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Abstract 

This paper reviews modeling of the influence of earthquake (EQ) preparation processes on the ionosphere 

through the electric field and electric current occurring in the global atmosphere–ionosphere electric circuit. Our 

consideration is based on the satellite-and ground-based experimental data of electric fields, plasma and 

electromagnetic perturbations obtained for several days before an EQ. We have ruled out the models which are 

not consistent with the experimental data on the electric fields in the ionosphere and also on the ground surface. 

There has then been proposed a new model of the generation of electric field on the basis of injection of charged 

aerosols into the atmosphere, and we discuss the mechanism of lithosphere-atmosphere-ionosphere coupling. It 

is then shown that such changes in the electric field within the ionosphere induce a variety of plasma and 

electromagnetic phenomena associated with an impending EQ. 
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1. Introduction 

Numerous plasma and electromagnetic anomalies observed within the ionosphere above the regions of seismic 

activity are found as evidence that processes of earthquake (EQ) preparation effects take place in the ionosphere 

for several days before an EQ. Observations of anomalous plasma and electromagnetic phenomena in the 

ionosphere over the zones of seismic activity were extensively discussed in many reviews and books (Gokhberg 

et al., 1988; Liperovsky et al., 1992; Molchanov, 1993; Buchachenko et al., 1996; Varotsos, 2001; Hayakawa & 

Molchanov, 2002; Pulinets & Boyarchuk, 2004; Tronin, 2006; Sorokin, 2007; Molchanov & Hayakawa, 2008; 

Hayakawa, 2009, 2012; Uyeda et al., 2009; Sorokin & Chmyrev, 2010; Hayakawa & Hobara, 2010), and these 

phenomena are considered as manifestation for the existence of  lithosphere-atmosphere-ionosphere (LAI) 

coupling or interaction. There are ionospheric effects as a result of the simultaneous actions of various factors 

such as acoustic waves, electric fields, electromagnetic radiation, chemically active substances, etc. An important 

role in the formation of these factors is played by aerosols of the lower atmosphere, which influence its 

conductivity and forms an external electric charge and a current by atmosphere dynamics. Seismic activity is 

accompanied by the injection of soil aerosols and radioactive substances into the atmosphere, so that the 

enhancement of such activity in seismic regions changes the state of ionospheric plasma and electromagnetic 

field at the temporal scale for a few days before an EQ.  

An analysis of satellite data showed the presence of electromagnetic perturbations over a wide frequency range. 

These perturbations are localized within the magnetic field tube conjugate with the seismic focus of an 

impending EQ. There are quite many papers on those satellite recordings of wave and plasma disturbances 

possibly associated with an individual EQ or several strong EQs (Parrot & Lefeuvre, 1985; Larkina et al., 1989; 

Chmyrev et al., 1989; Galperin et al., 1993; Molchanov et al., 1993; Pulinets et al., 1994; Parrot, 1994, 2009, 

2011; Chmyrev et al., 1997). The presence of electron density fluctuations in the ionosphere above seismic 

regions was substantiated by ample satellite data (Afonin et al., 1999), and there were recorded changes in the 

ionic composition and temperature of the plasma in the upper ionosphere and perturbations of the height profile 



www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 6; 2013 

2 

 

of the ionospheric F region (Pulinets et al., 1994; Boskova et al., 1994). An analysis of satellite images of the 

Earth's surface in the infrared (IR) frequency range showed the presence of stable and unstable components of 

the anomalous IR radiation flux above active crust faults; this flux corresponded to an increase in the 

temperature of the near-Earth layer by several degrees (Qiang et al., 1999; Tronin, 1999; Tronin et al., 2002; 

Ouzounov et al., 2012). Simultaneously with electromagnetic and plasma phenomena in the ionosphere, there 

were observed an increase in the concentration of certain gases (e.g., H2, CO2, and CH4) by several orders of 

magnitude, an increase in atmospheric radioactivity (related to such radioactive elements as radon, radium, 

uranium, thorium, and actinium and their decay products), and an increase in the injection of soil aerosols 

(Alekseev & Alekseeva, 1992; Virk & Singh, 1994; Heincke et al., 1995; Igarashi et al., 1995; Biagi, 2009; 

Yasuoka et al., 2012). 

The ground-based observations which are aimed at searching electromagnetic phenomena related with processes 

of EQ preparation and evolution, have started in the last tens of years of XX century. The following phenomena 

were observed with a lot of hopes: ULF magnetic and electric emissions (Fraser-Smith et al., 1990; Molchanov 

et al., 1992; Kopytenko et al., 1993; Hayakawa et al., 1996a), acoustic emissions (Gorbatikov et al., 2002), 

amplitude and phase anomalies of subionospheric VLF/LF signals from powerful transmitters (Hayakawa et al., 

1996b; Molchanov & Hayakawa, 1998; Rozhnoi et al., 2004), ionosphere perturbations measured by the 

ionospheric sounding (Pulinets et al., 1994; Liu, 2009), airglow anomalies (Gladychev & Fishkova, 1994) and 

some others. Uniform and global-size observations of possible ionospheric effects from many EQs can be carried 

out together with the estimation of the size of seismo-active region.  

A joint analysis of observational results led us to conclude that seismic activity stimulated the development of 

intense processes in the lower atmosphere. Earth’s surface seismic waves, chemically active and radioactive 

substances, and charged aerosols are likely to act simultaneously on the lower atmosphere. There then occur 

heating of the lower atmosphere, sharp changes in its electrophysical parameters, the generation of acoustic 

waves, and the formation of external electric currents. The acoustic action also appears on the ionosphere 

because of the upward propagation of infrasonic waves (Liperovsky et al., 1997). Processes in the lower 

atmosphere (seismic waves, atmosphere heating, and the injection of gases) result in the generation and upward 

propagation of internal gravity waves (IGWs), which might perturb the ionosphere (Gokhberg et al., 1996). The 

formation of ultralow-frequency radiation on the Earth’s surface by lithospheric sources is considered in 

Molchanov and Hayakawa (1995), Molchanov (1999), Surkov and Pilipenko (1999), and Sorokin and 

Pokhotelov (2010), and the possibility of its penetration into the ionosphere is discussed in Molchanov et al. 

(1995). Numerous studies of the nature of atmosphere-ionosphere interactions aimed at determining their 

mechanism were performed. For instance, the physical processes of formation of currents in the lithosphere and 

propagation of their radiation into the ionosphere were considered in Fitterman (1979) and Pilipenko et al. 

(1999). Alperovich et al. (1979) discussed acoustic actions resulting in ionospheric perturbations and the 

generation of geomagnetic pulsations was discussed. Similar works were performed for numerous chains of 

processes between sources and measured parameters. Another approach to study EQ precursors consists in a 

joint analysis of a set of possible parameters observed. Such an analysis can be physically based on a model that 

makes it possible to interpret satisfactorily most of satellite- and ground-based observations as a manifestation of 

one cause. In this case measured parameters proved to be interrelated by certain regularities. One of the 

important problems of atmosphere-ionosphere interactions is the search for a chain of processes related to acting 

factors and identification of a set of observed effects of a common nature. It is considered that principal causes of 

lithosphere–ionosphere coupling are the generation of both acoustic waves and electric field in the seismic 

region. Below we discuss only one of these influence factors; namely, the purpose of this paper is to discuss the 

cause and consequences of electric field occurring at an eve of EQs. 

2. Basic Properties of DC Electric Fields 

The seismic-related DC electric fields in the ionosphere had been, for the first time, revealed by Chmyrev et al. 

(1989). They analyzed the vertical component of quasi-static (DC) electric field Ez, and we show one example. 

They observed such an enhanced Ez onboard the “Intercosmos-Bulgaria 1300” satellite within a 15-min interval 

before an EQ occurred on January 12, 1982 at 17.50.26 UT. The quasi-static electric field with amplitude of 7-8 

mV/m was observed in two zones: above the EQ focus and in its magnetically conjugate region, and the size of 

those zones was 1°~1.5° in latitude. 

Subsequent investigations of DC electric field in the ionosphere based on direct satellite measurements over 

seismic regions were carried out by Gousheva et al. (2006, 2008, 2009), who analyzed hundreds of seismic 

events in order to detect DC electric field enhancement in the ionosphere connected with EQs. Seismic events 

with different magnitudes in different tectonic structures at different latitudes were observed. They selected the 
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orbits with distance less than 250 km with respect to the EQ epicenter, not crossing terminator and during low 

magnetic activity. Let us present one case study of their registration results. The DC electric field 5-10 mV/m 

was detected in the magnetic conjugate regions 11–13 hours before two EQs (magntitude around 5) occurring on 

25.08.1981 at 16:54:39 UT and 17:29:07 UT correspondingly (Gousheva et al., 2008). Statistical analyses of the 

satellite data by Gousheva et al. (2008, 2009) led them to make a conclusion on the existence of seismic-related 

quasi-static electric field in the ionosphere. The duration of electric field disturbances with amplitude of the 

order of 10 mV/m can be up to 15 days, and the electric field disturbances in the daytime and nighttime 

ionospheres were on the same order. 

Direct observations of quasi-static electric field in the ionosphere are confirmed by computational modeling of 

the ionospheric perturbation occurring at an eve of EQs. Spatial distributions of the total electron content (TEC) 

obtained by GPS receivers in the seismic region were analyzed (Liu, 2009; Pulinets, 2009a), and those TEC 

anomalies are tried to be interpreted with the use of global model of the upper atmosphere which describes the 

thermosphere, ionosphere and plasmasphere as an integrated system. The model is based on integration of the 

non-stationary three-dimensional equations of continuity, impulse and energy balance of multi-component gas 

simultaneously with the equation for electric field potential. In the frame of computer simulations there was 

sought an additional electric field which leads to the TEC perturbation coincident with the one observed in the 

EQ preparation region. For example, Zolotov et al. (2008) considered an EQ in Peru on 26.09.2005. The 

characteristics of TEC disturbances were given in Zakharenkova et al. (2008), and the TEC perturbation was 

observed during six days before the EQ from 21.09.2005 till 26.09.2005. Based on the computer simulations 

Zolotov et al. (2008) have shown that the observable TEC perturbation is due to an additional electric field with 

an amplitude of 6 mV/m. It is further suggested by Klimenko et al. (2011, 2012) and Namgaladze et al. (2009) 

that a possible general cause of TEC perturbation is a vertical plasma drift by the zonal electric field. Computer 

simulations by Klimenko et al. (2012) have shown that the amplitude of electric field disturbance is required to 

be 3-9 mV/m. 

At the same time, observations of the quasi-static electric field on the Earth’s surface in seismic regions were 

carried out by different workers (Kondo, 1968; Jianguo, 1989; Nikiforova & Michnovski, 1995; Vershinin et al., 

1999; Hao et al., 2000; Rulenko, 2000). Analyses of those publications show that the local electric field surges 

with large amplitude reaching several kV/m are observed during the EQ preparation, but their duration is of the 

order of ten minutes. However, there are absent visible electric field disturbances with duration of several days 

observed simultaneously over the horizontal distance of hundreds of kilometers.  

The indirect confirmation of electric fields occurring in the atmosphere is the observational results of VHF 

emissions propagating from the source located in the troposphere over a region of EQ preparation (Vallianatos & 

Nomicos, 1998; Ruzhin et al., 2000; Hayakawa et al., 2006; Ruzhin & Nomicos, 2007; Yonaiguchi et al., 2007a, 

b; Yasuda et al., 2009). VHF radiations are found to have occurred for several days before an EQ, and their 

duration reaches several days. If the VHF electromagnetic radiation propagated over a distance more than a 

wavelength, then the condition of optical propagation is fulfilled, so that it is possible to receive the signal at 

distance of the order of 300 km just in the case that its source is located in the atmosphere above Earth’s surface. 

The region of generation of VHF electromagnetic radiation is found to be at the altitudes of the order of several 

kilometers above EQ epicenters located behind the horizon (Fukumoto et al., 2001; Yasuda et al., 2009). 

Consequently, both the direct and indirect data of DC electric field observations in the atmosphere and 

ionosphere over a seismic region allow us to formulate its basic properties. The basic experimental results are 

summarized as follows: 

• The enhancement of seismic activity produces DC electric field disturbances in the ionosphere of the order of 

10 mV/m. 

• These disturbances occupy the region with horizontal spatial scale from hundreds to thousands km over the 

seismic region. 

• DC electric field enhancements occur in the ionosphere from hours to 10 days before an EQ. 

• DC electric field disturbances in the daytime and nighttime ionospheres have the same order of magnitude. 

• DC electric field disturbances can reach the breakdown value during from hours to 10 days in the atmosphere 

at altitudes 1 to 10 km over the EQ zone. 

• The quasi-stationary electric field on the Earth’s surface does not exceed its background value simultaneously 

in the seismic area during several days. 
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3. Penetration of DC Electric Field Into the Ionosphere 

Lithospheric activity stimulates the processes which are followed by the electric field generation. The 

enhancement in number density of charged aerosols by one-two orders and the increase in atmosphere 

radioactivity level by the injection of radon and other radioactive substances are observed during days and weeks 

before an EQ (Alekseev & Alekseeva, 1992; Virk & Singh, 1994; Voitov & Dobrovolsky, 1994; Heinke et al., 

1995; Pulinets et al., 1997; Yasuoka et al., 2006, 2012; Omori et al., 2007; Biagi, 2009). Data on injection of the 

soil gases such as radon, helium, hydrogen, carbon dioxide in the surface atmosphere with horizontal spatial 

scale of 500 km during from several hours to several weeks before an EQ have been reported by King (1986). 

Igarashi et al. (1995) described the surge in five times of the radon concentration in the soil water, and the data 

on significant emissions of metallic aerosols Cu, Fe, Ni, Zn, Pb, Co, Cr and radon were given by Boyarchuk 

(1997). Quasi-static electric field disturbances in the ionosphere are observed at the same time as the injection of 

active substances in the lower atmosphere.  

There are observed the local short-time releases of active substances along with large scale growth of the level of 

active substances in the lower atmosphere. They can generate the impulses of electric field near the Earth’s 

surface, whose amplitude can reach tens kV/m but its duration does not exceed tens of minutes. A model of the 

generation of pulses of local electric fields with characteristic time scales of 1-10 min for the atmospheric 

conditions above fracture regions of EQs was considered by Liperovsky et al. (2005, 2008). They have proposed 

that aerosols, increased ionization velocity and upstreaming air flows occur at night-time conditions, and that 

water condensates at the aerosols at night when the temperature in the near-earth air is low and the relative 

humidity increases above earth-fracture regions. Then, the relatively large aerosol particles are mainly negatively 

charged, while the charge of smaller particles is overwhelmingly positive. It is assumed that aerosol clouds of 

small dimensions are suddenly injected into the locally heated surface atmosphere and move with the air up to 

higher altitudes. The vertical velocity of small particles is much smaller than that of large ones, which is equal to 

a few cm/s. As a consequence of the shift between the small and large particles, there occur the local pulses of 

the electric field in the atmosphere. The amplitude of such a field is estimated as 103~3×103 V/m, but the 

relaxation time of a cloud of aerosols is estimated 10 minutes. Anomalous emanation of radons preceding a large 

EQ was observed by Omori et al. (2007), who have analyzed atmospheric radon concentrations and estimated 

changes of electrical conditions in the atmosphere due to the preseismic radon anomaly. These authors used the 

model by Liperovsky et al. (2005), and they have shown that the radon emanation reduces the atmospheric 

electric field by 40%. Their estimation of field amplitude gives 104~105 V/m at the observable value of radon 

emanation, but unfortunately there are no calculations of electric field in the ionosphere in the above-mentioned 

works. Nevertheless it is assumed that this impulse electric field can be a source of lithosphere–ionosphere 

coupling. We should note that this impulse field is observed only in local regions. The duration of such impulses 

is 10 minutes, while ionospheric precursors and DC electric field in the ionosphere exist during a much longer 

interval of several days. The field occurs inside a dipole layer of charged aerosols cloud and the field slumps 

outside the dipole layer. Consequently, the local impulse electric field observed on the Earth’s surface cannnot be 

a cause of the ionospheric effects and appearance of DC electric field in the ionosphere; that is, the radon 

injection in the frame of model does not affect the lithosphere–ionosphere coupling. 

A generation mechanism of electric field in the lithosphere based on the result of laboratory experiments has 

been proposed by Freund et al. (2006, 2009) and Freund (2010). Their experiments show that when stresses are 

applied to one end of a block of igneous rocks, two currents flow out of the stressed rock volume. One current is 

carried by electrons and the other current is carried by p-holes. Positive electric potential, ionization of air 

molecules and corona discharge occur on the rock surface. It is assumed that air ionization is a cause of 

ionospheric disturbances, glows and IR emissions, but there are no calculations on the possible effect of this 

source to the ionosphere. This mechanism seems to be used to interpret the impulse phenomena because the 

source duration is over 10 minutes, but it seems to be an unlikely explanation of the existence of DC electric 

field over a long period of time. 

Below we consider the generation mechanisms for quasi-static electric fields in the ionosphere. Spatial 

distribution of this field has a horizontal scale (100–1000) km and its duration is from tens hours to tens of days. 

The field is quasi-static if its temporal variation exceeds considerably the relaxation time (τ) of charges in the 

surface atmosphere τ~ε0 /σ~10~30 min (ε0 is the permittivity of free space, and σ is the surface atmosphere 

conductivity). An equivalent circuit is often used to explain the generation of atmospheric electric field 

(Goldberg, 1984; Sapkota & Varshneya, 1990; Rycroft et al., 2000). The current flowing in the circuit is excited 

by a generator which is the resultant action of thunderstorms all over the world. The fair weather current density 

is of the order of 10-12 A/m2 in the closed circuit (e.g., MacGorman & Rust, 1998; Rakov & Uman, 2002). It is 
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assumed that the conductivity of near-Earth atmosphere of 10-14 S/m yield an electric field value on the Earth’s 

surface of 102 V/m (Rakov & Uman, 2002). The fair weather current gives an electric field of 10-3 mV/m in the 

ionosphere with conductivity 10-6 S/m. Since the background electric field of magnetospheric and ionospheric 

origin has a value (0.1~1) mV/m in the middle-latitude ionosphere, then the field of atmospheric origin with 

intensity of 10-3 mV/m is negligible in the ionosphere. The variation of DC electric field in the ionosphere over a 

seismic region can be realized in two different ways. First of all one can change the load resistance and in a 

different way one can include an additional EMF (electro-motive force) in the global circuit. 

Let us consider the first way. The processes of EQ preparing impact take place in the lower atmosphere which 

contributes to over 80% of load resistance of the global circuit. The injection of radioactive and chemical 

substances and aerosols into the atmosphere, and the variation of aerosols size and atmospheric state result in a 

change of load resistance. In the final analysis, all of these processes change conductivity of the surface 

atmosphere. In Figure 1 there is depicted the circuit with selected part of current over a seismic region. The 

resistance of atmosphere over thunderstorms is denoted by R1, R2 is the resistance of the region of thunderstorms 

activity, R3 is the resistance of near-Earth atmosphere, Ri is the resistance of ionosphere, and I is the fair weather 

current (Rycroft et al., 2000). The load resistance R is much smaller than all of these resistances. The disturbed 

part of circuit (designated by red color in Figure 1) consists of the following resistances: r1 is the resistance of 

upper troposphere, ri is the resistance of ionosphere over a seismic region, and r2 is the resistance of surface 

atmosphere. The disturbance of surface atmospheric conductivity results in the variation of r2 and the electric 

current in this part of the circuit. For the first time, Sorokin and Yaschenko (2000) and Sorokin et al. (2001) have 

carried out the calculation of altitude dependence of DC electric field variation in the Earth-ionosphere layer 

produced by a source of ionization and a growth of conductivity in the lower atmosphere. They performed 

theoretical investigations of the atmospheric ionization by alpha particles and gamma quantum of the nuclear 

decay, and they calculated the altitude dependence of ionization rate and conductivity for different levels of 

radioactivity. It is shown that the electric field can be changed by 1.5-2 times in the ionosphere by the growth of 

conductivity in the surface atmosphere. Such a variation field does not impact onto the ionosphere because the 

amplitude of variations is considerably smaller than the background value. That is, the field variation is invisible 

in the ionosphere. This result is confirmed by Omori et al. (2008), who have shown that the quasi-static electric 

field is reduced by 1.5 times due to the growth of radioactivity and conductivity during the radon injection. In 

spite of evident results of continued unsuccessful attempts to explain the appearance of seismic-related 

quasi-static electric fields in the ionosphere due to the variation of conductivity in the lower atmosphere, for 

example, Pulinets (2009a) has assumed that an anomalous electric field in the ionosphere over an active fault 

occurs by the variation of conductivity in the near-earth atmosphere. The conductivity is varied due to the growth 

of additional radon ionization and the reduction in ions mobility by the generation of large clusters. There are 

missing both the proof of speculation and the calculation of field value in the ionosphere. According to Omori et 

al. (2007, 2008), the radon surge with magnitude 10 Bq/m3 leads to an increase in ionization rate up to (106~107) 

1/m3s. As a result, conductivity of the near-earth atmosphere is increased in 1.5 times, and the field is varied 

approximately by 1.5 times in the ionosphere as well. Since the field of fair weather in the ionosphere is 10-3 

mV/m, then its variation by 1.5 times will be much smaller than the background value (0.1~1) mV/m. Harrison 

et al. (2010) have shown that an increase of ionization rate by radon in two times leads to a variation of the 

current flowing from the ionosphere to the Earth in 10%, and then the field is varied on the same quantity in the 

ionosphere. Thereby, any models based on the assumption that the ionization of lower atmosphere leads to a 

conclusion that the seismic-related electric field formation in the ionosphere is in apparent contradiction with 

experimental data that the electric field is up to 10 mV/m in the ionosphere. 
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Figure 1. Equivalent electric circuit of DC electric field formation in the ionosphere over a region of 

conductivity disturbance in the lower atmosphere. Black color denotes the conventional global circuit, and red 

color indicates the part of circuit over the region of disturbed conductivity 

 

We consider a different way of DC electric field formation in the ionosphere. The electric current and electric 

field are varied due to the inclusion of a seismic-related EMF in the global circuit. The EMF can be located in 

the lithosphere, in the atmosphere and in the vicinity of boundary between the lithosphere and atmosphere. The 

scheme of altitude dependence of total electric current j = σE+je (je: EMF external current) in these three cases is 

depicted in Figure 2. The origin of coordinate system is located on the Earth’s surface. We consider the case 

corresponding to the left panel of Figure 2. In the frame of this model it is assumed that the EMF is located in the 

lithosphere and the field is transferred through the atmospheric layer with specified altitude dependent electric 

conductivity. The vertical component of electric field disturbance is given on the Earth’s surface, and the section 

of closed global electric circuit is depicted in Figure 3. The uniform Ohm’s law for a subcircuit without the EMF 

is performed in the Earth-ionosphere layer. The nature of electric field source on the Earth surface and its 

characteristics are not discussed in the papers based on this model. The source of field is expected to create a 

quasi-static electric current in the circuit for several days. The field in the ionosphere is calculated at given 

spatial distributions of its vertical component on the Earth’s surface (Kim & Hegai, 1999; Pulinets et al., 2000, 

2003; Grimalsky et al., 2003; Rapoport et al., 2004; Denisenko et al., 2008; Ampferer et al., 2010). Electric fields 

in the ionosphere are computed for different boundary conditions, shape and size of field horizontal distribution 

on the Earth’s surface. Kim and Hegai (1999) showed that the field reaches (0.3~0.7) mV/m in the nighttime 

ionosphere if the field near the Earth has a value of 1000 V/m. Since the field in the seismic region does not 

exceed approximately 100 V/m (Kondo, 1968; Vershinin et al., 1999), then their calculated value of field in the 

ionosphere should be reduced to (0.03~0.07) mV/m. Taking into account that the conductivity of daytime 

ionosphere is larger than that of nighttime ionosphere by one-two order, the field value in the daytime ionosphere 

is approximately 10-3 mV/m. Calculations fulfilled in Pulinets et al. (2000, 2003) show that electric field in the 

nighttime ionosphere can reach (0.1~1) mV/m if it reaches a value (103~104) V/m on the Earth’s surface in a 

seismic area with horizontal scale 100 km. This value of field on the ground surface is required to remain during 

several days, but such a field is unlikely to exist. Calculations performed by Denisenko et al. (2008) confirm this 

conclusion. It is shown that the field reaches a value 10-3~10-4 mV/m in the ionosphere at the maximal field 

value E0 = 100 V/m on the Earth surface. So, we can say that there exists, in the ionosphere, no static electric 

field of lithospheric origin. This can be obtained from a simple consideration of the continuity equation ∇·j = ∇·σE = 0 for the vertical conductivity current j = σ(z)E(z) in the conductive atmosphere. The estimate of 

maximum magnitude can be made simply in 1D (one dimensional) approximation dσE/dz = 0. Let σ0, σ1 be the 

conductivity in the near-ground of the atmosphere and that in the ionosphere and E0, E1 are the electric fields 

near the ground and in the ionosphere, then we obtain E1 = E0(σ0/σ1). Taking into account that σ0 ≈ 10-14 S/m; σ1 

≈ 10-6 S/m; E0 = 100 V/m we find E1 ≈ 10-3 mV/m, which is four orders of magnitude lower than the background 

ionospheric field. Thus the considered model is found to contradict with the well-known experimental data 
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interpretation of observational results of EQ precursors based on the model of IGW propagation. One of them is 

as follows. These waves are propagated angularly to the Earth’s surface, and the angle increases depending on 

wave period. So, IGW reaches the ionosphere at a distance of the order of 1000 km from the EQ epicenter, which 

seems to be in conflict with the localization of the plasma and electromagnetic disturbances in the vicinity of EQ 

epicenter. Though there have been recently published a few papers suggesting the important role of AGW 

channel in the LAI coupling (Korepanov et al., 2009; Hayakawa et al., 2011a), in which you can find a summary 

of recent findings in favor of this hypothesis. 

Below we consider the mechanism of the influence of seismic-related electric fields on the ionosphere. The 

model of LAI coupling was described in Pulinets et al. (2000), which consists of two stages which are not related 

with each other. They considered the formation of electric field in the near-ground atmosphere due to the 

appearance of metallic aerosols and ionization source. The source of ionization produces positive and negative 

ions, and then heavy ions are formed by adhesion of water molecules to the light ions. They calculated the 

altitude dependence of electric field caused by diffusion, transfer of ions and aerosols by the electric field, 

gravitational sedimentation of the heavy particles and upward moving of the light particles by the atmosphere 

convection. The interaction between ions with different signs and their adhesion to the aerosols are taken into 

account. Their calculations show that during 50 seconds after the turning on the ionization source there is formed 

an electrode layer up to 30 cm altitude. The number density of the positive and negative ions is different and the 

electric field is reduced in 1.5 times in this layer. The value of electric field grows in three times above this layer. 

As they show that this mechanism could be used to explain the electric field variation at fog occurring in the 

near-ground level. Further, those authors gave a solution of the problem on the electric field penetration into the 

ionosphere through the conducting atmosphere with exponentially upward increasing conductivity. By imposing 

the boundary condition on the horizontal distribution of vertical component of electric field on the Earth’s 

surface, they calculated the horizontal component of electric field at the altitude 90 km based on the spatial scale 

of horizontal distribution of electric field on the Earth’s surface. Obviously, the ionosphere conductivity in night 

time is less than that in day time, so that the electric field at night will be more enhanced than at day. Their 

calculation shows that even though the radius of disturbed region is 200 km and the field on the ground is 100 

V/m, the magnitude of electric field will be 0.07 mV/m. This field is likely to be much smaller than the 

background field in the ionosphere and consequently it cannot have any effect on the ionosphere. Further those 

authors conclude that if the field on the ground will be 1000 V/m, then the effect of this field on the ionosphere 

will be possible. However, such a field in the seismic region with radius 200 km is considered to be implausible. 

So the above-mentioned work cannot be a basis of LAI coupling model.  

Pulinets (2009b) has then made an attempt to explain the possible ionosphere modification due to the 

atmospheric ionization during the radon injection in the vicinity of active faults. The process of local 

modification of global electric circuit and the ionosphere variability for tectonic activity is discussed. He 

supposes that the occurrence of any additional source of ionization has a double effect on the atmosphere 

conductivity. The appearance of additional ions increases the atmosphere conductivity, while the generation of 

heavy cluster ions leads to its reduction. However, there is no estimation on the resultant value of conductivity. 

Further the author supposes that the anomaly of atmosphere conductivity leads to the variation of electric current 

in the local part of the global circuit, but no calculation of this field has been performed. One should keep in 

mind that there are theoretical investigations of the atmosphere conductivity modification during the course of 

ionization. In application to the seismic effect Sorokin et al. (2007) studied in details the processes of 

conductivity formation during the course of gamma and alpha decay based on the solution of a system of 

self-consistent nonlinear equations for electric field, atmosphere conductivity, density of ions and aerosols with 

taken into account their interaction. The well-known value of fair weather current is ~10-12 A/m2 and atmosphere 

conductivity is ~10-14 mho/m, then the field on the ground has a value of ~100 V/m. The value of ionosphere 

conductivity is ~10-6 mho/m, so that the field in the ionosphere for the current with the same density has a value 

of ~10-3 mV/m. The variation of conductivity in the near-ground atmosphere due to the ionization in two times 

results in the variation of current density of the same order in the local part of circuit. So that, this additional 

electric field is on three-four orders less than the ionospheric field and its effect on the ionosphere and equatorial 

anomaly is negligible. Therefore, the hypothesis suggested is physically not well grounded and it cannot be a 

candidate for the creation of LAI coupling mode. On this reason the suggestion by Pulinets (2009b) is in 

contradiction with results obtained by Klimenko et al. (2012), who show that observed disturbances of TEC 

occur on the assumption that DC electric field reaches (3~9) mV/m in the ionosphere. After all, they use the 

work by Pulinets (2009b) to interpret the data in spite of the contradiction with obtained results. 

A principally alternative physical idea based on the electrodynamic model of plasma and electromagnetic 
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disturbances accompanying the processes of EQ preparing was developed in Sorokin et al. (2001, 2007) and 

Sorokin and Chmyrev (2010). First, this model allowed them to explain the results of observation of quasi-static 

electric field both in the ionosphere and on the Earth’s surface in the seismic region, because other models could 

not explain the nature of such a field. In the frame of this model they found the mechanism for the enhancement 

of conducting electric current with altitude and the mechanism for limitation of electric field vertical component 

on the ground surface. The enhancement mechanism is realized by a decrease with altitude of EMF external 

current at the condition of conservation of the total current. This current is equal to the sum of conductivity and 

external currents. The external current of EMF is formed in the near ground atmosphere, as seen in Figure 5. In 

this case even at the growth in conductivity with altitude the field can reach an amplitude of 10 mV/m in the 

ionosphere. While the conductivity current is appeared by including an additional EMF in the global circuit. The 

EMF is formed during the injection of charged aerosols by soil gases in the atmosphere and their transfer in the 

convective atmosphere. The field is limited by a feedback between the external current of EMF and the electric 

field generated near Earth’s surface. Calculations show that the amplitude of disturbed electric field does not 

exceed their background value on the Earth’s surface. In one sense the above-mentioned model is similar to the 

model of AGW influence to the ionosphere, because the amplitude of AGW grows with altitude by a decrease in 

atmosphere density. By analogy, the value of conductivity current grows with altitude by a decrease of external 

current. This implies that the effects are becoming stronger in the ionosphere, but it is difficult to identify AGWs 

above the background in the near-ground atmosphere. Similarly it is difficult to select the disturbances of 

conductivity current because their amplitude on the ground does not exceed the background value which is equal 

to the fair weather current. Both of these effects have a unified source which are lithospheric gases injected into 

the atmosphere. One can suppose that both AGW and electric current can affect the ionosphere simultaneously, 

though the consequences of these effects can be different. 

According to the electrodynamic model, the growth of electric field in the ionosphere is caused by the EMF 

formation and the corresponding variation of electro-physical characteristics of lower atmosphere as a result of 

injection of soil gases, aerosols and radioactive substances during EQ preparation. In the frame of our model, the 

theory of generation of quasi-static electric field in the atmosphere–ionosphere system was developed, and the 

methods for calculation of electric field spatial distribution were elaborated. Sorokin et al. (2001, 2005a, 2006a, 

2007) and Sorokin and Chmyrev (2010) carried out the theoretical investigation of mechanisms of EMF 

formation in the lower atmosphere, who have shown that the quasi-static electric field reaches 10 mV/m in the 

ionosphere while their value is of the order of 100 V/m on the Earth’s surface. Moreover, the field can reach a 

breakdown value in the layer with thin 1-2 km on the altitudes 5-10 km in the troposphere (Sorokin et al., 2011, 

2012a, b). Value of the external current of EMF can be approximately 10-8~10-6 A/m2 near the ground. They have 

further investigated theoretically plasma and electromagnetic effects accompanying the generation of conducting 

current in the global circuit, and have shown that the appearance of EMF in the global circuit leads to the 

stimulation of a set of observed plasma and electromagnetic phenomena. An enhancement of the electric field 

might result in the instability of AGWs in the ionosphere (Sorokin et al., 1998), but the exponential growth of 

AGW amplitude by the electric field in the ionosphere is limited by vortex formation (Chmyrev & Sorokin, 

2010). As a result, the horizontal irregularities of conductivity with scale of approximately 10 km are expected to 

take place in the E layer of ionosphere. This process is accompanied by field-aligned currents and plasma 

irregularities stretched along magnetic field lines in the upper ionosphere (Sorokin et al., 1998; Sorokin et al., 

2000). Their appearance leads to ULF oscillations (Sorokin et al., 1998) and spectral broadening of VLF 

transmitter signals (Chmyrev et al., 2008) registered on satellites. The scattering of background electromagnetic 

emissions by horizontal irregularities of conductivity in the lower ionosphere results in the enhancement of 

electromagnetic ELF emissions registered on satellites (Borisov et al., 2001) and generation of gyrotropic waves 

propagated along E layer of the ionosphere. Their propagation forms line spectra of ULF oscillations (Sorokin et 

al., 2003; Sorokin & Hayakawa, 2008; Sorokin et al., 2009) and the change of resonance frequency of Schuman 

resonances (Hayakawa et al., 2005, 2011b). Moreover, the appearance of irregularities in the nighttime 

ionosphere leads to depressions of ULF pulsations of magnetosphere origin (Sorokin et al., 2004; Schekotov et 

al., 2006; Hayakawa et al., 2013). The growth of electric field up to the breakdown value is caused by random 

electric discharges, which might generate VHF radio emission in the troposphere over the EQ epicenter (Sorokin 

et al., 2011, 2012a, b). The generation of conductivity current in the global circuit is accompanied by the 

modification of ionosphere. Perturbations in the D region of the ionosphere may be generated by both the 

transfer of charged particles and electron heating (Laptukhov et al., 2009). The electrons are in the upper part of 

D layer and negative charged ions are in the bottom part of D layer which occurs by quick adhesion of electrons 

to the neutral molecules. The layer with much density of electrons is appeared in the D region by the transferring 

charged particles and changing the type of charge carrier by the electric current flowing. The enhancement of 
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observation in the ionosphere and in the atmosphere over a seismic region and on the ground. A principally 

different model is based on the assumption that the current source in the circuit connected with pre-EQ processes 

are situated not in the lithosphere or in the atmosphere, but in the near-ground atmospheric layer. The EQ 

preparation processes modify the atmosphere in this layer and form an EMF in the seismic zone. The additional 

source of electric current is generated in the global circuit at the stage of EQ preparing. The range of EMF is 

formed in the near-earth atmosphere and includes the boundary between the lithosphere and atmosphere. In this 

case the observable electric field on the surface is located inside the EMF range. Upward transfer of the charged 

aerosols by atmospheric convection and their gravitational sedimentation result in the EMF formation. Aerosols 

are injected into the atmosphere by soil gases during an increase in seismic activity. The external current of EMF 

is reduced with altitude while the current of conductivity increases with altitude, so the total current in the circuit 

is constant. The value of conductivity current near the surface can be of the order of the value of fair weather 

current, while the external current exceed the conductivity current by four–five orders. Therefore, conductivity 

current in the ionosphere is on the order of the external current of EMF near the surface. 

The above-mentioned model is similar to the model for AGW influence to the ionosphere, because the amplitude 

of AGW grows with altitude by decreases of atmosphere density. By analogy, the value of conductivity current 

increases with altitude by decreases of external current. This implies that the effects become stronger in the 

ionosphere, but it is difficult to identify any AGW above the background in the near ground atmosphere. So that, 

it is difficult to identify the disturbances of conductivity current on the ground because their amplitude does not 

exceed the background value which equals the fair weather current. Both of these effects have a unified source 

which is injected lithospheric gases in the atmosphere, since one can suppose that both AGW and electric current 

can affect the ionosphere simultaneously. Lithosphere, atmosphere and ionosphere are an integrated environment 

in which physical phenomena are related with each other. On the basis of the above-mentioned model the 

intensive processes in the lithosphere and atmosphere such as EQs, volcanoes, typhoons, thunderstorms are the 

cause of electrodynamic effect onto the ionospheric plasma. All of these processes are accompanied by numerous 

electromagnetic and plasma phenomena, which will be discussed elsewhere. 
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