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Abstract. We discuss methods for the generation of oriented matroids and of isomor-
phism classes of oriented matroids. Our methods are based on single element extensions
and graph theoretical representations of oriented matroids, and all these methods work in
general rank and for non-uniform and uniform oriented matroids as well. We consider two
types of graphs, cocircuit graphs and tope graphs, and discuss the single element extensions
in terms of localizations which can be viewed as partitions of the vertex sets of the graphs.
Whereas localizations of the cocircuit graph are well characterized, there is no graph theo-
retical characterization known for localizations of the tope graph. In this paper we prove a
connectedness property for tope graph localizations and use this for the design of algorithms
for the generation of single element extensions by use of tope graphs. Furthermore, we dis-
cuss similar algorithms which use the cocircuit graph. The characterization of localizations
of cocircuit graphs finally leads to a backtracking algorithm which is a simple and efficient
method for the generation of single element extensions. We compare this method with a
recent algorithm of Bokowski and Guedes de Oliveira for uniform oriented matroids.

1. Introduction

Oriented matroids (OMs) can be viewed as an axiomatic combinatorial abstraction of
geometric structures such as real hyperplane arrangements, convex polytopes, or point
configurations in the Euclidean space. The notion of OMs was introduced independently
by Bland and Las Vergnas [6] and by Folkman and Lawrence [13]. There are several dif-
ferent (but equivalent) axiom systems and representations of OMs, and the theory of OMs
has connections and applications to many areas of mathematics. For a comprehensive
introduction to the theory of OMs we refer to the monograph of Bj¨orner et al. [4].

∗ This research was partially supported by Swiss National Science Foundation Grant 21-58977.99.
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In the following we usefinite sphere arrangementsas an illustration of OMs. A finite
sphere arrangementS = {Se | e∈ E} is a collection of(d−1)-dimensional unit spheres
on thed-dimensional unit sphereSd in the Euclidean spaceRd+1, where every sphere
Se is oriented (i.e. has a+ side and a− side). The sphere arrangementS induces a cell
complexW on Sd. For every pointx in Sd we define asign vector X∈ {+,0,−}E by
settingXe = 0 if x is onSe, otherwiseXe = + (or Xe = −) if x is on the+ side (or−
side, respectively) ofSe; letF denote the set of all these sign vectors. Obviously there is
a one-to-one correspondence between the faces inW and the sign vectors inF . The pair
M = (E,F) is calleda linear OM. There are non-linear OMs; however, it is well known
that every OM can be represented by an arrangement of topological spheres [4], [13].

In this paper we study the generation problem of OMs, the fundamental question of
constructing all oriented matroids of a given rankr and a given size of the ground set
E. Often one is not interested in generating OMs which are equivalent in some given
sense, therefore only classes of OMs are considered, i.e. the problem is to generate
exactly one representative of every equivalence class of OMs. Two types of classes of
OMs are important in the following: thereorientation classand theisomorphism class.
A reorientation of an OM is defined when for some elements inE all signs are replaced
by their opposites (i.e. the orientation of the corresponding spheresSe is reversed). Two
OMs are called isomorphic if they are equal up to reorientation and renaming of the
ground sets. Our main interest is to generate OMs up to isomorphism.

In any generation method, the choice of the underlying OM representation is of great
importance. The representations which are discussed in this paper are based on graphs
that are defined by the OMs. Consider again a sphere arrangementS with cell complex
W, and letM = (E,F) be the corresponding OM. Without loss of generality we
assume that the normal vectors of the spheresSe spanRd+1. The sign vectors inF
corresponding to 0-faces andd-faces are calledcocircuitsandtopes, respectively. There
are two fundamental graphs which are defined byM, thecocircuit graphand thetope
graphofM, which are named according to their vertex sets: the cocircuit graph is the
1-skeleton ofM (orW), the tope graph is defined by the adjacency relation of the topes
inM (which corresponds to the obvious adjacency relation of thed-faces inW). For
precise definitions see Section 2.

In the following we study the cocircuit graph and the tope graph of an OM and their
single element extensions: Consider again a sphere arrangement with cell complexW
with corresponding OMM = (E,F). If a new elementf 6∈ E is added, i.e. a new
(d− 1)-dimensional unit sphereSf is introduced, this defines a new complexW ′ and a
new OMM′ = (E ∪ { f },F ′), a single element extension ofM. The new elementf
partitions the set of cocircuits (or topes) into three parts, those which are on the+ side of
f , those on the− side of f , and those “cut” byf : in the cell complexW this corresponds
to 0-faces (ord-faces) which are on the+ or− side of f and 0-faces which are contained
in Sf (d-faces which are divided bySf into two newd-faces, respectively). Hence this
single element extension defines a signature on the vertex set of the cocircuit (and tope)
graph. If a signature comes from a topological abstraction of the linear extension as
discussed above, then it is called alocalization. As the set of cocircuits (or topes) defines
the entire OM, one can prove that a localization determines a single element extension.
Therefore we can generate all single element extensions of a given OM by generating
all localizations of its cocircuit or tope graph; we use this approach for our methods.
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The generation problem is very natural by itself as many researchers are interested in
a complete set of problem instances (e.g. for testing conjectures on point configurations
in Rd). Furthermore, the study of methods for efficiently generating OMs leads to new
results for OM representations. Techniques for listing OMs for smalld and |E| were
studied, among others, by Bokowski, Sturmfels, and Guedes de Oliveira (e.g. [7]–[9])
using the chirotope axioms of OMs. They also proved by successful applications, e.g. to
geometric embeddability problems, the usefulness of OM generation. However, it seems
that the methods are designed primarily for the case of uniform OMs. The approach
of this paper is based on graph theoretical representations of OMs (tope graphs and
cocircuit graphs), and we discuss methods which work for general OMs (especially also
non-uniform OMs). One of our methods can be considered as a variant of an algorithm
of Bokowski and Guedes de Oliveira [7] in a dual setting; however, our representation
leads to implementations which are able to handle easily any single element extension
in general rank, for non-uniform and uniform OMs as well.

2. Definitions and Notations

We present the definitions and the notations used in this paper which were not introduced
in Section 1. Some notions are defined again, extending their former meaning in the
setting of the sphere model to the axiomatic of OMs as presented in the following.

Thezero supportof a sign vectorX ∈ {+,0,−}E is the setX0 := {e∈ E | Xe = 0},
andthe negative−X of X is defined by(−X)e := −Xe for e ∈ E; when only the sign
of e∈ E is reversed, we writee X. For two sign vectorsX,Y ∈ {+,0,−}E we say that
X conforms to Y(denoted byX ¹ Y) if Xe 6= 0 impliesXe = Ye. Thecomposition of X
and Y (denoted byX ◦ Y) is the sign vectorW with We = Ye for e ∈ X0 andWe = Xe

otherwise. An elemente∈ E separates X and Yif Xe = −Ye 6= 0; we denote the set of
separating elements byD(X,Y). For a given setF of sign vectors, we calle∈ E a loop
if Xe = Ye for all X,Y ∈ F , and two elementse, f ∈ E are calledparallel if Xe = Xf

for all X ∈ F or Xe = −Xf for all X ∈ F ; clearly, parallelness is an equivalence
relation. Finally,F is calledsimpleif there are no loops and no parallel elements (i.e.
all parallel classes have cardinality 1).

An OMM is a pair(E,F) of a finite setE and a setF ⊆ {+,0,−}E of sign vectors
(calledcovectors) for which the OM covector axioms (V1)–(V4) are valid:

(V1) 0 ∈ F .
(V2) X ∈ F ⇒ −X ∈ F .
(V3) X,Y ∈ F ⇒ X ◦ Y ∈ F .
(V4) For all X,Y ∈ F ande ∈ D(X,Y) there existsZ ∈ F such thatZe = 0 and,

for all f ∈ E\D(X,Y), Zf = (X ◦ Y) f .

It is not difficult to see that these OM covector axioms hold for any OM(E,F) as defined
by sphere arrangementsS in Section 1.

The setF of covectors ordered by the conformal relation¹, together with an additional
artificial greatest element 1, forms a latticeF̂ which has the Jordan–Dedekind property.
Therankof a covectorX is defined as the height ofX in F̂ , and we define rank(M) :=
maxX∈F rank(X). The covectors inF\{0} of minimal (maximal) rank, i.e. of rank 1
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(rank(M), respectively), are calledcocircuits(topes). The set of cocircuitsC determines
F as the closure under composition. The set of topesT determinesF by F = {X ∈
{+,0,−}E | X ◦ T ∈ T for all T ∈ T }, which was first observed by A. Mandel
(unpublished). An OMM is calleduniform if the set of the zero supports of cocircuits
is the set of all(rank(M)− 1)-subsets ofE.

A graph G= (V(G), E(G)) is a pair of a finite set ofvertices V(G) and a set of
edges E(G) that are represented as unordered pairs of vertices. The (combinatorial)
distance between two verticesv,w ∈ V(G) is denoted bydG(v,w), and the diameter
of G by diam(G). The cocircuit graph of an OMM is a graphG whose vertices can be
associated by a bijectionL: V(G) → C to the cocircuits ofM such that{v,w} is an
edge inE(G) if and only if, for V := L(v) andW := L(w), V ◦W = W ◦V andV and
W are the only cocircuits conforming toV ◦W. The tope graph of an OMM is a graph
G whose vertices can be associated by a bijectionL: V(G)→ T to the topes ofM such
that{v,w} is an edge inE(G) if and only if, for V := L(v) andW := L(w), D(V,W)

is a parallel class ofE (or, equivalently, there is a covector whose rank is rank(M)− 1
and which conforms toV andW).

3. Tope Graphs and Single Element Extensions

In this section we consider tope graphs of OMs and their relation to single element
extensions of OMs, i.e. we study localizations of tope graphs of OMs (see the Introduction
and the definitions in Section 2). We restrict the discussion in this section to simple OMs
as we are not interested in generating single element extensions by introducing loops or
parallel elements: these extensions can be considered as being trivial.

The tope graph of a (simple) OM determines its isomorphism class [3], and there are
efficient algorithms for computing a representative OM from the given tope graph [10].
Furthermore, it is possible to decide for a given graph in polynomial time whether it is a
tope graph or not [15], [16]. So, isomorphism classes of simple OMs can be generated
if it is possible to generate tope graphs or at least a (not too large) superset of graphs.
Unfortunately, the known characterizations of OM tope sets (see, e.g. [17] and [12]) did
not lead to a direct and simply checkable characterization of tope graphs. However, there
are easily checkable necessary properties for tope graphs of OMs (see Lemma 3.1) and
their localizations (see Lemma 3.3) [15]. We strengthen these necessary properties in
Theorem 3.5, which will be important in the generation algorithms of OM isomorphism
classes (Section 4).

We first rephrase the former definition of localizations of tope graphs: Consider two
simple OMsM = (E,F) andM′ = (E′,F ′) with tope setsT andT ′, respectively,
whereE′ = E∪{ f } for f 6∈ E. Furthermore, assume thatM =M′\ f , i.e.M′ is a single
element extension ofM. Associating the tope graphG ofM to T byL: V(G)→ T ,
the above single element extension defines a signatureσ : V(G) → {+,0,−} on the
vertex set ofG by

σ(v) :=


+ if, for T ∈ T ′, (TE = L(v)⇒ Tf = +),
− if, for T ∈ T ′, (TE = L(v)⇒ Tf = −),
0 otherwise
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for v ∈ V(G). As defined above, we call signatures that are defined by single element
extensions of OMslocalizations. A localizationσ , together with a tope graphG and
L: V(G)→ T ⊆ {+,−}E, determines the extended tope setT ′ by

T ′ := {T ∈ {+,−}E∪{ f } | there existsv ∈ V(G) s.t.TE = L(v) andσ(v) ∈ {Tf ,0}}

for f /∈ E being a new element. The rank of the extended OMM′ is the same as the
rank ofM unlessσ(v) = 0 for all v ∈ V(G) (then the rank increases by 1 asf is a
coloop inM′). Obviously, for any given OM tope graphG the property of a signature
σ : V(G)→ {+,0,−} being a localization ofG or not is independent from the choice
of the representative in the isomorphism class defined byG.

For a given tope graphG of an OM, a signatureσ of G defines a partition on the
vertex setV(G) by Vs := {v ∈ V(G) | σ(v) = s} for s ∈ {+,0,−}. Furthermore, set
V⊕ = V+ ∪ V0 andVª = V− ∪ V0, and letG+, G0, G−, G⊕, andGª denote the
subgraphs ofG induced byV+, V0, V−, V⊕, andVª, respectively. Then the tope graph
corresponding toT ′ is determined byG and a localizationσ as a graphG′ with vertex
set

V(G′) = {v+ | v ∈ V⊕} ∪ {v− | v ∈ Vª}
and edge set

E(G′) = {{v+, v−} | v ∈ V0} ∪ {{v+, w+} | {v,w} ∈ E(G⊕)}
∪ {{v−, w−} | {v,w} ∈ E(Gª)}.

We now state some important properties of tope sets and tope graphs [15]:

Lemma 3.1. Let G be the tope graph of a simple OMM and letL: V(G) → T be
an associating bijection between the vertex set of G and the tope set ofM. Then:

(T1) For X,Y ∈ T , X 6= Y, there exists e∈ D(X,Y) such thate X ∈ T .
(T2) The length of any shortest path x= u0, . . . ,ud = y in G is d= |D(L(x),L(y))|,

and then|D(L(ui−1),L(ui ))| = 1 for i ∈ {1, . . . ,d}.
(T3) For every vertexv ∈ V(G) there is a unique vertexv ∈ V(G) such that

dG(v, v) = diam(G), and thenL(v) = −L(v).

Definition 3.2 (Antipode). LetG be the tope graph of an OM. For a vertexv ∈ V(G)
we call the vertexv ∈ V(G) determined bydG(v, v) = diam(G) the antipode ofv.

A characterization of the localizations of a given tope graph is not known, but the
following properties necessarily hold (see [15]):

Lemma 3.3. Let G be the tope graph of an OM and letσ : V(G) → {+,0,−} be a
localization of G. Then the following properties are valid:

(L1) σ(v) = −σ(v) for all v ∈ V(G),
(L2) E(G) ∩ (V+ × V−) = ∅, and
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Fig. 1. Example for non-connectedness in the affine case.

(L3) dG⊕(v,w) = dG(v,w) for all v,w ∈ V⊕, and dGª(v,w) = dG(v,w) for all
v,w ∈ Vª.

Definition 3.4 (Acycloidal Signature). LetG be the tope graph of an OM. We call a
signatureσ of G an acycloidal signature of Gif (L1)–(L3) are satisfied.

We strengthen the necessary properties of localizations:

Theorem 3.5. Let G be the tope graph of an OM and letσ : V(G)→ {+,0,−} be a
localization of G. Then:

(L4) G+ (and also G−) is a connected subgraph of G.

Before we prove this connectedness property (L4), we give some remarks. First, we
show in Fig. 1 an example for the analogousaffinecase where the connectedness in the
sense of (L4) is not valid (in the example the gray regions are thosed-faces not cut by
the new hyperplanef , and obviouslyX andY are not connected on the− side of f ).
Second, we give a sketch of the proof. Consider two regionsX andY which are not cut
by the new elementf and are on the same side off , say the− side. There exists an
elementg ∈ E\{ f } that boundsX and does not separateX andY; if we considerg as an
infinity element, we may callX an unbounded region. There are two cases to consider: (i)
Y is also an unbounded region and (ii)Y is not an unbounded region. The two cases are
illustrated in Fig. 2 showing the− side of f only; note that case (i), restricted to affine
space (i.e. to the+ side ofg), is exactly the example of Fig. 1. In case (i) we consider
the contraction with respect tog and use a non-trivial inductive argument to prove that
X andY are connected in the sense of (L4). In case (ii) we show thatY is connected
in the sense of (L4) to an unbounded regionY′, which is known to be connected to
X because of case (i). The unbounded regionY′ is found using an OM program (see
also Theorem 3.6 below) which has an optimal solutionU . The solutionU defines an
unbounded cone (hatched with white lines in Fig 2) which contains regions that are all
connected in the sense of (L4). We summarize the results on OM programming needed
for the proof of Theorem 3.5 in the following theorem, which is essentially the strong
duality theorem for OM programming [5], [13], [4]:
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Fig. 2. The two cases in the proof of Theorem 3.5.

Theorem 3.6[14]. For any OM program(M, g, f ), which is a triple of an OMM =
(E,F) and two distinct elements f, g ∈ E, exactly one of the following three statements
is valid:

(i) (M, g, f ) is not feasible, i.e. there is no Y∈ F with YE\{ f,g} ≥ 0 and Yg = +
(Y is called feasible for(M, g, f )).

(ii) (M, g, f ) is unbounded, i.e. (M, g, f ) is feasible and there exists Z∈ F with
ZE\{ f,g} ≥ 0, Zg = 0, and Zf = + (Z is called an unbounded augmenting
direction for(M, g, f )).

(iii) (M, g, f ) has an optimal solution, i.e. there exists U∈ F which is feasible for
(M, g, f ), and there is no Z′ ∈ F with Z′g = 0, Z′f = +, and Z′e ≥ 0 for all
e∈ E\{ f, g} with Ue = 0 (Z′ is called an augmenting direction for U).

Proof of Theorem3.5. LetG be the tope graph of a (simple) OM and letσ : V(G)→
{+,0,−} be a localization ofG which defines a single element extensionM with tope
setT ⊆ {+,−}E with new elementf ∈ E; M is then also a simple OM. In order
to show that the subgraphG− of G is connected (then the same claim forG+ follows
by the symmetry of (T3) and (L1) under negation), we prove the following (equivalent)
statement:

(∗) For any two topesX,Y ∈ T − := {Z ∈ T | Zf = − and f Z 6∈ T } there exists

a sequenceX = Z0, . . . , Zk = Y such thatZi ∈ T − for i ∈ {0, . . . , k} and
|D(Zi−1, Zi )| = 1 for i ∈ {1, . . . , k}.

The proof of (∗) is by induction in the rank ofM. For some small rankr , sayr ≤ 2, (∗) is
obviously true. We considerMwith rank(M) ≥ 3. If T − = ∅, then the claim is trivially
true, so assumeT − 6= ∅. Let X,Y ∈ T −. ThenXf = Yf = − implies X 6= −Y, and
by (T1) there existsg ∈ D(X,−Y) = E\D(X,Y) such thatg X ∈ T . X ∈ T − implies
g 6= f . ObviouslyXg = Yg 6= 0, and without loss of generality assumeXg = Yg = +.

(i) If g Y ∈ T : Consider the contraction minorM/g (i.e. the contraction ofM to
faces which containg in the zero support) which is a (not necessarily simple)
OM whose rank is rank(M)− 1. Denote byM̃ a simplification ofM/g where
the parallel class containingf is represented byf . Note thatXE\{g} ∈M/g and
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YE\{g} ∈ M/g, and denote bỹX andỸ their images inM̃, then X̃, Ỹ ∈ T̃ −,
whereT̃ − is defined forM̃ asT − forM. By induction, there exists a sequence
X̃ = Ũ0, . . . , Ũ k = Ỹ in T̃ − such that|D(Ũ i−1, Ũ i )| = 1 for i ∈ {1, . . . , k}.
Consideri ∈ {0, . . . , k}: Ũ i ∈ T̃ − implies that there existUi ∈ T such that
Ui

g = + and g U i ∈ T , whereŨ i is the image ofUi
E\{g} in M̃; furthermore,

Ui
f = −, and at most one off U i and f g U i is in T , i.e. at least one ofUi and

g U i is in T −. We defineÛ i := Ui if Ui ∈ T −, otherwiseÛ i := g U i ∈ T −.
SinceÛ0 = X andÛ k = Y, it remains to show that̂Ui−1 andÛ i are connected
within T − for all i ∈ {1, . . . , k} in the sense of (∗).

Let bei ∈ {1, . . . , k}. By (T2) there exist two sequencesUi−1 = V0, . . . ,Vd =
Ui and g U i−1 = W0, . . . ,Wd = g U i with |D(V j−1,V j )| = |D(W j−1,W j )|
= 1 for all j ∈ {1, . . . ,d}, whered = |D(Ui−1,Ui )|. If at least one of the two
sequences fori ∈ {1, . . . , k} lies entirely inT −, the claim follows by combin-
ing all these sequences inT −. Assume that for somei ∈ {1, . . . , k} neither of
the two sequences is entirely inT −, i.e. there exists, t ∈ {0, . . . ,d} such that
V ′ := f Vs ∈ T andW′ := f Wt ∈ T . The OM axiom (V4) applied toV ′, W′,
andg implies that there existsZ ∈ F such thatZg = 0 andZe = (V ′ ◦W′)e for
e 6∈ D(V ′,W′), i.e. Ze = V ′e = W′e for e 6∈ D(V ′,W′), especiallyZf = +. Note
that D := D(Ui−1,Ui ) is a parallel class ofM/g, so ZD = 0, ZD = Û i−1

D , or
ZD = Û i

D, and withD(V ′,W′) ⊆ D∪{g} it follows thatZ◦Û i−1 = f Û i−1 ∈ T
or Z ◦ Û i = f Û i ∈ T , a contradiction.

(ii) If g Y /∈ T : We show thatY is connected withinT − in the sense of (∗) to some
Y′ ∈ T − for which g Y′ ∈ T ; then the claim follows from (i). Without loss
of generality assumeYe = + for all e ∈ E\{ f } (reorientation does not affect
connectedness withinT −). Consider the OM program(M, g, f ). SinceY is
feasible for(M, g, f ), and since no unbounded augmenting directionZ ∈ F
exists (otherwiseZ ◦ Y = f Y ∈ T , a contradiction), there exists an optimal
solutionU ∈ F for (M, g, f ); note thatUE\{ f } ≥ 0,Ug = +, andUf ≤ 0 (since
Uf = + impliesU ◦ Y = f Y ∈ T ). SetV := −U ◦ Y ∈ T . By (T2) there

exists a sequenceY = W0, . . . ,Wd = V ∈ T such that|D(Wi−1,Wi )| = 1
for i ∈ {1, . . . ,d}, whered = |D(Y,V)|. SinceYg = + andVg = −Ug = −,
there existsk ∈ {1, . . . ,d} such thatWi

g = + for i < k and Wk
g = −. Set

Y′ := Wk−1, then g Y′ = Wk ∈ T , and it remains to show thatWi ∈ T − for
i ∈ {1, . . . , k−1}. AssumeWi 6∈ T − for somei ∈ {1, . . . , k−1}, i.e. there exists
W′ ∈ T such thatW′E\{ f } = Wi

E\{ f } andW′f = +. Apply the OM axiom (V4)
to W′,−U , andg: there existsZ′ ∈ F such thatZ′g = 0 andZ′e = (W′ ◦ −U )e
for e 6∈ D(W′,−U ), especiallyZ′f = +, and, for alle 6= f with Ue = 0,
Ve = Ye = +, so alsoW′e = + and Z′e = W′e = +, i.e. Z′ is an augmenting
direction forU , in contradiction to the optimality ofU .

Definition 3.7 (Weak and Strong Acycloidal Signature). LetG be the tope graph of
an OM and letσ be a signature ofG. We callσ a weak acycloidal signature of Gif
(L1), (L2), and (L4) are satisfied anda strong acycloidal signature of Gif (L1)–(L4) are
satisfied.
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The new property (L4) which is proved in Theorem 3.5 is independent from (L1)–
(L3): there are acycloidal signatures which are not strong acycloidal signatures. However,
strong acycloidal signatures are not necessarily localizations (the smallest example is a
signature of a tope graph of an OMM = (E,F) with rank(M) = 3 and|E| = 4).

4. Generation of Tope Graphs

In this section we present an incremental method for the generation of the tope graphs
of all OMs. Note again that the generation of tope graphs is equivalent to the generation
of OMs up to isomorphism (see beginning of the previous section). We discuss first (in
Sections 4.1 and 4.2) two algorithms which find for a given OM tope graph the tope
graphs of the corresponding single element extensions. These algorithms can be used in
the incremental method for tope graph generation which is described in Section 4.3.

4.1. Generation of Extensions by Reverse Search

Let G be the tope graph of some OMM = (E,F); the goal of this section is to find
all tope graphs of single element extensions ofM up to graph isomorphism (which is
equivalent to finding all single element extensions up to OM isomorphism). Note that our
method is working with graphG and not withM. The main idea is to generate first all
weak acycloidal signatures and then to test these signatures for being strong acycloidal
signatures, finally for being localizations (again in polynomial time, see [15] and [16]).
The tope graphs of the extended OMs are easily obtained from the localizations (see
Section 3), and finally graph isomorphism checking leads to a set of representatives up
to isomorphism.

The first step in our method is the generation of all weak acycloidal signatures of a
given tope graphG. Property (L4) is essential for our method as it makes it possible to
generate all weak acycloidal signatures ofG without repetition. For this we modify a
reverse search method for the generation of all connected subgraphs of a given graph
[1]. Enumerate the vertices of the given tope graphG in an arbitrary way such that
V(G) = {1, . . . ,n}. Remember that every weak acycloidal signatureσ defines a set
V− := {v ∈ V(G) | σ(v) = −}, and the subgraphG− of G induced by the vertices in
V− is connected.

For the reverse search method we define a directed graphG as follows (in the language
of the original reference [1] the directed edges ofG define a local search function): The
vertices ofG are the weak acycloidal signatures ofG; there is for every weak acycloidal
signatureσ with V− 6= ∅ exactly one directed edge(σ → τ) ∈ E(G), whereτ is defined
as follows: letV− be defined byσ , and letu ∈ V− be the smallest vertex such that the
subgraph ofG induced byV−\{u} remains connected (u obviously exists); then letτ
be the signature withτ(w) = σ(w) for w ∈ V(G)\{v, v} andτ(v) = τ(v) = 0 (thenτ
is a weak acycloidal signature). There is a unique sink inG, namely the signature with
σ(v) = 0 for all v ∈ V(G), and every vertex inG is connected to the sink. The search
starts with the sink ofG and exploitsG by traversing the edges in reversed direction: by
this all weak acycloidal signatures ofG can be found without repetition. A description of
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Fig. 3. Algorithm WEAKACYCLOIDALSIGNATURESREVERSESEARCH.

the algorithm WEAKACYCLOIDALSIGNATURESREVERSESEARCH is given in Fig. 3. Note
that (different from the simple presentation here) it is not necessary in the reverse search
method to store the output list (here, inA); furthermore, the method is parallelizable.

At the beginning of this section we have described how every weak acycloidal signa-
ture can be tested, in polynomial time, whether it is a localization, and every localization
defines the tope graph of the corresponding single element extension. It remains to check
which of the graphs are isomorphic. For the isomorphism checking of tope graphs the
special structure of tope graphs can be exploited heavily; e.g. using (T2) one can express
isomorphisms of tope graphs with shortest paths between antipodes, which reduces iso-
morphism checking to the search for “equivalent” shortest paths between antipodes (we
omit the details here).

4.2. Avoiding Isomorphic Signatures

In this section we discuss a method which is similar to the method of Section 4.1, we only
replace the part of the generation of weak acycloidal signatures. The key observation
used in the following is that two signaturesσ andτ of a tope graphG lead to isomorphic
extensions if there is a graph automorphismϕ ∈ Aut(G) such thatσ = τ ◦ ϕ, i.e.
σ(v) = τ(ϕ(v)) for all v ∈ V(G); we call such signaturesσ andτ isomorphic. Isomor-
phic signatures can be used for a more efficient isomorphism checking, and—as pre-
sented in the following—for a variant of the algorithm WEAKACYCLOIDALSIGNATURES-
REVERSESEARCH which generates weak acycloidal signatures only up to isomorphism
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(in the sense defined above), i.e. exactly one representative of each isomorphism class
is returned from the list of all weak acycloidal signatures. This new algorithm WEAK-
ACYCLOIDALSIGNATURESUPTOISOMORPHISMdoes not use reverse search, but still can
be more efficient than the reverse search method, as isomorphism checking will avoid
the generation of many subtrees in the search tree.

As before, the generation of signatures starts withσ : V(G) → 0, i.e. V− = ∅,
and then augmentsV− by adding single vertices, but now not only with “minimal”
vertices as in the reverse search method. We say that a signatureσ is anaugmentation
of a weak acycloidal signatureτ with respect tov ∈ V(G) if σ is a weak acycloidal
signature andσ(w) = τ(w) for all w ∈ V(G)\{v, v}, σ(v) = −, andτ(v) = 0. The
augmentations are generated with increasing cardinality|V−| = k, and for everyk only
one representative of every isomorphism class is kept for further augmentations. This
leads to an algorithm WEAKACYCLOIDALSIGNATURESUPTOISOMORPHISMas described
in Fig. 4; the correctness follows from the following inductive argument:

Lemma 4.1. Let G be the tope graph of an OM. Consider the setAk of all weak
acycloidal signatures of G with|V−| = k, where k≥ 0 is an integer. LetA∗k be a set
containing exactly one representative of every isomorphism class ofAk. DefineA′k+1
as the set of all augmentations of signatures inA∗k, and letA∗k+1 be a set containing
exactly one representative of every isomorphism class ofA′k+1. ThenA∗k+1 contains
a representative of every isomorphism class of the setAk+1 of all weak acycloidal
signatures of G with|V−| = k+ 1.

Proof. Let G, Ak, A∗k, A′k+1, A∗k+1, andAk+1 be as described above. Consider any
σ ∈ Ak+1. We have to show that there exists a signatureσ ∗ ∈ A∗k+1 which is isomorphic
to σ . Take anyτ ∈ Ak such thatσ is an augmentation ofτ (obviouslyτ exists) with
respect to some vertexv ∈ V(G). Then there existsτ ∗ ∈ A∗k such thatτ = τ ∗ ◦ ϕ for
someϕ ∈ Aut(G). Asϕ is a graph automorphism and all properties of weak acycloidal

Fig. 4. Algorithm WEAKACYCLOIDALSIGNATURESUPTOISOMORPHISM.
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signatures are preserved under graph automorphisms, there isσ ′ ∈ A′k+1, which is an
augmentation ofτ ∗ with respect toϕ(v), thereforeσ = σ ′ ◦ϕ; σ andσ ′ are isomorphic.
Since some signatureσ ∗ ∈ A∗k+1 is isomorphic toσ ′, the claim follows.

As stated above, we do not use reverse search for algorithm WEAKACYCLOIDALSIG-
NATURESUPTOISOMORPHISM, and the reason may be seen when considering the proof of
Lemma 4.1: in a reverse search method the augmenting vertices have to satisfy a minimal
property, so in the inductive argument bothv andϕ(v) have to be minimal, which is not
true in general. Still it may be possible that WEAKACYCLOIDALSIGNATURESUPTOISO-
MORPHISMcan be combined with the reverse search method (e.g. using a special choice
for the representatives of isomorphism classes).

We conclude this section with a remark on how both methods presented above
may be slightly improved. When considering strong acycloidal signatures instead of
weak acycloidal signatures, we may add an infeasibility check to the two algorithms
WEAKACYCLOIDALSIGNATURESREVERSESEARCHand WEAKACYCLOIDALSIGNATURES-
UPTOISOMORPHISM: when for a signatureσ there existv,w ∈ V− such thatdGª(v,w)

> dG(v,w), then neitherσ nor any augmentations ofσ will satisfy (L3), i.e. we discard
such signatures in the algorithms (for the augmentations observe thatdG(v,w) does
not change anddGª(v,w) will not decrease sinceVª becomes smaller asV+ becomes
larger).

4.3. Incremental Generation of Tope Graphs

The generation of all extended tope graphs of a given tope graph as described above can
be used as part of a general method of generating all tope graphs of OMs incrementally,
i.e. with increasing cardinality ofE and increasing rank. This method starts with some
initial tope graph, say the tope graph of a (simple) OMM = (E,F) with rank(M) =
|E| = 2. From this graph—which is a cycle of length 4—we generate all tope graphs
of (simple) OMs with` ≥ 2 elements and rank in{2, . . . , `}. The graphs are generated
with increasing̀ , and for everỳ with increasing rank; this can be modified, e.g. if only
OMs of some given rank should be considered.

Let G`,r denote the set of all tope graphs of (simple) OMs on` elements and of rank
r . The set of all single element extensions of aG ∈ G`,r contains one graph inG`+1,r+1

(this graph is generated by the localizationσ : V(G)→ 0), the other extensions belong
to G`+1,r : It is clear fromG and the localization to which set,G`+1,r+1 or G`+1,r , the
extension belongs to. If all extensions of all graphsG ∈ G`,r for all r ∈ {2, . . . , `} are
computed, then all the setsG`+1,r for all r ∈ {2, . . . , `+ 1} are found—however, every
extension may be found in multiple ways, and we have to check for isomorphic graphs
again. In the following we discuss how these multiplicities can be reduced.

In the method described above, every OMM = (E,F) is obtained as a single element
extension of some deletion minor. UsuallyM has several (up to|E|) non-isomorphic
deletion minors, but only one is needed to generateM. We restrict our method to
extensions of deletion minors with a minimal number of topes; this will eliminate many
but not all multiplicities in the method. Furthermore—we describe this in the following—
it can be checked from tope graphs and signatures whether the extension comes from
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a minor with a minimal number of topes, and this criterion will reduce the amount of
enumeration of weak acycloidal signatures.

Consider an OMM and a deletion minorM\ f , which defines a localizationσ of
the tope graphG ofM\ f . The number of topes ofM\ f is minimal among all deletion
minors ofM if and only if the difference of the numbers of topes ofM\ f andM is
maximal, in which case we callσ a maximal localization. Maximal localizations ofG
are characterized as follows: The relation∼ defined onE(G) by {v,w} ∼ {v′, w′} if
dG(v, v

′) < dG(v,w
′) anddG(w,w

′) < dG(w, v
′) is an equivalence relation and leads

to a partition ofE(G) into element classes(which correspond to the elements in the
ground set ofM\ f , see also [15]). Then a localizationσ of G is maximal if and only
if, for every edge classEe ⊆ E(G),

(M) |V0| ≥ |Ee| + |Ee ∩ (V0× V0)|.

If (M) is not valid for some weak acycloidal signatureσ , then (M) is also violated for any
augmentation ofσ : an augmentation will decrease|V0| by 2 and|Ee∩ (V0×V0)| by at
most 2 (edges incident to a common vertex belong to different edge classes). Therefore
signatures which violate (M) can be discarded in the enumeration algorithms, and by
this the amount of enumeration is reduced considerably.

5. Cocircuit Graphs and Single Element Extensions

In this section we consider cocircuit graphs of OMs and their relation to single element
extensions of OMs, i.e. we study localizations of cocircuit graphs of OMs (see the
Introduction and the definitions in Section 2). Again we are interested in simple OMs
and may restrict our discussion accordingly. In contrast to tope graphs, a cocircuit graph
of an OMM does not characterize the isomorphism class ofM [11], and there is also
no characterization of cocircuit graphs known. Nevertheless, cocircuit graphs will be
helpful, as shown in the following; a major benefit comes from a characterization of
localizations of cocircuit graphs (see Theorem 5.2).

Localizations of cocircuit graphs were introduced in Section 1; we give here a more
detailed discussion. Consider two OMsM = (E,F) andM′ = (E′,F ′)with cocircuit
setsC andC ′, respectively, whereE′ = E ∪ { f } for f 6∈ E. Furthermore, assume that
M = M′\ f , i.e.M′ is a single element extension ofM. Associating the cocircuit
graphG of M to C by L: V(G) → C, the above single element extension defines a
signatureσ : V(G)→ {+,0,−} on the vertex set ofG by σ(v) := X′f for v ∈ V(G),
whereX′ ∈ C ′ is uniquely determined byX′E = L(v) ∈ C. We callσ a localization of
G with respect toM. On the other hand consider the cocircuit graphG of an OMM,
again associated to the set of cocircuitsC byL: V(G)→ C. Then a localizationσ of G
with respect toM determines the extended cocircuit setC ′ as the set of all sign vectors
X′ ∈ {+,0,−}E∪{ f } for which either

• X′E = L(v) andXf = σ(v) for some vertexv ∈ V(G), or
• X′E = L(v)◦L(w)andXf = 0 for some edge{v,w} ∈ E(G)with {σ(v), σ (w)} =
{+,−},
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where f /∈ E is a new element. The rank of the extended OMM′ is the same as the
rank ofM. If σ(v) = 0 for all v ∈ V(G), then f is a loop inM′. IfM is a simple OM,
thenM′ is also simple unless

• σ(v) = 0 for all v ∈ V(G) or
• there existse∈ E s.t.σ(v) = L(v)e for all v ∈ V(G) or
• there existse∈ E s.t.σ(v) = −L(v)e for all v ∈ V(G).

The cocircuit graph of the single element extensionM′ is determined byC ′, as any set of
cocircuits determines the corresponding cocircuit graph. We briefly describe an algorithm
which computes the cocircuit graphG for a given set of cocircuitsC ⊆ {+,0,−}E in
O(|C|3|E|) elementary arithmetic steps as follows: The vertex set ofG is a setV(G)
associated by a bijectionL to C. For every vertexv ∈ V(G) consider the set

S(v) := {(L(v) ◦ L(w))0 ⊆ E | there existsw ∈ V(G)\{v} s.t. D(L(v),L(w)) = ∅},

then{v,w} ⊆ V(G) is an edge ofG if and only if (L(v) ◦ L(w))0 is maximal inS(v).
The vertex setV(G) of a cocircuit graphG is partitioned by a signatureσ into V+,

V0, andV−, whereVs := {v ∈ V(G) | σ(v) = s} for s ∈ {+,0,−}; let G+, G0, and
G− denote the subgraphs ofG induced byV+, V0, andV−, respectively.

For the following discussion we have to introduce the notion of coline cycles:

Definition 5.1 (Coline Cycle). LetM = (E,F) be an OM with rank(M) ≥ 2 and let
G be the cocircuit graph ofM with associating bijectionL: V(G)→ C. Let {v,w} ∈
E(G) be an edge, then we call(L(v) ◦L(w))0 ⊆ E the coline of{v,w}. Let U ⊆ E be
a coline. The edges inE(G) whose coline isU form a cyclec(U ) in G which we call
the coline cycle of U.

The following characterization of localizations of cocircuit graphs is due to Las
Vergnas [18], [4]:

Theorem 5.2. Let G be the cocircuit graph of an OMM, given with the set of all
coline cycles of G, and letσ : V(G) → {+,0,−} be a signature of G. Thenσ is a
localization of G with respect toM if and only if for every coline cycle c in G one of
the following is valid:

(I) σ(v) = 0 for every vertexv in c.
(II) There are two verticesv andv′ in c withσ(v) = σ(v′) = 0 such thatv andv′

divide c into two paths c+ and c− of the same length which connectv andv′,
and, for every vertexw in c different fromv andv′, σ(w) = + if w is in c+ and
σ(w) = − if w is in c−.

(III) Same as(II) except thatσ(v) = + andσ(v′) = −.

We refer to I–III as the three possibletypesof a coline cycle (see Fig. 5 for an
illustration). It is not difficult to see that a single element extension of a uniform OM
is again uniform if and only if the corresponding localization of the cocircuit graph has
V0 = ∅, i.e. every coline cycle has type III.
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Fig. 5. The three possible types of a coline cycle.

We conclude this section with the following lemma which is important for some of
the algorithms in the next section:

Lemma 5.3. Let G be the cocircuit graph of some OM and letσ : V(G)→ {+,0,−}
be a localization of G. Then G+ (and also G−) is a connected subgraph of G.

For the proof of the lemma we need the following result from [11] and [2]:

Lemma 5.4. LetM = (E,F) be an OM with cocircuit graph G and associating
bijectionL: V(G) → C. For an arbitrary element e∈ E let V+e denote the set of
vertices withL(v)e = +. Then the subgraph of G induced by V+e is connected.

Proof of Lemma5.3. LetG be the cocircuit graph of an OMM = (E,F) with as-
sociating bijectionL: V(G) → C, and letσ : V(G) → {+,0,−} be a localization of
G andV+ corresponding toσ . The localizationσ defines a single element extension
M′ = (E∪{ f },F ′)with new elementf . Consider the cocircuit graphG′ ofM′ with as-
sociating bijectionL′: V(G′)→ C ′. Let V+f denote the set of vertices withL′(v) f = +.
By Lemma 5.4, the subgraph ofG′ induced byV+f is connected. For anyv,w ∈ V+

there are uniquely determined verticesv′, w′ ∈ V(G′) such thatL′(v′)E = L(v) and
L′(w′)E = L(w), and thenL′(v′) f = L′(w′) f = +, i.e.v′, w′ ∈ V+f . Hence there exists
a pathv′ = u′0, . . . ,u

′
k = w′ in G′ connectingv′ andw′ with u′i ∈ V+f for i ∈ {0, . . . , k}.

For everyu′i there is a uniquely determinedui ∈ V(G) such thatL(ui ) = L′(u′i )E,
and thenσ(ui ) = +; furthermore,{u′i−1,u

′
i } ∈ E(G′) implies {ui−1,ui } ∈ E(G) for

i ∈ {1, . . . , k}: v,w are connected withinV+, henceG+ is connected. The connected-
ness ofG− follows by symmetry.

Definition 5.5 (Weak Localization). LetG be the cocircuit graph of an OMM with
associating bijectionL: V(G) → C. For every vertexv ∈ V(G) we call the vertexv
determined byL(v) = −L(v) the antipode ofv. We call a signatureσ of G a weak
localization of Gif σ(v) = −σ(v) for every vertexv ∈ V(G) andG+ (and by symmetry
alsoG−) is connected.

It is clear from Theorem 5.2 and Lemma 5.3 that every localization of a cocircuit graph
is also a weak localization, but obviously not every weak localization is a localization
(fails already for rank 2 and a ground set of three elements).
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6. Generation of Localizations of Cocircuit Graphs

In this section we describe how localizations of cocircuit graphs can be generated. This
can be used as part of an incremental method similar to that described in Section 4.
A difference in the methods comes from the fact that cocircuit graphs—in contrast to
tope graphs—are not sufficient to characterize the isomorphism classes of OMs [11]; we
discuss a possible solution of this problem below. Then we restrict further discussions to
algorithms for the generation of all localizations in a given cocircuit graph, presenting
two algorithms which are similar to the algorithms in Section 4 and a third method which
is quite different.

We first address the question of how OMs, represented by sets of cocircuits, can be
checked for being isomorphic. Consider an OMM with cocircuit graphG, then the
associating bijectionL: V(G) → C induces amatroid label L: V(G) → 2E on the
vertex set ofG by L(v) := L(v)0. It is known [11], [2] that the cocircuit graph of an
OM together with its matroid label determines the reorientation class of the OM, and
therefore we know that two OMsM = (E,F) andM̃ = (Ẽ, F̃) are isomorphic if and
only if the corresponding cocircuit graphsG and G̃ with matroid labelsL and L̃ are
isomorphic in the following sense: there exist a graph isomorphismϕ: V(G)→ V(G̃)
and a bijectionπ : E → Ẽ such thatπ(L(v)) = L̃(ϕ(v)) for all v ∈ V(G). This leads
to the corresponding algorithmic solutions.

The rest of this section discusses three methods for the generation of localizations
in a given cocircuit graph. The main idea of the first two methods is to generate first
all weak localizations and then to test these signatures for being localizations using the
characterization of Theorem 5.2. As for the generation of weak acycloidal signatures
in tope graphs the property that the subgraphsG+ and G− are connected graphs is
essential, and in fact this leads to algorithms WEAKLOCALIZATIONSREVERSESEARCH

and WEAKLOCALIZATIONSUPTOISOMORPHISMwhich are similar to the algorithms dis-
cussed in Section 4, therefore we do not discuss these algorithms in detail. However,
the characterization of localizations of cocircuit graphs as formulated in Theorem 5.2
offers a more structured approach to localizations than was possible for tope graphs:
we may try to assign to every coline cycle in a given cocircuit graph a sign pattern of
type I, II, or III in a consistent way. We do this using a simple backtracking method,
which leads to a third algorithm LOCALIZATIONSPATTERNBACKTRACK as discussed in
the following.

Let C be a set of cocircuits of an OMM = (E,F). As described in the previous
section, we can compute inO(n3`) elementary arithmetic steps its cocircuit graphG
and an associating bijectionL: V(G) → C, when setting̀ := |E|, m := E(G), and
n := V(G) = |C|. Then compute the set{c1, . . . , cs} of all coline cycles ofG, where
every cycleci is represented as a list of vertices{vi

1, . . . , v
i
mi
} which is ordered such that

{vi
j−1, v

i
j } is an edge for allj ∈ {2, . . . ,mi }, wheremi is the length of coline cycleci .

This computation costs at mostO(mǹ ), i.e. not more thanO(n3`) (note that
∑

mi = m
ands ≤ m ≤ n2). For a signatureσ of G let σi denote the restriction ofσ to the vertex
set of cycleci . Theorem 5.2 implies thatσi has one of three types, more precisely one
of 2mi + 1 patterns, which we encode in a numberpi ∈ {0, . . . ,2mi } as follows (set
vi

mi+1 := vi
1):
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pi = 0 σi is of type I

pi = 2 j for j ∈ {1, . . . ,mi } σi is of type II andσ(vi
j ) = 0, σ(vi

j+1) = +
pi = 2 j − 1 for j ∈ {1, . . . ,mi } σi is of type III andσ(vi

j ) = −, σ(vi
j+1) = +

Our algorithm will set allpi (and by thisσi ) for i ∈ {1, . . . , s} in a consistent way,
i.e. such that for every vertexv ∈ V(G) the sign ofσi (v) is the same for all colinesi
which containv. Assume that for a set of indicesI ⊆ {1, . . . , s} we have chosenpi for
all i ∈ I (in a consistent way), and it remains to choosepi for i 6∈ I . Obviously, the
patternspi for i ∈ I restrict the possibilities for the remaining choices. Consideri 6∈ I :
For some of the vertices in the coline cycleci the signs may be determined by previously
fixed patterns of coline cycles which intersectci , and therefore only some (or possibly
none) of the 2mi + 1 patterns remain. We call these directly computable restrictions
the first-order consequences implied by pi for i ∈ I . These first-order consequences
will usually determine the signs of vertices on cyclesci with i 6∈ I which were not set
before, and these new signs imply further restrictions for thepi for i 6∈ I , and so on.
The computation of implied restrictions can be continued recursively and will finally
lead to what we callthe second-order consequences implied by pi for i ∈ I . Although
the second-order consequences are important in practice, we simplify the following
discussion of our algorithm by restricting to first-order consequences.

We describe in the following an algorithm LOCALIZATIONSPATTERNBACKTRACK which
serves as a concrete variant of our method. This algorithm is quite simple and rather effi-
cient, but it can be improved (e.g. using second-order consequences or more sophisticated
data structures). We assume that all coline cyclesci of the given cocircuit graphG have
been computed as described above. The goal is to enumerate all localizations ofG
by enumerating all consistent choices(p1, . . . , ps) with pi ∈ {0, . . . ,2mi }. Consider
I ⊆ {1, . . . , s} as a set of indices for which the correspondingpi have been fixed (in
the beginningI = ∅). The first-order consequences implied bypi for i ∈ I restrict the
possible choices of everypi with i 6∈ I to one of the following cases:

(P1) All 2mi + 1 possibilities.
(P2) A range [p, p′] ⊆ {1, . . . ,2mi } of possibilities forp, p′ ∈ {1, . . . ,2mi } with

p, p′ odd, where [p, p′] := {p, . . . , p′} if p ≤ p′ and [p, p′] := {p′, . . . ,2mi ,

1, . . . p} otherwise.
(P3) The choice is one of 0, 2j , 2 j +mi for j ∈ {1, . . . ,mi /2}.
(P4) The only choice is 2j for j ∈ {1, . . . ,mi }.
(P5) The only choice ispi = 0.
(P6) There is no feasible choice.

An important element in the following algorithm is the augmentation of the setI of
fixed patterns by an additional elementi ∗; then the information of the possible choices
has to be updated. For this a matrixA of sizes× s is computed (once at the beginning
of the algorithm, which will cost at mostO(ns2) operations) such thatAii ∗ = 0 if ci

andci ∗ have no vertex in common ori = i ∗, otherwiseAii ∗ = j > 0 such thatvi
j is

on ci ∗ . We call A a coline adjacency matrix. It is not difficult to see that then an update
of the first-order consequences fromI to I ∪ {i ∗} needs for everyi ∈ {1, . . . , s} only a
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Fig. 6. Algorithm LOCALIZATIONSPATTERNBACKTRACK.

constant number of operations. It can be seen that for the enumeration of coline cycle
patterns a coline adjacency matrixA and a list giving all the lengthsmi of the coline
cycles is sufficient (we do not need an explicit description of the cocircuit graph or the
coline cycles).

It remains to discuss the order in which we fix the patternspi , and this is of great
importance with respect to the efficiency of the algorithm. IfI = ∅ we choose any
i ∈ {1, . . . , s} with maximalmi (i.e. a longest cycle). If∅ 6= I $ {1, . . . , s}, let I ∗

denote the set of alli 6∈ I for which ci intersects at least one coline cycle fromI (I ∗ is
not empty [11]); then we choosei ∗ ∈ I ∗ such thatpi ∗ has a minimal number of possible
choices with respect to the first-order consequences implied byI . We call this adynamic
ordering. This finally leads to the algorithm LOCALIZATIONSPATTERNBACKTRACK which
is summarized in Fig. 6.

The algorithm LOCALIZATIONSPATTERNBACKTRACK is much more efficient than all
the previous algorithms for the generation of OMs described in this article, which is also
observed from the performance of implementations. With the current implementations1

all isomorphism classes of oriented matroids up to|E| = 8 have been computed in any
rank, up to|E| = 9 in any rank exceptr = 4,5,6, and the two longest times for these
computations were 4.1 hours for|E| = 8, r = 4 and 5.6 hours for|E| = 9, r = 3
on a Sun Sparc Ultra-60 using one processor at 360 MHz. Also considering only first-
order consequences instead of second-order consequences did not cause many infeasible
situations in the backtracking method, at least for a small size of ground sets (e.g. for
|E| ≤ 6 and any rank the number of infeasible cases was always less than 10% of the
number of localizations, and for larger instances this also increases only a little).

1 For details and access to data see http://www.om.math.ethz.ch.
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Whereas the first four algorithms described in this article do not seem to be similar to
previously known methods for the generation of OMs, the algorithm LOCALIZATIONS-
PATTERNBACKTRACK turned out to be related to an algorithm of Bokowski and Guedes
de Oliveira [7]. At first, the two algorithms appear to be rather different. While we use
cocircuits and cocircuit graphs, the OM representation in [7] is based on the chirotope
axioms and concentrates on uniform OMs. This leads to different data structures in the
algorithms (see below). Nevertheless, the two algorithms are closely related when in-
terpreted as algorithms in dual settings, namely hyperplane arrangements versus point
configurations: Localizations of cocircuit graphs correspond to hyperline configurations
in [7] as we can consider (halves of) coline cycles and hyperlines (or lines) as being
equivalent under dualization. Then patterns of coline cycles as introduced for algo-
rithm LOCALIZATIONSPATTERNBACKTRACK and gap positions as used in the algorithm
in [7] coincide. Also the basic idea of how the patterns (or gap positions) are fixed is
similar.

Comparison of the algorithms shows that both are based on similar algorithmic con-
cepts, however, there are also some important differences. In particular, while the al-
gorithm in [7] stores both the set of colines and that of bases signatures, our algorithm
carries the colines only. Furthermore, the colines are represented by their bases in [7]
that are not unique in non-uniform OMs, our algorithm stores the colines directly. For
generating non-uniform OMs, these differences can be substantial. Our algorithm LO-
CALIZATIONSPATTERNBACKTRACK is designed for the general case and the implementa-
tion is straightforward, independent from rank or uniformity. Furthermore we can, if we
want, easily restrict to the uniform case: we simply do not consider patterns of type I
or II, i.e. the only change in algorithm LOCALIZATIONSPATTERNBACKTRACK is that only
odd values ofpi are allowed for patterns.

Another remarkable difference is the order in which the fixing of the patterns (or gap
positions) is done: the algorithm in [7] uses a fixed order of hyperlines, our algorithm
chooses the next colinei ∗ 6∈ I according to the first-order consequences of the choices
in I , thus reducing the amount of enumeration and the number of infeasibilities. This is
possibly the reason why the use of second-order consequences was a crucial improvement
from earlier algorithms in [7]. We agree that second-order consequences are important as
they reduce infeasible cases considerably; in the case of rank 3 OMs they even eliminate
all infeasibilities (which was already noted in [7]). However, our experience shows
that even without second-order consequences the performance can be good because the
dynamic ordering tends to eliminate infeasible cases efficiently.

A comparison of the efficiency of the two algorithms would be very tentative at the
moment, as the implementations are too different to be compared directly. More detailed
comparisons of the OM generation algorithms will be a basis for further investigations
and improvements.
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