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Laser-driven, quasimonoenergetic electron beams of up to �200 MeV in energy have been observed

from steady-state-flow gas cells. These beams emitted within a low-divergence cone of 2:1� 0:5 mrad

FWHM display unprecedented shot-to-shot stability in energy (2.5% rms), pointing (1.4 mrad rms), and

charge (16% rms) owing to a highly reproducible gas-density profile within the interaction volume. Laser-

wakefield acceleration in gas cells of this type provides a simple and reliable source of relativistic elec-

trons suitable for applications such as the production of extreme-ultraviolet undulator radiation.

DOI: 10.1103/PhysRevLett.101.085002 PACS numbers: 52.38.Kd, 41.75.Jv, 52.38.Hb

In recent years, laser-wakefield acceleration (LWFA)
has advanced at a remarkable pace. The vision of a laser-
driven plasma-based electron accelerator [1] started to
become reality when multi-MeV laser-accelerated elec-
trons were first detected in the mid-1990s [2]. Since then,
an improvement in technology and understanding has led
to such breakthroughs as the generation of quasimonoe-
nergetic electron beams [3,4] in the bubble regime [5], the
extension of electron energies into the GeV range [6,7],
and their systematic manipulation by means of controlled
injection [8]. These achievements pave the way towards
practical applications. In the future, this accelerator con-
cept could permit tabletop drivers for extreme-ultraviolet
and x-ray free-electron lasers [9]. For these purposes,
extensive control over electron bunch reproducibility and
quality is of crucial importance, progress on which is
reported in this Letter.

In LWFA, the ponderomotive force of a laser pulse
traveling through underdense plasma can excite a plasma
wave with longitudinal electric fields larger than
10 GV=m. These fields may be utilized to accelerate elec-
trons to ultrarelativistic energies on a centimeter scale. For
this process to occur, the electrons need to acquire an initial
momentum to be injected into the wakefield structure. This
can be facilitated by the laser pulse itself when its intensity
reaches the injection threshold, which depends on the
electron plasma density ne. That mechanism is most effi-
cient when the longitudinal laser size L ¼ c�, with pulse
duration � and the speed of light c, is comparable to its
transverse dimensions and approximately equal to half the
plasma wavelength �P ¼ 2�c=!p [10], with!P being the

plasma frequency. However, even a laser pulse that initially
does not satisfy these conditions can potentially be
matched to these constraints by self-compression [11]

and relativistic self-focusing [12,13], with the latter taking
place above a critical laser power Pcrit*17ð!L=!PÞ2 GW.
Here !L represents the laser frequency. Owing to a non-
linear dependence on the laser and plasma parameters, both
pulse-shaping effects may cause significant fluctuations in
electron-beam properties due to small shot-to-shot varia-
tions in laser and plasma conditions. Most LWFA experi-
ments published to date have relied to some extent on
nonlinear laser-pulse evolution prior to the acceleration
process and at the same time demonstrated only limited
stability (with the exception of Ref. [8]). Hence, for deliv-
ering high-quality and stable electron bunches that allow
for applications, it is mandatory to minimize fluctuations of
the laser as well as the plasma parameters and thus reduce
the consequences of nonlinearities. Lately, a number of
studies have been dedicated to improving control over
electron beam reproducibility. Stabilizing the bunch en-
ergy has been demonstrated in a complex two-beam setup
[8]. Other groups have analyzed the laser pulse and
plasma-parameter space to optimize acceleration stability
[6,14,15]. In this Letter, we report on the generation of
high-quality laser-accelerated electron beams of unprece-
dented simultaneous stability in energy, charge, diver-
gence, and pointing direction. The presented experiment
is based on a simple setup using a stable gas-filled capillary
target and thereby minimizes shot-to-shot fluctuations. In
contrast to previous work employing such a design [6,7],
the target gas is ionized by the wake-driving laser pulse and
not by an electrical discharge.
The gas cell was constructed from two sapphire plates,

each with a half-cylindrical groove in its surface. The
grooves were aligned to form a 15 mm long, 250 �m
diameter channel. These channels are long-lived, since
wall erosion by the laser has no detectable influence on
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the electron beams. Experiments with different diameter
gas cells of 200–300 �m yielded similar results, suggest-
ing that unlike in Ref. [6] the waveguide properties of these
structures do not play a prominent role here. Figure 1(a)
shows the cell cross section and a sketch of the experimen-
tal setup. The channel was filled with hydrogen passing
through a valve and two gas slots at backing pressures of up
to 490 mbar. We carried out simulations of the gas flow
using the 2D coupled-implicit-solver version of the
FLUENT code, which solves the Navier-Stokes equations

and in our case uses the �-" model to account for turbu-
lence [16]. The gas cell investigated in this work reduces
target density fluctuations threefold compared to super-
sonic gas jets. First, negligible gas flow occurs within the
central interaction volume. The magnified regions in Fig. 1
(a) display the steady-state flow velocities at the cell en-
trance or exit and center for a typical backing pressure of
130 mbar. An almost perfectly homogeneous and station-
ary gas distribution develops between the inlets covering
80% of the channel length [Fig. 1(b)]. In addition, the
residual flow at the cell exits and supply slots is only mar-
ginally turbulent, and the turbulent kinetic energy � is low.
Second, no supersonic shock fronts propagate through the
medium, a phenomenon which may occur in high-Mach
gas jets. Finally, the valve opening process has no influence
on the actual density distribution inside the channel since
the time it takes the valve to open (�2 ms) is 2 orders of
magnitude smaller than the cell filling time in pulsed
operation (200 ms) and is irrelevant in continuous-flow
mode. A destabilization of the electron-acceleration con-
ditions was observed only for valve opening times below
�50 ms. Thus, initial fluctuations equilibrate before the
arrival of the laser pulse and a steady-state, laminar gas

flow arises resulting in a reproducible, homogeneous gas
distribution.
The driver laser in our experiment, the ATLAS Ti:sap-

phire system at the Max-Planck-Institut für Quantenoptik,
delivered 20 TW, 850 mJ, 42 fs FWHM pulses on target at
a central wavelength of � � 800 nm. As schematically
indicated in Fig. 1(a), the beam was then focused into the
gas cell by an f=22 off-axis parabola to a spot with a
diameter of 23 �m FWHM and a Strehl ratio of >0:7.
This resulted in an average vacuum FWHM focal intensity
of 1:7� 1018 Wcm�2 and a normalized laser vector po-
tential of a0 ¼ 0:89.
The accelerated electrons emerging from the gas chan-

nel were observed at two positions along their trajectories
by 12-bit cameras on scintillating phosphor screens (type
CAWO OG 16). These screens were placed at the entrance
of (S1) and behind (S2) a permanent dipole magnet (field
strength of�0:45 T). S1 detected the electron beam point-
ing and divergence after 1.12 m of propagation. When this
screen was removed, the electrons could enter the spec-
trometer magnet unscattered. S2 then registered the elec-
tron deflection in the magnetic field. The fluorescence
signal of S2 was calibrated using image plates to provide
an absolute charge readout [17]. Three-dimensional par-
ticle tracking simulations for the measured field distribu-
tion of the spectrometer were used to calibrate its energy
dispersion and transverse focusing behavior. We have in-
vestigated the electron beams generated from this setup in
terms of charge, energy, pointing direction, and diver-
gence. The remarkable shot-to-shot stability of these pa-
rameters allowed for systematic studies with meaningful
statistics which will be presented in the following.
Figure 2 displays the negative charge Q of accelerated

particles measured at S2 as a function of ne with energies
�100 MeV. The electron density is deduced from the
hydrogen fill pressure assuming complete ionization
within the laser focus. Electrons are injected into the
wake at densities above �4� 1018 cm�3 facilitated by
laser self-modulation effects (see remarks on simulations
below). At n0e � 7:3� 1018 cm�3, a maximum amount of
charge Q � 32 pC is detected with shot-to-shot fluctua-
tions as low as 16% rms. The data on either side of this
maximum can be interpreted as follows: For densities ne <
n0e, an increase towards n0e in charge and stability is ob-
served. In this regime, the distance d over which injected
electrons interact with the wakefield is governed by the
focusing geometry of the laser modified through relativis-
tic self-focusing and energy depletion effects and not by
the electron dephasing length ld > d (ld ¼ �3

p=�
2 /

n�3=2
e in linear theory). ld is the distance over which the

electrons outrun the accelerating wakefield and start to
decelerate. The laser energy depletion length le / n�1

e

[18] decreases with density as fast as Pcrit / n�1
e .

Therefore, the distance over which the self-focusing effect
can be maintained does not depend on density resulting in
an almost constant acceleration distance. Since the electric
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FIG. 1 (color). (a) Cross section of a capillary. Magnified
parts: Color-coded gas-flow velocities in a steady-state regime
(FLUENT simulation with 130 mbar filling pressure). (b) Calcu-
lated gas-pressure profile (solid line) and the turbulent kinetic
energy � (dashed line) along the central channel axis.
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field of the wake Ew is proportional to n1=2e , the electron
energy We / Ewd increases accordingly as does the num-
ber of electrons above 100 MeV. In addition, a more
efficient electron trapping with higher density increases
the total amount of accelerated charge. With ne approach-
ing n0e, the dephasing length converges to d with ld �
4 mm, representing the longest distance over which elec-
trons are accelerated and setting a lower limit on the length
over which the laser pulse is self-guided. This constitutes
the transition to a dephasing-limited regime for densities
ne > n0e, in which ld < d and We / Ewld / 1=ne. Thus, Q
decreases with higher density. Alongside dephasing, a
lower beam-loading threshold with increasing plasma den-
sity diminishes the total amount of accelerated charge. The
decreased stability for ne > n0e can be ascribed to a grow-
ing deviation from the LWFA resonance condition �p=L �
2, leading to filamentation and temporal laser breakup.

The onset of the filamentation processes can be observed
in some of the energy-resolved electron beams obtained at
n0e [cf. Fig. 3(a)]. False-color images of S2 show the
dispersed bunches accelerated by 40 consecutive laser
shots. It may be seen that every shot led to electron
acceleration. The electron spectra in this regime exhibit a
plateau background of 22� 5 pC with a quasimonoener-
getic peak containing 10� 4 pC of charge at 198�
12 MeV appearing in 80% of the cases [Fig. 3(b)]. These
features are stable in energy with a standard deviation of
6% for the electron peak and 3% for the high-energy cutoff
at 217� 6 MeV. The energy spread of the peak �E=E
amounts to 8.2% FWHM, with �E � 16:3 MeV.
At a decreased density of ne � 6:8� 1018 cm�3, the

plateau vanishes, and only the quasimonoenergetic part
remains [Fig. 3(c)]. This comes at the expense of a reduced
peak charge (7� 3 pC), reduced electron energy (122�
3 MeV), and a reduced injection probability (71%), which
indicates that the laser pulses are only just above the
injection threshold. Remarkably, the peak energy stability
improves to 2.5% rms. To our knowledge, this is the best
shot-to-shot reproducibility in an LWFA experiment
achieved to date. The remaining variations in the accelera-
tion process can be attributed not only to residual gas
fluctuations, laser shot-to-shot jitter in energy (�2:0%
rms), and pulse duration but also to electron pointing
deviations into the dipole magnet introducing an uncer-
tainty, which will be investigated in the following.
The accumulated signal of 74 electron bunches and the

locations of their maxima on S1 are presented in Fig. 4(a).
Here the beam pointing within the spectrometer deflec-
tion plane varies by 1.4 mrad rms. For a fixed electron
energy, this fluctuation translates into apparent energy
fluctuations on screen S2 with standard deviations of
1.7% at 122 MeV (ne � 6:8� 1018 cm�3) and 3.1% at

FIG. 3 (color). (a) False-color images of 40 consecutive, spatially dispersed electron beams on S2 (ne � 7:3� 1018 cm�3) [sample
spectra in (b)]. (c) Exemplary spectra for ne � 6:8� 1018 cm�3. Ten consecutive images of S2 are presented in the inset. The color
scale is normalized for each shot.
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198 MeV (n0e � 7:3� 1018 cm�3). Therefore, the real
energy stability might have been significantly more favor-
able than stated above. However, owing to low-angle scat-
tering introduced by S1, the pointing and energy spectra of
an electron beam could not be measured simultaneously.
Analyzing all shots from Fig. 4(a) individually yields a
distribution of the electron bunch divergences. Figure 4(b)
shows such a single electron beam imprint. The average
beam divergence is 2:1� 0:5 mrad FWHM, or 0:9�
0:2 mrad rms assuming a Gaussian profile. This divergence
is smaller by almost a factor of 2 compared to other studies
(e.g., [6]) and originates from collective electron dynam-
ics, trapping, and intrabunch Coulomb repulsion, whereas
the contribution of scattering off background particles is
negligible [19].

We have performed 3D simulations of the laser-plasma
interaction with the particle-in-cell code ILLUMINATION

[20] to determine the role of pulse-shaping effects under
our conditions. They indicate that electron trapping in the
laser wake occurs only after the laser pulse has undergone
significant self-focusing and -compression. This is sup-
ported by the fact that relativistic electrons were solely
detected in the experiment for laser powers well above
Pcrit, which is exceeded for ne > 2� 1018 cm�3 with
ATLAS parameters. Therefore, the dramatic improvement
in stability over our earlier work [7] (for a quantitative
comparison cf. Ref. [21]) can be attributed to the modified
gas target only. Previously, the transverse and longitudinal
electron-density profile was preshaped by an electrical
discharge and subsequent plasma cooling [22] allowing
for guiding of the laser over several Rayleigh lengths.
This facilitated longer acceleration distances and higher
electron energies but may have introduced significant shot-
to-shot density-profile variations. The elimination of these
fluctuations led to reproducible plasma conditions and
electron beams in this study.

In conclusion, we have generated electron bunches from
LWFA showing excellent stability by utilizing a hydrogen
cell as the laser-plasma interaction volume. The virtue of
our experiment lies in the improvement and simultaneous
shot-to-shot stability of electron beam key parameters
(divergence, pointing direction, charge, and energy).
Such a stability will be of crucial importance to the success

of laser-driven electron sources for applications such as the
generation of undulator radiation [23] or free-electron
lasers [9]. Further, this concept has the benefit of simplicity
compared to other setups (e.g., [8]) and unlike gas jets or
discharge waveguides can easily be scaled to very high
repetition rates by employing continuous gas flow.
We acknowledge helpful discussions with K. Schmid,

S. Rykovanov, and J. Meyer-ter-Vehn. This work was
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and by the Association EURATOM—MPI für Plasma-
physik. Zs.M. received financial help from the Marie-
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FIG. 4 (color). False-color images at S1. (a) Summed signal of
74 electron beams and the peak positions of the individual shots
(dots) at ne � 7:8� 1018 cm�3. rms shot-to-shot pointing fluc-
tuations are 1.4 (y axis) and 2.2 mrad (x axis). (b) Signal of a
single electron beam with a FWHM divergence of 1.6 mrad.
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