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Abstract

Background: Biomedical research usually requires combining large volumes of data from multiple heterogeneous

sources, which makes difficult the integrated exploitation of such data. The Semantic Web paradigm offers a natural

technological space for data integration and exploitation by generating content readable by machines. Linked Open

Data is a Semantic Web initiative that promotes the publication and sharing of data in machine readable semantic

formats.

Methods: We present an approach for the transformation and integration of heterogeneous biomedical data with

the objective of generating open biomedical datasets in Semantic Web formats. The transformation of the data is

based on the mappings between the entities of the data schema and the ontological infrastructure that provides the

meaning to the content. Our approach permits different types of mappings and includes the possibility of defining

complex transformation patterns. Once the mappings are defined, they can be automatically applied to datasets to

generate logically consistent content and the mappings can be reused in further transformation processes.

Results: The results of our research are (1) a common transformation and integration process for heterogeneous

biomedical data; (2) the application of Linked Open Data principles to generate interoperable, open, biomedical

datasets; (3) a software tool, called SWIT, that implements the approach. In this paper we also describe how we have

applied SWIT in different biomedical scenarios and some lessons learned.

Conclusions: We have presented an approach that is able to generate open biomedical repositories in Semantic

Web formats. SWIT is able to apply the Linked Open Data principles in the generation of the datasets, so allowing for

linking their content to external repositories and creating linked open datasets. SWIT datasets may contain data from

multiple sources and schemas, thus becoming integrated datasets.
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Introduction

Biomedicine is a knowledge based discipline, in which the

production of knowledge from data is a daily activity. Cur-

rent biomedical research generates an increasing amount

of data, whose efficient use requires computing support.

Traditionally, biomedical data have been stored in hetero-

geneous formats in various scientific disciplines. Since the
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development of the Protein DataBank [1] in the seventies,

life scientists have developed many biological databases,

and there are more than 1500 biological databases accord-

ing to the 2015 Molecular Biology Database Update [2].

As a consequence, biological data are represented in dis-

parate resources [3], which makes data retrieval and man-

agement hard for life scientists because they are required

to know: (1) which resources are available and contain the

desired information; (2) the meaning of the data types and

fields used in each resource; and (3) how such resources

can be accessed and queried. There is, therefore, a clear
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need for facilitating the integrated use of such resources.

Unfortunately, there is also heterogeneity in the formats

used for storing such data, since they are not usually the

most machine-friendly ones [4].

On the medical and clinical side, the advent of elec-

tronic health records (EHRs) contributes to making more

data available for computer processing, but suffers from

similar problems. The heterogeneity of EHR systems can

be assimilated to the one of biological databases. The

semantic interoperability of EHR data not only has been

identified as a need but also considered as a reason for

inefficiencies within the healthcare system [5, 6] and

for the waste of billions of dollars in the United States

annually [7].

Translational research aims at applying basic biologi-

cal results and data into clinical activities and routine. In

recent years, supporting data-driven medicine has been

set as a challenge for translational bioinformatics [8].

For this purpose, the integration and joint analysis and

exploitation of heterogeneous data, both biological and

medical becomes critical, hence, solutions in this area are

required.

In the technical side, the Semantic Web [9] describes

a new form of Web content meaningful to computers,

in which the meaning is provided by ontologies. An

ontology represents a common, shareable and reusable

view of a particular application domain [10]. The fact

that machines know the meaning of content enables

the use of automated reasoning, which permits to infer

new information or to check the logical consistency of

the content. The Semantic Web has been proposed as

a technological space in which biomedical data can be

integrated and exploited [11]. The growing interest of

the biomedical community in the Semantic Web can

be illustrated by the fact that repositories such as Bio-

Portal [12] contain at the time of writing more than

500 biomedical ontologies, controlled vocabularies and

terminologies.

The Semantic Web community wishes to achieve the

Web of Data, which would semantically connect datasets

distributed over the Internet. The Linked Open Data

(LOD) effort1 pursues the publication and sharing of

biomedical datasets using semantic formats such as RDF2

or OWL3. The biomedical community is heavily involved

in the development of the LOD cloud [13], since integra-

tion and interoperability are fundamental for biomedical

data analysis [14]. The LOD cloud offers a promising

infrastructure for such a goal. The availability of consen-

sus ontologies generated by the biomedical community

facilitates the publication of data in the LOD cloud, since

those ontologies can be used as vocabularies for the RDF

datasets. Most efforts in this area have been solved by

in-house solutions, implementing resource-specific trans-

formation scripts. Hence, we believe that there is a need

for methods and tools that contribute to standardise

the process of getting biomedical datasets in semantic

formats.

Since the development and success of the Gene Ontol-

ogy [15], ontologies have been used to support data anno-

tation processes. The development and evolution of the

Semantic Web technologies has permitted to increase

the variety of use of such technologies in biomedical

domains. In the area of biomedical databases we can point

out two efforts of particular significance. First, the Euro-

pean Bioinformatics Institute (EBI) has developed an RDF

platform which permits the semantic exploitation of the

content of a series of EBI resources, including UniProt

[16]. Second, the Bio2RDF initiative [13] has created RDF

versions of thirty five biomedical resources (Release 3

July 2014). These efforts pursue the development of the

biomedical LOD. In the area of EHRs, the SemanticHealth

project identified that ontologies should play a fundamen-

tal role for the achievement of the semantic interoperabil-

ity of EHRs [6]. Since then, Semantic Web technologies

have been increasingly applied in the EHR domain with

different purposes: representation of clinical models and

data [17–19]; interoperability of models and data [20–22];

application of quality measurements and protocols to

data [23, 24].

The main objective of the present work is to pro-

pose a method that could serve to simplify the process

of generating integrated semantic repositories from het-

erogeneous sources. The approach will be able to work

with relational databases, XML documents, and EHR

data and will produce datasets described by means of

ontologies. The transformation process is independent of

the formalism used for capturing the data to be trans-

formed. This process will be driven by the semantics of

the domain to ensure the correctness and logical con-

sistency of the resulting content. This will be achieved

by defining mappings between the data schemas and the

ontologies, which will provide the semantic content. Our

approach will be able to create a repository from mul-

tiple sources, which will require to define mechanisms

for merging the data about the same entity contained

in the different resources. Besides, the resulting content

will be generated according to the principles of Linked

Open Data. We will also describe our Semantic Web

Integration Tool (SWIT), which implements the trans-

formation and integration methods, and the application

of our method in different use cases. The expected con-

tributions of our research are (1) the common trans-

formation and integration process for heterogeneous

biomedical data; (2) enabling the design of reusable map-

pings between schemas driven by domain knowledge; (3)

the application of Linked Open Data principles to gen-

erate interoperable, semantically-rich, open, biomedical

datasets.
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Background

Biomedical data

The term biomedical data covers a wide range of types

of data used in biomedicine. Such data are usually

stored and represented in different, heterogeneous for-

mats, which makes their joint exploitation difficult. In

this work we are specially interested in the information

contained in biomedical databases and in the content of

electronic healthcare records because of their importance

for biomedical and clinical research.

On the one hand, biomedical databases contain large

volumes of complex, dynamic information about biomed-

ical entities. The information about a concrete biomedical

entity, like a protein, is distributed along many different

databases, which makes necessary to combine informa-

tion from different sources to get all the information.

These heterogeneous resources do not even share iden-

tifiers for the biological entities, although this particular

aspect is being addressed by initiatives like identifiers.org

[25]. XML files and relational databases are popular for-

mats used for the representation and sharing of biomedi-

cal databases. For instance, OrthoXML and SeqXML [26]

are two XML formats to standardise the representation of

orthology data. Relational databases have gained popular-

ity in the last years because they are effective in retrieving

data through complex queries. Biomedical resources such

as the Gene Ontology [15] or CHEBI [27] provide their

data in relational format.

On the other hand, the electronic health record of

a patient stores all the information digitally recorded

from the interactions of the patient with the health sys-

tem. In the last decades, many efforts have addressed

the development of EHR standards and specifications,

such as HL7 [28], openEHR [29], and ISO EN 13606

[30]. Such standards and specifications are based on the

dual model architecture, which distinguishes two mod-

elling levels. On the one hand, the information model

provides the generic building blocks to structure the

EHR information. On the other hand, clinical mod-

els are used to specify clinical recording scenarios by

constraining the information model structures. In both

openEHR and ISO EN 13606, clinical models are named

archetypes and they have been considered a promising

way of sharing clinical data in a formal and scalable way

[5]. Archetypes are used to specify clinical recording sce-

narios. An archetype may be used to record clinical data

about a laboratory test, a blood pressure measurement,

a medication order, etc. They constitute a standardised

way of capturing clinical data according to the archetype

model [31]. They are usually defined in the Archetype

Definition Language (ADL)4. EHR data extracts are

usually represented as XML documents, whose con-

tent should satisfy the constraints specified in the

archetype.

The joint semantic exploitation of data stored in XML

files or in relational databases requires methods for

the transformation of the data into semantic formats.

Both XML technologies and relational databases provide

schemas which define the structure of the datasets. In our

approach, such schemas will be used to define generic pro-

cessing methods able to transform and exploit XML and

relational data using semantic technologies. More con-

cretely, XML schemas, ADL archetypes and the schema

of relational databases will be managed in our approach.

In practical terms, ADL archetypes play the role of XML

Schemas.

Semantic representation and access to biomedical data

The World Wide Web Consortium has developed a series

of Semantic Web standards for exchanging data (e.g.,

RDF), for representing their semantics (e.g., OWL) and for

querying these data (e.g., SPARQL5). Automated reason-

ers (e.g., Hermit [32], Pellet [33]) can be used in conjunc-

tion with Semantic Web content to check for the consis-

tency of data or to infer new information. Semantic Web

technologies also offer mechanisms for storing seman-

tic data called triplestores and whose performance for

complex queries is continuously improving [34]. Linked

Open Data is a Semantic Web initiative aiming to materi-

alise the Web of Data through the publication and sharing

of datasets using semantic formats. Linked Open Data

datasets meet four requirements [35]: (1) use URIs as

names for things; (2) use HTTP URIs so that people can

look up those names; (3) when someone looks up an URI,

provide useful information, using the SemanticWeb Stan-

dards like RDF and SPARQL; and (4) include links to other

URIs, so related things can be discovered.

The data published in the Linked Open Data (LOD)

cloud are diverse in granularity, scope, scale and origin,

and the LOD cloud is constantly growing with informa-

tion from new domains. Berners-Lee6 suggested a five-

star deployment scheme for Open Data, where each level

imposes additional conditions. The use of RDF and an

appropriate use of URIs permit the achievement of four-

stars datasets. The fifth one can be achieved by linking

your dataset to external ones. It should be noted that the

community is trying to impose additional conditions to

get such stars [36]. The number of biomedical datasets

in the LOD cloud is still reduced in comparison with

the number of existing biomedical databases, but our

approach aims at facilitating biomedical communities to

join and follow the LOD principles and effort. We believe

that the development of methods that permit to get five-

star datasets would contribute to the development of the

Semantic Web.

Next, we describe the two major approaches for

data exploitation using semantic technologies: (1) the

transformation of data into semantic formats; and (2)
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ontology-based data access, which works on traditional

formats.

Semantic transformation of biomedical data

Data transformation methods have been traditionally

used in projects that use the data warehouse approach and

OLAP for the semantic exploitation of data [37], and with

both XML datasets and relational databases. On the XML

side, [38] presented an approach that transforms XML ele-

ments into RDF statements, but does not transform XML

attributes. Another approach7 transforms XML instances

into RDF according to a mapping between XSD and

OWL8. These XSD2OWL mappings are canonical, since

all the XML files are transformed into RDF by applying

the same rules. Canonical XSLT-based approaches have

also been proposed [39, 40]. More recently, [41] proposed

the transformation of XML into RDF by applying XPath-

basedmappings. On the relational database side, theW3C

RDB2RDF specification9 proposes a canonical transfor-

mation/mapping for relational databases to RDF. Such a

transformation can be considered a change of format,

because the real meaning of the entities represented is not

used in such a process. This is an important limitation we

find in the state of the art transformation approaches and

tools, since they do not take into account the underlying

model of meaning.

In the last years, Bio2RDF has become the most promi-

nent initiative for the generation of biomedical RDF

datasets. Bio2RDF has developed RDF versions for 35

datasets (Release 3 July 2014), and its website contains

non-canonical transformation scripts for such resources.

To the best of our knowledge, the links between the data

and the domain knowledge are not made explicit in such

transformation scripts. For instance, there is no guaran-

tee that content about a protein from different resources

is transformed using the same meaning, and this makes

more difficult to expand the approach and to find errors.

From a process perspective, the semantic transfor-

mation of data requires the execution of Extraction-

Transformation-Load (ETL) processes. Canonical

transformation approaches apply the same ETL process

to all the data. The required information about the

semantics of the data sources is sometimes missing in

the data schema or coded in natural language [42], which

makes such canonical processes not effective enough to

obtain semantically-rich datasets. Ontology-driven ETL

processes use ontologies for giving precise meaning to

the source data, which will be made explicit in the trans-

formation phase. This also enables consistency checking

in the transformation and/or load phases, which prevents

from the creation of logically inconsistent content. Tools

like RDB2OWL [43] and Karma [44] are examples of tools

that exploit mappings between relational schemas and

ontologies to generate RDF content.

Ontology-based data access

Ontology-Based Data Access (OBDA) permits to exploit

repositories in traditional formats using semantic tech-

nologies. As stated in [45], the underlying idea is to facili-

tate access to data by separating the user from the raw data

sources. In OBDA, an ontology provides the user-oriented

view of the data and makes it accessible via queries for-

mulated solely in semantic languages such as SPARQL. In

OBDA approaches, a mapping between the ontology and

the data sources defines the view on the source data that

can be exploited using semantic technologies.

Different OBDA approaches for accessing XML and

relational data can be found in the literature. On the

XML side, XSPARQL10 was proposed as a query language

combining XQuery and SPARQL for data transforma-

tion between XML and RDF, and XS2OWL [46] creates

OWL ontologies from XML schemas for allowing query-

ing XML data using SPARQL queries. On the relational

databases side, Triplify [47], D2RQ [48], Virtuoso [49],

Quest [50], Ultrawrap [51] and Ontop [52] are likely to

be the most popular OBDA systems nowadays. Such sys-

tems differ in how they express the mappings, how they

translate the queries and in the reasoning capabilities.

Current OBDA approaches are limited in their support

for reasoning. For example, D2RQ does not support rea-

soning and OWL2 QL is the level of reasoning offered

by Ontop. OBDA tools are starting to provide support

to rule languages such as SWRL11 for enabling users to

exploit Semantic Web rules over data in traditional for-

mats. Given that our approach will rely on reasoning for

guaranteeing the consistency of the transformation and

integration of data, OBDA is not the best option for our

work.

Integration of biomedical data

A variety of XML-based approaches for the integration

of data are presented in [53]. The main conclusion of

such study is that XML has succeeded in the integration

of data, and has opened new opportunities for research,

but the variety of XML-based data formats makes very

difficult the effective integration of data sources. The solu-

tion proposed is the adoption of semantic formats, which

leads us to semantic data integration scenarios, in which

ontologies ideally provide the global schema. When this

happens, the integration process can also take advan-

tage of the benefits described for ETL processes such as

the use of precise meaning or consistency checking. This

semantic approach is also supported by the fact that the

Semantic Web is a natural space for the integration and

exploitation of data [11].

There are four major types of data integration archi-

tectures [53]: data warehouse, mediator-based, service-

oriented and peer-based. The data warehouse approach

is more related to the semantic transformation methods,
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and the other three are more related to ODBA, since they

perform a virtual integration. In the literature, we can

find biomedical semantic integration approaches such as

Ontofusion [54] or TAMBIS [55], which fall in the area

of mediator-based systems or OGO [56], which follows

the data warehouse approach. Bio2RDF uses a data inte-

gration approach based on links. This is a case of virtual

integration that uses owl:sameAs statements to identify

instances referring to the same entity in other resources.

One limitation of state of the art approaches and tools

is that they are not generic enough in the sense of their

applicability to both XML and relational data. Data inte-

gration has to overcome issues such as redundancy or

inconsistency between the data sources. Most media-

tor or link-based approaches aggregate the data from

the different sources, but the availability of mechanisms

for preventing redundancy or inconsistency is not com-

mon. Those mechanisms are easier to include in data

warehouse-oriented methods, which provide more con-

trol on the data. Our approach will be mostly based on

data warehouse, since the integrated datasets (from XML

and relational resources) are assumed to be created in

a common repository. Besides, in order to preserve the

original datasets in the integrated, semantic repository,

the configuration of the integration process will enable to

merge those equivalent instances or linking them through

owl:sameAs statements.

Methods

In this section we describe the methods included in

our approach for the generation of the open biomedical

datasets. Figure 1 provides a generic description of the

method for a single input data resource. Our data trans-

formation approach is based on the definition of rules

between an input schema and an OWL ontology. Once

defined the mapping rules, the transformation approach

may also take into account identity rules defined over the

OWL ontology. Identity rules establish which properties

permit identifying an individual of a certain ontology

class. Thus, these rules permit to merge different individ-

uals of the same class. Besides, the transformationmethod

will be able to detect and, therefore, avoid the creation of

logically inconsistent content by checking the consistency

of the OWL ontology. This is done because the whole

process is supported by OWL ontologies and, therefore,

automated reasoning techniques can be applied. In gen-

eral, the approach can be applied to any input data model

providing entities, attributes and relations. In this work,

we will use XML and relational databases as input data

models. A practical requirement for our approach is that

the input schema and the ontology should have some

domain content in common. In addition to this, the output

data instances shown in Fig. 1 can be expressed in RDF or

OWL.

Data transformation rules

The transformation rules define how the content of the

input dataset is transformed into a semantic format, and

play two major roles: (1) controlling that the information

represented according to the input schema is correctly

transformed into the semantic format; and (2) prevent-

ing redundancy in the set of output dataset. For this

purpose, two major types of rules are defined in our

approach, namely, mapping rules and identity rules. Both

are described in the next subsections.

Mapping rules

The definition of the mapping rules will be illustrated with

the example described in Fig. 2. In this example, (1) the

input schema is OrthoXML [26] (Figure 2 top left), which

is a standardised format for the representation of infor-

mation about orthologous genes, (2) the ontology is the

Orthology Ontology (ORTH)12(Fig. 2 top right), which

models domain knowledge about orthology. In the exam-

ple, the entities of the input schema are represented with

boxes, the attributes with@, and the relations with arrows.

Fig. 1 Overview of the transformation approach
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Fig. 2 Description of the mapping between the OrthoXML schema (left) and the orthology ontology (ORTH)(right), where dashed lines represent

the links between the content of the OrthoXML schema and the ontology and corresponding instances that fulfill the relation of congruence

In the ontology, the classes are represented with rounded

corner boxes, the datatype properties with a pin attached

to the classes, and the object properties with arrows.Map-

ping rules link entities, attributes and relations of the input

model with the ontology classes, datatype properties and

object properties. In Fig. 2, dashed lines represent the

mappings from the XML Schema to the ontology. For

simplicity, this figure does not include mappings involv-

ing relations or object properties. The ontology contains

a series of prefixes, which refer to ontologies reused in

the ORTH: ro (Relations Ontology13), ncbi (NCBI Tax-

onomy14), cdao (Comparative Data Analysis Ontology15),

and sio (Semanticscience Integrated Ontology16)

Generally speaking, the application of a mapping rule to

an instance of the input dataset generates one individual

in the ontology. The instance and the individual must ful-

fill a relation of congruence. For us, an ontology individual

t is congruent with an input instance s if t can be obtained

from s by applying a mapping rule and t is consistent with

the axioms expressed in the ontology and with s. The con-

sistency with the axioms expressed in the ontology has to

be understood in OWL DL terms. The individual must

be, in logical terms, a member of the class to which the

membership is stated.

The bottom of Fig. 2 shows an input instance (left)

and the result of transforming it into an ontology

individual (right) by applying the corresponding mapping

rules. The input instance is a gene with attributes pro-

tId=“O17732”, geneId=“pyc-1”, it is included in UniProt

and it is associated with the species Caenorhabdi-

tis elegans (NCBITaxId=“6239”). The ontology individ-

ual Gene_1 is a member of the class Gene, it has a

datatype property Identifier with value “pyc-1”. It is

linked to other individuals through the properties encodes

(Protein_O17732), ro:in_taxon (6239), and contained_in

(UniProt). These individuals are members of the classes

Protein, ncbi:organisms, and sio:database, respectively.

The ontology individual Gene_1 is consistent with the

ORTH ontology and consistent with the data defined for

the input instance. Therefore, both entities are congruent.

Our approach requires transforming entities, attributes

and relations, so themapping rules must permit to achieve

congruence at those three levels. To this end, three types

of basic mapping rules have been defined:

Entity rule. It links an entity of the input schema with

an OWL ontology class. It permits to create individ-

uals in the OWL ontology. Let S be an entity of the

input schema and T be a class of the target ontol-

ogy. Then, the entity_rule(S, T) means that for every

instance s of S, there is a congruent individual t which

is an instance of T. For example, an entity rule in Fig. 2

serves to link the element Gene of the XML Schema
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and the class Gene in the ontology. An entity rule

can be complemented by a conditional statement that

transforms only those instances of S holding a cer-

tain condition on the value of a particular attribute.

Using the classes of the previous example, let A1 be

an attribute associated with S, and let c1 be a boolean

condition over A1. The entity_rule(S, T, c1) means

that for every instance s of the entity S fulfilling c1

there is a congruent individual t which is an instance

of T.

Attribute rule. It links an attribute of an entity of the

input schema with the datatype property of an OWL

ontology class. It permits to assign values to datatype

properties in the ontology. Let S be an entity of the

input schema, T an ontology class, and A1 and A2

attributes/datatype properties associated with S and

T respectively. Then, the attribute_rule((S, A1), (T,

A2)) means that for each instance of S associated with

A1 from the same schema, there is a congruent indi-

vidual of T associated with the datatype property A2

from the ontology and that A1 and A2 have the same

value. For example, an attribute rule in Fig. 2 links

the attribute id of the element gene in OrthoXML and

the datatype property Identifier of the ontology class

Gene.

Relation rule. It links a relation associated with two

entities of the input schema with an object property

associated with two classes of the OWL ontology. Let

S1 and S2 be entities of the input schema associated

through R1 and T1 and T2 be classes of the ontol-

ogy associated through the object property R2. Then,

the relation_rule((S1, R1, S2), (T1, R2, T2)) means that

given S1 and S2 linked through the relation R1, and

given the entity_rule(S1, T1) and the entity_rule(S2,

T2), then for each instance of S1 and S2 there will

be individuals of T1 and T2 respectively that will be

linked through R2. For example, a relation rule in

Fig. 2 would link the hierarchical relation between

species and gene in the XML Schema and the object

property ro:in_taxon in the ontology.

Ontology transformation patterns

The previous basic rules do not support all the types of

transformations needed in order to get semantically-rich

datasets, because sometimes we need (1) to define rules

that involvemultiple input entities and one ormany ontol-

ogy classes, or (2) to add additional information to enrich

the input data. Consequently, more complex transforma-

tions are needed. For this purpose we have adopted the

ontology pattern approach. Our ontology transformation

patterns represent a partial or complete semantic descrip-

tion of a class of the ontology. Patterns are intermedi-

ary entities among the input schema and the ontology

from the perspective of the definition of mappings. Our

patterns are templates designed by using OWL ontology

classes, datatype properties, object properties and con-

straints. Such patterns have variables which are bound to

the corresponding entities, attributes or relations.

A pattern can be defined as the tuple < S, V >, where

S stands for the set of classes, datatype properties, object

properties and individuals used in the pattern that are a

subset of those defined in the OWL ontology, and V is the

set of variables associated with the instances of classes or

the values of properties in S. A pattern is instantiated by

linking the variables with entities of the input schema, and

can be used for creating new content in the OWL ontol-

ogy. A pattern allows creating several new individuals,

giving value to datatype properties and linking individu-

als through object properties. Moreover, a pattern can be

reused several times acting as a template. A pattern also

allows for specifying fixed content that does not depend

on the input dataset or that cannot be obtained from it, so

contributing to the semantic enrichment of the content.

Figure 3 shows an example of mapping between an

XML Schema (left) that represents information about

molecules and a molecule ontology (right). The ontol-

ogy classes Molecule, Atom and Bond have a direct

mapping with elements of the XML Schema but, for

instance, the ontology does not have a class for represent-

ing chiral molecules. A chiral molecule can be defined

as a molecule with the chemical property of chirality. In

OWL, such definition can be represented as Molecule

and has_chemical_property some Chirality. In the input

schema, chirality is represented by the element property

with attribute name isChiral and whose value is repre-

sented in the element val, whose value is 0 or 1. The

pattern shown in Table 1, which is expressed in OPPL217,

defines the variable ?chiralMolecule and such rule defines

the axioms to be generated. The data instances with value

1 for the isChiral attribute (not shown in the table) are the

input for this pattern.

We could have used basic mapping rules for defining the

entity_rule(molecule, Molecule, on_condition(property

(@name = “isChiral”)/val, 1))), which links molecules

with value 1 for the isChiral property with the OWL

Class Molecule. The OWL instances would be incom-

plete, because they would not contain information about

chirality. That would make the input instances and the

ontology individuals not congruent. The use of the pattern

allows defining the mapping with the variable ?chiral-

Molecule, and the additional, fixed information pro-

vided by the pattern permits to satisfy the congruence

relation.

Identity rules

Identity rules define the set of datatype properties and

object properties that permit to distinguish each individ-

ual in the ontology. These rules are useful to prevent the
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Fig. 3 Description of the mapping between a XML schema and an ontology in the domain of molecules

creation of redundant content and to support the inte-

gration of data from multiple sources, since identity rules

permit to identify which entities with different URI, from

the same or different datasets, represent the same entity.

Let IR be the set of datatype properties and object prop-

erties of the ontology that univocally defines the identity

for the class C. The identity_rule(C, IR) means that all

the individuals of C with the same value for the elements

in IR are considered the same. We can define an iden-

tity rule for the class Gene using the datatype property

Identifier and the object property 〈 Gene, ro:in_taxon,

ncbi:organisms 〉. This identity rule means that two indi-

viduals of the class Gene (see Fig. 2), associated with the

same individual of the class ncbi:organisms through the

object property ro:in_taxon, and with the same value for

the datatype property Identifier are the same individual.

The execution of the transformation process

The method runs the mapping rules in the following

specific order:
• The basic entity rules are retrieved and executed. As

a result of this step, a set of new individuals of each

class of the ontology, written I, is generated.
• The group of patterns represents a special case, since

they may generate new individuals (not obtained in

the previous step) and may also add content to new

Table 1 Definition of the pattern for ChiralMolecule

?chiralMolecule: INDIVIDUAL

BEGIN

ADD ?chiralMolecule instanceOf (Molecule and

has_chemical_properties some Chirality)

END;

generated ones. Therefore, the statement of the pat-

terns that create new individuals are executed and

those new individuals are added to I. The identifica-

tion of which statements of the patterns generate new

individuals is done by checking their definition.
• For each instance of the set I the process continues as

follow:

– The rest of statements of the patterns are exe-

cuted to add any additional content to the individ-

uals.

– The basic attribute rules are retrieved and exe-

cuted, so the values of the datatype properties of

the individuals are assigned.

– The basic relations rules are retrieved and exe-

cuted, so the object properties are instantiated.

– The identity rules are checked and, in case the

instance is unique, it is added to the output

dataset. Otherwise it is merged or linked to

the equivalent one, depending on the behaviour

defined for the rule.

Data integration

The integration approach

Our approach for the integration of heterogeneous

resources is based on the application of the transforma-

tion approach described above to the different resources,

using the same OWL ontology as driver of the process.

The construction of the integrated content requires map-

ping the schemas to the OWL ontology. The OWL ontol-

ogy may have a series of ontology transformation patterns

associated, which support the integration process. The

use of patterns facilitates (1) reusing the transformation

rules with different resources, and (2) overcoming the

structural heterogeneity of input data schemas. Table 2

shows the pattern that defines a protein in the OWL
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Table 2 Definition of the pattern for protein

?protein: INDIVIDUAL

?cds: INDIVIDUAL

?transcript: INDIVIDUAL

BEGIN

ADD ?protein instanceOf Polypeptide,

ADD ?protein derives_from ?cds,

ADD ?cds instanceOf CDS,

ADD ?cds part_of ?transcript,

ADD ?transcript instanceOf Transcript

END;

ontology used in one of our use cases. This pattern not

only avoids the user the need for knowing the struc-

ture of the ontology but also can be applied with minor

modifications to data resources which store the relation

protein-cds-transcript in different ways, or might even

not be defined in the input schema. Table 3 shows how

parametrizing the variable ?cds from the variable ?protein,

the pattern can be applied to data resources with a direct

protein-transcript relation without cds.

The integration process

The integration of data is carried out through the trans-

formation of each input resource. The mapping rules

enable to generate OWL content, and the identity rules are

applied during the transformation process to limit redun-

dancy and tomerge data instances. Their role is to identify

which instances from different resources correspond to

the same domain instance. Obviously, individuals with the

same URI are considered the same one.

The integration method makes the following decisions

concerning the usual problems in integration processes:
• Naming conflicts: Different input schemas may use

different terms for the same element (i.e., entity,

Table 3 Definition of the pattern for protein with minor

modification for resources without CDS content

?protein: INDIVIDUAL

?cds: INDIVIDUAL = create(?protein.RENDERING+_CDS)

?transcript: INDIVIDUAL

BEGIN

ADD ?protein instanceOf Polypeptide,

ADD ?protein derives_from ?cds,

ADD ?cds instanceOf CDS,

ADD ?cds part_of ?transcript,

ADD ?transcript instanceOf Transcript

END;

attribute, relation). The output OWL ontology pro-

vides the common vocabulary for the integrated

repository, so the mappings from the different

resources to the OWL ontology solve this problem.
• Data redundancy: More than one instance of the

input resource may describe the same domain entity,

so they are mapped to the same class in the OWL

ontology. Identity rules permit to detect such situa-

tions and to merge or link the corresponding OWL

data to minimise redundancy.
• Inconsistency due to incomplete data: The input

schema may store less attributes and relations for a

given entity than the OWL ontology. This may lead

to an inconsistent OWL knowledge base in case the

identity rules cannot be checked. When such situa-

tion is detected, the corresponding source data are

not transformed, so inconsistencies are prevented.

Patterns providing values for missing data to such

identity properties could be used to overcome this

situation.
• Differences between the resources: It may happen

that an OWL individual is created by using different

instances of the data resources, which may have dif-

ferent values for common attributes or relations. This

may be an issue for properties associated with the

identity rules. In such case, they are considered differ-

ent individuals, which are created unless they would

make the knowledge base inconsistent.

Results

In this section we describe the main results of our work.

First, we will describe the tool that implements the trans-

formation approach. Second, wewill describe how the tool

has been used in different biomedical scenarios.

The SWIT tool

The transformation approach has been implemented in

a web tool called SWIT18. SWIT provides a web inter-

face through which the user is guided to perform all the

steps of the process. SWIT is currently supportingMySQL

databases, XML schemas and ADL archetypes as input

schemas. SWIT permits to generate the output dataset

in OWL or RDF formats, which can be downloaded or

directly stored in Virtuoso [49] or in a Jena knowledge

base19.

The user can define the mappings between the input

schema and the OWL ontology. For this purpose, map-

pings created in other transformation processes can be

uploaded and reused. Once the mappings have been

defined, they can be executed, thus generating the cor-

responding RDF/OWL content. SWIT applies the map-

ping rules to the data source to generate the semantic

content, checking the identity rules to guarantee that

redundant individuals are not created. This process also
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uses automated reasoning to ensure that only logically

consistent content is transformed. SWIT uses both the

OWLAPI [57] and the Jena API for processing and gener-

ating the RDF/OWL content, Hermit [32] as reasoner, and

the patterns are implemented using OPPL2.

Figure 4 shows a part of the mapping interface, which

has three main parts. The left side shows the input schema

using a hierarchical representation. The right side cor-

responds to the OWL ontology. The lower part of the

figure is a text box, which contains the mapping rules

defined. For example, the third line defines the mapping of

the attribute coorddimension of the entity molecule to the

datatype property coord_dimension of the ontology class

Molecule.

Figure 5 is a screen snapshot of the definition of the

mapping of entities of the input schema to a transfor-

mation pattern. In this case the input schema consists

on openEHR archetypes (left), which are mapped onto

an ontology transformation pattern for histopathology

reports. In the figure, we can see that the mapping would

associate a particular element of the archetypes with each

variable of the pattern. In this case, the expression corre-

sponding to the mapping rule is not shown in the figure.

Data transformation use cases

In this section we explain how we have used SWIT in

three biomedical domains. Our website contains more

information about these efforts, including the mapping

files and examples of content generated.

Orthology data

We have used SWIT to generate the integrated OGOLOD

Linked Open Dataset [58]. The first version of OGOLOD

was created with the purpose of providing an integrated

resource of information about genetic human diseases

and orthologous genes, given the increasing interest in

orthologs in research [59]. OGOLOD integrates informa-

tion from orthology databases such as Inparanoid [60]

and OrthoMCL [61], with the OMIM database [62]. The

content of OGOLOD was generated using a method to

transform the content of relational databases into an

RDF repository. The OGOLOD repository uses the OGO

ontology [56] as a scaffold to link the integrated informa-

tion about orthologs and diseases.

SWIT is currently being used to support the standardi-

sation of orthology content20 [63] promoted by the Quest

for Orthologs consortium21. For this purpose, OrthoXML

[26] is the input schema. OrthoXML defines a standard-

ised XML schema that provides the elements to describe

an orthology relationship in a uniform way, and this for-

mat is being used by a number of orthology databases.

We have defined and executed the corresponding map-

ping rules between OrthoXML format and the Orthology

Ontology (ORTH) using SWIT. So far, this has permitted

Fig. 4Mapping interface of SWIT: (left) part of an XML schema about molecules; (right) part of the classes and properties of domain ontology;

(bottom) excerpt of the mappings defined between the XML schema and the ontology
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Fig. 5 Example of pattern mapping in SWIT

to generate an integrated dataset containing more than 2

billion triples.

EHR data

SWIT was the tool used for transforming EHR data of

colorectal cancer patients in the study described in [24].

The study was performed with real anonymised data from

the Colorectal Cancer Program of the Region of Murcia

and included data from more than two thousand patients.

This work required to transform data from a proprietary

format to a semantic format in order to apply colorec-

tal cancer protocols to the patient data. Such protocols

were applied using automatic reasoning over the seman-

tic content to determine the level of risk of each patient.

SWIT was the tool employed in the processing and trans-

formation of the EHR data once transformed from the

proprietary format into openEHR XML extracts. In this

case, those extracts and archetypes were the source data

and input schema for SWIT. The domain ontology used

was developed in the context of this study.

Figure 5 is an example of transformation pattern applied

in this research study, whose implementation in OPPL2 is

shown in Table 4. This pattern defines a histopathology

report according to the domain ontology, which contains

a set of findings (hasFinding), records the total number

of adenomas found (number) and the size of its biggest

adenoma (maxsize).

Chemical compounds

A third use case is currently in progress, although the

generation of the semantic dataset has been completed.

The objective of this effort is to use semantics to improve

compound selection for virtual screening. Virtual screen-

ing methods use libraries of small molecules to find

the most promising structures that could bind with

drug targets. One of such libraries is ZINC [64], a free

database of commercially-available compounds for vir-

tual screening. ZINC data can be downloaded in XML

format. In this effort, we created the XML Schema and

defined the mappings with an ontology developed by our

group.

Discussion

The availability of biomedical datasets in open, semantic

formats would facilitate the interoperability of biomedi-

cal data and would enable to carry out scientific studies

Table 4 Definition of the pattern for histopathology reports

?histopathologyReport:INDIVIDUAL,

?finding:INDIVIDUAL,

?size:CONSTANT,

?number:CONSTANT

BEGIN

ADD ?histopathologyReport instanceOf HistopathologyReport,

ADD ?histopathologyReport hasFinding ?finding,

ADD ?histopathologyReport number ?number,

ADD ?histopathologyReport maxsize ?size

END;
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with larger, connected datasets. In this paper we have pre-

sented a solution based on the transformation and inte-

gration of heterogeneous data resources in which ontolo-

gies play a central role. A series of important aspects of

our work are discussed next.

The transformation and integration approach

Our transformation process follows a data warehouse

approach instead of an OBDA one because of the fol-

lowing reasons. First, we believe that the availability of

RDF/OWL resources is the most natural way of develop-

ing the LOD. In our opinion, efforts like Bio2RDF or the

EBI RDF platform are correct ways of proceeding for the

practical exploitation of biomedical data and the develop-

ment of the Semantic Web. Second, we are interested in

generating OWL knowledge bases over which OWL2 DL

reasoning can be applied, which is not ensured by cur-

rent OBDA approaches. That would be a limitation from

our exploitation point of view. We aim to obtain datasets

linked to external sources, which is also easier to achieve

with our approach. Third, to the best of our knowledge,

current OBDA approaches do not facilitate the application

of ontology patterns as we do in this work, which also per-

mits a semantically-richer representation and exploitation

of data.

Most state-of-the-art transformation approaches and

tools from XML or relational databases into RDF/OWL

are based on canonical transformations or are not based

on mappings with domain knowledge (i.e., ontologies).

Such tools mainly perform a syntactic transformation of

the traditional formats, making the semantic interoper-

ability of the obtained datasets difficult. Besides, there

are no methods that can be applied to both XML and

relational databases. Ourmethod provides a semantic rep-

resentation of the input datasets by performing a trans-

formation guided by domain knowledge using an OWL

ontology, so performing an ontology-driven ETL pro-

cess. This is similar to RDB2OWL [43] and Karma [44].

SWIT and RDB2OWLhave in common that themappings

between the input model and the ontology are manually

defined, but RDB2OWL is limited to input datasets in

relational format and does not provide any solution for the

problem of complexity on the manual definition of map-

pings when using complex ontologies or data integration.

Karma has the advantage of performing semi-automatic

mapping of input databases and ontologies. However, this

mapping process depends on the existence of a knowledge

base of previous mappings.

We follow a data warehouse-oriented integration

method, although our approach has features associated

with the integration based on links, because our map-

ping rules permit to define links to external datasets. This

architecture is similar to the one applied in Bio2RDF, with

the difference that our repositories may contain data from

multiple sources. Although that could also be possible in

the Bio2RDF effort, it is focused on transforming single

datasets. In fact, we believe that an effort such as Bio2RDF

could benefit from our approach. Currently, one transfor-

mation script has to be written to include a new dataset in

Bio2RDF. SWIT would reduce the implementation effort

for relational or XML sources in the sense that only the

definition of the mappings would be needed, since SWIT

would execute the data transformation. Besides, SWIT

mappings could be reused for new datasets. Using SWIT

would have the cost of making explicit the mappings with

an OWL ontology, but it would also provide benefits in

terms of consistency checking and homogeneity in both

the richness of the semantic description and the structure

of the data.

Next, some additional aspects concerning the different

subprocesses are discussed.

Mapping

Data transformation and integration are based on the

definition of mappings between the data schema and

the OWL ontology. The difficulty and the complexity

of mapping not only relies on finding the correspond-

ing entities in the domain ontologies but also on being

able to design the corresponding ontology content pat-

terns. Once the rules and patterns are designed, SWIT

reduces the implementation effort by executing them

and generating the corresponding semantic content. Pat-

terns are also used in Populous [65], which is focused

on creating ontologies from spreadsheets. Our experience

reveals that semi-automatic mapping techniques would

contribute to significantly reduce the mapping time, so

efforts in this area are key to support the mapping

process.

To the best of our knowledge, there is no standard lan-

guage to define mappings from different types of input

models to OWL ontologies. We are currently using a

language based on the former ontology alignment for-

mat22, which has evolved into EDOAL23. The W3C has

developed the R2RML mapping language24 for mapping

relational databases to RDF, but does not cover XML. Our

current language permits to express mappings from rela-

tional databases and XML schemas to OWL ontologies,

and it could be easily extended to cover new types of

inputmodels (i.e., OWL ontologies). Ourmappings can be

reused, especially for data transformation processes that

use the same OWL ontology, but the lack of standardisa-

tion in this area forces third parties to do some additional

work in order to include the mappings generated with

SWIT.

In this paper, we have used the mapping rules for cre-

ating OWL individuals from XML or relational data, but

the process can also be applied for the creation of ontol-

ogy classes. This might be helpful in case the content of
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the OWL ontology used is not sufficient for mapping the

input schema. For this purpose, the mapping rules were

extended to produce OWL classes instead of individuals.

This class-based approach also permits to use patterns.

The only difference is that the set of variables associated

with the pattern are bound to entities instead of instances.

We have actually applied such approach for the generation

of openEHR archetypes from CEM clinical models [22].

In that study, the input schemas were OWL ontologies

corresponding to CEM clinical models and the openEHR

OWL ontology was the output schema. Basically, the cre-

ation of the openEHR clinical models was approached as

extending the openEHR OWL ontology with the specific

content of the clinical model. In OWL, being an individual

or a class can be seen as the role played by a given con-

cept [66]. The representation of knowledge may therefore

be based on individuals or classes, this decision depending

on the expected use of such knowledge. In fact, punning

was included in OWL 2 DL to enable different uses of

the same term, so an individual and a class can have the

same URI. From a formal ontology perspective, enabling

this possibility might be reason enough for a criticism to

our approach, but it is needed from a practical perspec-

tive. This situation can be exemplified in the orthology use

case. Orthology databases basically contain information

about genes, proteins and organisms. In the database they

are represented as individuals, but they semantically cor-

respond to classes, since there are many instances of each

gene, protein and organism.

Transformation

The transformation method checks all the formal aspects

that guarantee the generation of consistent content, inde-

pendently of the use case and the intended exploitation of

the data. The logical consistency of the content is guaran-

teed by the application of OWL reasoning. Consistency is

granted independently of the output format, that is, RDF

or OWL, because OWL DL semantics is applied during

the transformation process. The individuals are expressed

in RDF or OWL at the end of the process. In case the

methods find that inconsistent content is going to be

generated, such content is automatically discarded. Using

OWL for ensuring the consistency of the data generated

in ETL processes has also been done in other works, such

as [42].

Our experience in semantic data transformation in the

last years reveals that the semantic representation of the

data sometimes needs additional content that is not made

explicit in the XML schema or in the corresponding table,

so the additional meaning is not provided by the canonical

transformation methods. We believe that such additional

meaning can be included during the ETL process. In

this context, our patterns are equivalent to ontology con-

tent patterns [67], which are focused on the definition

of templates for the semantically-rich, precise description

of the meaning of the content. We believe that ontol-

ogy content patterns are a solution for those situations

in which the source data does not contain all the infor-

mation needed to generate semantically-rich RDF/OWL

content.

The computational complexity of the full method

depends on the number of individuals and the mean

number of properties and relations per individual. As a

consequence, for medium and large datasets, the transfor-

mation time may be longer than expected because of the

number of instances of axioms to be generated. Thismight

not be a problem in case of stable datasets or batched

transformation processes. However, according to our

experience with SWIT datasets, the intended exploitation

of the datasetmight permit to relax some conditions of the

transformation process. In case of not performing inte-

gration processes, identity rules are only needed if, for

instance, two entities from the input are mapped onto the

same ontology class. In case of not requiring automated

reasoning on the transformed dataset, the generation of

some types of axioms might be omitted, saving time and

space. owl:differentFrom axioms are an example of a time

and space consuming type of axiom, but they might be

skipped in some cases. The lesson learned here is that the

optimal configuration of transformation depends on the

use case, so the flexibility of the process is basic for get-

ting the desired semantic dataset. All these aspects can be

considered adjustable parameters for the execution of the

process using tools like SWIT.

Integration

The integrationmethod is useful for scenarios that require

the creation of a repository that includes portions of data

from different resources. In case of wishing a link-based

integration, the mechanism offered by SWIT to include

links in the mapping rules could be sufficient. The key

objectives of the integration method are (1) detecting

equivalent data instances to reduce redundancy and (2)

ensuring the consistency of the resulting repository. Both

tasks are supported by OWL reasoning.

Identity rules are fundamental in the integration pro-

cess, because they control the redundancy of the indi-

viduals created. They describe which properties permit

identifying an individual of a certain ontology class. For

example, we could integrate two resources about proteins

which use different identifiers for the proteins, and those

identifiers are used in the URI of the individual. Those

resources might be using the Human Genome nomencla-

ture for naming the gene associated with the protein. If the

gene name is used in the identity rule, then SWIT would

find that both individuals refer to the same protein.

In addition to this, the meaning of our identity rules

is similar to the identity criteria proposed by formal



Legaz-García et al. Journal of Biomedical Semantics  (2016) 7:32 Page 14 of 17

ontologists [68], because they determine which conditions

are sufficient for identity. The properties used in iden-

tity rules are those that would be included in OWL Key

axioms25. Key axioms associate a set of object properties

and datatype properties with a class, so each individ-

ual is identified by the values of such set of properties.

Hence, when two individuals have the same values for

such properties, they are considered the same individual.

Key axioms are only applied over those individuals with

asserted membership to a class. Such inferencing-related

limitation made us to define our identity rules.

Interoperability

Next, we discuss how and to what extent SWIT promotes

or facilitates the interoperability of the datasets. Let us

consider a resource about proteins, which uses a local URI

for each protein, but also stores the UniProt Accession

Numbers (AC). Let us suppose that we want to link every

protein to the corresponding URI in UniProt. It should

be noted that the UniProt URI for each protein differs

in the AC. For example, the URI for the protein P63284

is http://purl.uniprot.org/uniprot/P63284. SWIT provides

two different ways for creating such link:

1. Redefinition of the URI. We can use the UniProt URI

instead of the dataset URI, since SWIT permits to

define which prefix has to be used in the transforma-

tion of each entity.

2. Linkage of resources with owl:sameAs. The transfor-

mation of the protein uses the dataset URI but creates

an owl:sameAs link to the UniProt URI.

Either action can be applied to transform the data with

cross-references to external resources, but this requires

to know which external resources will be used dur-

ing the definition of the mappings. Additional research

on the identification of related datasets would permit

our method to evolve to generate richer Linked Open

Datasets.

Let us revisit now the example introduced in the inte-

gration subsection, whose goal is to integrate data about

the protein A from two resources which have different

identifiers for that protein. Let us suppose that the trans-

formation and integration are driven by an OWL ontology

which contains a class Protein. Generally speaking, these

are the possible situations:

1. The class Protein has an identity rule associated, and

the properties of the identity rule have the same value

for protein A in both resources.

2. The class Protein has an identity rule associated, but

the properties of the identity rule have different value

for protein A in both resources.

3. The class Protein does not have an identity rule

associated.

In the case 1, the definition of the transformation

scenario in SWIT will determine whether (i) the two

individuals are linked through owl:sameAs; or (ii) they are

merged into a single individual. In the case (i), the two

instances of Protein A would co-exist, but owl:sameAs

would facilitate interoperability. This would be an appro-

priate decision if having RDF versions of each source

dataset is desired. The integration capabilities offered by

SWIT would facilitate the creation of those links if all the

data are stored in the same repository. The decision of

whether merging or linking is done in the behaviour of

the identity rule. In the case (ii), a new decision has to be

made, since each instance of Protein A would have a dif-

ferent URI, but the merged instance would have one URI.

For those cases, SWIT permits to use either the URI of one

of the instances or a different prefix to which an identifier

would be added. This is also included in the behaviour of

the identity rule.

In the cases 2 and 3, SWIT would generate two different

individuals, since the sufficient conditions for identity are

not met. The current version of SWIT does not discover

equivalent instances, which is considered further work.

Discovery methods should be carefully used, since the

identity rules defined in the ontology should be respected.

Consequently, we believe that SWIT contributes to

the interoperability of datasets, since it includes mecha-

nisms for unifying URIs and defining links between URIs

that represent the same entity, especially when all these

resources are transformed and integrated in a common

repository. Further research will permit to manage SWIT

integration processes in distributed repositories.

The SWIT datasets

The mapping rules, including the patterns, permit to

transform input data into RDF/OWL, which are the for-

mats used by the Semantic Web community for the devel-

opment of the Web of Data and the Linked Open Data

cloud. SWIT permits to achieve five-stars data reposi-

tories, because our method permits to include links to

external resources in the mapping rules for integration

and interoperability purposes.

The datasets generated using our method have demon-

strated their usefulness in the related studies. In the case

of orthology data, the heterogeneity of the orthology-

related datasets suggested us to extend the work done

in OGOLOD. OrthoXML is the most popular format for

representing orthology data. We have recently reused our

work to define a canonical mapping from OrthoXML

to the domain Orthology Ontology (ORTH), so we are

providing a means for generating open datasets to the

orthology community. Each OrthoXML resource could

be automatically transformed and exploited jointly with

the rest of content. In the case of EHR data, the rules

for classifying the patients by level of risk of develop-

ing colorectal cancer were implemented in OWL. This

effort permitted to develop a semantic infrastructure for

http://purl.uniprot.org/uniprot/P63284
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classifying patients by levels of risk, which could be reused

for other source datasets by just adapting the mapping

rules. This would also permit the joint exploitation of

different datasets transformed to our semantic infrastruc-

ture. Therefore, the use of such approach permits to create

reusable and extensible datasets, which is a feature needed

for biomedical research datasets. Another lesson learned

is that the same approach can be applied for generating

public or private datasets, since they only differ in their

access policy.

Conclusions

In this paper we have presented an approach that is

able to generate open biomedical repositories in Seman-

tic Web formats. The generation process is based on

the ontology-driven transformation of data and integra-

tion is performed following SemanticWeb principles. The

method has been implemented in the SWIT tool, which

automates and standardises the process of generating five

stars, semantic, open biomedical datasets. We believe

that the approach (1) enables the common transforma-

tion and integration process for heterogeneous biomed-

ical data; (2) permits the design of reusable mappings

driven by domain knowledge; and (3) applies LinkedOpen

Data principles to generate interoperable, semantically-

rich, open, biomedical datasets. Future work will address

the assistance on the recommendation of semi-automatic

mappings and on providing more flexibility in the trans-

formation process.

Endnotes
1http://linkeddata.org/
2http://www.w3.org/RDF/
3http://www.w3.org/TR/owl-features/
4http://www.openehr.org/releases/1.0.2/architecture/

am/adl.pdf
5http://www.w3.org/TR/rdf-sparql-query/
6http://www.w3.org/DesignIssues/LinkedData.html
7http://rhizomik.net/html/redefer/xml2rdf/
8http://rhizomik.net/html/redefer/xsd2owl/
9http://www.w3.org/2001/sw/rdb2rdf/
10https://www.w3.org/Submission/xsparql-language-

specification
11https://www.w3.org/Submission/SWRL
12http://purl.org/net/ORTH
13https://github.com/oborel/obo-relations
14http://purl.bioontology.org/ontology/NCBITAXON
15http://purl.bioontology.org/ontology/CDAO
16https://code.google.com/p/semanticscience/wiki/SIO
17http://oppl2.sourceforge.net/
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19http://jena.apache.org
20https://github.com/qfo/OrthologyOntology
21http://questfororthologs.org/
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25http://www.w3.org/TR/owl2-syntax/#Keys

Acknowledgements

This work was supported by the Ministerio de Economía y Competitividad and

the FEDER programme through grant TIN2014-53749-C2-2-R2, and the

Fundación Séneca through grants 15295/PI/10 and 15555/FPI/2010.

Authors’ contributions

Conceived and designed the approach: MCLG, JAMG, MMT, JTFB. Implemented

the approach and performed the experiments: MCLG, JAMG. Analysed the

results: MCLG, JAMG, MMT, JTFB. Contributed to the writing of the manuscript:

MCLG, JAMG, MMT, JTFB. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Author details
1Departamento de Informática y Sistemas, Universidad de Murcia,

IMIB-Arrixaca, 30071 Murcia, Spain. 2 Institute of Medical Informatics, Statistics

and Documentation, Medical University of Graz, 8036 Graz, Austria.

Received: 26 September 2015 Accepted: 17 May 2016

References

1. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Brice MD, Rodgers JR,

Kennard O, Shimanouchi T, Tasumi M. The Protein Data Bank. Eur J

Biochem. 1977;80(2):319–24.

2. Galperin MY, Rigden DJ, Fernández-Suárez XM. The 2015 Nucleic Acids

Research Database Issue and Molecular Biology Database Collection.

Nucleic Acids Res. 2015;43(D1):1–5.

3. Bodenreider O, Stevens R. Bio-ontologies: current trends and future

directions. Brief Bioinform. 2006;7:256–74.

4. Attwood T, Kell D, McDermott P, Marsh J, Pettifer S, Thorne D. Calling

International Rescue: knowledge lost in literature and data landslide.

Biochem J. 2009;424:317–33.

5. Tapuria A, Kalra D, Kobayashi S. Contribution of Clinical Archetypes, and

the Challenges, towards Achieving Semantic Interoperability for EHRs.

Healthcare Inform Res. 2013;19(4):286–92.

6. Stroetman V, Kalra D, Lewalle P, Rector A, Rodrigues J, Stroetman K,

Surjan G, Ustun B, Virtanen M, Zanstra P. Semantic interoperability for

better health and safer healthcare. Research and Deployment Roadmap

for Europe. SemanticHEALTH Project Report (January 2009), Published by

the European Commission. 2009;1–34. http://ec.europa.eu/information_

society/ehealth.

7. Saleem JJ, Flanagan ME, Wilck NR, Demetriades J, Doebbeling BN. The

next-generation electronic health record: perspectives of key leaders

from the US Department of Veterans Affairs. J Am Med Inform Assoc.

2013;20(e1):175–7.

8. Shah NH, Tenenbaum JD. The coming age of data-driven medicine:

translational bioinformatics’ next frontier. J Am Med Inform Assoc.

2012;19(e1):2–4.

9. Berners-Lee T, Hendler J, Lassila O. The Semantic Web. Sci Am.

2001;284(5):34–43.

10. Gruber TR. A translation approach to portable ontology specifications.

Knowl Acquisition. 1993;5(2):199–220.

11. Goble C, Stevens R. State of the nation in data integration for

bioinformatics. J Biomed Inform. 2008;41(5):687–93.

12. Noy NF, Shah NH, Whetzel PL, Dai B, Dorf M, Griffith N, Jonquet C, Rubin

DL, Storey MA, Chute CG, et al. Bioportal: ontologies and integrated data

resources at the click of a mouse. Nucleic Acids Res. 2009;440:.

13. Belleau F, Nolin MA, Tourigny N, Rigault P, Morissette J. Bio2RDF:

towards a mashup to build bioinformatics knowledge systems. J Biomed

Inform. 2008;41(5):706–16.

14. Antezana E, Kuiper M, Mironov V. Biological knowledge management:

the emerging role of the semantic web technologies. Brief Bioinformatics.

2009;10(4):392–407.

http://linkeddata.org/
http://www.w3. org/RDF/
http://www.w3.org/TR/owl-features/
http://www.openehr.org/releases/1.0.2/architecture/am/adl.pdf
http://www.openehr.org/releases/1.0.2/architecture/am/adl.pdf
http://www.w3.org/TR/rdf-sparql-query/
http://www. w3.org/DesignIssues/LinkedData.html
http://rhizomik.net/html/redefer/xml2rdf/
http://rhizomik.net/html/redefer/xsd2owl/
http://www.w3.org/2001/sw/rdb2rdf/
https://www.w3.org/Submission/xsparql-language-specification
https://www.w3.org/Submission/xsparql-language-specification
https://www.w3.org/Submission/SWRL
http://purl.org/net/ORTH
https://github.com/oborel/obo-relations
http://purl.bioontology.org/ontology/NCBITAXON
http://purl.bioontology.org/ontology/CDAO
https://code.google.com/p/semanticscience/wiki/SIO
http://oppl2.sourceforge.net/
http://sele.inf.um.es/swit
http://jena.apache.org
https://github.com/qfo/OrthologyOntology
http://questfororthologs.org/
http://alignapi.gforge.inria.fr/format.html
http://alignapi.gforge.inria.fr/edoal.html
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/owl2-syntax/#Keys
http://ec. europa.eu/information_society/ehealth
http://ec. europa.eu/information_society/ehealth


Legaz-García et al. Journal of Biomedical Semantics  (2016) 7:32 Page 16 of 17

15. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis

AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the

unification of biology. Nat Genet. 2000;25(1):25–9.

16. Jupp S, Malone J, Bolleman J, Brandizi M, Davies M, Garcia L, Gaulton A,

Gehant S, Laibe C, Redaschi N, et al. The EBI RDF platform: linked open

data for the life sciences. Bioinformatics. 2014;30(9):1338–9.

17. Martínez-Costa C, Menárguez-Tortosa M, Fernández-Breis JT, Maldonado

JA. A model-driven approach for representing clinical archetypes for

Semantic Web environments. J Biomed Inform. 2009;42(1):150–64.

18. Iqbal AM. An OWL-DL Ontology for the HL7 Reference Information Model.

Lecture Notes in Computer Science. 2011;6719:168–75.

19. Tao C, Jiang G, Oniki TA, Freimuth RR, Zhu Q, Sharma D, Pathak J, Huff

SM, Chute CG. A semantic-web oriented representation of the clinical

element model for secondary use of electronic health records data. J Am

Med Inform Assoc. 2013;20(3):554–62.

20. Martínez-Costa C, Menárguez-Tortosa M, Fernández-Breis JT. An

approach for the semantic interoperability of ISO EN 13606 and OpenEHR

archetypes. J Biomed Inform. 2010;43(5):736–46.

21. Martínez-Costa C, Menárguez-Tortosa M, Fernández-Breis JT. Clinical

data interoperability based on archetype transformation. J Biomed

Inform. 2011;44(5):869–80.

22. Legaz-García M, Menárguez-Tortosa M, Fernández-Breis J, Chute C, Tao

C. Transformation of Standardized Clinical Models based on OWL

technologies: from CEM to OpenEHR archetypes. J Am Med Inform Assoc.

2015;22(3):536–544.

23. Dentler K, ten Teije A, Cornet R, de Keizer N. Semantic Integration of

Patient Data and Quality Indicators Based on openEHR Archetypes.

Lecture Notes in Computer Science. 2013;7738:85–97.

24. Fernández-Breis JT, Maldonado JA, Marcos M, del Carmen Legaz-García

M, Moner D, Torres-Sospedra J, Esteban-Gil A, Martínez-Salvador B,

Robles M. Leveraging electronic healthcare record standards and

semantic web technologies for the identification of patient cohorts. J Am

Med Inform Assoc. 2013;20(e2):e288–96.

25. Juty N, Le Novère N, Laibe C. Identifiers.org and MIRIAM Registry:

community resources to provide persistent identification. Nucleic Acids

Res. 2012;40(D1):580–6.

26. Schmitt T, Messina DN, Schreiber F, Sonnhammer EL. SeqXML and 717

OrthoXML: standards for sequence and orthology information. Brief

Bioinform. 2011;12(5):485–488.

27. Degtyarenko K, De Matos P, Ennis M, Hastings J, Zbinden M, McNaught

A, Alcántara R, Darsow M, Guedj M, Ashburner M. ChEBI: a database and

ontology for chemical entities of biological interest. Nucleic Acids Res.

2008;36(suppl 1):344–50.

28. HL7. http://www.hl7.org. Last Accessed: April 2016.

29. openEHR Foundation OpenEHR. http://www.openehr.org. Last Accessed:

April 2016.

30. European Committee for Standardization. Health informatics - Electronic

Health Record Communication Standard (ISO/EN 13606). http://www.iso.

org/iso/. Last Accessed: April 2016.

31. Beale T. The openEHR archetype model-archetype object model. The

OpenEHR Release. 2008;1(2):1–54.

32. Shearer R, Motik B, Horrocks I. HermiT: A highly-efficient OWL reasoner.

CEUR Workshop Proceedings 432, 208. http://ceur-ws.org/Vol-432/

owled2008eu_submission_12.pdf.

33. Sirin E, Parsia B, Grau BC, Kalyanpur A, Katz Y. Pellet: A practical OWL-DL

reasoner. Web Semantics: Sci Serv Agents World Wide Web. 2007;5(2):

51–3.

34. Papailiou N, Konstantinou I, Tsoumakos D, Karras P, Koziris N. H2RDF+:

High-performance distributed joins over large-scale RDF graphs, IEEE

International Conference on Big Data. Silicon Valley, CA: IEEE; 2013. p.

255–63.

35. Bizer C. The emerging web of linked data. Intell Syst IEEE. 2009;24(5):87–92.

36. Janowicz K, Hitzler P, Adams B, Kolas D, Vardeman II C. Five stars of

linked data vocabulary use. Semantic Web. 2014;5(3):173–6.

37. Abello A, Romero O, Bach Pedersen T, Berlanga R, Nebot V, Aramburu

MJ, Simitsis A. Using Semantic Web technologies for exploratory OLAP: a

survey. IEEE Trans Knowl Data Eng. 2015;27(2):571–88.

38. Klein M. Interpreting XML documents via an RDF schema ontology, 13th

International Workshop on Database and Expert Systems Applications.

IEEE; 2002. p. 889–93.

39. Lange C. Krextor–an extensible XML? RDF extraction framework. Scripting

Dev Semantic Web. 2009;449:58–64. CEUR Workshop Proceedings.

40. Breitling F. A standard transformation from XML to RDF via XSLT.

Astronomische Nachrichten. 2009;330(7):755–60.

41. Huang JY, Lange C, Auer S. Streaming Transformation of XML to RDF

using XPath-based Mappings. In: Proceedings of the 11th International

Conference on Semantic Systems. ACM; 2015. p. 129–36.

42. Skoutas D, Simitsis A, Sellis T. Ontology-driven conceptual design of ETL

processes using graph transformations. Lecture Notes in Computer

Science. 2009;1338:120–46.
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