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Generation of Stationary 

Non-Gaussian Time 

Histories with a Specified 

Cross-spectral Density 

The paper reviews several methods for the generation of stationary realizations of sampled 

time histories with non-Gaussian distributions and introduces a new method which can 

be used to control the cross-spectral density matrix and the probability density functions 

(pdfs) of the multiple input problem. Discussed first are two methods for the specialized 

case of matching the auto (power) spectrum, the skewness, and kurtosis using generalized 

shot noise and using polynomial functions. It is then shown that the skewness and kurto­

sis can also be controlled by the phase of a complex frequency domain description of the 

random process. The general case of matching a target probability density function using 

a zero memory nonlinear (ZMNL) function is then covered. Next methods for generating 

vectors of random variables with a specified covariance matrix for a class of spherically 

invariant random vectors (SIRV) are discussed. Finally the general case of matching the 

cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distribu­

tions is presented. 

INTRODUCTION 

It is recognized that some dynamic and noise envi­

ronments are characterized by time histories which 

are not Gaussian. Examples include radar clutter, sea­

waves, high-intensity acoustic noise, and some sur­

face transportation vibration. A better simulation of 

these environments can be generated if zero mean non­

Gaussian time histories can be reproduced with a spec­

ified cross-spectral density (CSD) matrix and a spec­

ified marginal probability density function (pdf). The 

motivation for this paper is primarily non-Gaussian vi­

bration. For some environments the non-Gaussian na­

ture of the vibration response of a structure can have 

a significant effect on the fatigue life of a structure. 

Non-Gaussian vibration can also result in peak vibra­

tion levels significantly larger than would be expected 

from a Gaussian assumption. 
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If we can generate realizations of non-Gaussian vi­

bration with a specified cross-spectral density matrix 

more accurate simulations of the environments will be 

possible. Note that the case of a single input and spec­

ifying the auto-spectral density is a special case of 

specifying the cross-spectral density matrix. Modern 

waveform reproduction techniques can be used to re­

produce the realized waveforms on electrodynamic or 

electrohydraulic shakers to simulate the environments. 

There has been a long interest in the generation 

of non-Gaussian random signals. Most of the inter­

est has been in the simulation of sea waves (Hu 

361 



362 Smallwood 

and Zhao (1993)) and radar clutter. Recent interest 

has developed for the simulation of surface trans­

portation. Zero memory nonlinear (ZMNL) functions 

have been used for a long time to generate time se­
quences with a specified autospectrum (power spec­

trum) and a non-Gaussian probability density func­

tion. For example, Gujar and Kavanagh (1968) used 

an analog device to generate the zero memory non­

linear function. Other authors have also used this 

method for generating non-Gaussian sequences, ex­

amples include: Liu and Munson (1982), Li and 

Yu (1989), Ren et al. (1995), Winterstein (1988), 
Newsam and Wegener (1994), and Gordon and Ritcey 

(1995). Others have used a Poisson process to gen­

erate non-Gaussian random signals: Poirion (1993), 

and Smallwood (1996a). Spherically invariant ran­

dom vectors (SIRV) have also been used, exam­

ples include: Rangaswamy et al. (1995), Conte and 

Longo (1987). Others have used ARMA (auto re­

gressive moving average) models to generate se­

quences with the desired spectrum and then mixed 

sequences with a Gaussian and Laplace distribution 

to generate the desired non-Gaussian sequences: ex­

amples include: Walden (1992), and Wu and Cheng 

(1994). Hsueh and Hamernik (1990) and Steinwolf 

(1996, 1997) vary the phase spectrum to achieve 

a non-Gaussian distribution. Kim et al. (1987) use 

a quadratic function to generate non-Gaussian se­

quences. 

Many of these methods will be discussed later in 

the paper. The paper is not a rigorous mathematical 

treatment of the problem, but rather a practical en­

gineering approach. Methods for generating a single 

time history are discussed first, and then vectors of 

time histories are covered. 

GENERALIZED SHOT NOISE FOR THE 

GENERATION OF NON-GAUSSIAN TIME 

HISTORIES 

A probability density function can be specified by its 

moments, with higher order moments often becoming 

less important. In this section a method will be devel­

oped for producing realizations of a zero mean random 

process with a specified spectral density, mean square. 

(defined by the spectrum), skewness, and kurtosis. 

Skewness and kurtosis are defined for this paper as 

a normalized values given by 

and (1) 

where x(t) is a stationary random process. Loosely, 

skewness is a measure of the symmetry of the process. 

If the positive side of the waveform has the same char­

acteristics as the negative side of the waveform the 

skewness will be zero. If the positive peaks are greater 

than the negative peaks the waveform will have posi­

tive skewness. Kurtosis is a measure of the crest factor 

of the waveform. A Gaussian waveform will have a 

kurtosis of three. A waveform with an excess of peaks 

as compared with a Gaussian waveform will have a 

kurtosis greater than three. 

This in essence specifies the first four moments of 

the distribution in addition to the spectral density. The 

solution is not unique. Many waveforms can have the 

same spectrum and the same first four moments. 

A generalization of shot noise will be used for the 

realizations. Stationary shot noise is defined (Papoulis, 

1965, p. 288) as a filtered sequence of impulses, gov­

erned by a Poisson process. If the filter impulse re­

sponse is h(t), 

00 

set) = L h(t - Lj) (2) 

i=-oo 

where Lj are independent random times, governed by 

an exponential distribution with an average rate of A 

occurrences per second. It is well known that as A ap­

proaches infinity the process becomes Gaussian (Pa­

poulis, 1965, p. 570). By taking advantage of the pro­

cess for A less than infinity, we can generate realiza­

tions with a specified skewness and kurtosis (or equiv­

alently the third and fourth moments) different than for 

a Gaussian process. It can be shown that the first four 

moments of shot noise are given by (Papoulis, 1965; 

Lin, 1967) 

where 

E[s] = Ahl' 

E[s2] = Ah2, 

E[s3] = Ah3, 

E[s4] = Ah4 + 3A2h~, 

(3) 

(3a) 

Further discussion will be restricted to the case where 

hI = 0, which results in a zero mean process. 

First the shot noise will be generalized with the ad­

dition of an amplitude parameter 

00 

x(t) = L Ah(t - Lj), (4) 
j=-oo 

(5) 



The above expression is not used directly but as a step 

to the following expression. The amplitude itself can 

be a stationary random process, in which case the gen­

eralized shot noise takes the form 

00 

x(t) = L Aih(t - Ti). (6) 

i=-oo 

If Ai and Ti are independent, and the mean of Ti is long 

compared to the duration of h(t), then Ai and h(t - Ti) 

will be independent and 

(7) 

An impulse response function will be chosen as the 

inverse Fourier transform of the square root of the re­

quired auto spectral density Gxx(w) 

h(t) = )..-1/2 I: G~iej21fft df. (8) 

If the spectrum of Ai is white with unity amplitude, 

the resulting spectrum of x(t) will be the desired spec­

trum. The next step will be the generation of an am­

plitude function that can be used to control the 2nd 

through 4th moments of x(t). In each case we will 

need three parameters, where ).. will serve as one of 

the parameters. This leaves two parameters to define 

the amplitude function. Several options are available. 

One method would be to describe the amplitude as a 

random process of independent random variables, with 

a normal distribution described with a mean, /LA, and 

standard deviation, a A, which gives 

E[A] = /LA, 

E[A2] = a1 + /L~, 

E[A 3] = /LA (3a1 + /L~), 

E[A4] = 3a1 + 6a1/L~ + /L~. 

(9) 

A second method would describe a series of impulses 

with two fixed amplitudes, Ax and An, and a proba­

bility of 1/2 for each amplitude. Each amplitude Ai is 

chosen independently as one of these two amplitudes, 

which gives 

1 
E[A] = 2(Ax + An), 

E[A2] = ~(A; + A~), 

E[A3] = ~(A~ + A~), 

E[A4] = ~(A; + A!). 

(10) 
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Both the above methods generate sequences with the 

correct values for skewness and kurtosis for large val­

ues of kurtosis. As the kurtosis approaches 3, and ).. 

gets larger, the values for /LA, aA, Ax, and An from 

Eqs. (9) and (10) will over-predict the kurtosis as the 

independence assumption in Eq. (7) is violated. 

A third method will describe impulses chosen with 

fixed amplitudes Ax or -Ax. The amplitudes Ai will 

be chosen independently with a probability of p for 

Ax and (1- p) for -Ax. The expected values of A are 

E[A] = Axp + (1 - p)(-Ax) 

= AxC2p - 1), 

E[A2] = Aip + (1 - p)(_Ax)2 = Ai, 

E[A3] = Ai(2p - 1), 

E[A4] = A;. 

(11) 

The last method will be used in this paper because it 

leads to a simple closed form solution for the three pa­

rameters; ).., Ax, and p. The combinations of Eqs. (2), 

(7), and (11) gives 

E[x] = 0, 

E[x2] = )"Aiii2, 

E[x3] = )"Ai(2p -1)ii 3 , 

E[x4] = A; ()..ii4 + 3)..2iiD. 

(12) 

The solution for Eq. (12) for the unknown parameters 

IS 

(13) 

where S3 and K4 are the normalized skewness and 

kurtosis for a zero mean process. For a Gaussian pro­

cess the skewness and kurtosis are zero and three, re­

spectively. Several observations can be made from the 

solution. First, as K4 -+ 3, ).. -+ 00 as expected. 

Since).. must be positive, only a kurtosis greater than 

3 can be achieved. Second, the product Ai).. is equal to 

the constant E[x2]/ii2. Third, if we assume ii3 > 0, if 

S = 0, then p = 1/2; if S is greater than 0, p > 1/2; 

and if S is less than 0, p < 1/2. 
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Since p is limited to the interval [0, 1], the skew­

ness is limited by 

(14) 

Since as K4 ->- 3, A ->- 00, S3 ->- 0, only a skewness 

of near zero is available as the kurtosis approaches 3. 

Fourth, as 

(15) 

which implies any kurtosis greater than 3 can be 

achieved. The spectrum does not approach zero be­

cause the amplitude of impulses will approach infinity. 

It is conjectured that for any simulation with a spec­

ified kurtosis, a range of skewness values about zero 

are possible, and as the kurtosis approaches three, the 

range of possible skewness values approaches zero. 

Digital Implementation 

The impulse response function h(t) can be approxi­

mated in a digital simulation by taking the inverse FFT 

of the square root of the auto spectral density of the 

random process to be simulated 

- 1 -I 1/2 
hi = T3/2).. FFT (Gxx ), i = 0, ... , N - 1, 

(16) 

where N is the block size and T is the duration of a 

frame. In this form samples of the impulse response 

for negative time will be in the upper half of the trans­

form. A circular shift of N /2 will place the samples of 

the impulse response in a more convenient form. This 

will result in a delay in the output of N /2 samples, but 

will not change the final result. In theory the impulse 

response is not time limited. To reduce leakage caused 

by truncation of the impulse response, the sampled im­

pulse response can be multiplied by a window and the 

mean removed. 

where 

1 N-I _ 

fJ-hw = N L hiWi 

i=O 

i=O, ... ,N-l, (17) 

1 N-I 

and fJ-w = N L Wi· (18) 

i=O 

The times of the impulses are Tm. The sample number 

of the mth impulse is given by km . A realization of the 

next delay is given by 

km = Tm/!1t = km-I + round(rm/ M), (19) 

where !1t is the sample interval, r m are independent 

numbers generated from a exponential distribution 

with a mean of ).., and round( ) means round to the 

nearest integer. Since the impulse response function is 

non zero only in the interval ° to N - 1, the sum defin­

ing x (Eq. (6» must extend only over the terms where 

h(j - k i ) is non zero. This interval includes i 's where 

° ~ j - ki ~ N -1. Samples of the random realization 
can the be generated using 

(20) 

where i extends over the values 

j ~ ki ~ j + N - 1. 

If the first impulse is at kl = 1, after a transient of 

N samples a stationary output will be generated. The 

frequency resolution (in this case we mean the band­

width, B, if the smallest frequency feature which can 

be generated in the realization) of the expected spec­

tral density of samples of x(t), Xi will be determined 

by the block size, N, and the window used. As N 

increases the bandwidth of the smallest feature de­

creases such that product B* N!1t remains approxi­

mately a constant. Sometimes ).. is so large that the 

quantization of Tm can be a significant problem. For 

this case h(t) can be sampled at a multiple of the sam­

ple rate for x (t). An offset of the first sample of h(t) 

and decimation can be used to improve the resolution 

of the delays. 

Examples of this method are given by Smallwood 

(1996a). Poirion (1993) uses a variation of the Poisson 

shot noise to generate non-Gaussian waveforms. 

POLYNOMIAL FUNCTIONS USED FOR THE 

GENERATION OF NON-GAUSSIAN 

WAVEFORMS 

It has been suggested that a polynomial function of the 

form 

yet) = anxn + ... + alX + ao (21) 

could be used as a zero memory nonlinear function 

to transform a Gaussian variable into a variable with 

non-Gaussian characteristics. 

Bendat (1990) and Merritt (1997) suggest three 

forms of a system to accomplish the desired goal as 

suggested by Fig. 1. Type 1: A is excluded and the 

system is reduced to a linear system followed by a 

zero memory nonlinear system. Type 2: B is excluded 

and the system is reduced to a zero memory nonlin­

ear system followed by a linear system. And Type 3: 



Linear ZMNL Linear 
x(t} - system t--

system 
f-

system 
I--

B u(t) v(t) 
A 

y(t} 

FIGURE 1 Generalized system using linear functions in 
series with a zero memory nonlinear function. 

A zero memory nonlinear function is preceded and fol­

lowed by a linear system. The linear systems A and B 

are used to shape the spectrum of the output. The zero 

memory nonlinear system is used to control the skew­

ness and kurtosis. 

Formulas for the skewness and kurtosis as a func­

tion of the parameters an can be developed (Mer­

ritt, 1995; Winterstein, 1988); n greater than 3 is sel­

dom used. Winterstein has suggested that the form of 

Eq. (21) is appropriate for kurtosis greater than three, 

and that an inverse formula as below is appropriate for 

kurtosis less than three. 

x(t) = anyn + ... + alY + ao. (22) 

The three different forms have advantages and disad­

vantages: Type 1: A is excluded (a linear system fol­

lowed by a zero memory nonlinear function) and the 

distribution of yet) will be the same as vet). If the dis­

tribution of u(t) is Gaussian, the skewness and kurto­

sis of vet) can be predicted from the polynomial coef­

ficients. However, the spectrum of vet) will be almost 

the same as the spectrum of u(t), but not quite, as will 

be explained in a later section. Type 2: An alternate 

formulation is a zero memory nonlinear function fol­

lowed by a linear system (B is excluded). The spec­

trum of yet) will be accurately predicted by A and the 

spectrum of vet), but the distribution will be changed 

(will move toward being closer to Gaussian) by A. 

This requires that the coefficients of the polynomial be 

chosen differently to give a distribution, which when 

distorted by A, will give the desired skewness and kur­

tosis. This typically requires an iterative solution. Win­

terstein typically uses a linear system followed by a 

zero memory nonlinear function, where Merritt seems 

to favor a zero memory nonlinear function followed 

by a linear system. Type 3: A type 3 system includes 

a linear system before and after (A and B) the zero 

memory nonlinear function. 

In each case care must be taken in choosing the co­

efficients such that y (x) is a monotonically increasing 

function of x over the range of the simulation. This 

implies that d y / dx is positive over the range of the 

simulation. Otherwise a nonrealizable cumulative dis­

tribution function (CDF) for y will result as will be 

explained in a later section. 

Generation of Stationary Non-Gaussian Time Histories 365 

THE USE OF PHASE TO CONTROL 

SKEWNESS AND KURTOSIS 

A reasonable simulation of a random time history can 

be expressed in the frequency domain as 

N 

x(t) = L Ak cos(2Jl'kt.jt + fPk). (23) 

k=l 

If an FFT is used the above formulation results in one 

period of a pseudo-random signal. This is explained in 

detail by Smallwood and Paez (1991). The simulation 

can also be expressed in the form 

N 

x(t) = Lak cos(2Jl'kt.jt)-bk sin(2Jl'kt.jt). (24) 

k=l 

For a Gaussian waveform, ak and bk are realizations of 

random variables, independent, normally distributed 

with a zero mean, and with a standard deviation given 

by 

(25) 

where t.j is the spacing between frequency lines and 

S(kt.f) is the desired auto spectral density at the 

frequency kt.j. Steinwolf (1996) and Steinwolf and 

Ibrahim (1997) give interesting formulas for the skew­

ness and kurtosis for waveforms where ak and bk are 

not independent: 

N 

E[x2] = L (al + bI), (26) 

k=l 

S3 E3/2[x2] = E[x3] 

= ~ ?= {aj (al- bI) + 2bjakbk} 
J=2k 

3 
+ 2" L {(ajak - bjbk)am 

j-k=m 
j<k 

+ (ajbk + akb j)bm}, (27) 

K' ~ 3+ {t (af +hi) r {-~ t (af +hi)' 

+2 L [ajak{al- 3bI) - bjbk{bl- 3aI)] 

j=3k 

+ 6 L [(ajak + bjbk){a~ - b~) 
j=k+2n 

k#n 
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- 2(a jbk - akb j )anbn] 

+6 L [(ajak-bjbk)(a;-b;) 

.i+k=2n 
j<k 

+ 2(a jbk + akb j )anbn] 

+ 12 L [(ajak - bjbk)(anam - bnbm)] 

.i+k=n+m 
j<k,n<m,j<n 

x [(ajbk + akb j)(anbm + ambn)] 

+ 12 L [(ajak - bjbk) (anam + bnbm)] 

j+k+n=m 
j<k<n 

(28) 

where the summation should be carried out only for 

those combinations of the indices j, k, m, n that sat­

isfy the inequalities written for each summation. 

Observe that the skewness will be zero when ak 

and bk are uncorrelated because all the terms involve 

a product akb j which has an expected value of zero 

when j =1= k. The kurtosis will approach 3 only as 

the number of terms, N, gets large. All the terms for 

the kurtosis except the first summation involve corre­

lations of harmonics and sum and difference frequen­

cies (j = 3k, j = k + 2n, j + k = 2n, j + k = 

n + m, j + k + n = m). Harmonic distortion caused by 

a nonlinear relation between x and y can clearly cause 

this correlation. 

It is also clear that by introducing a correlation be­

tween some or all of the ak and h coefficients, the 

skewness and kurtosis can be changed. It is also clear 

that if N is large, the solution is not unique; many dif­

ferent combinations of correlations can result in the 

same skewness and kurtosis. Hsueh et al. (1990) cor­

relate the coefficients in a band of frequencies. Stein­

wolf (1996) uses an unspecified method to correlate 

the coefficients. 

The generation of a continuous stationary wave­

form by this method will present some difficulty. The 

data are generated in frames depending on the choice 

of the sample rate and the number of coefficients, N. 

The joining of the blocks is not straightforward since 

discontinuities will exist at the frame boundaries. If the 

frames are long enough this may not be a significant 

problem. If a windowing and overlapping operation is 

attempted to remove the discontinuity, the distribution 

will be changed and moved toward a Gaussian distri­

bution. The frames could be circularly shifted to a zero 

crossing to ease the discontinuity problem. A circular 

shift will not change the moments or the spectrum. 

GENERATION OF A ZERO MEMORY 

NONLINEAR FUNCTION TO ACHIEVE A 

SPECIFIED DISTRIBUTION 

For a Type 1 system with a single input, a Gaussian 

time history with the specified auto spectral density 

(ASD) is generated. Smallwood and Paez (1991) and 

Tebbs and Hunter (1974) discuss an efficient way to 

accomplish this generation. A monotonic zero mem­

ory nonlinear function relating the Gaussian wave­

form to the desired realization is then established 

based on the cumulative distribution function (CDF) 

of the desired waveform and the known cumulative 

distribution function of a Gaussian waveform. The es­

tablished function is used to transform the Gaussian 

waveform into a realization of the desired waveform. 

This method was suggested as early as 1968 by Gujar 

and Kavanagh. 

If the probability density function of the desired 

waveform is known or can be estimated, the resulting 

cumulative distribution function can be used with the 

known distribution of a Gaussian waveform to estab­

lish a zero memory nonlinear transformation function. 

This function relates a random variable with a Gaus­

sian distribution to a random variable with the desired 

distribution. To arrive at the required function, the for­

mula for the change in variables using the cumulative 

distribution function will be used (Wirsching et al., 

1995). 

(29) 

where 

y = g(x) or x = g-l(y). (30) 

In summary 

y = Fy-I(Fx(x») = g(x) (31) 

is a monotonically increasing zero memory nonlin­

ear function. The procedure for finding g(x) from the 

known functions Fy(y) and Fx(x) is best illustrated 

graphically in Fig. 2. Fy(y) and Fx(x) will be re­

stricted to functions which result in a monotonically 

increasing function g(x). It is seen from Fig. 2 that a 

point in the x - y plane (Xl, yd for which Fx(xd = 
FY(YI) is a point on the function y = g(x). If both 

Fy(y) and Fx(x) are known, y = g(x) can be con­

structed. Usually for experimental data the probabil­

ity density function is first estimated and the cumu­

lative distribution function is estimated by integrat­

ing the probability density function. In this develop­

ment Fy (y) is the target non-Gaussian distribution, 

and Fx(x) is a Gaussian distribution. 



YI 

Y Y 

Fy(y) X x, 

Fy(Y,) = 

LFx(x,) 

Fx(x) 

x 

FIGURE 2 Generation of the zero memory nonlinear 
function transformation function, y = g(x). 

A sampled realization of a waveform with a Gaus­

sian distribution and with the specified spectral den­

sity will then be generated. Each sample in the re­

sulting realization will be transformed using the pre­

viously derived function, y = g(x). If the function is 

"smooth" and monotonically increasing, the transfor­

mation will preserve the timing of all the zero cross­

ings, minimums and maximums of the original wave­

form. Since most of the spectral information is con­

tained in the zero crossings (Wise et aI., 1977; Bendat 

and Piersol, 1986, Sec. 12.6.4), the spectrum will usu­

ally not be substantially changed. Some harmonic dis­

tortion will be introduced by the transformation. The 

spectrum of the distorted waveform can be estimated 

and an error spectrum generated. The error spectrum 

can be subtracted from the original spectrum if the 

subtraction does not result in a negative spectrum, and 

a new realization of the Gaussian waveform can be 

generated from the corrected spectrum in an iterative 

fashion. Often this iteration is not required as the dis­

torted waveform spectrum is near enough to the target 

spectrum to be useful without correction. 

If experimental data are used to generate the prob­

ability density function of the target spectrum, a pro­

cedure which results in a smooth continuous estimate 

of the probability density function is needed. A simple 

histogram will usually not be sufficient. The method 

used in this paper involves the kernel density estimator 

and is discussed by Silverman (1986). The actual prob­

ability density function estimation routine used in this 

paper was supplied by Norm Hunter of Los Alamos 

National Laboratories. The resulting probability den­

sity function estimate was integrated to estimate the 

cumulative distribution function. 

The probability density function and the cumulative 

distribution function of the Gaussian distribution can 
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be generated using standard functions. If the target dis­

tribution is known as one of the classical distributions 

the probability density function and cumulative distri­

bution function can often be evaluated analytically. 

In some cases sufficient data are not available to 

produce a smooth target cumulative distribution func­

tion of the desired data and, hence, a smooth zero 

memory nonlinear function. In this case a polynomial 

function can often be fitted to the zero memory non­

linear with good success. Often a least squares fit is 

used. If the normalized kurtosis is greater than three, a 

polynomial function of the form 

N 

Y = L::aixi 
i=l 

(32) 

can be used. If the normalized kurtosis is less than 3, a 

function of the form 

N 

x= L::ai/ (33) 

i=l 

can be used (Winterstein et aI., 1994). N greater than 

4 is seldom required. Care must be taken to restrict 

the coefficients to values which will result in a mono­

tonic increasing function, y = g(x), over the range of 

the data to be considered. Winterstein has suggested 

that often sufficient information about the distribution 

is not known for this method to be used, and that fit­

ting the skewness and kurtosis using the polynomial 

fits of the previous section is the best that can be prac­

tically accomplished. However, it is the experience of 

the author and Merritt (1997) that the statistical uncer­

tainties of estimating the skewness and kurtosis are so 

large that if sufficient data are available to estimate the 

skewness and kurtosis with a reasonable uncertainty, 

enough data are also available to make a reasonable es­

timate of the probability density function. By fitting a 

polynomial curve to the zero memory nonlinear func­

tion defined above, and by visually examining the fit, 

insight into the process can be gained. 

Liu et aI. (1982) use a zero memory nonlinear func­

tion in a time domain technique where the Gaussian 

time history spectrum is shaped with a digital filter. Li 

(1989) uses a Type 1 system with a AR filter and a zero 

memory nonlinear function to model a Weibull distri­

bution. Gordon and Ritcey (1995) also use a variation 

of the Type 1 method with a linear filter followed by a 

zero memory nonlinear function. 
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USING A SPHERICALLY INVARIANT 

RANDOM PROCESS (SIRP) 

Rangaswamy et aI. (1991, 1993, 1995) have written 

a series of papers which use a spherically invariant 
random process to simulate non-Gaussian random pro­

cesses. let H be a linear manifold generated by some 
set of random variables {xn }. If all the random vari­

ables in H have the same variance and have the same 

distribution function, we call the set {xn} spherically 

invariant. If the {xn} are arbitrary samples from a ran­

dom process, this defines a spherically invariant ran­

dom process (Blake and Thomas, 1968). An impor­

tant property of a spherically invariant random pro­

cess is that a linear operation on a spherically invari­

ant random process is also a spherically invariant ran­
dom process with the same distribution. A Gaussian 

process is a special case of a spherically invariant ran­

dom process. But there are other distributions which 
are also spherically invariant including the Laplace, 

Cauchy, K-distribution, and the Student t-distributions 

(Rangaswamy et aI., 1995). Another important prop­
erty is that if a random vector is a spherically invariant 

random vector, then there exists a nonnegative random 

variable S such that the probability density function of 

the random vector conditioned on S is a multivariate 

Gaussian probability density function. These proper­
ties allow the generation of a random vector with a 

desired covariance matrix and a non-Gaussian proba­

bility density function in the following manner. 

1) Generate a white zero-mean Gaussian random 

vector, Z, having an identity covariance matrix. 

It is not necessary for the mean to be zero, but 

it will be assumed in this paper. 
2) Generate a random variable, V, from the 

probability density function Iv(v), where Iv is 
the characteristic probability density function 

for the spherically invariant random vectors 

and is tabulated for several distributions by 
Rangaswamy et aI. (1995). 

3) Normalize the random variable, V, by a to 

obtain S. In other words generate S = Via. 

4) Generate the product given by X = ZS. At this 

step we have a white spherically invariant 

random vector having a zero mean and identity 
covariance matrix. 

5) Perform the product given by 

Y=AX, (34) 

where 

(35) 

where 1: is the desired covariance matrix and Y 

is the desired random vector. 

This method has the advantage of keeping the desired 

covariance matrix and the desired probability density 

function independent. But the method also has some 

disadvantages. First, if the desired probability density 

function is not one of the tabulated probability density 

functions, the calculations can become quite tedious. 

Second, if the desired random vector is long, the de­

sired covariance matrix gets quite large. For example, 

if it is desired to control the spectrum of a single ran­

dom variable, the random vector needs to be at least as 

long as the autocorrelation function to properly iden­

tify the covariance matrix. Each row of the square co­

variance matrix is a time shifted autocorrelation func­
tion. The method will then generate frames of data as 

long as the random vector. If a stationary continuous 

sampled time history is desired, the problem of joining 

the frames is the same as discussed earlier. 

Conte and Longo (1987) also use the spherically 

invariant random process method. 

GENERALIZATION OF THE SMALLWOOD 

PAEZ METHOD FOR THE MULTIPLE INPUT 

CASE 

In this section we want to discuss the generation of 

a vector of sampled time histories {x(t)}, where each 

element in the vector is a sampled time history. We 

would also like to specify the cross-spectral density 

matrix between the elements, [Gxx ], where the diag­

onal elements are the auto spectra of each element in 
the vector and the off diagonal elements are the cross­

spectra between the elements. 

In theory the method using a spherically invariant 

random process could be used to generate data for this 

case, but in practice it would be very awkward. 

Smallwood and Paez (1991) showed how to gener­

ate a vector of normal stationary inputs with a spec­

ified cross-spectral density in an efficient manner. 

Briefly the cross-spectral density matrix is decom­

posed into the form 

Gxx = HGii H ', (36) 

where G xx is the desired cross-spectral density matrix, 

H is a matrix of frequency response functions, H' is 

the complex conjugate transpose of H, and Gii is a di­

agonal matrix with real components. Several methods 

can be used for this decomposition, the most common 

being a modified Cholesky decomposition. A vector 

of independent normal random sources is then synthe­

sized with spectra given by the diagonal elements of 

Gii. The resulting independent signals are generated 

in the frequency domain by setting the Fourier mag­

nitude equal to the square root of the auto spectrum 



and randomizing the phase. This is usually sufficient 

except for narrow band processes. For a more general 

case, or for the case of a narrow band process, the mag­

nitude of the real and imaginary parts of the Fourier 

spectrum are picked from a normal distribution with 

zero mean and a standard deviation equal to the square 

root of the desired spectrum divided by 2. Typically a 

finite Fourier transform is used, given the spectrum at 

a set of M /2 + 1 frequency lines. 

real(Zi(f») = )Gii (f)/2 normr 

and 

imaginary(Zi(f») = JGii(f)/2normr, (37) 

where normr is a normal random variable with zero 

mean and unity standard deviation. Scaling of these 

vectors typically takes place later. This is very similar 

to the method described in the phase control section. 

This results in a vector of frames of data in the fre­

quency domain, {Z(f)}. A vector is defined for each 

frequency line. The following discussion will be for a 

single frequency line. The calculations are repeated for 

each frequency line. The elements in the vectors are 

independent at this stage. The vectors are placed on 

the diagonal of a square matrix [Z(f)]. The square di­

agonal matrix is multiplied by the frequency response 

matrix to give a square matrix of drive signals 

[D(f)] = [H(f)][Z(f)]. (38) 

The calculations are repeated for each frequency line. 

At this point each element in the matrix D is a fre­

quency domain description of a frame of data. The re­

sults are transformed into the time domain using an 

inverse FFf. 

[D(t)] = FFT- I [D(f)]. (39) 

This results in an N by N matrix of frames of data 

for an N input problem. Each element in the matrix 

is a frame of data in the time domain M points long. 

The frames of data are then added as follows to pro-

duce a vector of outputs of length N, where each ele-

ment in the vector is a frame M points long. The nth 

output is the sum of the data in the nth row of the ma-

trix of drives, D(t). The mth column in D(t) represents 

the contribution of the mth independent noise source, 

Zm. The output frames are windowed, overlapped, and 

added to previously generated frames to generate a 

continuous stationary normal output. The windowing 

controls leakage, and the overlap is chosen to produce 

a stationary output. The output vectors are then scaled 

Generation of Stationary Non-Gaussian Time Histories 369 

to account for the sample rate, the block size, the gain 

from the overlapping of the frames, and the loss due 

to the window. The method is versatile and efficient. 

Details are contained in Smallwood and Paez (1991). 

To extend this procedure· to non-Gaussian wave­

forms, a zero memory nonlinear function is developed 

for each input using the desired cumulative distribu­

tion function for each individual input and the cumu­

lative distribution function of a Gaussian distribution 

(Smallwood, 1996c). The synthesized Gaussian wave­

forms with the desired cross-spectral density are trans­

formed into non-Gaussian waveforms using the devel­

oped zero memory nonlinear functions using a Type 1 

system. As for the single input case the cross spectral 

density matrix is usually not seriously changed by this 

transformation, as will be illustrated by the following 

example. 

Example 

In this example a two input case is illustrated. The 

cross-spectral between the inputs is specified by spec­

ifying the coherence and phase between the inputs. 

The break points defining the cross-spectral density 

are given in Table 1. In the table only values at the 

break points are given. If a cell is blank it implies that 

the spectrum is a straight line at this frequency. Dashed 

lines are used to show these values on later plots. The 

required spectrum terminates at 2000 Hz. The spectra 

are calculated to 5000 Hz. Any spectral values above 

2000 Hz are the result of leakage from lower frequen­

CIes. 

Table 1. Break Points Defining the Cross-Spectral 

Density Matrix 

Frequency G II (f) 

(Hz) 

G22 (f) Coherence Phase 

40 0.036 0.005 0 

100 0.036 0 

110 0.0036 

200 0.005 

210 0.009 

300 0.0036 0.009 

310 0.036 0.005 

500 0.5 

700 0.5 

1010 0.036 0.0025 

1020 0.0036 0.0009 0.1 

2000 0.0036 0.0009 0.1 

2020 0 0 1 

5000 0 0 0 
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FIGURE 3 Sample Gaussian waveforms. 

Realizations of waveforms for three cases are 

shown. The data were generated using the method of 

Smallwood and Paez, using a frame size of 2048, a 

sample rate of 10000 samples/s, and 10 frames of data. 

First, Gaussian waveforms are simulated. One thou­

sand samples of the waveforms for the two inputs are 

shown in Fig. 3. The estimated spectra, coherence, and 

phase for the 20480 points are shown in Fig. 4. An 

estimate of the probability density function together 

with an equivalent Gaussian probability density func­

tion are shown in Fig. 5. The probability density func­

tion is shown as both a linear amplitude and a log am­

plitude. The log amplitude shows the structure of the 

tails better than the linear amplitude. 
Second waveforms are generated with a uniform 

distribution. This is an extreme case with a normal­

ized kurtosis of l.8, requiring high distortion of the 

Gaussian data. The zero memory nonlinear functions 

are shown as Fig. 6. Notice the shape; the slope ap­

proaches zero as the absolute value of x gets large. It is 

apparent that a function of the form given by Eq. (33) 

would fit this function better than the form given by 

Eq. (32). A slight slope at the extremes of the zero 

memory nonlinear was allowed to assure a monotonic 

function. One thousand samples of the waveforms for 

the two inputs are shown in Fig. 7. The spectral esti­

mates are shown as Fig. 8 and the estimated probabil­

ity density function as Fig. 9. 

The third example attempts to match a Student 
t-distribution with 5 degrees offreedom. This distribu­

tion has a normalized kurtosis of about 5.7. The zero 

memory nonlinear functions are shown in Fig. 10. No­
tice the different shape, as compared with Fig. 6; the 

slope increases as the absolute value of x increases. 

For this example the kurtosis is larger than 3. One 

thousand samples of the waveforms for the two inputs 

are shown in Fig. 11, the spectral estimates are shown 

as Fig. 12, and the estimated probability density func­

tions together with an equivalent Student t-probability 

density function are shown as Fig. 13. 

The results are generally acceptable. The distortion 

caused by the zero memory nonlinear function is not 
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Gaussian ZMNL functions 
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severe. Evidence of high frequency distortion above 

2000 Hz is evident in both the non-Gaussian wave­

forms. The distortion is worse for the more severe uni­

form distribution than for the Student t-distribution. 

Some loss of coherence is seen near a sharp decline 

in the spectral values. For example, compare the co­

herence from 100-200 Hz in Figs. 4, 8, and 12. As 

expected, the uncertainty in the estimated coherence 

and phase becomes large as the coherence gets small. 

OTHER METHODS 

A method for controlling the skewness and kurtosis 

was reported by Synergistic Technology Incorporated 

(1992). However the methods employed have not been 

published and will not be discussed here. 

Kim et al. (1987) use a quadratic model based on 

a Volterra series to model the nonlinear response of 

moored vessels. The idea is to use a linear model in 

parallel with a quadratic model. The method is very 

similar to the models proposed by Bendat (1990). 

CONCLUSIONS 

Several methods are presented for generating non­

Gaussian waveforms. It is seen that the solution is 

not unique, and that different methods will give re­

sults with different characteristics. The method chosen 

should depend on the application. A general method 

for the multiple input case is developed which has 

broad application where the cross-spectral density ma­

trix of the inputs can be estimated. 

- Sandia is a multiprogram laboratory operated by 

Sandia Corporation, a Lockheed Martin Company, for 

the United States Department of Energy under contract 

DE-AC04-94AL85000. 
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