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Generation of primordial cosmological perturbations from statistical mechanical models
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The initial conditions describing seed fluctuations for the formation of structure in standard cosmological
models, i.e. the Harrison-Zeldovich distribution, have very characteristic ‘‘super-homogeneous’’ properties:
they are statistically translation invariant and isotropic, and the variance of the mass fluctuations in a region of
volumeV grows more slowly thanV. We discuss the geometrical construction of distributions of points inR3

with similar properties encountered in tiling and in statistical physics, e.g. the Gibbs distribution of a one-
component system of charged particles in a uniform background@one-component plasma~OCP!#. Modifica-
tions of the OCP can produce equilibrium correlations of the kind assumed in the cosmological context. We
then describe how such systems can be used for the generation of initial conditions in gravitationalN-body
simulations.
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I. INTRODUCTION

A central problem in contemporary cosmology is t
quantitative explanation of the inhomogeneity observed
the universe at large scales~see e.g.@1,2#!. Such inhomoge-
neity is probed both indirectly for early times via the flu
tuations in temperature in the microwave sky, and directly
present in the distribution of matter in space. All curren
standard cosmological models work within a paradigm
which these fluctuations are the result of~mostly! gravita-
tional evolution operating on some initially very small flu
tuations. Common to all such models is the assumptio
supported in particular by observations of the microwa
background@3#—of a very specific form of these initial per
turbations at large scale, i.e. Gaussian fluctuations wit
Harrison-Zeldovich ~HZ, often referred to as ‘‘scale
invariant’’! power spectrum@4,5#. In a recent paper some o
us @6# have discussed how, in a simple classification of c
related systems, this spectrum corresponds to highly ord
glasslike or latticelike distributions. In particular such sy
tems are characterized in real space by the striking beha
of the variance in the mass,^DM2&, contained in a given
volume, e.g. in spheres of radiusR, ^DM2&}R2, or R2logR;
i.e., it is essentially proportional to thesurface areaof the
sphere. This is to be contrasted with the Poisson beha
~proportional to the volumeR3) characteristic of many equi
librium systems with short range interactions away fro
phase transitions or that characteristic of long-range corr
tions at a critical point in many systems~for which ^DM2&
}Ra with a.3). ActuallyR2 is the slowest growth possibl
for any isotropic translationally invariant distribution o
points @7#.

In this paper we examine the nature of the correlations
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such super-homogeneous systems and compare them
equilibrium correlations in systems with long range intera
tions studied in statistical mechanics@8–10#. More precisely
we consider the one component plasma~OCP!, which is sim-
ply a system of charged point particles interacting throug
repulsive 1/r potential, in a uniform background which give
overall charge neutrality~for a review, see@11#!. We discuss
how the OCP can be modified so that its equilibrium cor
lations are precisely those considered in cosmology. This
volves an appropriately designed attractive short range
tential as well as a repulsive 1/r 2 potential at large scales
The latter corresponds to a four dimensional Coulomb pot
tial with the particles confined to three dimensions.

Our analysis of these parallels has more than theore
interest. It also provides a new method for generating ini
conditions ~IC! for numerical studies of the formation o
structure in cosmology@12,13#. We explain that this method
avoids the problems associated with currently used a
rithms which involve superimposing small perturbations o
lattice or glasslike distribution. The latter is understood to
a ‘‘sufficiently uniform’’ discretization of a constant densit
background, not as representing the perturbed distribut
The problem with this choice of initial state is that theun-
perturbed distribution has its own inherent fluctuation
correlations, which can play an important role in the evo
tion of the system@14–17#.

II. THE HZ SPECTRUM IN COSMOLOGY

Let us recall first the necessary essentials of mode
perturbations from a uniform density used in cosmolo
These are described as acontinuousstationary stochastic
process~SSP!, with the property that the volume averages
observables, i.e. empirical averages, approach the ense
averages in the large volume limit. The stationarity refers
this context to statistical invariance under spatial translati
©2003 The American Physical Society06-1
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Moreover one assumes also statistical isotropy of the
chastic process, i.e. invariance under rotation of the
semble quantities. Thus ifr(rW) is the density field, we have

^r~rW !&5r0.0, ~1!

and we can define areduced2-point correlation function
j̃(r ) by

^r~rW1!r~rW2!&[r0
2@11 j̃~r !# ~2!

wherer 5urW12rW2u. Corresponding isotropies are assumed
hold for the higher order correlation functions. Further, t
probability distribution for the fluctuations in the initial un
form density are generally assumed to be Gaussian.

Much more used in cosmology thanj̃(r ) is the equivalent
k-space quantity, the power spectrumP(kW ) which is defined
as

P~kW !5 lim
V→`

^udr~kW !u2&
V

~3!

wheredr(kW )5*Vd3re2 ikW•rWd(rW) is the Fourier integral in the
volume V of the normalized fluctuation fieldd(rW)5@r(rW)
2r0#/r0. In a statistically isotropic SSP this depends on
on ukW u with

P~kW ![P~k!5E
0

`

j̃~r !
sin~kr !

kr
4pr 2dr. ~4!

It follows from its definition thatP(k)>0, and, in the case
we are considering, its integral, which is equal toj̃(0), is
assumed to be finite.

In current cosmological models it is generally assum
that the power spectrumP(k)}k at smallk. This is known as
the HZ or ‘‘scale-invariant’’ power spectrum. It is believed
describe the ‘‘primordial’’ fluctuations at very early time
the putative remnants of a period of ‘‘inflation’’ prior to th
ordinary big bang phase@1,2#. The lineark behavior is cut off
by a short distance scale~needed to ensure integrability! i.e.
for k larger than some cutoff,kc , P(k) decreases faster tha
k23. The reason for the appearance of this particular sp
trum is tied to considerations about the cosmological mo
~see @1,2#!. Thus in the homogeneous and isotrop
Friedmann-Robertson-Walker cosmology, the only charac
istic length scale is the size of the horizonRH(t) ~the region
causally connected at a timet). The HZ spectrum then cor
responds to the choice which gives~as discussed in@6# this
condition is in fact satisfied only for a spherical Gauss
window function, and not in a real physical sphere!

sM
2 ~RH~ t !!5const, ~5!

independent oft, wheresM
2 (R) is the normalized mass var

ance

sM
2 ~R!5^DM2&/^M &2. ~6!
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The HZ spectrum then follows from a consistency criteri
for the treatment of the perturbations in the model: any ot
spectrum will give mass fluctuations which dominate ov
the homogeneous background at some time in either the
ture or past.

All current cosmological models share the HZ spectru
~or something very close to it! as the ‘‘primordial’’ form of
their perturbations. This spectrum evolves, at larger a
larger scales, until the characteristic time at which the d
sities of matter and radiation energy are equal. This evolu
which depends strongly on the particular model used m
change completely the form of the spectrum for distan
smaller than a characteristic scalekeq

21 ~i.e. k.keq). For
larger physical scales (k,keq), however, the evolution is
almost exactly the same in all models, and it leaves the
mordial HZ form intact.

Viewed in the general framework of correlated proces
a very crucial property of the HZ type power spectrum is th

lim
k→0

P~k!50 ~7!

which in real space implies that

lim
R→`

^DM2&
V~R!

5 lim
R→`

E
V(R)

d3r j̃~r !50 ~8!

where V(R) is the volume of a sphere of radiusR ~with
arbitrary origin!. Equation~8! is to be contrasted with the
behavior of this integral in a Poisson distribution, when
yields a finite positive constant, and with that associated w
power-law correlations in critical systems@6# for which the
same integral ofj̃(r ) diverges.

Systems satisfying Eq.~8! are thus ‘‘more homogeneous
than a Poisson type system, as can be seen when one
siders the behavior of the mass variance in spheres. F
spectrum such thatP(k);kn for k→0 and appropriately cu
off at largek we have for largeR

sM
2 ~R!}H 1/R31n if n,1,

log~R!/R4 if n51,

1/R4 if n.1.

~9!

In terms of the non-normalized quantitŷ (DM )2&
}sM

2 (R)R6, Eq. ~8! says that forn.0 we have a slower
increase of the variance as a function ofR than for Poisson
fluctuations, corresponding ton50, with the limiting behav-
ior corresponding to a variance which is proportional to t
surface areaof the sphere. These systems are thus charac
ized by surface fluctuations, ordered~or homogeneous
enough, one could say! to give this very particular behavior
In Fig. 1 are shown, in two dimensions, a Poissonian dis
bution and a super-homogeneous distribution. The relativ
greater uniformity of the latter is clearly identifiable.
6-2
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III. DISTRIBUTIONS OF POINTS WITH SURFACE
GROWTH OF THE SQUARED VARIANCE

A simple cubic lattice is the simplest example of a d
crete set of points which shows this limiting behavior (sM

2

}1/R4) of the variance@19#. The result is not hard to unde
stand: The standard deviationsM is that measured by aver
aging over spheres of radiusR centered at a randomly chose
point of the unit cell. It is proportional to the typical varia
tion of points in the volume, which in the case of a lattice
the square root of the average number of points in the
spherical shell of thickness equal to the lattice unit. A be
~more statistically uniform! example of the same kind is th
so-calledshuffled lattice@6#; this is a lattice whose sites ar
independently randomly displaced by a distancex in all di-
rections from their initial position according to some dist
bution p(x) which has a finite second moment. In this ca
we find P(k);k2 at small k and, consequently, agai
sM

2 (R)}1/R4 at largeR. The simple lattice, however, is not
SSP, and even the shuffled lattice, though it can be define

FIG. 1. A super-homogeneous distribution~bottom! and a Pois-
son distribution ~top! with approximately the same number o
points. Both are projections of thin slices of three dimensional d
tributions. The super-homogeneous one is a ‘‘pre-initial’’ config
ration used in setting up the configuration representing the in
conditions for the cosmologicalN-body simulations of@18#. As de-
scribed in Sec. VI the dynamics used to generate this ‘‘pre-initi
configuration gives rise to surface fluctuations as it is essentially
one component plasma which we discuss below.
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a SSP, is not statistically isotropic because the underly
lattice structure is not completely erased by the shuffl
@20#.

To construct a statistically isotropic and homogeneo
particle distribution with such a behavior ofs2(R) is non-
trivial. A particular example is the so-called ‘‘pinwheel’’ til
ing of the plane@21,22#. The generation algorithm for it is
defined by taking a right angled triangle with sides of resp
tive lengths one and two~and hypotenuseA5) and, at the
first step, forming five similar square triangle of sides 1/A5
and 2/A5 respectively as shown in Fig. 2. At the second s
we expand these new triangles, to the size of the orig
triangle, and repeat the proceduread infinitum, so that they
cover the plane completely. Finally, placing a point random
inside each elementary triangle will give a superhomo
neous point distribution which is statistically isotropic~with
a continuous power spectrum!.

IV. A PHYSICAL EXAMPLE:
THE ONE-COMPONENT PLASMA

In the study of the one component plasma one consid
the equilibrium statistical mechanics~at inverse temperature
b) of a system of charged point particles interacting throu
a Coulomb potential, in a continuous uniform backgrou
giving overall charge neutrality@11#. Taking the particles to
carry unit mass and charge the microscopic mass densit
the particles is given by

r~rW !5(
i

d~rW2rW i ! ~10!

whererW i is the position of thei th particle. The total micro-
scopic charge density is

rc~rW !5(
i

d~rW2rW i !2n ~11!

where

n5^r~rW !&. ~12!

The two-point correlation function is defined as

j̃~rW2rW8!5
^r~rW !r~rW8!&

^r&2
215

d~rW2rW8!

n
1h~rW2rW8!. ~13!

-
-
l

’’
e

FIG. 2. Fragmentation step for the ‘‘pinwheel’’ tiling of th
plane.
6-3
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The first term comes from the diagonal termsrW5rW8 in

^r(rW)r(rW8)& and is characteristic of any point distribution.
It can be proven quite generally@8# that at high tempera

tures the OCP has a translation invariant isotropic distri
tion with j̃(rW) satisfying Eq.~8! with r 5urWu. In terms of
h(r ) this gives

nE h~r !d3rW521. ~14!

Equation~14! is usually referred to as a sum rule and orig
nates from the perfect screening of each charge caused b
long-range nature of the Coulomb potential. To see this le
suppose that an external infinitesimal charge densityrext

5eeikW•rW of very long wavelength is applied to the system.
creates an external electric potential

F~rW !5E rext~rW8!

urW2rW8u
d3rW85

4p

k2
eeikW•rW ~15!

and a perturbation to the Hamiltonian

Hext5E rc~rW !F~rW !d3rW5e
4p

k2 E rc~rW !eikW•rWd3rW. ~16!

Using linear response theory the induced charge in the
tem is given by

r ind~rW8!52b^rc~rW8!Hext& ~17!

where the average is over the unperturbed statistical di
bution. Thus, assuming that the applied charge is perfe
screened i.e. the system responds with an induced ch
densityr ind52rext we have, in the limitk→0,

2eeikW•rW8;2be
4p

k2 E ^rc~rW8!rc~rW !&eikW•rWd3rW ~18!

and therefore, since

P~k!5
1

n
1h̃~k! ~19!

whereh̃(k) is the Fourier transform ofh, we find that

P~k!;
k2

4pn2b
~20!

for small k.
The behavior of the power spectrum at smallk is traceable

through Eq.~15! as being simply, up to a factorb, the in-
verse of the Fourier transform~in the sense of distributions!
of the repulsive 1/r potential. It is evident that what on
needs to obtain the same kind of behavior but withP(k)
;k at smallk is a repulsive potential of which the Fourie
transform behaves as 1/k, i.e. a repulsive 1/r 2 potential. Be-
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fore considering this in more detail we discuss some iss
relevant to the cosmological context which we have pas
over without comment so far.

V. DISCRETE VS CONTINUOUS

An essential difference between the case of cosmolog
perturbations and the system just discussed is that the fo
refers to a continuous density field while the latter descri
the correlation properties of a set of discrete points. To in
pret the latter as giving a realization of the former we ob
ously need to specify explicitly how to relate the two. The
is no unique prescription to pass from a discrete to a c
tinuous field. A prescription simply corresponds to a regul
ization of the Dirac delta with a functionWL(rW) with the
property

WL~rW !5L23WoS rW

L
D , E Wo~rW !d3rW51, ~21!

whereL is the characteristic scale introduced by the regu
ization e.g. the Gaussian

WL~rW !5S 1

A2pL
D 3

expS 2
r 2

2L2D . ~22!

For any finite value ofL we can define a continuous densi
field rL(rW) as the convolution of this function with the dis
crete density field. The pair correlation function of the co
tinuous field can then be written also as a double convolu
integral ofWL(rW) and the correlation function in the discre
case. The singularity in the latter is thus also removed by
regularization. The power spectrum of this continuous fi
is then simply given as

PL~kW !5uWL~kW !u2PD~kW ! ~23!

whereWL(kW ) is the Fourier transform of the regularizatio
WL(rW) andPD(kW ) is the power spectrum of the discrete fiel
In particular for the Gaussian smoothing function we hav

PL~kW !5exp~2k2L2!PD~kW !. ~24!

For the OCP discussed above the correlation function, in
weak coupling limit, is approximately the Debye-Hu¨ckel for-
mula

h~r !52b
e2kr

r
, k254pbn, ~25!

so that

PD~kW !5
1

n F k2

k21k2G ~26!

which is a non-integrable function ofk. Integrability is en-
sured by the cutoff imposed at largek in the power spectrum
through the smoothing function. An assumed property of
primordial density field in standard cosmological models
6-4
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GENERATION OF PRIMORDIAL COSMOLOGICAL . . . PHYSICAL REVIEW D 67, 043506 ~2003!
that it is Gaussian distributed. Since the density field is
herently positive this assumption of Gaussianity is m
properly attributed to fluctuations~expected to be small!
around the uniform density. Small fluctuations in the discr
OCP are in fact Gaussian@9#.

VI. INITIAL CONDITIONS IN N-BODY SIMULATIONS

A context in which it is necessary to have a concr
realization of the densityr(rW) in cosmological models is tha
of theN-body approach to the problem of structure formati
@12,13#. In these numerical simulations an initial configur
tion, which should represent the universe at early times
evolved under its self-gravity. The goal of these simulatio
is an understanding of how structures grow in such mod
and whether they are compatible with observations of
distribution of matter~as probed, primarily, by the distribu
tion of galaxies and galaxy clusters!. The initial continuous
density field is thus necessarily represented by a discrete
of points, which, because the discretization scale does
represent the real underlying physical one, must be con
ered just as we have discussed above as representin
continuous density field via some appropriate smoothing

In practice such a discretization is always generated
very particular way@13,23#: points of equal mass are dis
placed from a ‘‘pre-initial’’ configuration in a way prescribe
by the correlation field one wants to set up. This prescript
can be understood as follows. Superimposing an infinit
mal displacement fielduW (rW) on a uniform densityro one has

r~rW !2ro

ro
.2¹W •uW ~rW ! ~27!

and therefore ink space the power spectrum of the correla
density field r(rW) produced is roughly proportional t
k2Pu(k), wherePu(k) is that of the displacement field. Th
‘‘pre-initial’’ configuration used, which gives the initial un
perturbed positions of the particles, is a discretization of
initial uniform density fieldro and the displacement field i
specified by the power spectrum of the continuous fi
which is desired as the IC in the simulation. In practice
former is taken to be either an exact simple lattice o
‘‘glassy’’ configuration@13#. When this latter configuration is
used it is generated by evolving the system with theN-body
code, but with the sign of gravity reversed. This correspo
to a system essentially like the OCP~at low temperature!,
and the long-time evolution brings it to a highly unifor
configuration with normalized variance decaying at lar
scales as 1/R4 @15#.

In the generation of the IC in this way the fluctuatio
associated with the ‘‘pre-initial’’ configuration are neglecte
or rather implicitly assumed to be negligible with respect
those which are introduced by the perturbations to it. T
problem with this procedure is that it neglects precisely th
‘‘pre-initial’’ fluctuations. @If we assume the initial continu
ous field to have a power spectrumPi(k) which results from
the infinitesimal shuffling is a power spectrumP(k)
5Pi(k)1k2Pu(k).# Such a neglect is justified if these fluc
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tuations play no role in the evolution of the system, as o
wants to see only the growth of structure coming from t
perturbations superimposed on the uniform density field.
deed the reason the lattice or ‘‘glassy’’ configuration is us
is that they are configurations in which the gravitation
force is ~effectively! zero, whereas in a Poisson distributio
for example~which isa priori as good a discretization of th
uniform background! it is not. While the Poisson distribution
will thus evolve and form structures even without addition
perturbation, the perfect lattice will not. That the discretiz
lattice or glass solves this problem is however far from cle
they both represent unstable point configurations with
spect to gravity. A small applied perturbation will thus
general give an evolution which depends on the correlati
and/or fluctuations in the initial unperturbed configuration
In principle such effects can be kept under control by mak
the discretization of the original density sufficiently fine.
practice inN-body simulations the ‘‘non-linear regime’’ in
which structure formation takes place is comparable to
discretization scale, and the role of such effects seems, a
very least, problematic@14–17#.

One way in which this difficulty could be got around is b
generating directly a discrete distribution whose regulari
tion is exactly the desired continuous field. Our observatio
on the OCP provide in principle a way of realizing this po
sibility.

VII. IC AS EQUILIBRIUM OF A MODIFIED OCP

We have seen that the OCP equilibrium correlations g
surface fluctuations (^DM2&;R2), but with a power spec-
trum at smallk which varies likek2. By considering instead
a repulsive 1/r 2 potential, whose Fourier transform is 2p2/k,
we obtain from Eq.~19!

P~k!;
k

2p2n2b
, for k;0 ~28!

and

h~r !;2
1

2p4bn2

1

r 4
~29!

for r @(2p2bn)21. The change from the exponential dec
of Eq. ~25! to a power-law decay is a result of the differe
analyticity properties of the two power spectra: thek2 behav-
ior is analytic at the origin, guaranteeing a rapidly decay
behavior of its Fourier transform, while thek spectrum is
not.

In the context of cosmologicalN-body simulations what
one needs is not simply the primordial HZ power spectr
with some appropriate small scale cutoff: what is simula
is only a part of the cosmological evolution, starting from
time at which the initial spectrum of fluctuations is alrea
significantly modified from its primordial form. While purely
gravitational evolution at these early times does not mod
the HZ spectrum, non-gravitational effects, present until
time when the universe becomes dominated by matter, d
significantly. The nature of these modifications depends
6-5
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the details of the cosmological model, but in all cases th
affect onlyk larger than a characteristickeq corresponding to
the causal horizon at the ‘‘time of equality’’~when matter
starts to dominate over radiation!. One then has a powe
spectrum of the form

P~k!5knf ~k! ~30!

with n exactly ~or very close to! unity and f (k) a model-
dependent form for the spectrum withf (0)5a.0. In Fig. 3
are shown the power spectra of two representative cos
logical models@1,2#. Both are CDM~‘‘cold dark matter’’!
type. Hot dark matter models, now strongly disfavored, ha
a more abrupt~typically exponential! cutoff at largerk, due
to the ‘‘wash-out’’ of small scale structure associated w
their higher velocity dispersions.

To produce such a spectrum as the equilibrium one o
OCP-like system requires further modification of the form
the potential. Just as in the standard OCP, an unmodifiedr 2

potential will give, in the weak-coupling limit, a spectru
which becomes flat~i.e. Poisson-like! at largek. This is sim-
ply due to the fact that in this limit the thermal fluctuatio

FIG. 3. Power spectra of two different cosmological mode
both of the CDM~cold dark matter! type but with a differing den-
sity of matter~parametrized byV). The plot is in log-log units so
that the behaviorP(k);k and P(k);k22 correspond to straigh
lines of slope11 and22 respectively.
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dominate over the potential at small scales, effectively r
domizing the particle positions up to some scale. A cru
guess of what potential would produce the behavior o
typical cosmological model can be obtained by suppos
that at small scales

11h~r !'e2bV(r ), ~31!

which corresponds to completely neglecting collective
fects (11h represents the relative probability compared
random of finding a particle at distancer from a given one!.
Given that the desired fluctuations always have small am
tudes (uhu!1), we would then need to be in the regime
temperature and scales such thatubV(r )u!1, so thath(r )
;2bV(r ). The potential should thus be attractive at smal
scales, as the system is positively correlated at those sc
A k22 behavior at largek, which is often used~see Fig. 3! as
an initial condition approximating cosmological mode
~CDM type! in this regime~beyond the ‘‘turnover’’!, may be
obtained from an attractive 1/r potential, e.g.

V~r !5
1

r 2
2h

e2mr

r
. ~32!

By modifying the parametersm andh, as well as the tem-
perature, both the amplitude of theP(k) and the location of
a change from aP(k);k22 to a behaviorP(k);k for small
k can be controlled. The potential~32! is repulsive at short
distances, but it may be necessary to make it more stron
repulsive in order to ensure that the system is not unstab
collapse@24#. Such issues, as well as the practical numeri
implementation of these observations, will be investigated
forthcoming work. Once this method has been implemen
to set up the initial conditions, it will naturally be interestin
to understand the effect of this change in initial conditions
the dynamical evolution of gravitationalN-body simulations.
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