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Abstract

Background: High-throughput sequencing has opened up exciting possibilities in population and conservation

genetics by enabling the assessment of genetic variation at genome-wide scales. One approach to reduce genome

complexity, i.e. investigating only parts of the genome, is reduced-representation library (RRL) sequencing. Like

similar approaches, RRL sequencing reduces ascertainment bias due to simultaneous discovery and genotyping of

single-nucleotide polymorphisms (SNPs) and does not require reference genomes. Yet, generating such datasets

remains challenging due to laboratory and bioinformatical issues. In the laboratory, current protocols require

improvements with regards to sequencing homologous fragments to reduce the number of missing genotypes.

From the bioinformatical perspective, the reliance of most studies on a single SNP caller disregards the possibility

that different algorithms may produce disparate SNP datasets.

Results: We present an improved RRL (iRRL) protocol that maximizes the generation of homologous DNA sequences,

thus achieving improved genotyping-by-sequencing efficiency. Our modifications facilitate generation of single-sample

libraries, enabling individual genotype assignments instead of pooled-sample analysis. We sequenced ~1% of the orangutan

genome with 41-fold median coverage in 31 wild-born individuals from two populations. SNPs and genotypes were called

using three different algorithms. We obtained substantially different SNP datasets depending on the SNP caller. Genotype

validations revealed that the Unified Genotyper of the Genome Analysis Toolkit and SAMtools performed significantly better

than a caller from CLC Genomics Workbench (CLC). Of all conflicting genotype calls, CLC was only correct in 17% of the cases.

Furthermore, conflicting genotypes between two algorithms showed a systematic bias in that one caller almost exclusively

assigned heterozygotes, while the other one almost exclusively assigned homozygotes.

Conclusions: Our enhanced iRRL approach greatly facilitates genotyping-by-sequencing and thus direct estimates of allele

frequencies. Our direct comparison of three commonly used SNP callers emphasizes the need to question the accuracy of

SNP and genotype calling, as we obtained considerably different SNP datasets depending on caller algorithms, sequencing

depths and filtering criteria. These differences affected scans for signatures of natural selection, but will also exert undue

influences on demographic inferences. This study presents the first effort to generate a population genomic dataset for

wild-born orangutans with known population provenance.
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Background
The availability of high-throughput sequencing has revo-

lutionized the fields of population genetics and molecu-

lar ecology [1]. Early genomic work focused mainly on

broad comparative analyses between species [2-6] and

was limited to one or a few individuals per species. The

emergent field of population genomics [7], including

conservation [8] and landscape genomics [9], investi-

gates genomic allele-frequency patterns at the species

level, i.e. among and within natural populations. Main

interests revolve around exploring patterns of genetic di-

versity, differentiation and admixture, inferring demo-

graphic population histories, and studying signals of

local adaptations in wild populations [7-9].

To date, population-genomics studies have mainly fo-

cused on humans [10,11], some model species [12-14]

and others relevant to agricultural production 15,16].

Other taxa, particularly those with large genomes, have

remained largely unexplored because of significant chal-

lenges in the laboratory and during bioinformatical ana-

lyses [8,17,18]. Sequencing of complete genomes of

many individuals is usually still prohibitive because of

associated costs and bioinformatical complexities, espe-

cially in species where a reference genome is unavailable.

Yet, many biological questions can be addressed by de-

scribing polymorphisms from a subset of genomic re-

gions, provided that these regions are approximately

evenly distributed throughout the genome.

In the laboratory, several strategies have recently been de-

veloped enabling so-called ‘reduced genome complexity se-

quencing’, i.e. sampling only a small fraction of the genome

in several individuals. These strategies include sequencing

of reduced-representation libraries (RRLs) [19], restric-

tion-site-associated DNA sequencing [7,20], and other

sequence-based-genotyping approaches [21,22]. Essentially,

all of these methods are based on the same key principle:

reducing genome complexity by digestion of genomic DNA

with one or several restriction enzymes followed by a selec-

tion of resulting restriction fragments, and high-throughput

sequencing of the final set of fragments.

One of the key characteristics of the aforementioned

methods is that, at least in theory, read mapping can be

carried out regardless of the availability of a reference ge-

nome by constructing a reference sequence from overlap-

ping sequence stacks [21,23-26]. Moreover, the similarity

among sequence stacks of different individuals allows the

direct estimation of allele frequencies by simultaneous

identification of polymorphisms and genotype calling

(genotyping-by-sequencing). This reduces the major issue

of ascertainment bias, which arises when markers are

identified in a small subset of individuals and subsequently

genotyped in an extended sample set [1,17,27].

One popular reduced-genome complexity approach is

RRL sequencing. RRLs were first used to generate

single-nucleotide polymorphisms (SNP) maps of the hu-

man genome using classical Sanger sequencing [28].

Since Van Tassel et al. [19] first adapted the approach to

high-throughput sequencing, it has been applied in a

number of SNP discovery studies (e.g. [26,29-32]). In the

RRL approach, the number of restriction fragments sub-

jected to high-throughput sequencing is reduced via

size-selection before sequencing library preparation.

RRLs allow the degree of complexity reduction to be

customized by defining the selected fragment-size range.

By providing easy access to flanking sequences necessary to

design SNP genotyping assays when a reference genome is

unavailable, RRLs are superior to other reduced-complexity

approaches [7,20]. In the RRL approach, long DNA

stretches can be sequenced by simply size-selecting for lon-

ger fragments (up to several kb possible) and complete se-

quencing of these fragments independent of the platform

read length through shearing of fragments prior to high-

throughput sequencing library preparation followed by

assembly of the resulting sequence fragments [30].

Although the RRL principle is highly promising for

generating population genomic SNP data, current proto-

cols must be improved so as to i) facilitate library con-

struction for individual samples, and most importantly,

ii) maximize the number of homologous fragments ge-

nerated during library construction. In the past, RRL se-

quencing has usually been performed on pools of DNA

samples from multiple individuals for practical reasons

[23,26,32,33]. However, pooling leads to the loss of major

biological information as it prohibits the assignment of in-

dividual genotypes (i.e. genotyping-by-sequencing). Because

of this, many biological questions, such as investigating ad-

mixture or linking phenotypes with genotypes in studies of

natural selection, cannot be addressed when samples are

pooled. Furthermore, pooling strongly increases the risk of

missing rare alleles, especially if there are many individuals

in the pool [34]. In addition, pooling is highly sensitive to

variation in DNA concentration among samples, which will

inadvertently lead to an over – or underrepresentation of

certain alleles [34]. Thus, current protocols need to be im-

proved to facilitate RRL generation of individual samples.

Analyzing individual samples requires improvements to

minimize DNA loss during purification steps, which is

particularly important if sample-DNA quantity is limited.

Moreover, genome complexity needs to be reduced in a

reproducible manner (i.e. homologous sites must be se-

quenced) across samples as this primarily determines the

effectiveness of the genotyping-by-sequencing principle

and reference-free mapping [22]. Non-overlapping se-

quences will lead to a high number of missing genotypes.

The accurate sequencing of homologous sites is also of

particular importance when working with pooled samples,

as the true number of sequenced individuals at a particular

SNP site cannot be determined. In the most extreme case,
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only alleles of one individual would be sequenced. In such

a case, however, allele frequencies would nonetheless be

estimated under the assumption that all allele copies in

the pool had been sampled.

From a bioinformatical point of view, the amounts of

raw data produced by high-throughput sequencing plat-

forms are vast and many computational steps are re-

quired to translate raw outputs into high-quality SNP

calls [18]. Thus, accurately identifying SNPs and calling

genotypes from high-throughput sequencing data while

filtering out sequencing errors remains a challenge. Vari-

ous SNP calling programs have been introduced and al-

gorithms are under constant development [18,35-37].

One of the most widely used commercial software

suites for genomic data analysis is the CLC Genomics

Workbench (CLC bio, Aarhus, Denmark). The software

contains a basic SNP caller (hereafter referred to as

‘CLC’) that detects SNPs based solely on applying quality

thresholds to sequencing, mapping and base quality. Ge-

notypes are determined using hard-filter criteria, i.e. by

simply counting the number of sequencing reads for

each allele and applying arbitrary custom cut-off rules.

For instance, a genotype would be called heterozygous if

an alternative allele is present in 20-80% of the reads.

However, for low sequencing depths this way of geno-

type calling tends to underestimate the number of he-

terozygous genotypes [18].

Arguably, two of the most popular non-commercial

software suites are the Genome Analysis Toolkit (Broad

Institute) [37,38] and SAMtools [36]. Both SAMtools and

the Unified Genotyper of the Genome Analysis Toolkit

(hereafter referred to as ‘GATK’), incorporate uncer-

tainty in a probabilistic framework, in order to call SNPs

and genotypes simultaneously [36-38]. Both SAMtools

and GATK allow the joint analysis of all samples from

one population (multi-sample calling). A major strength

of the Bayesian framework is the potential to incorporate

prior information, such as previous observations of alter-

native alleles, heterozygosity, and allele frequencies.

Ideally, additional information such as representative ref-

erence SNPs or linkage-disequilibrium patterns could be

incorporated [18,37,39]. Unfortunately, such information

so far limited to a few model species (e.g. Arabidopsis

[12]) and humans [10]. It has been proposed that in con-

trast to CLC, GATK (and potentially also SAMtools)

might have the tendency to overestimate the number of

heterozygous genotypes [37]. This is because GATK ag-

gressively calls alternative alleles in favor of high sensi-

tivity, resulting in a high number of false-positive calls

which require extensive post-filtering.

Despite the fact that accurate SNP and genotype cal-

ling is fundamental for precise population parameter

estimation in downstream analyses [17,40,41], to our

knowledge direct comparisons of different SNP callers in

the aforementioned context are still scarce. To date,

most studies employ only one SNP caller, although it is

conceivable that different callers will produce different

datasets. In previous studies, validations were often re-

stricted to confirming and comparing the polymorphic

state of SNPs (e.g. [26,31,42]), but not actual genotypes

at the individual level.

Here, we provide a comprehensive framework to ob-

tain high-quality SNP data in population genomics, ad-

dressing both laboratory and bioinformatic challenges.

First, we refined and improved an RRL protocol

(iRRL), which maximizes the generation of homolo-

gous DNA fragments across individuals, thus achieving

high genotyping-by-sequencing efficiency. Our protocol

also contains modifications for economical handling of

DNA during library preparation. All modifications sup-

port the establishment of single-sample libraries. Sec-

ond, we directly compared three popular SNP callers

(GATK, SAMtools and CLC) using our iRRL data

generated for two orangutan populations (Genus: Pongo).

Orangutans are the only great apes found outside

Africa and the phylogenetically most distant great apes

to humans, which makes them particularly interesting to

study in terms of the evolution of the hominid lineage

[43,44]. In contrast to humans (e.g. the International

HapMap Project [10]; the 1000 Genomes Project [11]), in

non-human great apes large-scale population genomic

data from wild-born individuals with known population

origin are scarce (but see [45,46]). Rather, most genomic

data were generated from a small number of zoo animals

with mostly unknown population origins [47-50], thus

providing a limited perspective for population genomic

analyses of wild populations. Genome-wide data in

orangutans will enable the investigation of the genetic

basis of local adaptations among orangutan populations

[51]. Moreover, population genomic data will shed more

light on the particularly complex demographic history of

orangutans, as shaped by volcanic eruptions and recur-

rent sea level changes connecting the islands of Borneo

and Sumatra during the Pleistocene [52-56].

Results
Improved reduced-representation sequencing

We developed a protocol to construct improved RRLs

(referred to as iRRLs) that maximizes efficiency and re-

peatability of genome complexity reduction. We applied

several key modifications to the method outlined in van

Tassel et al. [19] including: (i) high-resolution fragment-

size-selection down to an accuracy of one base pair to

increase precision of isolating homologous fragments

(Additional file 1: Figure S2), (ii) modifications to minimize

DNA loss during purification steps, achieving DNA recov-

ery rates of >95%, and (iii) adjustments to establish single-

sample libraries to avoid the necessity of sample pooling.
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In order for restriction enzymes to generate homologous

fragments across samples, our protocol includes recom-

mendations for suitable sample handling and DNA isola-

tion to avoid DNA strand breaking prior to digestion.

We established iRRLs for 31 unrelated orangutans

from two populations, the West Alas population on

northwestern Sumatra (WA, Pongo abelii, n = 15) and the

South Kinabatangan population on northeastern Borneo

(SK, Pongo pygmaeus, n = 16; Figure 1, Additional file 2:

Table S1). Based on the number of study individuals, the

orangutan genome size of 3.09 Gigabases (Gb) [48], the

budgeted SOLiD4 sequencing costs, and an intended

30-fold (30×) sequencing depth, we calculated our

targeted degree of genome complexity reduction to be

100-fold, i.e. 1% of the genome. We carried out in-

silico digests of the orangutan reference genome [48]

with several candidate blunt-end cutters in order to

identify the restriction enzyme suitable to our project

needs (see Methods). In the selected size range of 104–

123 bp, a HaeIII digest yielded 305,574 predicted frag-

ments with low repetitive sequence content (representing

the desired 1.07% of the genome, Figure 2). Our in-silico

digest demonstrated the importance of uniform fragment

selection. For instance, extending the selected size range

by as few as 4 bp (e.g. 100–123 bp) in all individuals would

have already resulted in a 25% increase in the selected

genome proportion, i.e. 1.32% of the genome with lower

average coverage per site. Furthermore, a range shift of a

few base pairs in some individuals in either direction

would lead to a dramatic decrease in homology among

the generated fragments.

In total, we obtained 675 million beads for the West

Alas population and 762 million beads for the South

Kinabatangan population by individually barcoding iRRLs

and sequencing them on the SOLiD4 platform (Life Tech-

nologies) with paired-end chemistry. Raw sequence data

were submitted to the NCBI Sequence Read Archive

[BioProject: PRJNA230877; BioSamples: SAMN02439270-

SAMN02439300]. Median numbers of mapped reads for

each individual were 32,345,177 for the West Alas popula-

tion and 43,451,986 for the South Kinabatangan popula-

tion (Table 1 and Additional file 3: Table S2). The greater

sequencing output for South Kinabatangan individuals is

related to different performances of our SOLiD4 runs that

were beyond our control. We also observed a poor per-

formance of the F5 sequence read direction. We only

considered high quality base pairs (bphiqual) in down-

stream analyses, i.e. sites with mapping and base quality

phred scores of ≥ 30, and a minimal sequence depth

of 10×. Applying these stringent filters, we retained

10,930,563 bphiqual with 41× median sequence coverage

for West Alas individuals and 18,186,855 bphiqual with

Figure 1 Geographic location of the two orangutan study populations. The areas colored in brown indicate the current distribution

of orangutans.
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42× median coverage for South Kinabatangan individ-

uals (Additional file 3: Table S2).

To assess the performance of our iRRL protocol, we

estimated the iRRL target efficiency as the percentage of

obtained bphiqual sites which were predicted by the in-

silico digest (= target sites). iRRL efficiency varied among

individuals but was very high with a median of 97% for

West Alas individuals and 86% for the South Kinabatan-

gan individuals (Table 1 and Additional file 3: Table S2).

Thus, the vast majority of sequenced high quality bases

were target sites, i.e. predicted by the in-silico digest of

the orangutan reference genome.

Comparison of SNP discovery and genotype calling

We identified SNPs de-novo and called individual geno-

types using three different algorithms: GATK, SAMtools,

and CLC. Calls were based on the stringent bphiqual filter

thresholds. For the GATK and SAMtools dataset, we

also applied a minimal threshold on the genotype quality

score (GQ ≥ 10). In addition, we performed identical

population-based filtering for all three algorithms. We

only accepted SNPs with a maximum of two alleles and

genotypes meeting all quality filter criteria in at least

eight individuals per population (n ≥ 16 chromosomes),

allowing accurate allele frequency estimations. Applying

all filters we retrieved 57,396 SNPs in the GATK dataset,

75,364 SNPs in the CLC dataset, and 24,103 SNPs in the

SAMtools dataset (Table 2).

Compared to similar studies (e.g. [30,33,42,57]), me-

dian sequence coverage at SNP sites across all individ-

uals in our datasets was extremely high (82× for GATK,

48× for CLC, and 27× for SAMtools), although coverage

counts differed drastically among datasets. This discrep-

ancy in coverage counts could be attributed to a diffe-

rent treatment of quality scores in read counting and/or

different default parameters among the callers, since we

applied identical quality thresholds to the data. The con-

siderably lower read counts in the SAMtools dataset and

potentially different prior probabilities in the Bayesian

framework may be causal for the strikingly lower num-

ber of total SNPs in our SAMtools dataset.

We observed a low overlap of SNPs among the three

datasets, i.e. SNP sites present in at least two datasets ir-

respective of the genotype calls at the individual level

(Figure 3). In total, 18,482 SNPs overlapped among all

three datasets. At only 13%, the SAMtools dataset exhib-

ited the lowest percentage of private SNPs compared to

the other two algorithms (Figure 3).

Many of the non-overlapping sites were present in ini-

tial SNP discoveries, but were removed because less than

eight individuals per population had a genotype call

Figure 2 In-silico HaeIII digest of the orangutan reference

genome. Panel a, b and c represent increasing levels of details.

The x- and y axis show the generated fragment lengths in base pairs

and the number of fragments multiplied by fragment length,

respectively. Peaks are due to repetitive sequences. The isolated

fragment size range (104–123 bp) is indicated in red.

Table 1 Overview of the sequencing of improved

reduced-representation libraries (iRRLs) for the West Alas

(WA) and South Kinabatangan (SK) orangutan

study populations

Pop_WA Pop_SK

(Sumatra) (Borneo)

No. of individuals 15 16

iRRL stacks per individual (predicted)a 305,574 305,574

Median iRRL target efficiencyb 97% 86%

Total no. of beads per population 675,295,801 762,234,081

Total no. of mapped reads per population 528,081,935 646,922,204

Median no. of mapped reads per individual 32,345,177 43,451,986

% reads mapped F3/F5 (mappability)c 74.9/7.3 67.0/17.0

Mean no. of bphiqual per individual
d 10,930,563 18,186,855

Median sequence coverage per individuale 41× 42×
aPredicted by in-silico digest of the orangutan reference genome ponAbe2

(Sumatran) with HaeIII. bPercentage of sequenced sites that were predicted by

the in-silico digest. cF3/F5 are the sequence read directions of the paired end

sequencing mode. dNumber of sequenced base pairs passing all high quality

filters (sites used for SNP detection). eGATK estimates based on bphiqual.
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meeting all high-quality filter criteria (population-based

filter). For the CLC and SAMtools dataset, genotype

calls often failed the minimum coverage requirement of

10 reads. For the GATK dataset, many genotype calls

did not have a sufficiently high genotype quality score.

For all overlapping SNPs, we evaluated the concordance

of genotype assignments by comparing for each individual

whether two callers produced identical genotypes. The

percentage of identical genotype calls varied among indi-

viduals with median values of 97.51% for GATK-CLC,

98.32% for SAMtools-GATK, and 97.24% for SAMtools-

CLC (Table 3 and Additional file 4: Table S3, Additional

file 5: Table S4 and Additional file 6: Table S5). A

quantitative investigation of discordantly called genotypes

between the callers revealed that the vast majority

(>99.77%) of these genotypes were called heterozygous

by one caller but homozygous for either of the alleles

by the other caller. The relative distribution of these

heterozygous/homozygous genotype calls appeared to be

strongly biased (Figure 4). For example, examining discor-

dant genotype calls between GATK and CLC showed that

in most cases (93.02%), GATK assigned a heterozygous

genotype while CLC assigned a homozygous one. Pairwise

SNP caller comparisons revealed that SAMtools had the

highest tendency to call heterozygotes in such cases,

followed by GATK and CLC (Figure 4).

We also created three intersect datasets by accepting

only identically assigned genotypes between pairs of SNP

callers (at the individual level prior to the population-

based filtering). This procedure has been suggested to re-

duce caller-specific errors and increase specificity [18,58].

We retained 37,085 SNPs for the GATK-CLCintersect

Table 2 Overview of SNP discovery and genotype calling using three different callers

GATK_v.2.5-0 CLC_v.5.0.1 SAMtools_v.0.1.19

Pop_SK Pop_WA Overall Pop_SK Pop_WA Overall Pop_SK Pop_WA Overall

No. of SNPs 34257 40248 57396 34788 55585 75364 14494 14903 24103

No. of private SNPs 17148 23139 40287 19779 40576 60355 9200 9609 18809

% singletons 7.68 10.83 12.18 11.53 27.47 25.59 14.63 21.66 22.19

Median site heterozygositya 0.267 0.250 / 0.236 0.200 / 0.266 0.231 /

Median coverage per individual 93× 70× 82× 66× 29× 48× 66× 19× 27×

GATK-CLCintersect SAMtools- GATKintersect SAMtools-CLCintersect

Pop_SK Pop_WA Overall Pop_SK Pop_WA Overall Pop_SK Pop_WA Overall

No. of SNPs 21475 24936 37085 11325 12350 18933 9861 11310 17163

No. of private SNPs 12149 15610 27759 6583 7608 14191 5853 7302 13155

% singletons 9.91 17.98 12.82 9.99 20.53 19.37 10.54 23.08 21.60

Median site heterozygositya 0.250 0.222 / 0.286 0.231 / 0.266 0.222 /

Median coverage per individualb 107× (65) 81× (27) 96× (37) 55× (98) 18× (98) 20× (99) 69× (76) 19× (35) 26× (46)

We required all SNPs to have a genotype call passing all stringent quality filters in a minimum of eight individuals per population (population-based filtering). The

intersect datasets contain exclusively concordant genotype calls between the designated SNP callers. Pop_SK: South Kinabatangan population, Pop_WA: West

Alas population.
aBased on the sites being polymorphic within the population.
bCoverage values of intersect datasets are taken from the first named SNP caller. The coverage values of the second named caller are given in brackets.

Figure 3 Overlap of SNPs among the datasets obtained from

three different callers. Percentages specify the proportion of SNPs

exclusively present in the particular dataset for each caller.

Table 3 Median genotype concordance between designated

SNP callers for overlapping SNP sites assessed at the

individual level

GATK-CLC SAMtools- GATK SAMtools-CLC

% same genotype
called Pop_WA

96.92 98.46 96.15

% same genotype
called Pop_SK

98.27 98.04 97.45

% same genotype
called overall

97.51 98.32 97.24

% same genotype
called overall (range)

93.59-98.38 97.08-99.26 92.46-97.82
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dataset, 18,933 SNPs for the SAMtools-GATKintersect data-

set, and 17,163 SNPs for the SAMtools-CLCintersect dataset

(Table 2).

Impact on biological inferences

Over all six datasets, there were more sites segregating

in the Sumatran West Alas population compared to the

Bornean South Kinabatangan population (Table 2). The

vast majority of SNPs (70-80% depending on the dataset)

were private. In addition, we observed a large percentage

of singletons (Table 2). The highest number of singletons

was obtained in the CLC dataset (26%) followed by

SAMtools (22%) and GATK (12%). Median site hetero-

zygosity was always higher for the South Kinabatangan

population than for the West Alas population.

To investigate the potential impact of the different

SNP datasets on biological downstream analyses, we cal-

culated three important statistics. (i) Kernel-density dis-

tributions for site heterozygosity and (ii) minor allele

frequency were not identical among the SNP datasets

(Permutation test of equality, p < <0.001, Figure 5). From

a qualitative point of view, differences in kernel density

distributions among all six datasets were especially pro-

nounced for the West Alas population (Figure 5a,c) for

which median sequence coverage was lower compared

to the South Kinabatangan population. Nevertheless, it

is striking that we obtained these differences despite a

stringent minimal read cut-off of 10 reads and 29× (CLC

value) medium sequence coverage. For example, the

CLC dataset consisted of the largest proportion of low

frequency alleles. In contrast, GATK called more vari-

ants at mid-frequency and showed higher overall hetero-

zygosity levels.

To evaluate the impact of the SNP dataset differences

on genome-wide scans for signatures of natural selec-

tion, we performed (iii) sliding-window analyses (100 kb

windows, 25 kb step size) to identify signals of putative

selective sweeps based on population differentiation. We

used the allele-frequency differential (D) to measure

population differentiation. We arbitrarily defined outlier

regions as windows with an average population differen-

tiation D > 0.95 (covered by at least 2 SNPs). The overlap

of outlier windows among datasets was low. Only 3.8%

of all detected outlier windows were identical among all

three single-caller datasets (Figure 6), which improved to

13.5% when intersect datasets were used (Additional file 1:

Figure S3).

Genotype validations

To determine genotype accuracy, we validated 63 geno-

types from a subset of 58 SNPs overlapping among data-

sets by classical Sanger sequencing. We picked SNPs with

the only requirements that a minimum of ten individuals

per population had an assigned genotype and that at least

one individual showed a conflicting genotype call between

GATK/SAMtools and CLC. Because all validated geno-

types were identical between GATK and SAMtools, we

did not distinguish between the two for this analysis, but

rather focused on the difference between probabilistic

(GATK and SAMtools) and hard-filtering (CLC) callers.

Our results show that GATK/SAMtools clearly outper-

formed CLC, with a correct genotype assignment in 83%

of the conflicting calls (Table 4). GATK/SAMtools calling

accuracy was especially high for singletons (92% true in

GATK/SAMtools, 8% true in CLC) and for genotypes that

were according to GATK/SAMtools homozygous for ei-

ther of the two alleles but heterozygous according to CLC

(89% true in GATK/SAMtools, 11% true in CLC). We also

verified the genotype accuracy of identical calls and found

4 miscalled genotypes out of 114 (3.5%).

Characteristics of SNP callers

GATK seemed to be conservative in calling singletons

and low frequency alleles in our dataset, as it exhibited

Figure 4 Quantitative investigation of discordant genotype calls between pairs of SNP callers. For the vast majority (>99.77%) of

discordant genotype calls, one caller assigned a heterozygous genotype but the other caller a homozygous genotype for either of the alleles.

The y-axis represents the percentage of heterozygous genotype calls in such cases. The values are median numbers across all study individuals.
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the lowest proportion of singletons among all SNP data-

sets. Yet, among all datasets, GATK had the highest

medium site heterozygosity. It appears that GATK

slightly overestimates mid-frequency alleles, because our

genotype validations revealed that in 30% of the cases

where GATK called a heterozygous and CLC a homozy-

gous genotype, CLC was correct. Thus, our results sug-

gest that with increasing minor allele frequency, GATK

starts calling alternative alleles more aggressively due to

the population prior in multi-sample analysis.

It appears that CLC generally underestimates heterozy-

gosity. The CLC dataset consisted of an excess of single-

tons, suggesting that CLC called sequence errors as a

genetic variants to a greater extent. Thus, the CLC dataset

contained the lowest overall site heterozygosities among

all datasets. Detailed investigation of discordantly called

genotypes revealed that almost all of these genotypes were

homozygous with CLC, but heterozygous with the other

callers. To our surprise, CLC largely miscalled genotypes

as heterozygous which were correctly assigned as homo-

zygous by GATK (89% correct by GATK).

Our results indicate that SAMtools is more restrictive

in SNP calling than GATK and CLC. The SAMtools

Figure 6 Overlap of outlier regions among SNP datasets in

genome-wide scans for positive selection. For all SNP datasets

we performed sliding-window analyses (100 kb window, 25 kb step

size) of the absolute allele-frequency differential (D) between the SK

and WA population. All windows with an average window D > 0.95

were considered as outliers, i.e. candidate regions for selective

sweeps. Percentage values are given in relation to the total number

of outlier windows.

Figure 5 Kernel density distributions of minor-allele frequency and site heterozygosity using the different SNP datasets. For each of the six SNP

data sets (CLC, GATK, SAMtools, GATK-CLCintersect, SAMtools-GATKintersect, and SAMtools-CLCintersect) we computed the minor-allele frequency (MAF) for the

Sumatran (WA) and Bornean (SK) individuals (panels a and b, respectively), and site heterozygosity for WA and SK (panels c and d, respectively).
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dataset consisted of considerably fewer SNPs than GATK

and CLC, but the degree of overlap with the other datasets

was much higher than for the other datasets. SAMtools

showed the highest tendency to assign heterozygous geno-

types in cases of discordantly called genotypes among cal-

lers. For example, the few discordantly called genotypes

were strongly biased in that 84% were heterozygous with

SAMtools, but homozygous with GATK.

Discussion
Our study provides a framework for the generation of

genome-wide SNP datasets for population genomic stud-

ies, from laboratory procedures to bioinformatics, which is

widely applicable in non-model species. We present an

improved protocol for highly efficient and more precise

reduced genome complexity sequencing that simultan-

eously allows discovery of novel SNPs and genotyping.

Using data generated from 31 wild-born orangutans from

two populations, we observed significant inconsistencies

among three commonly used SNP callers (CLC Genomics

Workbench, GATK Unified Genotyper and SAMtools).

These inconsistencies among the SNP datasets led to

strong disagreement in outliers detected in scans for sig-

natures of natural selection. This shows the potential im-

pact on downstream biological analyses and emphasizes

the need to critically evaluate the accuracy of SNP and

genotype calling in population genomic studies.

We present a refined iRRL method presenting an im-

provement of the approach by van Tassel et al. [19]. Several

key modifications greatly enhanced the effectiveness of

genotyping-by-sequencing, as measured by target sequence

efficiency. Target sequence efficiency was high because we

focused on laboratory procedures to obtain homologous se-

quences across individuals, i.e. reproducible fragment ge-

neration and precise size selection. To our knowledge,

these procedures do not seem to have received sufficient

attention in the literature, probably because most studies

pooled individuals to develop SNP markers [26,32,33]

without the direct aim of estimating allele-frequencies.

The importance of uniform fragment selection is well il-

lustrated by our in-silico digests of the orangutan refe-

rence genome. An imprecise isolation of fragments would

have led to a substantial change in the overall composition

of fragment libraries across samples. This in turn would

have caused a substantial increase in missing genotypes

because of significantly reduced overlap of homologous

fragments. Thus, accurate size selection and generation of

uniform fragments to achieve high sequences homology

are paramount in producing high-quality RRLs that

maximize the amount of biological information.

The higher and more constant target sequence effi-

ciencies for Sumatran West Alas individuals (median

97%) compared to Bornean South Kinabatangan indivi-

duals (median 86%) were most likely caused by carrying

out the initial in-silico digest, which predicted our target

sites, on the Sumatran reference genome. Since Sumatran

and Bornean orangutans diverged more than 400,000 years

ago, [48,53,56], Bornean orangutans will inevitably exhibit

more mutations at restriction sites.

We also improved previous RRL approaches by mi-

nimizing the loss of DNA during purification steps, thus

facilitating single-sample library construction. Econo-

mical handling of DNA is particularly relevant when

studying species for which sample quantity is a limiting

factor, which is the case for most wild animal popula-

tions. A high DNA recovery rate during purification

steps is especially important when dealing with low tem-

plate amounts (<100 ng), where DNA loss will be dispro-

portionately higher for technical reasons, and/or targeting

only a small fraction of the genome. So far, these problems

have been circumvented by pooling samples. Our DNA re-

covery rate of >95% in the purification steps is conside-

rably higher than obtained through conventional methods

using extractions from gels and/or silica columns [<80%;

QIAquick Spin Handbook Qiagen].

From a bioinformatical perspective, we demonstrate

that different SNP callers lead to substantially different

SNP datasets, in spite of applying rather conservative

Table 4 Overview of genotype validations at overlapping SNP sites

SNPs
validated

Genotypes
validated

True CLC True GATK/SAMtools

Category n % n %

Discordant calls
a

Singleton site determined by GATK/SAMtoolsb 8 8 1 12.5 7 87.50

Singleton site determined by CLCb 4 4 0 0.00 4 100

Homozygote with GATK/SAMtools but heterozygote with CLC 23 28 3 10.71 25 89.29

Heterozygote with GATK/SAMtools but homozygote with CLC 23 23 7 30.43 16 69.57

Total 58 63 11 17.46 52 82.54

Concordant calls
c

Total 53 114 110 (96.49%)

aOverlapping SNP sites but discordant genotype assignments. bLoci were exclusively counted in this category without considering them in the homo- or heterozygote

categories below. c100 of the 114 genotypes were validated from the same sites used to validate the discordant genotypes. The remaining 14 genotypes were validated

from 14 SNPs chosen randomly from the GATK-CLCintersect dataset (exclusively identical genotype calls).
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quality filters. For example, we applied a phred-scaled

mapping and base quality threshold of ≥Q30, corre-

sponding to an error probability of ≤0.1%. In contrast,

other studies only apply Q20 (1.0% error probability)

[18,26,59,60]. Furthermore, our median sequence cover-

age of 41× (minimal cut-off of 10 reads) is substantially

higher than that found in other studies, in which se-

quencing depth is usually between 6-16× with lower cut-

off values than used in this study [30,32,33,42,57].

There are three main reasons for the conspicuous dif-

ferences among the SNP datasets. First, the SNPs drop-

ping out because of our population-based filtering were

different among the GATK, SAMtools and CLC datasets.

Second, although we used identical mapped short reads

and filtering criteria on the raw data to call SNPs and

genotypes, we cannot exclude a potential influence of

the poor F5 sequence read performance due to specific

internal filters of SNP callers. Third and most impor-

tantly, some differences will arguably be related to the

conceptually very different methods of SNP identifica-

tion and genotype assignment [18,36-38].

Intersect strategies have been proposed to reduce

caller-specific errors [18,58]. The estimated genotype ac-

curacy of 96.5% of intersected genotypes is higher than

in comparable studies that use only one caller (e.g.

47-84% [26,42,61]; 89-95% [19,31,32,62]). Yet, most of

these studies actually only verified the polymorphic

state of SNPs but not individual genotype calls. Thus,

the true genotype error rate in these studies is almost

certainly higher than estimated.

The intersect strategy seems to be appealing because

false-positive assignments should be minimized. How-

ever, it is inevitably less sensitive towards SNP discovery

[18]. The appropriate strategy and filter stringencies for

each study depend on the specific needs of downstream

analyses. Nonetheless, apart from higher false-negatives

rates, as observed in our dataset, intersecting genotype

calls might also introduce non-random biases. More de-

tailed investigations will be required to fully appreciate

the consequences of intersecting strategies.

Among all datasets, the general patterns tend to agree

with previous detailed studies on orangutan population

genetics and demographic history. For instance, the higher

number of singletons and low-frequency alleles we observe

in the Sumatran West Alas population is in agreement with

previous studies using conventional genetic markers

(mitochondrial DNA, microsatellites) [52-54]. Further-

more, the slightly higher site heterozygosities in the South

Kinabatangan population are also in agreement with previ-

ous studies using conventional genetic markers [52,63-65].

Many downstream analyses in population genomics, such

as selection tests or demographic inferences rely on the

allele-frequency spectra [41]. Thus, biological conclusions

drawn from such analyses may well change depending on

which SNP caller has been used. This possibility is illus-

trated by the extremely low overlap of identified outlier re-

gions in our sliding-window analyses to detect selective

sweeps based on population differentiation.

Apart from reliable SNP analysis, the accurate charac-

terization of the allele-frequency spectra is mainly influ-

enced by three sources of bias. First, allele frequencies will

not be representative of the population if there is a sam-

pling bias [9,66,67]. To address this issue and reduce this

bias, we carefully selected study animals and verified

population origins. By contrast, genomic studies often rely

on zoo animals with unknown population provenance (if

wild-born) or apply a limited sampling schema (e.g. [48]),

and thus there are likely inherent sampling biases.

Second, the discovery of SNPs in a subset of individuals

for subsequent genotype calling in an extended sample set

will lead to ascertainment bias [1,17,27]. The degree of as-

certainment bias depends on the representativeness of the

sampling scheme of individuals used for the initial SNP

discovery [67]. Especially in population and conservation

genomics, ascertainment bias is a serious problem when

assessing, for instance, genetic diversity. Low-frequency

variants will be underestimated and a systematic bias will

be introduced [17]. The key strength of reduced genome

complexity approaches is that this form of ascertainment

bias can be minimized by the genotyping-by-sequencing

principle.

Third, it is biologically relevant to also capture rare al-

leles, which is the reason why we established individual li-

braries (i.e. no pooling of samples). Low-frequency alleles

are important in estimates of demographic parameters [68]

and studies of positive [69] and purifying selection [70].

The framework provided in this study will be valuable

to generate genome-wide SNP datasets in the emerging

fields of population, conservation and landscape genom-

ics. Our iRRL protocol is part of a growing suite of se-

quencing methods, which have completely changed

study designs and hold great promise for studies of eco-

logy and evolution in diverse species. The strength of

reduced-genome-complexity RRL methods is that they can

be applied to any DNA-based life form, opening up the

field of population genomics to smaller research groups

studying organisms for which large-scale genetic data is not

yet available. Until high-throughput sequencing becomes

more affordable and bioinformatical advances allow routine

whole-genome re-sequencing of populations, we expect

that reduced-genome-complexity approaches will remain

essential for population genomic studies particularly in

non-model organisms with large genomes.

Conclusions
We generated SNP datasets for 31 wild-born orangutans

from two populations representing the first effort of

large-scale SNP discovery and genotyping of orangutans
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with known population provenance. In the field of

population genomics, researchers need to exert caution

when generating genome-wide SNP datasets. We show

that accurate generation of homologues fragments in

reduced-genome-complexity sequencing is paramount,

especially for pooled samples with no control for missing

genotypes in the estimation of allele frequencies. We

present an improved RRL protocol (iRRLs), which allows

sampling only a fraction of the genome with maximized

sequence overlap among individuals. The scale and effi-

ciency achieved with our iRRL protocol demonstrates its

suitability to generate genome-wide SNP datasets. Our

direct comparison of three popular SNP callers demon-

strated that depending on the calling algorithm, sequence

depths and filtering criteria, substantially different SNP

datasets are obtained that will affect downstream analyses

and thus might have a substantial effect on biological con-

clusions. When only applying a single SNP caller, we ad-

vise to use a probabilistic algorithm and call genotypes in

a multi-sample mode. In our study, the Bayesian frame-

work of the Unified Genotyper of the GATK showed a

higher sensitivity in discovering SNPs than the framework

of SAMtools with similar genotype calling accuracy.

Methods
DNA samples

We sampled two orangutan populations, one from

Borneo and one from Sumatra (Figure 1). To obtain suf-

ficient amounts of high-quality DNA, we collected blood

samples from rehabilitant wild-born orangutans. We

sampled 15 individuals from the West Alas population

(WA, Pongo abelii, northwestern Sumatra) at the Batu

Mbelin Quarantine Center of the Sumatran Orangutan

Conservation Programme, and 16 individuals from the

South Kinabatangan population (SK, Pongo pygmaeus

morio, northeastern Borneo) at the Sepilok Orangutan

Rehabilitation Centre, Shangri-La's Rasa Ria Resort

Sanctuary and Lok Kawi Wildlife Park in Sabah. Whole

blood samples were taken during routine veterinary ex-

aminations and stored in EDTA blood collection tubes

at −20°C. The collection and transport of samples were

conducted in strict accordance with Malaysian, Indones-

ian and international regulations. Samples were exported

from Malaysia and Indonesia to Switzerland under the

Convention on International Trade of Endangered Spe-

cies in Fauna and Flora (CITES) permit numbers 4872/

2010 (Sabah, Malaysia) and 06968/IV/SATS-LN/2005

(Indonesia), respectively. Detailed information on the

sampled individuals is provided in Additional file 2:

Table S1. We verified the individual’s population origin

by genetic assignment tests and Bayesian clustering algo-

rithms as described in the Additional file 1.

To minimize DNA shearing, we avoided repeated

thawing and freezing of samples and used only wide-

bore tips and avoided vortexing during DNA extraction.

Genomic DNA was extracted using the Gentra Puregene

Kit (Qiagen) according to the manufacturer’s instruc-

tions, including RNase treatment, but with the following

modifications for clotted blood: we added twice the

amount of Cell Lysis Solution as well as 7 μl of Protein-

ase K (20 mg/ml, Promega) per 100 mg blood clot to the

samples, followed by incubation for 3 hours at 55°C in a

slowly revolving overhead rotator. If the solution still ap-

peared to be viscous after this treatment, we increased

incubation time and added more Proteinase K as re-

quired until complete liquefaction. We also used twice

the recommended amount of Protein Precipitation Solu-

tion and incubated samples on ice for 10 minutes after

addition of the solution to promote protein precipita-

tion. DNA pellets were eluted in ddH2O instead of DNA

Hydration Solution (Qiagen) to facilitate DNA concen-

tration using a SpeedVac vacuum centrifuge (Savant).

Reduced-representation libraries construction

We performed in-silico digests of the orangutan refer-

ence genome (ponAbe2 [48]) to evaluate a suitable re-

striction enzyme to construct iRRLs using custom perl

scripts. We tested 23 commercially available Type II

DNA blunt-end cutters (4–6 bp recognition sites) in

multiple combinations (Additional file 7: Table S6). Se-

lection criteria were: (i) target size range 70–200 bp, (ii)

number of fragments predicted in size range corre-

sponding to ~1% of the genome, and (iii) low repetitive

element content. We chose HaeIII because in the size

range of 104–123 bp, HaeIII did not produce obvious re-

petitive elements based on visual inspection of the frag-

ment distribution profile (Figure 2), and covered ~1% of

the genome. The enzyme HaeIII has also been selected

in previous studies [19,31,60], and thus might be a good

candidate enzyme for reduced-genome-complexity

sequencing in general.

In cases where there is no reference genome available,

the evaluation for a suitable enzyme could also be car-

ried out in the laboratory, for example by analyzing the

fragment distribution of digested genomic DNA using

high resolution electrophoresis (e.g. Agilent 2100 Bioa-

nalyzer). These instruments offer tools to estimate the

represented genome proportion of fragments within a

given size range.

We established iRRLs for each individual by digesting

20 μg of genomic DNA with 200 units of HaeIII (50,000

U/ml, New England Biolabs) in a total volume of 32 μl.

Digests were run on high-resolution Spreadex EL400

Wide Mini S-2 × 13 gels with M3 size marker in a SEA

2000 electrophoresis chamber (all Elchrom Scientific,

Switzerland) in 1× TAE buffer at 120 Volt for 147 min,

keeping temperature constant at 55°C to ensure repro-

ducibility of fragment migration. The running time was
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the evaluated optimum for the target size range using

the ELQuant Software (www.elchrom.com). Each digest

was equally distributed in two separate wells to avoid

DNA overloading. We stained gels with GelRed (Bio-

tium) and excised fragments between 104 bp and 123 bp

on a UV-transilluminator using a long-bladed sharp

knife, keeping UV exposure as short as possible.

DNA fragments were recovered by electro elution to

achieve high DNA recovery rate (>95%). For this, we

prepared dialysis membranes (Carl Roth, 1785.1 Dialy-

sierschlauch Visking) of approximately 5 cm width,

which we sealed on one side with a plastic clip (Carl

Roth, H277.1 Verschlussklammer). We filled each dialy-

sis membrane with 1 ml of 1× TAE buffer and placed

gel slices in the membrane in the same running orien-

tation as in the electrophoresis run (illustrated in

Additional file 1: Figure S3). We closed the dialysis

membrane with a second plastic clip and avoided trap-

ping any air bubbles inside the membrane. Packages

were then placed in an SEA 2000 electrophoresis cham-

ber filled with 1× TAE buffer. We applied 90 Volts for

100 minutes, followed by 1 minute of reverse polarity to

detach DNA from the wall of the membrane. We gently

massaged the packages to mix the eluted DNA in the

buffer. After this, we carefully opened one of the clips to

gently pipet out the buffer containing the eluted DNA.

The DNA was purified using the MinElute PCR Purifica-

tion Kit (Qiagen). This way, we obtained between 2 and

20 ng of DNA per sample. Individual barcoding of iRRLs

and SOLiD sequencing library preparation was per-

formed according to the SOLiD ChiP-Seq protocol step

11 (Applied Biosystems, 2010), which had been opti-

mized for low template quantities (e.g. Agencourt

AMPure XP beads for purification steps). We restricted

library amplification to six PCR cycles only, so as to

minimize the risk of over-amplification. After library

quality control on an Agilent Bioanalyzer 2000, we nor-

malized samples and sent pooled libraries to the Func-

tional Genomics Center Zurich, Switzerland (FGCZ) for

sequencing on a SOLiD 4™ System with paired-end

(50/35) chemistry (Life Technologies).

SNP discovery and genotype calling

Raw sequence reads were processed and mapped to the

orangutan reference genome ponAbe2 [48] using the

SOLiD LifeScope v.2.5.1 package (Life Technologies) ac-

cording to their guidelines. We used Picard v.1.57

[http://picard.sourceforge.net/] to merge mapping files

for each individual from different SOLiD runs and adjust

read group headers. We called SNPs using three differ-

ent programs as described below.

We performed simultaneous multi-sample SNP and

genotype calling with the Unified Genotyper of the

GATK v.2.5-0 [37,38] with the following thresholds:

phred-scaled mapping and base qualities ≥ 30 (‘-mmq 30 -

mbq 30’). We filtered out low-quality genotypes (GQ <

10) and genotypes covered by less than 10 or more than

1000 reads (‘-minGQ 10 -minDP 10 -maxDP 1000’) using

VCFtools v.0.1.9 [70]. Sites which were homozygous after

this filtering were removed. Finally, we disregarded sites

with more than two alleles and only retained sites with a

genotype call for a minimum of eight individuals per

population that had passed all quality filters applying cus-

tom R scripts.

As a second probabilistic caller, we used SAMtools

v.0.1.19 [36] to call SNPs and genotypes in all individuals

simultaneously. We applied the same filter thresholds as

for the GATK dataset and used defaults settings other-

wise (except for deactivating the base alignment quality

realignment with the -B parameter: ‘samtools mpileup -q

30 -Q 30 -B’). Post-filtering of SNP and genotype calls

was conducted as for the GATK dataset.

As an alternative non-probabilistic approach, we dis-

covered SNPs with the quality-based variant detection

tool of the CLC Genomics Workbench v.5.0.1 (CLC bio)

following the same quality requirements as applied in

the GATK/SAMtools calls. Since the CLC version we

used did not offer multi-sample calling (i.e. analyzing all

individuals simultaneously) at the time of this study, we

detected SNPs for each individual separately and merged

the SNP data subsequently using R scripts. In this

merged dataset, a missing call for an individual for a cer-

tain SNP position could arise either because this individ-

ual is homozygous for the reference allele or because

this site was not sequenced. To obtain this information

for all missing genotypes, we used SAMtools v.0.1.12a

[36]. We called genotypes according to common prac-

tice, applying fixed cut-off rules based on read counts [18]

with ad-hoc R scripts. Sites with an alternative allele fre-

quency between 0-15% were called homozygous for the

reference allele, sites with an alternative allele frequency

between 20-80% as heterozygous, and sites between 85-

100% alternative allele frequency as homozygous for the

alternative allele. To be conservative, we denoted sites

with borderline alternative allele frequencies (i.e. 15-20%

and 80-85%) as ‘N’. We only accepted sites with a max-

imum of two alleles and covered by minimal eight individ-

uals per study population, as we had done for the GATK

and SAMtools datasets.

Finally, we used custom R scripts to intersect the

GATK, SAMtools and CLC genotype calls for each indi-

vidual at all sites (without the population-based filters)

only retaining identical genotype calls. After merging the

individual data, we again excluded sites with more than

two alleles and genotypes in less than eight individuals

per population as performed with the other datasets

(population-based filtering). Note that further filters

could be applied for SNP and genotype calling from
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high-throughput sequencing data such as filtering clus-

ters of SNPs (for a list see Supporting Information of

Auton et. al. [47])

SNP and genotype validation

To assess genotype accuracy between the probabilistic

callers and CLC and estimate the error rate of identical

genotype calls, we validated 180 genotypes by classical

Sanger sequencing. We randomly picked 58 overlapping

SNPs with the only requirements that a minimum of 10

individuals per population had a genotype called, and

that at least one individual showed a conflicting geno-

type call. We validated genotypes of several individuals

at those SNPs, which appeared to belong to three differ-

ent classes: (i) homozygote genotype with GATK/SAM-

tools but heterozygote with CLC, (ii) heterozygote

genotype with GATK/SAMtools but homozygote with

CLC, (iii) identical genotype call. We also validated

(iv) singleton sites (only one alternative allele called in the

entire dataset) that were determined by only one of the

callers through Sanger-sequencing of the individual that

exhibited the singleton. Additionally, to specifically in-

vestigate the genotype accuracy of SNPs present in the

intersect data of all three callers, we randomly picked an

additional 14 SNPs from this dataset. BEDtools v.2.16.2

[71] was used to extract the DNA sequences 400 bp

downstream and upstream of the targeted SNPs from the

orangutan reference genome ponAbe2. PCR primers flank-

ing the SNPs were designed with Primer3 [72] (Additional

file 8: Table S7). We verified genotypes by sequencing

PCR products on a 3730 DNA Analyzer (Applied Biosys-

tems). Details on PCR conditions, cycle sequencing and

data analyses are provided in the Additional file 1.

Statistical analyses

We considered all sites with mapping and base quality

phred scores of ≥30, and a minimal sequence depth of

10 as high-quality base pairs (bphiqual). We estimated the

target efficiency of our iRRL protocol by calculating

which percentage of the actually sequenced bphiqual was

predicted by our in-silico digest of ponAbe2 with HaeIII

(=target sites). Furthermore, for each SNP and popula-

tion we calculated the observed site heterozygosity as

the number of individuals carrying both alleles divided

by the total number of called genotypes in this popu-

lation. Kernel density plots of the minor allele fre-

quency and site heterozygosity distributions were drawn

in R with the ‘sm’ package [73]. We assessed the signi-

ficance of equality of the density estimates among the

different datasets with the ‘sm.density.compare’ func-

tion with 10,000 permutations.

In addition, we performed sliding-window analyses for

each dataset to detect selective sweeps in the genome based

on population differentiation using custom R-scripts.

For all SNPs we estimated population differentiation using

allele-frequency differentials, defined as: D =∑ [abs(pSK −

pWA) + abs(qSK − qWA)]/2, where p and q denote the fre-

quencies of the two alleles for each SNP. We scanned each

chromosome ('chrXY_random' excluded) and calculated for

each window (100 kb window size, 25 kb step size) the

average D of all SNPs. We arbitrarily defined outlier regions

as windows with an average population differentiation

D > 0.95 (covered by at least 2 SNPs).

Availability of supporting data

The raw sequence data to this article is available in the

NCBI Sequence Read Archive, BioProject: PRJNA230877;

BioSamples: SAMN02439270-SAMN02439300.
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