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SUMMARY

Overpressure build-up is studied when the main cause for porosity reduction is
cementation of the pore space sourced locally. The average porosity reduction for
siliclastic sediments is modelled with nth-order kinetics. It is shown that the overpressure
in one layer at a constant depth will decrease exponentially with time in the case of
first-order kinetics for the porosity reduction. The overpressure is studied in one layer
subjected to cementation during constant burial along a thermal gradient. A small over-
pressure build-up is shown above the window for cementation, with a steep rise in
overpressure in the upper part of the window. The overpressure build-up is then seen to
decrease rapidly towards the end of the window for cementation. Overpressure build-up
is also studied when cementation is the main cause for porosity reduction in the entire
column of sediments during deposition and burial. The overpressure regime charac-
terized by gravity numbers larger than one is studied. This regime corresponds to low or
moderate overpressures in the case of mechanical compaction. Cementation is shown to
imply a steep pressure build-up in the window of cementation, which will easily exceed
the lithostatic pressure. The porosity loss due to cementation is seen to have a strong
impact on the permeability, which leads to the formation of a pressure seal. Although
most of the potential for fluid expulsion is exhausted below the seal, because most of the
porosity is cemented up, the permeability of the seal is sufficiently low for hydro-
fracturing to take place. This scenario is consistent with overpressure observations in

many wells.
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1 INTRODUCTION

Cementation of the pore space leads to expulsion of the pore
fluid. The cementation process consists of the precipitation of
minerals in the pore space, with the minerals then displacing
the pore fluid. Furthermore, the permeability is reduced when
porosity is lost. Cementation processes are therefore believed to
be an important cause for pressure build-up in sedimentary
basins because they imply both the expulsion of fluid and the
formation of seals (Bjorkum & Nadeau 1996, 1998; Osborn &
Swarbrick 1997; Hunt 1990; Powley 1990).

Pressure—depth trends often show a transition from hydro-
static fluid pressure to almost lithostatic fluid pressure over
a depth interval that is less than 1.5 km (Leonard 1993;
Gaarenstrom 1993; Darby et al. 1996; Bjorkum & Nadeau 1998).
The characteristics of the fluid pressure and the transition zone
are shown in Fig. 1. The pressure is close to the hydrostatic
pressure above the transition zone, it rises steeply towards the
lithostatic pressure in the transition zone, and it follows a
gradient which is close to the hydrostatic pressure gradient
below the transition zone. Fig. 1 also shows the characteristics
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of the pressure transition zone as overpressure, which is the
fluid pressure minus the hydrostatic pressure. The overpressure
is therefore bounded by zero and the lithostatic pressure minus
the hydrostatic pressure, where the later pressure is called
the excess lithostatic pressure. (See Appendix A for a precise
definition of the excess lithostatic pressure.) The aim of this
paper is to explore cementation of the pore space as a possible
explanation for the development of pressure transition zones.

Overpressure build-up has traditionally been modelled using
porosity as a function of effective vertical stress, an approach
that has been successful in soil mechanics. This kind of porosity
reduction is called mechanical compaction, and it has been
shown by several authors to model overpressure build-up
during the rapid burial of low-permeability sediments (Gibson
1958; Bredehoeft & Hanshaw 1968; Smith 1971; Sharp 1976;
Sharp & Domenico 1976; Bethke & Corbet 1988; Lerche 1990;
Luo & Vasseur 1992; Audet & Fowler 1992; Wangen 1992,
1997). Compaction computed as a function of effective stress is
appropriate for the youngest and uppermost sediments. How-
ever, it is not clear how well suited this concept is for lithified
(cemented) rocks at a greater depth. Some authors argue that
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Figure 1. A pressure transition zone is shown as fluid pressure to the
left and overpressure to the right. The overpressure is the fluid pressure
in excess of the hydrostatic pressure. The fluid pressure is close to
the hydrostatic pressure above the transition zone, it rises towards the
lithostatic pressure in the transition zone, and it follows a pressure
gradient that is close to the hydrostatic pressure below the zone. Note
that a fluid pressure gradient that is parallel to the hydrostatic pressure
corresponds to an overpressure gradient that is vertical.

chemical processes are more important for the porosity loss
when the sediments become lithified (Dewers & Ortoleva
1990; Oelkers et al. 1996; Bjorlykke & Hoeg 1997; Bjorkum &
Nadeau 1998; Bjerlykke 1999a,b), and that the process is less
controlled by pressure (or effective stress) than temperature.

Several alternatives to mechanical compaction have been
studied. One simple approach is to model overpressure build-
up during burial when the porosity is assumed known as a
function of depth (Wangen 1997). The exponentially decreasing
porosity with depth observed by Athy (1930) is an example of
such a porosity—depth function. Another alternative that has been
studied is the compaction of sediments assuming viscoelastic/
viscoplastic behaviour (Birchwood & Turcotte 1994; Schneider
1996; Fowler & Yang 1999).

The possibilities for the cementation of pore space to cause
a build-up of pressure are studied here with simple models. A
major challenge with such modelling is the cementation part.
Mineral dissolution and reprecipitation in the pore space are
very complex processes, with many poorly understood aspects.
Such processes are therefore difficult to model (Lichtner 1985,
1988). The minerals dissolved in one place can be transported
with the fluid to other places, where they are precipitated. This
is typical for most common minerals acting as a cement, for
instance carbonates, which can be sourced both locally and
distantly. A general approach to cementation modelling would
therefore need to couple the mineral transport to the fluid flow.
Instead of attempting to model all aspects of the cementation
process, we restrict ourselves to cement sourced locally, which
is a reasonable assumption for at least quartz cement (Bjorkum
1994, 1996). We simply assume that the cementation process can
be modelled as an nth-order Arrhenius law for the rate of change
of porosity. This model was suggested for quartz cementation
sourced locally by Wangen (1999).
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Three simple models are studied where pressure build-up is
caused by the cementation of the pore space. The first model
considers fluid expulsion and pressure build-up in a sandstone
layer at a given depth. The second model does the same for a
sandstone layer during burial. The third model goes further
and considers cementation as the main cause of pressure build-
up in an entire sedimentary column during burial. This model
is based on an ‘average’ lithology, where the cementation
process is still assumed to be an nth-order Arrhenius law. The
cementation model originally suggested for sandstones is then
extrapolated to a model representing an ensemble of sediments
including sandstones, siltstones and shales. It is possible to
include shales in such an average because shales will normally
lose most of their porosity at shallow depths due to mechanical
compaction. Shales are therefore assumed to be less important
fluid reservoirs than sandstones. Hermanrud ez al. (1998) did
not observe any relationship between overpressure and porosity
in shales in the Norwegian Continental Shelf at temperatures
greater than 110 °C. They suggested that thermally controlled
mineral reactions were responsible for the porosity reduction at
temperatures greater than 100 °C. This diagenetic effect is con-
sidered to be accounted for in the model for porosity reduction.
The Arrhenius parameters are therefore assumed to represent an
average lithology, rather than a sandstone. Shales are important
for the average permeability of an ensemble of lithologies. Shales
are accounted for by the permeability function, which relates
diagenetically altered porosity to permeability. Shales will also
have their permeabilities strongly reduced by diagenetic illite
formation at temperatures as high as 150 °C (Bjerkum & Nadeau
1998). This type of diagenetic process in shales is not a part of the
model. Although the third model is at best a crude description
of the pressure build-up caused by diagenetic alterations of the
sediments, it nevertheless captures the transitional zone for low
to high overpressure. This is an essential feature of fluid pressures
in many sedimentary basins (Bjerkum & Nadeau 1998).

The use of one lithology to represent an ensemble of
lithologies is quite common because it allows for analytical
considerations. Examples of such models are those of Gibson
(1958), Bredehoeft & Hanshaw (1968), Smith (1971), Sharp
(1976), Sharp & Domenico (1976), Bethke & Corbet (1988),
Lerche (1990), Luo & Vasseur (1992), Audet & Fowler (1992),
Lamée & Guéguen (1996), Wangen (1992, 1997) and Fowler &
Yang (1998, 1999).

This paper is organized as follows. The gravity numbers char-
acterizing overpressure regimes and the cementation model are
reviewed first. The overpressure build-up due to the cementation
of a single layer kept at a constant depth is investigated, and
then the same is done for a layer during constant burial along
a constant thermal gradient. The fluid expulsion rates out of a
layer during burial are then estimated. Finally, the overpressure
build-up due to cementation of an entire 1-D column is
calculated during burial.

2 CHARACTERIZATION OF
OVERPRESSURE BUILD-UP BY THE
GRAVITY NUMBER

The overpressure build-up in sedimentary basins can be
characterized by the (dimensionless) gravity number,

_ kps—p)g M
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where £ is the average permeability of the sediments, u is the
viscosity, w is the burial rate, and ps and p¢ are the density of
the sediment matrix and the fluid, respectively. A gravity number
Ny=1 was shown by Audet & Fowler (1992) and Wangen
(1992) to define a transitional regime between low and high
overpressures. The regime N,>»1 yields low overpressures,
which means that the fluid pressures are close to the hydrostatic
pressure. The regime N,« 1 yields high overpressures, which
corresponds to fluid pressures close to the lithostatic pressure.
The gravity number can be interpreted in terms of a maximal
Darcy velocity during burial relative to the burial rate. The
maximal Darcy velocity, obtained when the fluid pressure
is equal to the lithostatic pressure, is approximately vpy.=
(klu)(ps— pe)g. High overpressure, given by the regime Ng«l,
is then seen to be the same as vy,./w<« 1. High overpressure
develops when the Darcy velocity given by a fluid pressure
gradient parallel to the lithostatic pressure gradient is insufficient
to keep pace with the burial rate. On the other hand, if the
lithostatic pressure gradient yields Darcy velocities that are
much larger than the burial rate, then a low pressure gradient is
sufficient to provide a Darcy velocity that can keep pace with
the burial rate.

Wangen (1997) showed that the pressure build-up could
easily reach far beyond the lithostatic pressure during burial for
N, « 1 when the porosity was given as a function of depth. This
regime therefore leads to hydrofracturing. It was suggested in
Wangen (1997) that the average permeability of hydrofractured
sedimentary rocks during burial corresponds to Ny=1.

3 POROSITY EVOLUTION CAUSED BY
CEMENTATION

The rate of change of porosity can be written as

9 k(SO 6

when precipitation is controlled by the degree of super-
saturation,

 (m—m*)
=

, (©)

for one mineral cement species, for instance quartz. The
concentration of the mineral cement in the pore fluid is m and
the equilibrium concentration is denoted m®4. The coefficient k¢
(mol m~2 s~ ') is the forward reaction rate of the mineral
cement, S(¢) is the porosity-dependent specific surface area for
precipitation (m? m~3), and Uq (m® mol ') is the molar volume
of the mineral cement. The rate k¢(7') is given by an Arrhenius
law,

Ey
ki=A - — 4
r feXp( RT) , “4)
where A; (mol m~? s~ ') is the Arrhenius prefactor and Er
(kJ mol ="' K~} is the activation energy. The temperature 7T is
given in Kelvins. The specific surface as a function of porosity
is assumed to be a simple power law in the porosity,

G Q — ¢c "
Ste=5iS@). where Sio= (2= . 5)
(bO - ¢c
and where the exponent » must be fitted to a particular porous
medium. The parameter S, (m> m ™) is the specific surface at
the initial porosity ¢o, and ¢. is a lower boundary for porosity

reduction, where the pore space of the medium becomes
disconnected. The specific surface of the medium becomes zero
when the pores become disconnected. This porosity function
implies that the expression for the rate of change of porosity
becomes an nth-order Arrhenius law, given that the degree of
supersaturation can be assumed either constant or given in the
form of an Arrhenius law. For the latter case, where the degree
of supersaturation is given in the form of an Arrhenius law,
the product of the two Arrhenius laws (the supersaturation
and the reaction rate) can be rewritten as a constant degree
of supersaturation times one Arrhenius law for the reaction
rate (Wangen 1999). The new reaction rate then has modified
Arrhenius parameters accounting for the Arrhenius behaviour
of the degree of supersaturation. It should be noted that no
cementation will occur unless there is supersaturation.

The expression (2) for the rate of change of porosity has been
used to model quartz cementation of sandstones, when silica is
sourced locally from stylolites or other quartz—mica contacts.
There is strong petrographic evidence for mica being a catalyst
for the dissolution of quartz (Oelkers et al. 1992, 1993, 1996;
Bjorkum 1994, 1996; Walderhaug 1994a,b, 1996; Aase et al
1996). This work also shows that the precipitation step is the
slowest step in the process. Dissolution of silica at stylolites or
at other quartz—mica contacts therefore maintains a super-
saturation of silica that is almost uniform locally, as long as
diffusion can keep pace with precipitation. Petrographic work
has estimated the degree of supersaturation to be ~0.01 in
the temperature window where quartz cementation operates
(Aase et al. 1996). Porosity predictions based on this model
have been made by Oelkers et al. (1996), Walderhaug (1996),
Bjorkum et al. (1998) and Wangen (1998, 1999). Oelkers et al.
(1996) solved the diffusion-reaction equation for the silica
supersaturation between the stylolites numerically in order to
obtain the precipitation rates of quartz. Bjerkum et al. (1998)
extended this model to porosity predictions in the presence of
hydrocarbons, and compared the porosity predictions to a set
of observation. Walderhaug (1996) computed porosity reduction
in sandstone reservoirs based on an empirical expression for
the quartz precipitation rate as a function of temperature
(Walderhaug 1994a).

Wangen (1998, 1999) suggested analytical expressions for the
porosity evolution as a function of time and temperature in the
isothermal case and the case of a piecewise linear burial history.
These expressions are based on expression (2) for the rate of
change of porosity, which becomes an nth-order Arrhenius law
when the specific surface is given by the function (5). Eq. (2)
is straightforward to integrate in the isothermal case, and the
porosity as a function of temperature and time is (Wangen
1999)

_ 1/(1—n)
¢c+<¢o—¢c)<1 _d . ) cvqsokf(T)z) el
6(1) = ’
¢c+(¢o—¢c)exr>(— % cquokf(T)t) , n=1,
©)

where ¢, is the porosity at the percolation threshold. The pore
connectivity becomes zero at non-zero porosity in the region
of 3-5 per cent. Reduction of the porosity below the critical
porosity ¢. is therefore impossible, even though the cementation
process operates locally to just a few grains. The nth-order
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Arrhenius equation is difficult to integrate exactly in the case
of burial at a constant rate along a constant thermal gradient
dTldz,

dTr

T= TO +— wt 5 (7)
dz

where T, is the surface temperature and o is the burial rate.

However, there are good approximations, for example, that of

Wangen (1999):

e+ (¢ — b {1 —(1—m)Ng(F(T)— F(Ty))}/ =",

HT)= n#l, (8)

¢+ (¢ — ) exp { —Np(F(T)—F(To))}, n=1,
where F(T) is the function
F(T)=(TITy)* exp(— T¢/T), )
with Ty= E;/R and where the number Ny is

NB= CUqS()AfEf ' (10)
¢oRw (dT1dz)

The exponent n in function (5) controls how fast the specific
surface approaches zero. Different regimes exists depending on
whether n<1 or n>1, and it is seen that for n<1 the porosity
will reach ¢. within a finite time or within a finite temperature
range during burial. On the other hand, when n>1, ¢ will then
approach ¢. asymptotically with time and temperature during
burial (Wangen 1999).

The two expressions (6) and (8) for the porosity reduction
caused by cementation as a function of time and temperature
apply for a pore space of well-sorted grains. In particular, the
initial porosity and the initial specific surface will vary greatly
over short distances, as seen from well logs. The expressions (6)
and (8) must be averaged over an ensemble of different grain
sizes in order to represent tens of metres of sedimentary rocks.
The temperature of an interval of sedimentary rocks can be
considered uniform as long as the temperature difference
between the top and the bottom of the interval is less than
~1 °C. An ensemble average for the porosity in the interval
can then be obtained in a direct manner,

HT)=> wio(T), (11)

1

where w; is the fraction of each porosity sample ¢; in the
ensemble. (A bar above a symbol denotes an average quantity.)
An alternative to the weighted mean, given by the porosity
function (11), is to fit the activation energy and the initial
specific surface for one single porosity function to obtain a best
match to the porosity evolution of the ensemble.

A reduction in porosity also leads to a reduction in
permeability. The average permeability of the ensemble is not
easily expressed by the average porosity, because some samples
in the ensemble will lose their porosity much earlier than
other samples, which can have a strong effect on the average
permeability. The average vertical permeability will be strongly
reduced in an interval if a thin subinterval therein becomes
completely cemented, while the average porosity of the interval
may be only slightly reduced.

The pressure build-up caused by cementation is found to be
strongly connected to the sealing effect of porosity approaching
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the percolation threshold ¢.. However, it is uncertain how well
the porosity predictions given by eqs (6) and (8) represent the
porosity reduction that takes place close to the percolation
threshold (Sahimi 1994).

The use of averaged porosity functions is unavoidable when
dealing with overpressure modelling on a basin scale, because
of the large size of the system. Sedimentary rocks are so hetero-
geneous that they are very difficult to model, except when their
properties are represented by averages.

4 OVERPRESSURE WITHOUT BURIAL

The first and simplest situation to be considered is the
expulsion of fluid from a layer undergoing cementation in a
basin during a pause in sedimentation. The layer is at a depth z
and the overlying sediments have an average permeability &.
The vertical Darcy velocity (volume flux) out of the layer in a
1-D column is then

0o
Ucem = _h E B} (12)

where / is the thickness of the layer undergoing cementation.
This Darcy velocity can be expressed by means of the average
permeability and the overpressure gradient p/z, where p is the
overpressure in the layer. The overpressure p is then

__uzl16_¢>
Tk oot

(13)

where u is the viscosity of water. The expression for d¢/ot is
given by eq. (2) and the isothermal porosity evolution is given
by eq. (6). The overpressure p can therefore be written as

P =poexp(—1lto) (14)
for n=1 (first-order kinetics), where

h
_QuEhnd 1 %o

: = 15
tOk C UqS()kf(T) ( )

Po
The initial porosity ¢, here is the porosity at =0 in the
reservoir layer. It is seen from expression (14) that the maxi-
mum overpressure is given by py at =0, and that the over-
pressure then decays exponentially with a half-life ¢, , =, log(2).
In order to evaluate the pressure, it is instructive to compare it to
the lithostatic pressure. Recall that the overpressure is the pore
fluid pressure minus the hydrostatic pressure; the overpressure
will therefore be compared with the lithostatic pressure minus
the hydrostatic pressure, which is termed the excess lithostatic
pressure. The excess lithostatic pressure, denoted o¢’, can be
written as o' =Apg(1—¢)z, where Ap=ps—p; is the density
difference between the sediment grains and the fluid, and ¢ is
the average porosity down to the depth z. See Appendix A
for details of how the excess lithostatic pressure is calculated.
The overpressure coefficient py, measured relative to the excess
lithostatic pressure, is then

o= P
" tokApg(1—¢)’

where a hat above a symbol denotes a dimensionless quantity.
Notice that the depth, z, to the reservoir layer drops out of
the dimensionless pressure py. The fluid pressure is initially at the
lithostatic pressure when po=1. The condition for pressures

(16)
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bounded above by the lithostatic pressure is given as
kApg
Bopu(hito)

An equality in condition (17) implies pressures at the lithostatic
level. The form of the gravity number is recognized in condition
(17) for high overpressures, where h/t, replaces the burial rate.
The time constant #y needs to be calculated before condition (17)
can be used to estimate an upper bound on the permeability &.
This time constant is dependent on the temperature because of
the reaction rate kp(7'). This is seen in Fig. 2, where ¢, is plotted
as a function of temperature, based on the data in Table 1. The
time constant #, changes by more than four orders of magnitude
from 0 to 100 °C. At 100 °C, the time constant is ~1 Myr. The
direct implication of the temperature dependence in ¢, is that
overpressures generated by cementation decay much faster than
1 Myr at depths with temperatures larger than 125 °C.

It is seen from eq. (17) that p, reaches the lithostatic pressure
for to=1 Myr when k=1x10"' m?. The other parameters
in eq. (17) are as follows: #=70 m, $=0.3, u=1x10"> Pa s,
Apg=1x10*Pam~! and ¢,=0.315.

It is seen from eq. (15) that py is inversely proportional to #,
and that the pressure decays exponentially on a timescale ¢,.
A ‘short’ t, therefore implies a ‘high’ overpressure lasting a
‘short’ time, while a ‘long’ 7, implies a ‘low’ overpressure lasting
a ‘long’ time.

(1-¢)>1. a7

5 OVERPRESSURE IN A LAYER
DURING BURIAL

The model in the preceding section can be refined by con-
sidering a layer during burial. The depth down to the layer is
now a linear function of time, z=wt. The temperature also

6.00

4.00

2.00

0.00

log,(ty) and ty, in units Ma

—2.00 . i . i . i .
0.0 50.0 100.0 150.0 200.0

temperature, [°C]

Figure 2. The characteristic time 7, for isothermal cementation is
plotted as a function of temperature.

increases linearly with time because the temperature gradient
is assumed constant (see eq. 7). An expression for the
overpressure, based on eq. (13), can be written as
uwth

p(T)= 7 cvgke(T)S(H(T)) (18)
where 7 is used instead of time. Note that time, temper-
ature and depth are all linearly related (see eq. 7). The porosity
as a function of temperature during constant burial is given

Table 1. The parameter set. The data for quartz kinetics are taken from Tester et al. (1994) (see Wangen 1998).
Bjorkum et al. (1998) used a specific surface area function S(¢)~ (¢ —0.035), which corresponds to n=1. The
degree of supersaturation c is taken from Aase et al. (1996). The diffusion coefficient of aqueous silica in pure
solution is based on data from the CRC handbook (Weast 1976).

Symbol Value Units Comment

Ay 24 mol m~2 s~ ! Arrhenius factor

E¢ 90 kJmol ' K~! Activation energy

R 8.314 mol kg™ !s7! Gas constant

¢ 0.01 - Degree of silica supersaturation
So 5x10° m? m~? Initial specific surface

n 1 - Specific surface exponent

Vq 24x 1073 m® mol ! Molar volume of quartz

w 50 m Myr~ Burial rate

do 0.3 — Initial porosity

Ty=E{/R 10 825 K

dTldz 0.03 ‘Cm™! Thermal gradient

a 900.7 - Parameter in approximation of F
b —66.9 - Parameter in approximation of F
ko 1x10°18 m? Permeability at ¢ =¢q

I 1x1073 Pas Viscosity

or 1000.0 kg m Fluid density

Ds 2000.0 kg m Sediment matrix density

P 0.05 - Critical porosity

m 3 - Permeability exponent

n 1 - Specific surface exponent
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by function (8), and it is inserted into the function for the
specific surface, which is a function of the porosity. The specific
surface as a linear function of porosity is considered (n=1).
The overpressure p is divided by excess lithostatic pressure,

a'=Apg(1—¢)wt, for easier evaluation. The overpressure
scaled with the excess lithostatic pressure can be written as

AT)=pof(T), (19)
where py is the constant of proportionality,
. phcvgSoAs
Po=ip

kApg(1—o)

and where f(T) is the temperature-dependent part of the
pressure,

(20)

70 = exp( = 3 = NPT~ F(T) ). ey

The function f(7'), which yields the pressure in the layer during
burial, is plotted in Fig. 3. From Fig. 3 it is seen that the over-
pressure increases with depth until some maximum, where it
decreases rapidly. The overpressure increases for temperatures
less than the maximum because the reaction rate increases
while the porosity remains a substantial fraction of ¢4. The
reaction rate still increases for temperatures above the maximum,
but the porosity becomes almost zero and f(7) therefore
decreases. In order to evaluate the maximum overpressure, it is
necessary to estimate the maximum of /(7). A reasonably good
estimate for the maximum is

exp(—1) ( Ty )2
S (Tax) = ® ’
Np Tmax Np(log (Np)+ b)2

where Ty, is the temperature where f(7') attains its maximum.
This estimate is derived in Appendix B, which also explains
parameters a and b. It is also shown in Appendix B that the
temperature Ty, is close to the temperature where the porosity

exp(—1)d?

(22)

1.20 : x : x : x :
5 L i
:
= 1.00
~—
o
f 0.80
o
=
T
o 0.60
N
o
—
oo
g 0.40
<
2
0.20
~~
%1
~—
e . . .
0.00 i . i i .
0.0 50.0 100.0 150.0 200.0

temperature, [°C]

Figure 3. The temperature-dependent factor f(7") (eq.21) of the
pressure in a layer during cementation. The function f(7) is shown
normalized by its maximum f( 7 ,.x)
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has decreased to half its initial value. From eqs (20) and (22),
the maximum overpressure relative to the excess lithostatic
pressure is then

P _Lqﬁoexp(—l) TtAT
"Ny (1-9) TR

(23)

where py is rewritten in terms of the numbers N, and Np. The
temperature difference across the reservoir, AT=(dT/dz)h, is
used in place of the reservoir thickness. It is now possible to
estimate how likely overpressure is in the layer during burial.
If we assume that Tax~100 °C, ¢g exp(—D/(1—¢)~1.5
and the thickness of the layer /i times the thermal gradient is
~8.5 °C, then we have prax~1/N,.

The maximum overpressure in the layer is seen to be
inversely proportional to N, The necessary condition for
large overpressures is then Ny« 1, and the overpressures will
correspond to fluid pressures close to the hydrostatic pressure
for Ny>»1. The gravity number is therefore a useful para-
meter for the characterization of pressure build-up in a layer
undergoing cementation.

6 FLUID EXPULSION RATES

The model for overpressure build-up in the previous section
did not consider other sources for fluid than what is expelled
from one reservoir layer during cementation. The overpressure
build-up could be larger if the reservoir layer drains fluids
expelled from layers below. The amount of fluid expelled from
the reservoir during burial is therefore compared with what
could be expelled from the sedimentary rocks below. The latter
fluid flux is estimated by assuming that the porosity below the
layer is known as a function of depth. The Darcy velocity in the
vertical direction is then (see Appendix C)

v=w(e—epot) - (24

The Darcy velocity out of a column of sediments during burial,
at the position where the void ratio is e, is seen to be pro-
portional to the burial rate and the difference between e and the
void ratio at the bottom of the column, eyo;. The fluid flux out
of the layer due to cementation, vcem, is given by eq. (12). This
flux can be expressed by means of the function f(7), just like
P(T) in eq. (19). The flux out of the layer due to cementation
relative to flux from below is then

Ucem ) g
v =N (e—evot) Tt S (25)

where the temperature difference across the layer is used
instead of the layer thickness. The maximum of the ratio veem/v
can be estimated by using expression (22) for the maximum of
the function f(T),

Ucem b0 Tt AT
—cem = 1) — . 2
( v )max =P ( ) (e - ebol) TI%]B.X ( 6)

The temperature T, is given by the estimate (B6). The
condition for the amount of fluid expelled from the reservoir
layer to be greater than what is expelled from the sediments
below iS (Ueem/V)max > 1. This condition becomes

AT > (e—ebor)70 °C @7

when Ty=10 825 K, Tiax=95°C and ¢o=0.5. Assuming
furthermore that (e —epo) ~0.15, it is seen that AT>10.5 °C
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for fluid expulsion from the reservoir layer to exceed what is
coming from below. This temperature difference across a layer
is equivalent to a thickness ~300 m when the thermal gradient
is 35°Cm~!. Judging from condition (27), it is therefore
possible that the cementation of a sandstone sequence a few
hundred metres thick could expel an amount of fluid com-
parable to that expelled from the entire column of sedimentary
rocks below.

7 CEMENTATION AS THE MAIN CAUSE
OF POROSITY REDUCTION

Another end-member for pressure build-up caused by cemen-
tation is the model where cementation is the only cause of
porosity reduction in the entire sedimentary column. The first-
order Arrhenius kinetics for porosity reduction is considered
as an average kinetics, which is calibrated to a wider range
of sediments than just quartzose sandstones. The Arrhenius
parameters are assumed to represent the average of a variety of
grain sizes dominated by siliclastic minerals. The porosity
functions (8) will represent the porosity in the entire column
of sediments. The porosity description now spans sandstones,
siltstones and shales. Shales are assumed to have lost most of
their porosity due to mechanical compaction at shallow depths.
Therefore, shales contribute less to the expulsion of fluids than
sandstones and siltstones at temperatures where cementation
starts to operate. However, shales are important with respect to
the average permeability of an ensemble of lithologies. The
effect of shales on the permeability is accounted for by the
permeability function, which yields an average permeability
from an average porosity.

Temperature is, as before, used instead of depth because
these two quantities are linearly related. Analytical expressions
for the overpressure are then possible for burial at a constant
rate along a constant thermal gradient.

The calculation of Darcy velocities and overpressures in
compacting basins is simplified when carried out in the com-
pletely compacted vertical coordinate, here denoted {, rather
than the real z-coordinate. The (-coordinate measures the
height of a point in the basin from the basement as porosity-
free rock, and it is therefore a Lagrange coordinate. This
Lagrange coordinate was previously used to study pressure
build-up (Wangen 1992, 1997). See also Appendix A, where the
excess lithostatic pressure is calculated using the {-coordinate.
The { height to the top of the basin (the {-coordinate of the
basin surface) is denoted {*.

The Darcy velocity in the vertical direction is also given
by expression (24) when the porosity (or the void ratio) is a
function of temperature during constant burial along a con-
stant thermal gradient (see Appendix C). The burial rate is now
constant when given as compacted (porosity-free) sediments,
and the thermal gradient is constant when measured along the
(-axis. In other words, both 0{*/0t and 0T/0( are constant. A
constant 07/0( implies that d7/0z is not constant, which is seen
in Fig. 4, where T is plotted as a function of depth, z. Fig. 4
shows that 07/0z is close to linear above the window for
cementation and below the window for cementation. That is
because ¢ ~ ¢, above the window and ¢ ~ ¢ below the window.
The computation of overpressure is now based on a constant
0T/0(, which implies that 07/0z in the number Ny (eq. 10) is
replaced by 07T/0(.

0.0

~10000 | \...... USRS SR L |
—20000 | I Lo A

~30000 | NG L |

depth, [m]

—4000.0 |

50000 | R S N N |

—6000.0 1 i . i . i .
0.0 50.0 100.0 150.0 200.0

temperature, [C]

Figure 4. Temperature plotted as a function of depth for 07/0(* =
0.043 °C m~'. The (-coordinate is related to the z-coordinate by
eq. (A3). (The porosity used to obtain z from ( is plotted in Fig. 8 for
n=1.)

Darcy’s law, expressed along the (-axis, combined with
expression (24) for the fluid flux at any position in the
sedimentary column, then yields

ap (1+e)uw
S S i sty PO 28
6C k(¢) (e ebot) > ( )
where k(¢) is a porosity-dependent permeability function.
(See Appendix C for a derivation of the fluid flux caused by
cementation during burial.) The permeability function is chosen
to be

k(¢)=ko

(1+e)(1 =) <¢—¢c>m 09)

(I+e0)(1 =) \¢o—¢c

where ko is the permeability at initial porosity ¢o. This
permeability function is basically a Kozeny-Carman type
of permeability function because k(¢)~(¢—¢.)” for small
porosities. Note that the permeability approaches zero when ¢
approaches the critical porosity ¢., which is consistent with ¢,
being the porosity at the percolation threshold. The factors
(I+e)/(1+ep) and (1 —¢o)/(1 —¢) in the permeability function
are numbers close to 1, and they are therefore not important for
the permeability. However, these factors are included because
they simplify the analytical treatment of the overpressure con-
siderably. Note that initial permeability k( and the permeability
exponent m are assumed to represent an ensemble of lithologies.
Although the Kozeny—Carman equation has normally been
used for sands and sandstones, it can also be applied to com-
pacted shales (Ungerer et al. 1990). Ungerer et. al (1990) used
m=13 for sandstones and m=>5 for shales, with a much lower
initial permeability k, for shales than for sandstones. Fowler &
Yang (1999) applied a Kozeny—Carman equation with m as
high as 8 for low-permeability sediments.
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The pressure is obtained by integrating eq. (28) from { to (¥,
after inserting the permeability function, which then yields

p=ar L (14 o) — ) ™

+(pe—(1 *¢c)€bot)(¢*¢c)_m) dg, (30)
where the constant ¢y is
oo = (LHe0)(do— Pe)" uw

! (—goky

Note that the last term in the integral becomes zero when the
basin becomes deep enough for ey =¢./(1 — ;). The pressure
is then

@30

p=a | (o090 " dc. (32)

where the factor (1+epo)~ 1 for ¢.<0.05. The integral over
the porosity in eq. (32) can be quite accurately approximated,
as shown in Appendix D. When the exponent in the specific
surface function is n=1, the overpressure can be written as a
function of temperature as

pRpo{%(m—1)NpF(T))—4(m—1)NpF(Ty))} - (33)

The function % is defined as
* 1

Y(x)= [ p exp (x) dx (34)
1

and the pressure coefficient pg is

_ (I+eo)(¢o — p)uanr Tt

PO 0= go)@T 00 koa (35)

When the exponent in the specific surface function is different
from 1, the solution for the pressure is

U

1
PO J - (14x)=D/@=D gy | (36)

vy
where the integration limits are v=(n—1)NgF(T) and
vo=m—1)NgF(Ty). The pressure coefficient py is given by
expression (35), and it is the same for both cases of the
exponent # in the specific surface function, n=1and n#1. The
integral in eq. (36) can be expressed in closed form for integer
exponents (m—1)/(n—1).

It is seen from expression (32) that the pressure is limited
above by a finite value when the exponent in the permeability
function is m < 1. However, if m > 1, it is seen that the exponent
in the solution (32) for pressure becomes negative, which leads
to a rapid pressure build-up once the porosity approaches
¢.. This is also seen from Fig. 5, where the solution (32) is
plotted for m=2, 3 and 4. This solution clearly shows how
pressure increases rapidly when the sediments enter the thermal
region where they become sealing, because the porosity is
brought close to ¢.. The permeability coefficient in this case is
ko=1x10"'® m% and the burial rate is 50 m Myr~". (All other
data are listed in Table 1.) The gravity number is N, =7.5, which
is consistent with the moderate overpressures in the upper part of
the basin.

The function ¥ in the solution (eq. 33) takes as its argument
the number v(T)=(m —1)NgF(T), which is a function of 7. The
function v(7) is plotted in Fig. 6 for a typical value of Np. It is
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Figure 5. The pressure given by eq. (32) is plotted for permeability
exponents m=2, 3 and 4. The other data are given in Table 1. The
porosity in this case is given by a specific surface exponent n= 1, which
is plotted in Fig. 8. Note that the pressure build-up takes place when
the porosity approaches the percolation threshold. The overpressure is
plotted as a constant from the point where the fluid pressure becomes
equal to the lithostatic pressure.

seen that v(T) is close to zero for T below the temperature
window for cementation and ~1 in the window; it then
increases rapidly for temperatures above the window. It is the
large increase in the argument v(7') of the function ¥ that yields
the large pressures for T"above the temperature window where
most of the porosity is lost.

4.0

logi(v(T)) [-]

—6.0 . i . i . i .
0.0 50.0 100.0 150.0 <200.0

temperature, [°C]

Figure 6. The argument function v(7)=(m—1)NF(T) is plotted as a
function 7 in °C for m=2 and Np=6.5 X 10"°, which are the values
used in Fig. 5.
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Figure 7. The pressure given by eq. (32) is plotted for specific surface
exponents n=1, 2 and 3, when the permeability exponent is m=3. The
other data are given in Table 1. The porosities for these three cases are
plotted in Fig. 8.

The overpressure build-up for three different values of the
exponent in the specific surface function, n=1, 2 and 3, is
shown in Fig. 7. The porosities for these exponents are shown
in Fig. 8. The large exponent, n=3, yields the smoothest
decrease in porosity towards ¢., and the overpressure build-
up therefore takes place over a larger depth interval. The
permeabilities corresponding to the porosities in Fig. 8 are
shown in Fig. 9. The permeabilities in Fig. 9 decrease until the
point where the fluid pressure reaches the lithostatic pressure,
which is where hydrofracturing takes place. From this depth

0.0
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—=2000.0
[
g

; —3000.0
<
o
0,
0]

© —4000.0

—5000.0

—6000.0 PR R N U R
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porosity, [—]
Figure 8. The porosity is plotted for the specific surface exponents
n=1, 2 and 3. All the other data that enter the porosity calculations are
taken from Table 1.
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—18.00
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Figure 9. The permeabilities corresponding to the porosities in
Fig. 8, when the permeability exponent is m=3 and the permeability
coefficient is kg=1x 10~ 1% m2.

and further down the permeabilities are plotted as constants. It
is seen from Fig. 9 that the permeability becomes as low as
1x1072—1x1072" m? at the point where hydrofracturing
takes place. This range of low permeabilities is compatible with
observed permeabilities for shales (Neuzil 1994). The porosities
are in the range 1-3 per cent above ¢. at the point where
hydrofracturing occurs. The amount of fluid left to be expelled
is therefore small.

The heterogeneous nature of sediments implies that some
sections of a sedimentary column will lose most of their
porosity by cementation before other sections. The average
vertical permeability over several sections will be dominated
by the most sealing sections. Cementation therefore leads to
pressure seals over beds that have preserved some of their
porosity, where these sealed beds become overpressured. The
importance of cementation as a pressure-generating mech-
anism is therefore partly due to the formation of seals, and not
just the fact that fluid is expelled by the process. Note from
Figs 5 and 8 that the pressure build-up takes place below the
depth where less than half the porosity is left. The reduction in
permeability is so strong that there is an overpressure build-up
even though there is only a little fluid left to be expelled, when
the porosity approaches ¢..

Fig. 9 shows that the fluid pressure below the sealing depth
interval are by no means limited by the lithostatic pressure.
Pressure build-up caused by the expulsion of fluids from beds
below seals must therefore be considered in association with
hydraulic fracturing of the seals. The only way the fluid pressure
can be limited by the lithostatic pressure (the overburden) is if
the seals have their permeability enhanced in some way, when
the fluid pressure approaches the lithostatic pressure. Hydro-
fracturing processes are not modelled here, although they are
closely associated with the formation of low-permeability seals
by cementation.

These results are similar to the results given in Wangen
(1997), where an analytical solution for the overpressure was
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given under the assumption of void ratio as an exponentially
decreasing function of depth. Such a porosity—depth function
was suggested by Athy (1930) and is still being used. The Athy
behaviour of porosity as a function of depth makes sense when
porosity is plotted as averages over thicker sequences. This is
therefore the kind of average porosity that will naturally come
out of numerical simulations. Although some sequences have
lost their porosity due to cementation, others will have their
porosities survive to larger depths. However, the computation
of permeability from such average porosities should be per-
formed with care, because the presence of even a thin cemented
sheet will make a large difference in the vertical permeability of
the formation.

8 CONCLUSIONS

The overpressure build-up caused by cementation of the pore
space has been investigated. Particular attention was paid to
the coupled processes of the expulsion of fluids caused by
cementation and the reduction in permeability caused by the
reduction in porosity.

It was shown that the overpressure decreases exponentially
with time in a single layer at a constant depth when porosity
reduction in the layer follows first-order kinetics. The half-life
for the overpressure is the same as the half-life of the porosity
reduction due to cementation. The initial overpressure is pro-
portional to the initial porosity in the layer and the layer thick-
ness and inversely proportional to the average permeability of
the sediments above the layer as well as the time constant for
the cementation process.

The overpressure build-up in a layer was then studied during
constant burial along a constant thermal gradient. The sediment
column above the layer was assumed to have the same average
permeability regardless of its thickness during burial. The over-
pressure in the layer during burial was shown to increase with
increasing rapidity of the kinetics, until a maximum was reached
at roughly the same depth where half the porosity is lost due
to cementation. From this depth and below, it was shown that
the overpressure decreases rapidly, despite faster kinetics at
higher temperatures during burial. This is because most of
the porosity is lost, which implies that the potential for fluid
expulsion is exhausted.

The fluid expulsion rates caused by the cementation of a
single layer (or formation) can under optimal conditions reach
or exceed the size of the expulsion rates of fluids expelled from
all layers below. The optimal conditions for fluid expulsion
take place right in the middle of the window for cementation.

Finally, the overpressure build-up in an entire sedimentary
column was studied during burial. Cementation was allowed
anywhere in the column, but it did not take place until a certain
depth because kinetics are too slow in the upper part of the
basin for cementation to be noticeable. The pressure build-up
was studied for gravity numbers larger than 1, which implied
that the upper part of the basin was low to moderately over-
pressured. This would have been the case for mechanical com-
paction in the upper part of the basin too, if it had been
accounted for. It was shown that there is a steep increase in
overpressure in the lower part of the window for cementation.
The overpressure build-up would easily exceed the lithostatic
pressure if it was not limited by the lithostatic pressure. This
large increase in overpressure over a short depth interval was
caused by both expulsion of fluid due to cementation and the
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strong reduction in permeability that takes place when the
porosity approaches the percolation threshold at the lower end
of the window for cementation. The overpressure below the
point where the overpressure exceeds the lithostatic pressure is
controlled by hydrofracturing, which enhances the permeability.
The permeability reduction caused by cementation is so strong
that the pressure build-up leads to hydrofracturing although
there are only small amounts of fluid left to be expelled.

Cementation as the main cause for porosity reduction, when
controlled by temperature, can therefore explain the pressure
transition zones observed. Furthermore, the interval where the
overpressure has its steepest rise towards the lithostatic pressure
is shown to be slightly below the centre of the window for
cementation.
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APPENDIX A:
PRESSURE

LITHOSTATIC

The lithostatic pressure, o, at depth z is the pressure due to the
total mass above z and can be written as

o= JO ((1—d)p, +dpp)g dz. (AD)

where the density of the sediment matrix and the density of
fluid are ps and py, respectively. The vertical position z=0 is
the basin surface; there is no water above the basin surface. The
fluid pressure is limited above by the lithostatic pressure.
The overpressure, which is the fluid pressure minus the hydro-
static pressure, is therefore limited above by the lithostatic
pressure minus the hydrostatic pressure. This pressure, denoted
o', becomes

o= JO (pe—pr)(1 —$(2g d= (A2)

and it is termed the excess lithostatic. Alternatively, the
excess lithostatic pressure is conveniently expressed in the
fully compacted coordinate, denote the {-coordinate, because
A{=(1—¢)Az. The {-coordinate measures the height of a given
z position down to the base of the sedimentary column as zero-
porosity rock. The base of the sedimentary column becomes
{=0. The {-coordinate is a constant for each grain deposited,
and it is therefore a Lagrangian coordinate. The relation between
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the {-coordinate and the z-coordinate is
.C* dc
¢ 1=00)”

where (* is the height of the entire sedimentary column
measured as porosity-free sediments from the base of the
column. The excess lithostatic pressure (eq. A2) can then be
written

o' =(ps—pp)(("—Dg. (A4)

The excess lithostatic pressure could also be expressed with real
depth and an average porosity, ¢, as

U,:(psipf)(lfqg)gz’ (AS)

where the average porosity down to the depth z is given as

()= J (A3)

i1 | e (A6)
Jo

APPENDIX B: TEMPERATURE WHERE
0¢l10T IS MAXIMUM

The rate of change of porosity d¢/0t reaches its maximum when
f(T) (eq. 21) reaches its maximum. It is convenient to replace
T by the variable x=T/T; and then study f(x). The exact
expression for f(x) is then

X

f=exp(— <N |

Xo

exp (—1/x) dx) , (B1)
where the integral in eq. (B1) is very well approximated by

X
J exp (— 1/x)dx~ F(x)— F(xo), (B2)
X
as long as x«1 (see Gorbachev 1975 for even better
approximations). The function F(x) is seen from eq. (9) to be
F(x)=x? exp(— 1/x). The maximum of f(x), given by the value
Xmax> Solves f'(x)=0, which is equivalent to

x2exp(—1/x)=1/Ng. (B3)

The value of F(xn,y) is therefore seen to be 1/Np. Furthermore,
F(x0) < F(xmax) for xq given by the surface temperature, and the
value f(xmax) can therefore be written as

S (¥max) = exp(—1/xmax — 1) (B4)
It is seen from eq. (B3) that 1/x=1log(Np)+2 log(x), which
inserted into eq. (B4) yields
1
max) = —————— . B5
S (¥max) exp (DNp (B5)

The solution xg,., of eq. (B3) is still needed to calculate
f(Xmax), which can be found by use of the approximation
2 log(x)—1/x~ax+ b, which leads to

1
Xmax = — a (log (NB)+b) (B6)
(see also Wangen 1999). The expression (22) is then obtained.

The temperature T/, where half the porosity is lost, is seen
from the porosity function (8) to be a solution of (in the case of
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first-order kinetics)

log(2)
Ng

F(xy)2)= (B7)

where xy =Ty ,/Ty. F(xp) is, as above, negligible compared to
F(x; ) for xq corresponding to the surface temperature. The
temperature 7, is seen to be close to Tiax, because Ty IS a
solution of F(xpnax) =1/Np, where Np is a large number.

APPENDIX C: FLUID FLUXES DURING
DEPOSITION

Conservation of fluid in a compacting sedimentary basin is
conveniently expressed by the fully compacted vertical coordi-
nate, denoted the (-coordinate, because it is a Lagrangian
coordinate. A second reason for working with the {-coordinate
is that fluid conservation is simply expressed as

de Ov
DI, 1
6t+6C 0, (C1)

where e is the void ratio and v is the Darcy velocity. The fluid
density is assumed constant. The Darcy velocity at a point { is
then obtained from eq. (Cl) by integration,

{
ol B)= — JO (%) dc. (C2)

The integral is trivial to carry out when the void ratio is given as
a function of the depth from the surface measured as a {-depth,
and when the burial rate  is constant along the {-axis. The top
of the basin along the {-axis is (¥ =wt, and the void ratio as a
function of the {-depth measured from the top is

e=e(wt—{). (3
Note that the void ratio is a function of one single argument,
the {-depth wt—{. The integral (C2) becomes

u(l, N=a(e(l, —e0, 1) = w(e—epor) - (C4)

The integration (C2) can be carried out in the same way
when the void ratio is a function of the temperature during
burial along a constant thermal gradient. The porosity function
(8) is an example of porosity (void ratio) as a function of
temperature during burial. The integral can then be written
(see eq. D2 for the change of integration variable from { to T)

¢ /de $ Qe 0T T de
= | (Z) ac=— | = ac= =ar
v JO (az)g ¢ L aT ar © “’Lm oT

= w(e—enor) - €

The fluid flux at any point in a sedimentary column caused by
cementation controlled by temperature is simply proportional
to the burial rate and the difference between the void ratio at
the given depth and the void ratio at the base of the column.

APPENDIX D: INTEGRATION OF
(¢ —¢c)? ALONG THE (-AXIS

The integral of (¢ —¢.) along the {-axis can be written
¢ '
|| @0y ar=n—or | exp(-pNatr(r)-F(TiN s

(DD
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when the exponent in the specific surface function is n=1.
Integration in { can be replaced with integration in temperature
by
1
——=dT
oTlo¢ 7

because T=(0T/3)((* —{)+ Ty. Furthermore, the integration
in temperature can be replaced by an integration over v(7)=
pNpF(T). It is shown in Appendix B that F(T) ~exp(a(T/Ty) + b),
which leads to

di= (D2)

T,
dT~ L av. (D3)
av

The integration (D1) can then be written, after a change of
variable to v,

(Go— &'t

(0T100)a dv.

"T) exp (v
exp(—o(r) [ 2P ®)
oTp) U

|| @-oorac-
(D4)

The factor exp (—v(7p))~1 for Tp=0°C and it can be left
out, which then yields the solution (33). The same change
of integration variable leads to the expression (36) for the
overpressure in the case of n#1.
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