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GENERATION OF SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS*

By CLIVE R. CHESTER {5028 Flushing Ave., Maspeth, N. Y. 11378)

In [1] Moseley derived some nonseparable solutions of the Helmholtz equation, and

in [2] he demonstrated how these solutions could be generated by applying a certain

differential operator to a separable solution. In the present paper we point out that

Moseley's method applies in greater generality to any linear partial differential equation,

and, indeed, to any linear operator equation.

Suppose L is a linear operator and that w is any solution to the equation

Lw = \w. (1)

Suppose, further, that the parameter X is a function of two other parameters a and b:

X = X(o, b). Then the solutions of (1) depend on a and b. Assuming the operators L and

d/da and L and d/db commute, we have from (1)

Lwa = \wa + \aw (2)

and

Lwb = \wb + \bw. (3)

Multiplying (2) by \b and (3) by X„ and subtracting, we find

L(\bwa — \awb) = \(\bwa — \awb) (4)

which shows that the function

u = \bwa — \awb (5)

is a solution to La = \u if w is.
Moseley, in [2], considered the special case in which L = V2 and X = o2 + b2. This

enabled him to generate solutions of the Helmholtz equation by starting with the usual

one obtained by separation of variables, and he carried this program out in both rec-

tangular and polar coordinates. It is clear from the foregoing, however, that the restric-

tion to special coordinate systems is inessential.

Although L can be any linear operator, the results may be trivial in some cases.

For example, application of the foregoing method to the ordinary differential equation

y" — yields the solution y = 0. However, for partial differential equations the method

is quite fruitful, as [1] and [2] show.

Eqs. (2) and (3) also represent a sort of generalization of an idea of Brand [3], who

pointed out that differentiating (1) with respect to X yields a generalized eigenfunction.

w„ is a generalized eigenfunction in the special case X = a. So wa and wb are sorts of

generalized eigenfunctions.
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Application to other types of equations. The method is not limited to equations

of the form (1). The parameter X can multiply terms other than the unknown function.

For example, if c = c(a, b), then the same method shows that

u = cbua — caub (6)

is a solution to

w„ — c~2u„ = 0 (7)

if u is. However, the generating solutions must be chosen judiciously. If a separated

form for u, i.e. a standing wave form, is chosen, then Moseley's method will generate

nonseparable solutions, but if the progressing wave form u = f(x — ct) is chosen, the

method deduces only the solution u = 0.

The three-dimensional wave equation, V2w — c~2u„ — 0, the telegraph equation,

the heat equation, and many others have parameters in their coefficients that can be

used as above to generate further solutions form known solutions.

Fractional operators. In [2], for the case X = a + b2, Moseley uses integral powers

of the operator

M — b d/da — a d/db (8)

to obtain further solutions. Since M is essentially an angular derivative when a and b

are interpreted as rectangular coordinates, we can use fractional powers of M, too.

More precisely, if we introduce polar coordinates via the formulas o = r sin 8 and

b = r cos 6, then we see that M = d/dd. Hence

M" = dn/ddn = D"e . (9)

Introducing the fractional, or Riemann-Liouville integral,

U1 = {' (e - dP> o, (io)

and writing, for any q > 0, q = n — p, where 0 < p < 1 and n is a nonnegative integer,

we define, as usual,

DI = D"eFt . (11)

Then M" — D"s, with D"0 defined by (11), 7? defined by (10) and 6 = arc tan (a/b), when

applied to solutions of Lu = Xu or equations of the types mentioned above, generates

further solutions of Lu = Xw, or those equations.

Again, it is not necessary to restrict ourselves to the special relation X = a2 + b2.

If X = X(a, b), then the corresponding Moseley operator,

M\ = X„ d/da - X0 d/db, (12)

represents differentiation in the direction whose characteristic equations are

da/dt = Xb (13)

and

db/dt = - X_ . (14)
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Combining (13) and (14), we find

\a(da/dt) + \b(db/dt) = 0, (15)

or, \(a, b) = const. Thus, if we put X(a, 6) = ju here, we see that, essentially, My = d/dfi.

Introducing J® and as before, we can then define fractional powers of My.
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