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Taking control of light

• Control over interactions

between single photons and

optical emitters

• Why is this important?

– Photon collection

– Single-photon transistors

– High-resolution microscopy

– Long-range quantum bit coupling



Single photon = single plasmon

• Put a quantum dot (QD) next to a silver nanowire (NW)

• Zap the QD with a laser to emit one photon at a time

• Three ways for photon energy to decay:

– Emission into free space (Γrad)

– Heat energy (ohmic losses)

– NW captures radiation via surface plasmons, and energy is

released at the end of the NW (Γpl)

Fig. 1a



What is a quantum dot, anyway?

• Semiconductor nanoparticle that absorbs

photons to release energy

• Quantum confinement - particle in a box

• Size-tunable to absorb/emit specific

wavelengths of light

• Some have core-shell geometries

• Different QDs absorb different spectral

ranges



CdSe/ZnS QDs in buffer solution

• CdSe core with ZnS shell

• Coated with a polymer and streptavidin biomolecule

to be soluble in a buffer solution (Na2B4O7 &

cysteine in water)

• Excitation wavelength 532 nm, Emission 655 nm

CdSe

ZnS

Invitrogen Q10121MP



Silver Nanowire Fabrication

• Chemically grown bicrystalline Ag NWs

• Solution phase polyol method

– AgNO3 + Fe-PVP soln at 160°C

• Dried in air on a poly(dimethylsiloxane) (PDMS)

stamp and functionalized with 1-hexadecanethiol

Fig. S1
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Substrate Preparation
• Spin-coat QDs and ~ 30 nm polymethyl methacrylate (PMMA)

on glass

• Deposit NWs via PDMS stamp

• Spin-coat thick layer of PMMA

QD-NW separation is determined by PMMA thickness
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Optical Analysis
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Fig. S4

Nanowire Out-coupling

• CCD camera image

• Laser (large spot) directly

excites surface plasmons on

the NW

• Plasmons travel to and

scatter from the NW end

(small spot)

• 100 nm NWs exhibited 80%

out-coupling



QD Radiative Coupling

Fig. 2c

NW QDs
Scattered

surface plasmons

(and QD fluorescence)



One photon at a time

Fig. 3b, 3c

QD only QD & NW

• Two detectors measured time delay (τ) between photon coincidence
measurements

• Zero coincidences at τ = 0 confirmed that

– QD is a single photon source

– NW emission results from single, quantized surface plasmons

• Offset from zero is due to stray light, resolution limit, etc.



Photon Tracking

• High correlation between:

– Time trace of fluorescence counts

– Fluorescence wavelength

• NW fluorescence is due to QD

photon emission

• Fluorescence spectrum is not

affected by the NW

Fig. S6
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Fig. 3a



Life is Short

• Coupled QDs

have shorter

lifetimes

• Evidence of

strong QD-NW

coupling

Coupled QD

Uncoupled QD

Fig. 4b



Incredibly Efficient

I1,2 = intensity at NW ends

Idot = intensity of QD

ηm = apparent efficiency

η = actual efficiency (accounts for
dissipation of SPs along NW)

SPs dissipate exponentially

β = absorption coefficient

l = length of NW

For 100 nm NW with QDs 35 nm away,

Calculated η = 50%

Actual η = 60 ± 10%



Just the right thickness

Max η

Max ηm

Avg. ηm

Fig. 4d

Max efficency ~60% with ~30 nm PMMA thickness



Conclusions

• Photons emitted from QDs can couple to SPs

in metal NWs

• Energy is released at NW ends

• QDs release photons one at a time

• Coupling efficiency changes with QD-NW

separation

• Maximum efficiency ~60% vs. typical ~1%


