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Generation of primordial cosmological perturbations from statistical mechanical models
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The initial conditions describing seed fluctuations for the formation of structure in standard cosmological
models, i.e. the Harrison-Zeldovich distribution, have very characteristic “super-homogeneous” properties:
they are statistically translation invariant and isotropic, and the variance of the mass fluctuations in a region of
volumeV grows more slowly thaV. We discuss the geometrical construction of distributions of poin&°in
with similar properties encountered in tiling and in statistical physics, e.g. the Gibbs distribution of a one-
component system of charged particles in a uniform backgrgand-component plasm@®CP]. Modifica-
tions of the OCP can produce equilibrium correlations of the kind assumed in the cosmological context. We
then describe how such systems can be used for the generation of initial conditions in gravitétimas/

simulations.
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[. INTRODUCTION such super-homogeneous systems and compare them with

equilibrium correlations in systems with long range interac-
A central problem in contemporary cosmology is thetions studied in statistical mechani@&-10. More precisely
quantitative explanation of the inhomogeneity observed irwe consider the one component plas{@cP), which is sim-
the universe at large scalésee e.g[1,2]). Such inhomoge- ply a system of charged point particles interacting through a
neity is probed both indirectly for early times via the fluc- repulsive 1If potential, in a uniform background which gives
tuations in temperature in the microwave sky, and directly apverall charge neutralitffor a review, se¢11]). We discuss
present in the distribution of matter in space. All currently how the OCP can be modified so that its equilibrium corre-
standard cosmological models work within a paradigm inlations are precisely those considered in cosmology. This in-
which these fluctuations are the result (ofiostly) gravita- volves an appropriately designed attractive short range po-
tional evolution operating on some initially very small fluc- tential as well as a repulsive r#/ potential at large scales.
tuations. Common to all such models is the assumption—The latter corresponds to a four dimensional Coulomb poten-
supported in particular by observations of the microwavetial with the particles confined to three dimensions.
background 3]—of a very specific form of these initial per- Our analysis of these parallels has more than theoretical
turbations at large scale, i.e. Gaussian fluctuations with énterest. It also provides a new method for generating initial
Harrison-Zeldovich (HZ, often referred to as “scale- conditions (IC) for numerical studies of the formation of
invariant”) power spectrunii4,5]. In a recent paper some of structure in cosmolog12,13. We explain that this method
us[6] have discussed how, in a simple classification of coravoids the problems associated with currently used algo-
related systems, this spectrum corresponds to highly ordereithms which involve superimposing small perturbations on a
glasslike or latticelike distributions. In particular such sys-lattice or glasslike distribution. The latter is understood to be
tems are characterized in real space by the striking behavi@ “sufficiently uniform” discretization of a constant density
of the variance in the mas$§AM?), contained in a given background, not as representing the perturbed distribution.
volume, e.g. in spheres of radi®s (AM?)=<R?, orR%logR,  The problem with this choice of initial state is that the-
i.e., it is essentially proportional to theurface areaof the  perturbed distribution has its own inherent fluctuations/
sphere. This is to be contrasted with the Poisson behavidgorrelations, which can play an important role in the evolu-
(proportional to the volum®&3) characteristic of many equi- tion of the systenj14-17.
librium systems with short range interactions away from
phase transitions or that characteristic of long-range correla-
tions at a critical point in many systengfr which (AM?)
«R* with a>3). Actually R? is the slowest growth possible Let us recall first the necessary essentials of modeling
for any isotropic translationally invariant distribution of perturbations from a uniform density used in cosmology.
points[7]. These are described ascantinuousstationary stochastic
In this paper we examine the nature of the correlations irprocesgSSB, with the property that the volume averages of
observables, i.e. empirical averages, approach the ensemble
averages in the large volume limit. The stationarity refers in
*Permanent address. this context to statistical invariance under spatial translation.

Il. THE HZ SPECTRUM IN COSMOLOGY
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Moreover one assumes also statistical isotropy of the stofhe HZ spectrum then follows from a consistency criterion
chastic process, i.e. invariance under rotation of the enfor the treatment of the perturbations in the model: any other

semble quantities. Thus jf(r) is the density field, we have Spectrum will give mass fluctuations which dominate over
the homogeneous background at some time in either the fu-

(p(N)=po>0, (1)  tureor past _

All current cosmological models share the HZ spectrum
and we can define @aduced2-point correlation function (or something very close to)ias the “primordial” form of
Z(r) by their perturbations. This spectrum evolves, at larger and

larger scales, until the characteristic time at which the den-
> S W 2r1.F sities of matter and radiation energy are equal. This evolution
(p(ra)p(r2))=pol 1 +£(r)] @ which depends strongly on the particular model used may

wherer=|F1—F2|. Corresponding isotropies are assumed tochange completely the form of the spectrum for distances

. . 71 .
hold for the higher order correlation functions. Further, theSMaller than a characteristic scatgy (i.e. k>keg). For
probability distribution for the fluctuations in the initial uni- 12rger physical scaleskkeg), however, the evolution is
form density are generally assumed to be Gaussian almost exactly the same in all models, and it leaves the pri-
: ~ - mordial HZ form intact.
Much more used in cosmology thi(r) is the equivalent Viewed in the general framework of correlated processes

k-space quantity, the power spectru(k) which is defined 5 very crucial property of the HZ type power spectrum is that
as

) 02 limP(k)=0 )
P(k)= lim —<|5‘)3()| ) (3 k-0

V—oo

Whereﬁp(IZ)=fvd3re‘i'z'F5(F) is the Fourier integral in the which in real space implies that

volume V of the normalized fluctuation field(r)=[p(r)

—pol/po. In a statistically isotropic SSP this depends only {AM?) J’ ~
S lim === lim d3r &(r)=0 8
on ||(| with R V(R) e JV(R) &(r) (8
- ([, sin(kr) )
P(k)=P(k)_f0 &(r) kr Amredr. 4) where V(R) is the volume of a sphere of radi® (with

arbitrary origin. Equation(8) is to be contrasted with the
It follows from its definition thatP(k)=0, and, in the case behavior of this integral in a Poisson distribution, when it
we are considering, its integral, which is equal@®), is yields a finite positive constant, and with that associated with

assumed to be finite. power-law correlations in critical systemi] for which the
In current cosmological models it is generally assumedsame integral o(r) diverges.
that the power spectruf(k) <k at smallk. This is known as Systems satisfying E@8) are thus “more homogeneous”

the HZ or “scale-invariant” power spectrum. It is believed to than a Poisson type system, as can be seen when one con-

describe the “primordial” fluctuations at very early times, siders the behavior of the mass variance in spheres. For a

the putative remnants of a period of “inflation” prior to the spectrum such tha(k)~k" for k—0 and appropriately cut

ordinary big bang phadéd,2]. The lineark behavior is cut off ~ off at largek we have for largeR

by a short distance scaleeeded to ensure integrabilitie.

for k larger than some cutofk., P(k) decreases faster than 3+n .
"3 . : 1/R if n<1,

k™. The reason for the appearance of this particular spec-

trum is tied to considerations about the cosmological model o2 (R)={ log(R)/R* if n=1, 9)

(see [1,2]). Thus in the homogeneous and isotropic 1R it n>1.

Friedmann-Robertson-Walker cosmology, the only character-

istic length scale is the size of the horizBa(t) (the region

causally connected at a tintg. The HZ spectrum then cor- In terms of the non-normalized quantity(AM)?)

responds to the choice which givéss discussed if6] this Ocaf,,(R) R®, Eq. (8) says that fom>0 we have a slower

condition is in fact satisfied only for a spherical Gaussianincrease of the variance as a functionfothan for Poisson

window function, and not in a real physical sphere fluctuations, corresponding to=0, with the limiting behav-
5 ior corresponding to a variance which is proportional to the
ow(Ry(t)) =const, (5)  surface areaf the sphere. These systems are thus character-

ized by surface fluctuations, ordere@r homogeneous
independent of, wherea(R) is the normalized mass vari- enough, one could sayo give this very particular behavior.
ance In Fig. 1 are shown, in two dimensions, a Poissonian distri-
) 5 5 bution and a super-homogeneous distribution. The relatively
on(R)=(AMS/(M)~. (6)  greater uniformity of the latter is clearly identifiable.
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FIG. 2. Fragmentation step for the “pinwheel” tiling of the
plane.

a SSP, is not statistically isotropic because the underlying
lattice structure is not completely erased by the shuffling
[20].

To construct a statistically isotropic and homogeneous
particle distribution with such a behavior of(R) is non-
trivial. A particular example is the so-called “pinwheel” til-
ing of the plang21,22. The generation algorithm for it is
defined by taking a right angled triangle with sides of respec-
tive lengths one and tweéand hypotenusg/5) and, at the
first step, forming five similar square triangle of sideg/3./
and 245 respectively as shown in Fig. 2. At the second step
we expand these new triangles, to the size of the original
triangle, and repeat the procedwé infinitum so that they
cover the plane completely. Finally, placing a point randomly
inside each elementary triangle will give a superhomoge-
neous point distribution which is statistically isotrogigith
a continuous power spectrym

IV. APHYSICAL EXAMPLE:

FIG. 1. A super-homogeneous distributidyttom and a Pois- THE ONE-COMPONENT PLASMA

son distribution (top) with approximately the same number of
points. Both are projections of thin slices of three dimensional dis- | the study of the one component plasma one considers
tributions. The super-homogeneous one is a “pre-initial” configu- the equilibrium statistical mechanicat inverse temperature
ration used in setting up the configuration representing the initiaIIB) of a system of charged point particles interacting through
conditions for the cosmologic&N-body simulations of18]. As de- a Coulomb potential, in a continuous uniform background
scribed in Sec. VI the dynamics used to generate this “pre-initial” iving overall charge neutralitjl1]. Taking the particles to

g(r)]gf'(?:r:qatf:e%'t\/elsagzeatsvﬁ?g;a:vzfgﬂgitastéogzlgfv't is essentially th& v "nit mass and charge the microscopic mass density of
P P ' the particles is given by

IIl. DISTRIBUTIONS OF POINTS WITH SURFACE
GROWTH OF THE SQUARED VARIANCE p(l’)=z S(F—1)) (10)

A simple cubic lattice is the simplest example of a dis- !

crete set of points which shows this limiting behaviery( . N ) ) )

«1/R% of the variancd19]. The result is not hard to under- Wher_eri is the p03|t_|on_ of thath particle. The total micro-

stand: The standard deviatian, is that measured by aver- SCOPiC charge density is

aging over spheres of radi&centered at a randomly chosen

point of the unit cell. It is proportional to the typical varia- > s

tion of points in the volume, which in the case of a lattice is pc(r)—zi: olr=r)=n @)

the square root of the average number of points in the last

spherical shell of thickness equal to the lattice unit. A bettefwhere

(more statistically uniforrnexample of the same kind is the

so-calledshuffled latticd 6]; this is a lattice whose sites are —(n(r

. . . . . n=(p(r)). (12)

independently randomly displaced by a distarda all di-

rec_tions from t_heir initial pqsition according to some_distri- The two-point correlation function is defined as

bution p(x) which has a finite second moment. In this case

we find P(k)~k? at small k and, consequently, again -, - s,

o2 (R)<1/R* at largeR. The simple lattice, however, isnota — F;_r _{p(Np(r)) 1= or—r’)

SSP, and even the shuffled lattice, though it can be defined as (p)? n

+h(r=r"). (13
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The first term comes from the diagona| terrﬁg F’ in fore ConSidering this in more detail we C.“SCUSS some issues
relevant to the cosmological context which we have passed

Np(r')) and is characteristic of any point distribution. .
{p(r)p(r')) y P over without comment so far.

It can be proven quite generall] that at high tempera-
tures the OCP has a translation invariant isotropic distribu-
tion with (r) satisfying Eq.(8) with r=|r|. In terms of
h(r) this gives An essential difference between the case of cosmological

perturbations and the system just discussed is that the former
nf h(r)d3 = —1. (14) refers to a continuous density field while the latter describes
the correlation properties of a set of discrete points. To inter-
pret the latter as giving a realization of the former we obvi-
Equation(14) is usually referred to as a sum rule and origi- ously need to specify explicitly how to relate the two. There
nates from the perfect screening of each charge caused by theno unique prescription to pass from a discrete to a con-
long-range nature of the Coulomb potential. To see this let unuous field. A prescription simply corresponds to a regular-
suppose that an external infinitesimal charge densil  jzation of the Dirac delta with a functiow, (1) with the
= ee'“'" of very long wavelength is applied to the system. It property
creates an external electric potential

V. DISCRETE VS CONTINUOUS

- r I
<1>(F):f Pod () oz 47 i (15 WL(r):L3W°(E>’ f HenaTL
Ir=r] k* wherel is the characteristic scale introduced by the regular-
and a perturbation to the Hamiltonian ization e.g. the Gaussian
e e 4w o RPaae WL(F)z(L)Sexp(—i). (22)
Hext=f pe(r)@(r)d rZEFJ pe(r)e™fdir. (16) V27l 2.2

For any finite value ot. we can define a continuous density

Field pL(F) as the convolution of this function with the dis-
crete density field. The pair correlation function of the con-
tinuous field can then be written also as a double convolution

nd(r')=— r')H 1 "
Pind1")= = Blpe(rIHe @9 integral of W, (r) and the correlation function in the discrete

where the average is over the unperturbed statistical distrf@S€: The singularity in the latter is thus also removed by the
bution. Thus, assuming that the applied charge is perfecﬂ{pgulanzatlon. The power spectrum of this continuous field
screened i.e. the system responds with an induced chardethen simply given as

densityp.,g= — we have, in the limik—0, o - o
YPina™ = Pext PL(K) =W, (K)[2Pp(K) 29

Using linear response theory the induced charge in the sy
tem is given by

—eei'z'F’~—,864—Zf (pTpe(N))EX T3 (18) WheEeWL(IZ) is the Fourier transform of the regularization
k W, (r) andPp(K) is the power spectrum of the discrete field.

] In particular for the Gaussian smoothing function we have
and therefore, since

PL(K)=exp —k2L?)Pp(K). (24)
P(k)= ﬁ+ h(k) (19 For the OCP discussed above the correlation function, in the
weak coupling limit, is approximately the Debye-tkel for-
whereh(k) is the Fourier transform df, we find that mula
—KI
k2 h(r)=— ,  k*=4mpn, (25)
P(k)~ 5 (20 (N=-8 r A
4mn“B
so that
for smallk. ,
The behavior of the power spectrum at snkalf traceable P (k)= } k 26
through Eq.(15) as being simply, up to a factg, the in- p(k)= N| 2+ K2 (26)

verse of the Fourier transforfin the sense of distributions

of the repulsive ¥/ potential. It is evident that what one which is a non-integrable function & Integrability is en-
needs to obtain the same kind of behavior but w#ek) sured by the cutoff imposed at largén the power spectrum
~k at smallk is a repulsive potential of which the Fourier through the smoothing function. An assumed property of the
transform behaves askl/i.e. a repulsive 17 potential. Be-  primordial density field in standard cosmological models is
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that it is Gaussian distributed. Since the density field is intuations play no role in the evolution of the system, as one
herently positive this assumption of Gaussianity is morewants to see only the growth of structure coming from the
properly attributed to fluctuationgexpected to be small perturbations superimposed on the uniform density field. In-
around the uniform density. Small fluctuations in the discretaedeed the reason the lattice or “glassy” configuration is used

OCP are in fact Gaussidg]. is that they are configurations in which the gravitational
force is (effectively) zero, whereas in a Poisson distribution
V1. INITIAL CONDITIONS IN  N-BODY SIMULATIONS for example(which isa priori as good a discretization of the

uniform backgroungit is not. While the Poisson distribution

A context in which it is necessary to have a concretewill thus evolve and form structures even without additional
realization of the den5|ty(F) in Cosmoiogicai models is that perturbation, the perfect_ lattice Wllant That the discretized
of theN-body approach to the problem of structure formationlattice or glass solves this problem is however far from clear:
[12,13. In these numerical simulations an initial configura-they both represent unstable point configurations with re-
tion, which should represent the universe at early times, i§Pect to gravity. A small applied perturbation will thus in
evolved under its self-gravity. The goal of these simulationsgeneral give an evolution which depends on the correlations
is an understanding of how structures grow in such modeiéndlor fluctuations in the initial UnperturbEd ConfiguratiOIjS.
and whether they are compatible with observations of thén principle such effects can be kept under control by making
distribution of matter(as probed, primarily, by the distribu- the discretization of the original density sufficiently fine. In
tion of galaxies and galaxy clusterdhe initial continuous Practice inN-body simulations the “non-linear regime” in
density field is thus necessarily represented by a discrete s¢hich structure formation takes place is comparable to the
of points, which, because the discretization scale does néliscretization scale, and the role of such effects seems, at the
represent the real underlying physical one, must be considery least, problematif14—17. _
ered just as we have discussed above as representing the©One way in which this difficulty could be got around is by
continuous density field via some appropriate Smoothing_ generating direCtly a discrete distribution whose regulariza—

In practice such a discretization is a|WayS generated in gon is exaCtly the desired continuous field. Our observations
very particular way{13,23: points of equal mass are dis- on the OCP provide in principle a way of realizing this pos-
placed from a “pre-initial” configuration in a way prescribed Sibility.
by the correlation field one wants to set up. This prescription
can be understood as follows. Superimposing an infinitesi-  VII. IC AS EQUILIBRIUM OF A MODIFIED OCP

mal displacement field(r) on a uniform density, one has We have seen that the OCP equilibrium correlations give

R surface fluctuations(AM?)~R?), but with a power spec-
p(r)=po > - s trum at smallk which varies likek?. By considering instead
N —V-u(r) (27 3 repulsive 12 potential, whose Fourier transform isr2/k,
we obtain from Eq(19)
and therefore ik space the power spectrum of the correlated
density field p(r) produced is roughly proportional to P(k)~ L for k~0 (28)
k?P,(k), whereP(k) is that of the displacement field. The 27%n?
“pre-initial” configuration used, which gives the initial un-
perturbed positions of the particles, is a discretization of theind
initial uniform density fieldp, and the displacement field is
specified by the power spectrum of the continuous field h(r)~— 1 i 29
which is desired as the IC in the simulation. In practice the 27*pn? rt
former is taken to be either an exact simple lattice or a
“glassy” configuration[13]. When this latter configuration is for r>(2#28n) 1. The change from the exponential decay
used it is generated by evolving the system withfibody  of Eq. (25) to a power-law decay is a result of the different
code, but with the sign of gravity reversed. This correspondanalyticity properties of the two power spectra: Kfebehav-
to a system essentially like the OGRt low temperature  ior is analytic at the origin, guaranteeing a rapidly decaying
and the long-time evolution brings it to a highly uniform behavior of its Fourier transform, while tHe spectrum is
configuration with normalized variance decaying at largenot.
scales as R* [15]. In the context of cosmologicall-body simulations what
In the generation of the IC in this way the fluctuations one needs is not simply the primordial HZ power spectrum
associated with the “pre-initial” configuration are neglected, with some appropriate small scale cutoff: what is simulated
or rather implicitly assumed to be negligible with respect tois only a part of the cosmological evolution, starting from a
those which are introduced by the perturbations to it. Thaime at which the initial spectrum of fluctuations is already
problem with this procedure is that it neglects precisely thesgignificantly modified from its primordial form. While purely
“pre-initial” fluctuations. [If we assume the initial continu- gravitational evolution at these early times does not modify
ous field to have a power spectru(k) which results from the HZ spectrum, non-gravitational effects, present until the
the infinitesimal shuffling is a power spectrurR(k) time when the universe becomes dominated by matter, do so
=P;(k) +k?P,(k).] Such a neglect is justified if these fluc- significantly. The nature of these modifications depends on
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107 . ; ; . — . . dominate over the potential at small scales, effectively ran-

£ domizing the particle positions up to some scale. A crude
guess of what potential would produce the behavior of a
typical cosmological model can be obtained by supposing
] that at small scales

1+h(r)~e AV, (31

- which corresponds to completely neglecting collective ef-
fects (1+h represents the relative probability compared to
random of finding a particle at distancérom a given ong
Given that the desired fluctuations always have small ampli-
tudes (h|<1), we would then need to be in the regime of
temperature and scales such tha¥(r)|<1, so thath(r)
~—BV(r). The potential should thus be attractive at smaller
scales, as the system is positively correlated at those scales.
10* A k™2 behavior at largd, which is often usedsee Fig. 3as
an initial condition approximating cosmological models
FIG. 3. Power spectra of two different cosmological models,(CDM type) in this regime(beyond the “turnover], may be
both of the CDM(cold dark mattertype but with a differing den-  Obtained from an attractive rlpotential, e.g.
sity of matter(parametrized by)). The plot is in log-log units so
that the behaviolP(k)~k and P(k)~k~2 correspond to straight V(r)= i_
lines of slope+1 and—2 respectively. o r2 K r

P(k) (arbirtray units)

—ur

(32

the details of the cosmological model, but in all cases theyBy modifying the parameterg and 5, as well as the tem-
affect onlyk larger than a characteristig , corresponding to  perature, both the amplitude of tif{k) and the location of
the causal horizon at the “time of equalityivhen matter a change from &(k)~k 2 to a behavioP (k) ~k for small
starts to dominate over radiationOne then has a power k can be controlled. The potentié32) is repulsive at short
spectrum of the form distances, but it may be necessary to make it more strongly
, repulsive in order to ensure that the system is not unstable to
P(k)=k"f (k) (30 collapse[24]. Such issues, as well as the practical numerical
implementation of these observations, will be investigated in
forthcoming work. Once this method has been implemented
to set up the initial conditions, it will naturally be interesting

. o X % understand the effect of this change in initial conditions on
logical models[1,2]. Both are CDM(*cold da_rk matter?) the dynamical evolution of gravitationBlbody simulations.
type. Hot dark matter models, now strongly disfavored, have

a more abrupttypically exponential cutoff at largerk, due

to the “wash-out” of small scale structure associated with

their higher velocity dispersions. We thank Dominique Levesque for useful discussions
To produce such a spectrum as the equilibrium one of ambout the OCP and Charles Radin for information about pin-

OCP-like system requires further modification of the form ofwheel tilings. F.S.L. thanks the Swiss National Science

the potential. Just as in the standard OCP, an unmodifiéd 1/ Foundation for financial support. The work of J.L.L. was

potential will give, in the weak-coupling limit, a spectrum supported by NSF grant DMR 98-13268 and AFOSR grant

which becomes flati.e. Poisson-likgat largek. This is sim-  AF 49620-01-1-0154. Laboratoire de Physique digue is

ply due to the fact that in this limit the thermal fluctuations Unite Mixte de Recherche No. 8627-CNRS.

with n exactly (or very close tp unity and f(k) a model-
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