
Generation of Sentences with Their Parses: the Case of

Propagating Scattered Context Grammars

Alexander Meduna and Jǐŕı Techet

Department of Information Systems
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, Brno 61266, Czech Republic

Abstract. Propagating scattered context grammars are used to generate their sentences
together with their parses—that is, the sequences of labels denoting productions whose use
lead to the generation of the corresponding sentences. It is proved that for every recursively
enumerable language L, there exists a propagating scattered context grammar whose language
consists of L’s sentences followed by their parses.

Keywords: parsing, propagating scattered context grammars

1 Introduction

Parallel parsing represents a vivid investigation area concerning compilers today (see [1], [2],
[9], [10], [16]). As parsing is almost always based on suitable grammatical models, paral-
lel grammars are important to this area. Since scattered context grammars generate their
languages in a parallel way, their use related to parsing surely deserves our attention.

In this paper, we use the propagating scattered context grammars, which contain no erasing
productions, to generate their language’s sentences together with their parses—that is, the
sequences of labels denoting productions whose use lead to the generation of the corresponding
sentences (in the literature, derivations words and Szilard words are synonymous with parses).
We demonstrate that for every recursively enumerable language L, there exists a propagating
scattered context grammar whose language consists of L’s sentences followed by their parses.
That is, if we eliminate all the suffixes representing the parses, we obtain precisely L. This
characterization of recursively enumerable languages is of some interest because it is based
on propagating scattered context grammars whose languages are included in the family of
context-sensitive languages, which is properly contained in the family of recursively enumerable
languages. Simply stated, in this paper, we use the propagating scattered context grammars in
such a way that this use provides us with the parses corresponding to the generated sentences
and, in addition, increases the generative power of these grammars.

2 Preliminaries

We assume that the reader is familiar with the language theory (see [6], [11], [12], [13]).
For an alphabet V , card(V) denotes the cardinality of V . V ∗ represents the free monoid
generated by V under the operation of concatenation. The unit of V ∗ is denoted by ǫ. Set
V + = V ∗ − {ǫ}. For w ∈ V ∗, |w| and rev(w) denote the length of w and the reversal of w,

1

respectively. For U ⊆ V , occur(w, U) denotes the number of occurrences of symbols from U
in w. For L ⊆ V ∗, alph(L) denotes the set of symbols appearing in a word of L. Let L1, L2 be
two languages. The right quotient of L1 with respect to L2, denoted by L1/L2, is defined as
L1/L2 = {y | yx ∈ L1, for some x ∈ L2, y ∈ alph(L1)

∗}. The left quotient of L1 with respect
to L2, denoted by L2\L1, is defined as L2\L1 = {y |xy ∈ L1, for some x ∈ L2, y ∈ alph(L1)

∗}.

A scattered context grammar (see [3], [4], [5], [7], [8], [14], [15] and pages 259–260 in
[13]), a SCG for short, is a quadruple, G = (V, P, S, T), where V is an alphabet, T ⊆ V ,
S ∈ V − T , and P is a finite set of productions such that each production has the form
(A1, . . . , An) → (x1, . . . , xn), for some n ≥ 1, where Ai ∈ V − T , xi ∈ V ∗, for 1 ≤ i ≤
n. If every (A1, . . . , An) → (x1, . . . , xn) ∈ P satisfies xi ∈ V + for all 1 ≤ i ≤ n, G is a
propagating scattered context grammar, a PSCG for short. If (A1, . . . , An) → (x1, . . . , xn) ∈ P ,
u = u1A1u2 . . . unAnun+1, and v = u1x1u2 . . . unxnun+1, where ui ∈ V ∗, 1 ≤ i ≤ n, then
u ⇒ v [(A1, . . . , An) → (x1, . . . , xn)] in G or, simply, u ⇒ v. Let ⇒+ and ⇒∗ denote the
transitive closure of ⇒ and the transitive-reflexive closure of ⇒, respectively. The language

of G is denoted by L(G) and defined as L(G) = {x |x ∈ T ∗, S ⇒∗ x}.

3 Definitions and examples

Throughout this paper, we assume that for every SCG G = (V, P, S, T), there is a set of pro-
duction labels denoted by lab(G) such that card(lab(G)) = card(P); as usual, lab(G)∗ denotes
the set of all strings over lab(G). Let us label each production in P uniquely with a label from
lab(G) so that this labeling represents a bijection from lab(G) to P . To express that p ∈ lab(G)
labels a production (A1, . . . , An) → (x1, . . . , xn), we write p : (A1, . . . , An) → (x1, . . . , xn).
For every p : (A1, . . . , An) → (x1, . . . , xn) ∈ P , lhs(p) and rhs(p) denote A1A2 . . . An and
x1x2 . . . xn, respectively. Furthermore, lpos(p, j) and rpos(p, j) denote Aj and xj , respectively.
To express that G makes x ⇒∗ y by using a sequence of productions labeled by p1, p2, . . . , pn,
we write x ⇒∗ y [ρ], where x, y ∈ V ∗, ρ = p1 . . . pn ∈ lab(G)∗. Let S ⇒∗ x [ρ] in G, where
x ∈ T ∗ and ρ ∈ lab(G)∗; then, x is a sentence generated by G according to parse ρ. Let
G = (V, P, S, T) be a SCG with lab(G) ⊆ T . G is a proper generator of its sentences with

their parses if L(G) = {x |x = yρ, y ∈ (T − lab(G))∗, ρ ∈ lab(G)∗, S ⇒∗ x [ρ]}.

Next, we illustrate these definitions by three SCGs, each of which has its set of produc-
tion labels equal to {1, 2, 3, 4}. First, consider SCG G1 = ({S, A, B, C, a, b, c}, P1, S, {a, b, c})
with P1 containing 1 : (S) → (ǫ), 2 : (S) → (ABC), 3 : (A, B, C) → (aA, bB, cC),
4 : (A, B, C) → (a, b, c). As {1, 2, 3, 4} 6⊆ {a, b, c}, G1 is no proper generator of its sentences
with their parses. Second, consider G2 = ({S, A, B, C, a, b, c, 1, 2, 3, 4}, P2, S, {a, b, c, 1, 2, 3, 4})
with P2 containing 1 : (S) → (1), 2 : (S) → (ABC2), 3 : (A, B, C) → (aA, bB, cC3),
4 : (A, B, C) → (a, b, c4). Notice that {1, 2, 3, 4} ⊆ {a, b, c, 1, 2, 3, 4}. However, L(G2) =
{anbncnrev(ρ) |n ≥ 0, S ⇒∗ anbncnrev(ρ) [ρ]} 6= {anbncnρ |n ≥ 0, S ⇒∗ anbncnρ [ρ]},
so G2 is no proper generator of its sentences with their parses either. Third, consider
G3 = ({S, A, B, C, a, b, c, 1, 2, 3, 4}, P3, S, {a, b, c, 1, 2, 3, 4}) with P3 containing 1 : (S) → (1),
2 : (S) → (ABC2$), 3 : (A, B, C, $) → (aA, bB, cC, 3$), 4 : (A, B, C, $) → (a, b, c, 4). Observe
that L(G3) = {anbncnρ |n ≥ 0, S ⇒∗ anbncnρ [ρ]}, so G3 is a proper generator of its sentences
with their parses.

4 Results

Next, we demonstrate that for every recursively enumerable language L, there is a PSCG

G = (V, P, S, T), which represents a proper generator of its sentences with their parses so that

2

L results from L(G) by eliminating all production labels in L(G). To express this property
formally, we introduce the weak identity π from V ∗ to (V − lab(G))∗ defined as π(a) = a for
every a ∈ (V − lab(G)) and π(p) = ǫ for every p ∈ lab(G) and use π in the next main theorem
of this paper.

Theorem 1. For every recursively enumerable language L, there exists a PSCG G such that

G is a proper generator of its sentences with their parses and L = π(L(G)).

Proof. Let L be a recursively enumerable language. Then, there is a SCG Ḡ = (V̄ , P̄ , S̄, T̄)
such that L = L(Ḡ) (see [7]). Set Φ = {〈a〉 | a ∈ T̄}. Define the homomorhism γ from V̄ to
(Φ ∪ (V̄ − T̄) ∪ {Y })+ as γ(a) = 〈a〉 for all a ∈ T̄ and γ(A) = A for all A ∈ V̄ − T̄ . Extend
the domain of γ to V̄ + in the standard manner; non-standardly, however, define γ(ǫ) = Y
rather than γ(ǫ) = ǫ. (Let us note that at this point γ does not, strictly speaking, represent
a morphism on V̄ ∗.) Next, we introduce a PSCG G = (V, P, S, T) such that G is a proper
generator of its sentences with their parses and L(Ḡ) = π(L(G)). Finally, set Γ = {$1, $2, $3}.
Define the PSCG

G = ({S, X, Y, Z} ∪ V̄ ∪ lab(G) ∪ Φ ∪ Γ, P, S, T̄ ∪ lab(G))

with lab(G) = {⌊0⌋, ⌊1⌋, ⌊2⌋, ⌊3⌋, ⌊4⌋} ∪ Ξ1 ∪ Ξ2 ∪ Ξ3, where Ξ1 = {⌊p1⌋ | p ∈ lab(Ḡ)}, Ξ2 =
{⌊a2⌋ | a ∈ T̄}, Ξ3 = {⌊a3⌋ | a ∈ T̄}; without any loss of generality, assume lab(G)∩ alph(L) =
∅. P is constructed as follows:

1. Add
⌊1⌋ : (S) → (X⌊1⌋$1ZS̄) to P ;
⌊1ǫ⌋ : (S) → (⌊1ǫ⌋$1S̄) to P ;

2. For every p : (A1, . . . , An) → (x1, . . . , xn) ∈ P̄ add
⌊p1⌋ : ($1, A1, . . . , An) → (⌊p1⌋$1, γ(x1), . . . , γ(xn)) to P ;
in addition, add
⌊2⌋ : ($1) → (⌊2⌋$2) to P ;
⌊2ǫ⌋ : ($1) → (⌊2ǫ⌋$3) to P ;

3. For every a ∈ T̄ , add
⌊a2⌋ : (X, $2, Z, 〈a〉) → (aX, ⌊a2⌋$2, Y, Z) to P ;
⌊a3⌋ : (X, $2, Z, 〈a〉) → (a, ⌊a3⌋$3, Y, Y) to P ;

4. Add ⌊3⌋ : ($3, Y) → (⌊3⌋, $3) to P ;

5. Add ⌊4⌋ : ($3) → (⌊4⌋) to P .

Basic Idea:

First, we explain how G makes the generation of a nonempty sentence followed by its parse;
then, we explain the generation of the empty sentence followed by its parse.

G makes the generation of a1a2 . . . anρ, where n ≥ 1, each ai ∈ T̄ and ρ is the cor-
responding parse, by productions introduced in steps 1 through 5 in this order. After
starting this generation by using the production from 1, it applies productions introduced
in 2, which simulate the applications of productions from P̄ . More precisely, it simu-
lates the use of p : (A1, . . . , An) → (x1, . . . , xn) ∈ P̄ by using ⌊p1⌋ : ($1, A1, . . . , An) →
(⌊p1⌋$1, γ(x1), . . . , γ(xn)) ∈ P so that it places its own label, ⌊p1⌋, right behind the previously
generated production labels; this substring of labels occurs between the leftmost symbol, X,

3

and $1, in the sentential form. Otherwise, ⌊p1⌋ : ($1, A1, . . . , An) → (⌊p1⌋$1, γ(x1), . . . , γ(xn))
is analogical to p : (A1, . . . , An) → (x1, . . . , xn) except that (i) the former has the fill-in
symbol Y where the latter has ǫ and (ii) the former has 〈ai〉 where the latter has terminal
ai. After using productions introduced in 2, G has its current sentential form of the form
Xτ$2Zu0〈a1〉u1〈a2〉u2 . . . un−1〈an〉un, where τ is a prefix of ρ and ui ∈ {Y }∗. By using pro-
ductions from 3, it places a1 . . . an at the beginning of the sentential form while replacing each
〈ai〉 with Y and generating the production labels. By using productions labeled ⌊3⌋ (see step
4), G replaces each Y with ⌊3⌋ while shifting $3 to the right. Finally, the application of the
production labeled with ⌊4⌋ completes the generation of a1a2 . . . anρ (see step 5). Finally, let
us explain how G makes the generation of the empty sentence ǫ followed by its parse. By use
of productions labeled with ⌊1ǫ⌋ and ⌊2ǫ⌋ instead of ⌊1⌋ and ⌊2⌋, respectively, the process of
placing terminal symbols at the beginning of the sentential form (by productions from step 3)
is skipped; otherwise, the derivation proceeds as above.

Rigorous proof (Sketch):

Claim 1. G generates every w ∈ L(G) − lab(G)+ in this way:

S ⇒ X⌊1⌋$1ZS̄ [⌊1⌋]
⇒+ x [ρ]
⇒ y [⌊2⌋]
⇒∗ z [σ]
⇒ u [⌊a3⌋]
⇒+ v [τ]
⇒ w [⌊4⌋]

(1)

where ⌊a3⌋ ∈ Ξ3, ρ, σ and τ are sequences consisting from Ξ1, Ξ2 and {⌊3⌋}, respectively.

Proof. First, let us make these four observations:

1. Since the only productions with S on its left-hand side are productions introduced in
step 1 of the construction, S ⇒+ w surely starts with a step made by one of these
productions. Notice that alph({w})∩T̄ 6= ∅ and only productions labeled with p ∈ Ξ2∪Ξ3

satisfy a ∈ alph({rhs(p)}), a ∈ T̄ . As X = lpos(p, 1), a ∈ alph({rpos(p, 1)}), and only
production labeled with p ∈ ⌊1⌋ satisfies X ∈ alph({rhs(p)}), the derivation starts with
a step made by this production. This derivation ends by applying production labeled
with ⌊4⌋ because it is the only production with its right-hand side over T ∗. Thus,
S ⇒+ w can be expressed as

S ⇒ X⌊1⌋$1ZS̄ [⌊1⌋]
⇒+ v
⇒ w [⌊4⌋]

2. Let p be the label of any production introduced in steps 2 through 4 of the construction;
then, occur(lhs(p), Γ) = occur(rhs(p), Γ) = 1. In greater detail, for every ⌊p1⌋ ∈ Ξ1,
⌊a2⌋ ∈ Ξ2, ⌊a3⌋ ∈ Ξ3, productions introduced in step 2 satisfy occur(lhs(⌊p1⌋), {$1}) =
occur(rhs(⌊p1⌋), {$1}) = 1, occur(lhs(⌊2⌋), {$1}) = 1, occur(rhs(⌊2⌋), {$2}) = 1,
occur(lhs(⌊2ǫ⌋), {$1}) = 1, occur(rhs(⌊2ǫ⌋), {$3}) = 1 . Similarly, productions
introduced in step 3 satisfy occur(lhs(⌊a2⌋), {$2}) = occur(rhs(⌊a2⌋), {$2}) = 1,
occur(lhs(⌊a3⌋), {$2}) = 1, occur(rhs(⌊a3⌋), {$3}) = 1. Finally, production introduced
in step 4 satisfies occur(lhs(⌊3⌋), {$3}) = occur(rhs(⌊3⌋), {$3}) = 1.

4

3. Because X ∈ alph({x}) and only productions labeled with p ∈ Ξ3 satisfy X ∈
alph({lhs(p)}) and X /∈ alph({rhs(p)}), production labeled with ⌊2ǫ⌋ cannot be used.

4. Let p be the label of any production introduced in steps 1 through 5; then,
alph({rhs(p)}) ∩ lab(G) = {p} and occur(rhs(p), {p}) = 1.

Based on these observations, notice that G generates every w ∈ L(G) − {⌊0⌋} in the way
described in the formulation of Claim 1.

Claim 2. Consider derivation (1). In its beginning

S ⇒ X⌊1⌋$1ZS̄ [⌊1⌋]
⇒+ x [ρ]
⇒ y [⌊2⌋]

every sentential form s in X⌊1⌋$1ZS̄ ⇒+ x satisfies s ∈ {X}lab(G)+{$1}{Z}(Φ ∪ (V̄ − T̄) ∪
{Y })+ and y ∈ {X}lab(G)+{$2}{Z}(Φ ∪ {Y })+.

Proof. By the definition of homomorphism γ, productions labeled with ⌊p1⌋ rewrite symbols
over Φ∪(V̄ −T̄)∪{Y } and change $1 to ⌊p1⌋$1. Since V̄ ∩{X, $1, Z} = ∅, every sentential form
s in X⌊1⌋$1ZS̄ ⇒+ x satisfies s ∈ {X}lab(G)+{$1}{Z}(Φ∪(V̄ −T̄)∪{Y })+. Only Ξ1 contains
production labels p satisfying alph({lhs(p)}) ∩ (V̄ − T̄) 6= ∅. Therefore, to generate w ∈ T ∗,
productions labeled with ⌊p1⌋ have to be applied until s ∈ {X}lab(G)+{$1}{Z}(Φ ∪ {Y })+.
Finally, a production labeled with ⌊2⌋ is used, so y ∈ {X}lab(G)+{$2}{Z}(Φ∪{Y })+ and the
claim holds. �

Claim 3. In

y ⇒∗ z [⌊σ⌋]
⇒ u [⌊a3⌋]

of derivation (1), every sentential form o in y ⇒∗ z can be expressed as o ∈
T̄ ∗{X}lab(G)+{$2}{Y }∗{Z}(Φ ∪ {Y })+ and u ∈ T̄+lab(G)+{$3}{Y }+. In greater detail,

X⌊p1⌋ . . . ⌊pn⌋$2ZY i0〈b1〉Y
i1〈b2〉Y

i2 . . . 〈bm〉Y im

⇒ b1X⌊p1⌋ . . . ⌊pn⌋⌊b12⌋$2Y
i0+1ZY i1〈b2〉Y

i2 . . . 〈bm〉Y im [⌊b12⌋]
⇒ b1b2X⌊p1⌋ . . . ⌊pn⌋⌊b12⌋⌊b22⌋$2Y

i0+1Y i1+1ZY i2 . . . 〈bm〉Y im [⌊b22⌋]
⇒m−3 b1b2 . . . bm−1X⌊p1⌋ . . . ⌊pn⌋⌊b12⌋ . . . ⌊bm−12⌋$2Y

i0+1Y i1+1 . . .
. . . Y im−2ZY im−1〈bm〉Y im [σ̄]

⇒ b1b2 . . . bm⌊p1⌋ . . . ⌊pn⌋⌊b12⌋ . . . ⌊bm−12⌋⌊bm3⌋$3Y
i0+1Y i1+1 . . . Y im+1 [⌊bm3⌋]

where ⌊p1⌋, . . . , ⌊pn⌋ ∈ lab(G) are labels that denote productions introduced in 1–2,
〈b1〉, . . . , 〈bm〉 ∈ Φ, b1, . . . , bm ∈ T̄ , σ̄ = ⌊b32⌋ . . . ⌊bm−12⌋, i0, i1, . . . , im ≥ 0, m = |s|, where
s ∈ L(Ḡ) is a corresponding sentence of the SCG Ḡ.

Proof. Notice that occur(lhs(⌊a2⌋), {X}) = occur(rhs(⌊a2⌋), {X}) = 1 and
occur(lhs(⌊a2⌋), {Y }) = occur(rhs(⌊a2⌋), {Y }) = 1. In every derivation step of y ⇒∗ z,
the the first symbol 〈b〉 ∈ Φ, following Z is replaced with Z, X is changed to bX, and $2 is
changed to l$2, where l ∈ lab(G). As ⌊a2⌋ and ⌊a3⌋ are the only production labels p satisfying
alph({lhs(p)}) ∩ Φ 6= ∅, alph({rhs(p)}) ∩ Φ = ∅ and lpos(⌊a2⌋, 3) = Z, rpos(⌊a2⌋, 4) = Z, Z

5

can replace only the first occurance of 〈b〉 ∈ Φ behind Z to generate w ∈ T ∗. Productions
labeled with ⌊a2⌋ are used m − 1 times. Thus, y ⇒∗ z has the form

X⌊p1⌋ . . . ⌊pn⌋$2ZY i0〈b1〉Y
i1〈b2〉Y

i2 . . . 〈bm〉Y im

⇒ b1X⌊p1⌋ . . . ⌊pn⌋⌊b12⌋$2Y
i0+1ZY i1〈b2〉Y

i2 . . . 〈bm〉Y im [⌊b12⌋]
⇒ b1b2X⌊p1⌋ . . . ⌊pn⌋⌊b12⌋⌊b22⌋$2Y

i0+1Y i1+1ZY i2 . . . 〈bm〉Y im [⌊b22⌋]
⇒m−3 b1b2 . . . bm−1X⌊p1⌋ . . . ⌊pn⌋⌊b12⌋⌊bm−12⌋$2Y

i0+1Y i1+1 . . .
. . . Y im−2ZY im−1〈bm〉Y im [σ̄]

where every sentential form satisfies T̄ ∗{X}lab(G)+{$2}{Y }∗{Z}(Φ ∪ {Y })+.

Finally, some production labeled with ⌊a3⌋ is applied; therefore, z ⇒ u can be expressed
as

b1b2 . . . bm−1X⌊p1⌋ . . . ⌊pn⌋⌊b12⌋ . . . ⌊bm−12⌋$2Y
i0+1Y i1+1 . . .

. . . Y im−2ZY im−1〈bm〉Y im

⇒ b1b2 . . . bm⌊p1⌋ . . . ⌊pn⌋⌊b12⌋ . . . ⌊bm−12⌋⌊bm3⌋$3Y
i0+1Y i1+1 . . . Y im+1 [⌊bm3⌋]

with u ∈ T̄+lab(G)+{$3}{Y }+.

Putting together the previous parts of derivation, we obtain the formulation of Claim 3.
Thus, Claim 3 holds. �

Claim 4. In

u ⇒+ v [τ]
⇒ w [⌊4⌋]

of derivation (1), every sentential form s of u ⇒+ v satisfies s ∈ T̄+lab(G)+{$3}{Y }∗ and
w ∈ T̄+lab(G)+. In greater detail, this derivation can be expressed as

b1 . . . bm⌊p1⌋ . . . ⌊pn⌋{$3}Y
i

⇒ b1 . . . bm⌊p1⌋ . . . ⌊pn⌋⌊3⌋{$3}Y
i−1 [⌊3⌋]

⇒ b1 . . . bm⌊p1⌋ . . . ⌊pn⌋⌊3⌋⌊3⌋{$3}Y
i−2 [⌊3⌋]

⇒i−3 b1 . . . bm⌊p1⌋ . . . ⌊pn⌋⌊3⌋
i−1{$3}Y [τ̄]

⇒ b1 . . . bm⌊p1⌋ . . . ⌊pn⌋⌊3⌋
i{$3} [⌊3⌋]

⇒ b1 . . . bm⌊p1⌋ . . . ⌊pn⌋⌊3⌋
i⌊4⌋ [⌊4⌋]

where all bj ∈ T̄ , 1 ≤ j ≤ m and ⌊pk⌋ ∈ lab(G), 1 ≤ k ≤ n are labels that denote productions
introduced in steps 1 through 3 of the construction, τ̄ is a sequence of production labels ⌊3⌋.

Proof. Notice that lpos(⌊3⌋, 1) = rpos(⌊3⌋, 2) = $3. Observe, that in order to generate w ∈ T ∗

the first occurrence of Y following $3 has to be taken by ⌊3⌋ in each derivation step. Finally,
⌊4⌋ is applied. At this moment, w satisfies w ∈ T ∗ and w ∈ T̄+lab(G)+. �

The next claim formally demonstrates how G generates the empty sentence ǫ followed by its
parse.

Claim 5. G generates every w ∈ L(G) ∩ lab(G)+ in this way:

S ⇒ ⌊1ǫ⌋$1S̄ [⌊1ǫ⌋]
⇒+ x [ρ]
⇒ y [⌊2ǫ⌋]
⇒+ v [τ]
⇒ w [⌊4⌋]

(1)

where ρ and τ are sequences consisting from Ξ1 and {⌊3⌋}, respectively.

6

Proof. Notice that alph({w}) ∩ T̄ = ∅ and only productions labeled with p ∈ Ξ3 satisfy
X ∈ alph({lhs(p)}), X /∈ alph({rhs(p)}) and X = lpos(p, 1), a = rpos(p, 1), a ∈ T̄ . Therefore,
X cannot appear in any sentential form of S ⇒∗ w, and the derivation starts with a step made
by ⌊1ǫ⌋. As X /∈ alph({x}) and for p ∈ Ξ2 ∪ Ξ3, X ∈ alph({lhs(p)}), the production labeled
with ⌊2ǫ⌋ has to be used. Observe that other derivation steps are made in the way described
in Claim 2 and Claim 4. �

From Claims 4 and 5, it follows that for every recursively enumerable language L, there
exists a PSCG G such that G is a proper generator of its sentences with their parses and
L = π(L(G)). �

From Theorem 1, we obtain:

Corollary 1. For every recursively enumerable language L, there exists a PSCG G such that

G is a proper generator of its sentences with their parses and L = L(G)/lab(G)∗ ∩ alph(L)∗.
�

Alternatively, we can introduce a SCG G = (V, P, S, T), as a proper generator of its sen-

tences preceded by their parses so that L(G) = {x |x = ρy, y ∈ (T−lab(G))∗, ρ ∈ lab(G)∗, S ⇒∗

x [ρ]}.

Theorem 2. For every recursively enumerable language L, there exists a PSCG G such that

G is a proper generator of its sentences preceded by their parses and L = π(L(G)).

Proof. This theorem can be proved by a straightforward modification of Theorem 1. A
detailed version of this proof is left to the reader. �

Corollary 2. For every recursively enumerable language L, there exists a PSCG G such that G
is a proper generator of its sentences preceded by their parses and L = lab(G)∗\L(G)∩alph(L)∗.

�

5 Conclusion

In this concluding section, we make some final notes and suggestions regarding the future
investigation.

First, notice that all the above results can be also established so that the generated sen-
tences are followed by the reversals of their parses.

Second, consider the unordered scattered context grammars (see page 260 in [13]). In
essence, in this version of scattered context grammars, we apply a production of the form
(A1 → x1, . . . , An → xn) so we simultaneously replace Ai with xi, for all i = 1, . . . , n, no
matter in what order the nonterminals Ai appear in the rewritten word. Naturally, we are
tempted to use the construction given in the proof of Theorem 1 for these grammars in order
to obtain analogical results to the above results. Unfortunately, this construction does not
work for the unordered versions of scattered context grammmars. Specifically, steps 3 and 4 of
the construction require the prescribed order of rewritten nonterminals; otherwise, the result
is not guaranteed. Can we prove the results of this paper in terms of unordered scattered
context grammars by using some other methods?

Finally, let us recall that we have demonstrated that for every recursively enumerable
language, there exists a propagating scattered context grammar that generate the language’s
sentences followed by their parses. From a broader perspective, we could naturally reformulate
this generation of sentences with their parses in terms of other propagating rewriting mecha-
nisms that define the language family contained in the family of context-sensitive languages.

7

Probably, some propagating parallel rewriting mechanisms, such as propagating PC grammar
systems (see Chapter 4 in Volume 2 of [12]), can be used in this way. Furthermore, some
propagating regulated grammars, such as propagating matrix grammars (see Chapter 3 in
Volume 3 of [12]), seems to be suitable for this generation as well. On the other hand, we can
hardly base the generation of sentences with their parses upon classical sequential rewriting
mechanisms, such as context-free grammars. The authors suggest these problem areas as the
topics of future investigation that continues with the discussion opened in the present paper.

Acknowledgements We thank the anonymous referee for useful comments concerning the
first version of this paper. The first author gladly acknowledges support of GACR grant
201/04/0441.

References

[1] Chatterjee, S. (eds.): Languages and compilers for parallel computing, Springer-Verlag,
London, 1999

[2] Darte, A. et al. (eds.): Compilers for parallel computers, World Scientific, Singapore, 2000

[3] Fernau, H.: Scattered context grammars with regulation, Math.-Informatics Series 45(1)
(1996), 41–49.

[4] Gonczarowski, J. and Warmuth, M. K.: Scattered versus Context-Sensitive Rewriting,
Acta Informatica 27 (1989), 81–95.

[5] Greibach, S. and Hopcroft, J. E.: Scattered context grammars, Journal of Computer and

System Science 3 (1969), 233–247.

[6] Meduna, A.: Automata and Languages: Theory and Applications, Springer-Verlag, Lon-
don, 2000.

[7] Meduna, A.: A Trivial Method of Characterizing the Family of Recursively Enumerable
Languages by Scattered Context Grammars, EATCS Bulletin 56 (1995), 104–106.

[8] Meduna, A.: Generative Power of Three-Nonterminal Scattered Context Grammars, The-

oretical Computer Science 237 (2000), 625–631.

[9] Midkiff, S. P. et al. (eds.): Languages and compilers for parallel computing (13th Inter-
national Workshop on Languages and Compilers for Parallel Computing, 2000, Yorktown
Heights, N.Y.), Springer, London, 2001

[10] Rauchwerger, L. (eds.): Languages and compilers for parallel computing (16th Interna-
tional Workshop, October 2003, Colledge Station, Texas), Springer, London, 2004

[11] Revesz, G. E.: Introduction to Formal Language Theory, McGraw-Hill, New York, 1983.

[12] Rozenberg, G. and Salomaa, A.(eds.): Handbook of Formal Languages, Volume 1 through
3, Springer-Verlag, 1997.

[13] Salomaa, A.: Formal Languages, Academic Press, London, 1973.

[14] Vaszil, G.: On the Number of Conditional Rules in Simple Semi-conditional Grammars,
Theoretical Computer Science, 2004 (in press).

8

[15] Virkkunen, V.: On scattered context grammars, Acta Universitatis Ouluensis, Series A,
Mathematica 6 (1973), 75–82.

[16] Wolfe, M. J.: High performance compilers for parallel computing, Addison-Wesley, Red-
wood City, 1996

9

