for crop improvements.

Novel HMW-GS gene present in hybrid via point mutation 

of parent gene(s)

Sequence alignment indicated that H1Dx5 was similar to
1Dx2.1 of parent Jinan177 with 16 amino acid substitu-
tions (Figure 4) and we did not found any sequences sim-
ilar to H1Dx5 from A. elongtum, so we confirmed that
H1Dx5 of hybrid came from 1Dx2.1 of parent wheat via
point mutation in the process of hybridization. Both
H1Dx5 and 1Dx2.1 shows more similarity to 1Dx2 (Gen-
Bank: X03346) than 1Dx5 (GenBank: X12928) of bread
wheat. However, they do not share the position 60 amino
acid deletion characteristic of subunit 1Dx2. Bacterial
expression of modified ORFs of H1Dx5 and 1Dx2.1 con-
firmed that they are coding sequences of H1Dx5 and
1Dx2.1 respectively (data not shown). Although molecu-
lar weights of deduced amino acids of H1Dx5 and 1Dx2.1
are similar, the migration of these two subunits on SDS-
PAGE is obviously different (Figure 1). The reason of such
anomaly is not known. However, it has been reported that
the migrations of allelic subunit pair 1Dx2/1Dx5 and
1Dy10/1Dy12 was anomalous, subunit 1Dx5 has a higher
mobility than the smaller allelic 1Dx2, and similarly,
1Dy10 has a lower mobility than the larger allelic 1Dy12
[32]. Through Urea SDS-PAGE and making chimeric
genes, Goldsbrough et al. [33] found that the anomaly of

PCR profile of hybrids and parents DNA amplified with the degenerate primer pairs, CS DNA was used as control and M was Marker (EcoR I/Hind III-digested λ DNA)Figure 2
PCR profile of hybrids and parents DNA amplified with the 
degenerate primer pairs, CS DNA was used as control and M 
was Marker (EcoR I/Hind III-digested λ DNA).

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ656419
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ646521
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY899822
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ534448
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X03346
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X12928
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migration on SDS-PAGE between 1Dy10 and 1Dy12
might be resulted from conformational differences
induced by six amino acid substitution between the two
subunits. Urea SDS-PAGE of recovered H1Dx5 and
1Dx2.1 proteins showed that the two subunits appeared
nearly the same electrophoretic mobility in presence of
urea where secondary structure of these proteins is broken
down and the proteins are separated according to their rel-
ative molecular weight (data not shown). Bread making-
quality analysis showed that hybrid-derived H1Dx5 subu-
nit was related to good grain-processing quality, while
1Dx2.1 subunit was correlated with bad ones [27]. There-
fore, we speculated that the same conformational differ-
ence was responsible for both the observed grain-
processing quality differences and the anomalous electro-
phoretic behavior.

Hybrid novel gene from allelic variation of parents via 

unequal crossover or slippage

Sequence alignment indicated that H1By16 (GenBank:
AY263346, cloned by Feng et al. [26]) and H1By8 were
very similar with 1By9.1 except the addition of repeat
motifs and few SNPs. H1By8 contains an additional block
of repeat than 1By9.1 while H1By16 contains another
repeat than H1By8 (Figure 5). Although H1By16 shows
more similarity with Aey1, the latter has a single base dele-
tion which results in a frame shift mutation, so H1By16

might not be acquired from A. elongatum. H1By8 and
H1By16 should be formed by unequal crossover or slip-
page of 1By9.1 to duplicate block of repeats. This is coin-
cident with variation of SSR loci in hybrids. There present
obvious variation in band pattern of some SSR loci
between hybrid and parents using 173 primer pairs.

Sequencing of some novel bands indicates that the varia-
tion of band pattern is mainly due to the addition or dele-
tion of one or more repeat motifs (data not shown).
Addition or deletion of repeat motifs maybe an effective
mechanism of variation happened in sequences that con-
tain many repeat motifs in them.

Shuffling of parents genes to produce novel chimeric 

HMW-GS genes

The coding sequence of H1Dy12 shows very high similar-
ity with that of 1Dy12.1, with only a few SNPs, both of
them are 1980 bp in length. The 1980 bp's long y-type
sequence cloned from A. elongatum (Aey2, GenBank:
AY263343[21]) makes us a little doubt about the origin of
H1Dy12 of hybrid II-12. The three highly homologous
1980 bp sequences (1Dy12.1, H1Dy12 and Aey2) contain
22 different SNPs in all. Sequence alignment reveals that
7 of 10 discrepant bases before position 1210 are the same
between 1Dy12.1 and H1Dy12, while 9 of another 12 dis-
crepant bases after position 1210 are the same between
H1Dy12 and Aey2 (Figure 6). Therefore we conclude that
the H1Dy12 of hybrid is likely a chimeric gene generated
by recombination between 1Dy12.1 and Aey2 (Figure 7).
This is coincident with LMW-GS genes found in another
sib hybrid wheat introgression line 7-4-1-2 in our lab.
Chen et al. cloned and sequenced LMW-GS genes from
the line and both parents, and found some chimeric genes
(Chen, personal communication). As for the 6 bases that
were different between H1Dy12 and corresponding parent
genes, they might be the result of single base mutation
during the process of UV-irradiation to the donor in the
asymmetric somatic hybridization of the parent wheat
and A. elongatum [25] and long-term tissue culture of par-

Table 1: A summary of some of the properties of the primary structure of deduced peptides of hybrids and both parents and that of 

some representative subunits of bread wheat

Subunits Accession number Signal peptide N-terminus domain C-terminus domain Repetitive domain Total

1Dx2.1 DQ478570 21 89 42 687 839

H1Dx5 DQ478572 21 89 42 687 839

1Dx2 X03346 21 88 42 687 838

1Dx5 X12928 21 89 42 687 839

1Dy12.1 DQ000161 21 104 42 491 658

H1Dy12 DQ478573 21 104 42 491 658

Aey2 AY263343 21 104 42 491 658

1Dy12 X03041 21 104 42 493 660

1Bx7.1 DQ478571 21 81 42 645 789

H1Bx13 AY424400 21 81 42 651 795

1Bx7 X13927 21 81 42 645 789

1By9.1 DQ000162 21 104 42 538 705

H1By8 DQ646520 21 104 42 553 720

H1By16 AY263346 21 104 42 571 738

1By9 X61026 21 104 42 538 705

1By8 AY245797 21 104 42 553 720

H11-4-3 DQ646521 21 81 42 548 692

Aex4 DQ534448 21 81 42 548 692

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY263346
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY263343
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ478570
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ478572
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X03346
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X12928
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ000161
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ478573
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY263343
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X03041
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ478571
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY424400
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X13927
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ000162
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ646520
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY263346
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X61026
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY245797
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ646521
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ534448
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ents/hybrids before or after the cell fusion, just like that
happened in H1Dx5.

Comparison of new gene generation from intergeneric 

hybridization with natural HMW-GS gene evolution

From evolutionary view, it was suggested that the evolu-
tionary origin of HMW-GS involved a same ancestor
[8,12,14,34]. Anderson and Greene [14] proposed a sim-
plest mechanism about the sequence evolution of HMW-
GS genes, which include: (a) single base changes (b) dele-
tions or additions within a repeat (c) single repeat changes
(d) deletions or duplications of blocks of repeats.
Through cloning and sequencing of HMW-GS genes of the

sib hybrid lines and both parents, we found that asym-
metric somatic hybridization could not only transfer
donor genes to the hybrid genome, but also lead to the
emergence of new genes (Figure 7). The formation of
some novel hybrid genes was inosculated with the mech-
anism mentioned by Anderson and Greene [14]. Moreo-
ver, we found gene shuffling in hybrid can also produce
novel HMW-GS gene, just like that happened in the origi-
nation of some novel genes in Drosophila [35-37]. Thus,
the novel HMW-GS and combinations generated in the
sib asymmetric somatic hybrid lines from a same fusion
cell are similar to the natural emergence of new HMW-GS
but in less time.

The novel HMW-GS with wheat quality breeding

In our investigation, many hybrid-derived novel HMW-
GS show correlation with good grain-processing quality,
such as H1Bx13+H1By16, H1Dx5+H1Dy12 and H1By8
subunits (GenBank: AY424400, AY263346, DQ478572,
DQ478573 and DQ646520 respectively) in II-12 and
other sib lines [27]. We are using them in gene transfor-
mation and marker-assistant quality breeding of common
wheat, and a lot of germplasms and strains with high
qualities have been produced from them. Therefore,
asymmetric somatic hybridization between common

Comparison of part DNA sequences from repetitive domain of three 1By alleles and a y-type allele Aey1 of A. elongatumFigure 5
Comparison of part DNA sequences from repetitive domain 
of three 1By alleles and a y-type allele Aey1 of A. elongatum. 
H1By16 and H1By8 is the coding sequence of novel subunit 
of hybrid; 1By9.1 is the coding sequence of 1By9.1 subunit of 
common wheat Jinan177.

Comparison of mature peptide sequences deduced from DNA sequences of H1Dx5 and 1Dx2.1Figure 4
Comparison of mature peptide sequences deduced from 
DNA sequences of H1Dx5 and 1Dx2.1.

Phylogenetic analysis of HMW-GS genes cloned from hybrids and both parentsFigure 3
Phylogenetic analysis of HMW-GS genes cloned from hybrids 
and both parents. The Neighbor-Joining tree is constructed 
through MEGA program (Version 3.1).

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY424400
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY263346
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ478572
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ478573
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ646520
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wheat and relative intergeneric grasses can be an impor-
tant tool for wheat quality breading.

Conclusion
Through sequencing and comparing HMW-GS genes from
introgression lines of wheat/A. elongatum and both par-
ents, we confirmed that genes of A. elongatum had been
introgressed into wheat in asymmetric somatic hybridiza-
tion. It is significant that some novel HMW-GS genes with
good processing quality could be generated in the intro-
gression lines via the asymmetric somatic hybridization.
The formation of these novel genes showed similarity to
the evolutionary mechanism of natural HMW-GS genes
proposed before, except that gene shuffling was found to
be a special mode to form novel chimeric genes in the
hybrid lines. The result suggests that asymmetric somatic
hybridization is a unique pathway to produce novel genes
that can be used for wheat quality improvement.

Methods
Plant materials

Agropyron elongatum (Host) Nevski [Thinopyrum ponticum

2n = 10x = 70], common wheat Jinan 177 (Triticum aesti-

vum L. 2n = 42), the introgression self-fertilized lines II-12
and 11-4 originated from a single fusion cell in the inter-
generic asymmetric somatic hybridization between proto-
plasts of T. aestivum cv. Jinan177 and UV-irradiated
protoplasts from A. elongatum were used in the experi-

ments. II-12 is genetically stable and has the HMW-GS
profile of H1Ax2*, H1Bx13+H1By16, H1Dx5+H1Dy12.
Line 11-4 segregates in F2 generation with different HMW-
GS, so a single seed selection (11-4-6) with the profile
H1Ax1; H1Bx7+H1By8 and H1Dx5+H1Dy12 similar to
common wheat was used to represent this genotype.
Common wheat Chinese Spring (1Bx7+1By8,
1Dx2+1Dy12) and wheat cultivar 4072 (1Ax1,
1Bx13+1By16, 1Dx5+1Dy10), used for control, was
kindly offered by Shandong Academy of Agricultural Sci-
ences, Jinan, China.

SDS-PAGE analysis of HMW-GS

HMW-GS of parent Jinan177 and hybrid lines II-12 as
well as 11-4 was extracted from embryo-less half grains
while those of A. elongatum, Chinese Spring and 4072 was
extracted from the whole seeds as described by Mackie et
al. [38]. SDS-PAGE was conducted following the proce-
dures described by Feng et al. [20].

Cloning and characterizing of HMW-GS genes

The seedlings of A. elongatum and that of embryo-carrying
half seeds of Jinan177 and both introgression lines were
grown in darkness for 14 days at 23°C. Genomic DNA
was extracted from these seedlings using the CTAB
method according to Murray and Thompson [39]. As the
HMW-GS genes are free of introns, genomic DNA is used

Sketch map of possible pathway through which novel hybrid HMW-GS genes come from, a): H1Dx5 come from 1Dx2.1 via single base mutation, the arrow means the SNPsFigure 7
Sketch map of possible pathway through which novel hybrid 
HMW-GS genes come from, a): H1Dx5 come from 1Dx2.1 
via single base mutation, the arrow means the SNPs. b): 
H1By8 and H1By16 of hybrid generate from duplication of a 
block of repeats of 1By9.1. c): H1Dy12 of hybrid engender 
from recombination between Aey2 of A. elongatum and 
1Dy12.1 of parent wheat Jinan177.

Comparison of peptide sequences deduced from three 1980 bp DNA sequences: H1Dy12, Aey2 and 1Dy12.1Figure 6
Comparison of peptide sequences deduced from three 1980 
bp DNA sequences: H1Dy12, Aey2 and 1Dy12.1. Seven of 10 
discrepant bases before position 1210 are the same between 
1Dy12.1 and H1Dy12, while 9 of another 12 discrepant bases 
after position 1210 are the same between H1Dy12 and Aey2.
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as template for PCR amplification of the entire coding
region. In order to amplify the complete HMW-GS ORF of
the two introgression lines and the two parents, a pair of
degenerate primers was designed based on published
DNA sequences. These were P1 (5'-ATGGCTAAGCGGC/
TTA/GGTCCTCTTTG-3') and P2 (5'-CTATCACTGGCTA/
GGCCGACAATGCG-3'). P1 includes the HMW-GS ORF
start codon, and P2 has the two conserved tandem stop
codons. The PCR required LA Taq polymerase (TaKaRa
Biotechnology) with a GC buffer for GC-rich template.
The amplification profile was one cycle at 95°C for 5 min,
followed by 28 cycles of 94°C for 40 s, 68°C for 4 min,
and a final extension step at 72°C for 7 min. The ampli-
fied product were recovered from 1.0% agarose gels,
cloned into the pUCm-T vector, and transformed into E.

coli DH10B competent cells. To obtain a full-length
sequence, a series of five to six subclones were prepared
using the nested deletion method of Sambrook et al. [40].
Sequencing was performed commercially (Invitrogen).
Both amplification and cloning were repeated at least
three times to minimize the possibility of errors present in
amplification and sequencing. Sequence analyses were
performed with the help of MEGA (Version 3.1) and pro-
grams from the NCBI and EBI networks.
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