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Presented in this dissertation are the theoretical modeling and experimental re-

sults of a novel method for manipulating micro and nanoparticles in an acoustically

actuated microfluidic glass capillary. Here, the PZT (Lead Zirconate Titanate)-

glass capillary actuator mechanism performs bioanalytical methods such as collec-

tion, separation and mixing at microscale, at low voltage drives, enabling produc-

tion of battery operated inexpensive portable microfluidic systems.

Analytical and finite element modeling of the vibrational modes of the fluid

filled thick walled cylindrical capillary has been also studied. Torsional, longitudi-

nal and flexural modes and their dispersion relationships are presented.

Through the excitation of the various vibrational modes of the silica capil-

lary, sub-wavelength acoustic pressure modes in the microfluidic cavity are formed.

More than 20 such sub-harmonic modes are generated harmonically in the 20kHz-

2MHz regime whereas naturally occurring radial modes have a cut off frequency

around 9 MHz. The amplitude of these stationary acoustic pressure fields are high

enough to generate nonlinear acoustic forces and streaming effects for micro and

nanoparticle manipulation. Theoretical models explaining the generation of the

sub-wavelength modes and acoustic radiation forces are developed.

Generation of an effective macroscopic electric field as a result of the collection

of charged colloidal particles under acoustic forces has been observed. This self



generated field causes fast collective diffusion of nanoparticles and can counter-

balance the acoustic radiation forces, so a method for calibrating acoustic force

field with respect to the collective electrostatic repulsion and the Zeta potential of

particles is introduced.

A silicon bulk microfabricated actuator enabling different bioanalytical capa-

bilities such as collection, separation and mixing of analytes on a single bulk-PZT-

silicon microfluidic platform at low voltage drives is also demonstrated.

Presented experimental results include: collection of micro and nanoparticles,

colloidal systems and biological entities such as bacteria and cells; separation of

micro and nanoparticles with respect to acoustic contrast factor; planar chipscale

centrifugation of blood; separation of microparticles with respect to size; and con-

trolled oscillating bubble dynamics at the microscale, which are all obtained in the

PZT-glass capillary actuator driven with a typical function generator at around

100 milliwatts of power consumption.
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3.1 Fluid column of length L enclosed in a silica capillary of length l. . 76
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3.4 Similar to the strip taken from a plate, the top and the bottom
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In fact we have λb ≫ r1 and l ≫ r1. . . . . . . . . . . . . . . . . . 84

3.5 The Red dot indicates the fluid volume in the close neighborhood
of the vibrating medium. Since l ≫ d pressure and displacement
variations of this fluid volume will be mostly controlled by the close
neighborhood vibrations of its location. So an finite or infinite case
will not bother this particle at all. This will be different for the
far field and also the end locations. This ambiguity related to end
locations will be clarified in later sections. . . . . . . . . . . . . . . 86
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3.7 Pressure values in fluid are plotted. In the top graph, absolute
value of the pressure and phase are plotted respectively against
frequency. It can be clearly seen that below critical frequency phase
is π/2 so that only imaginary pressure values exist. In other words,
pressure is out phase with the velocity of flexural beam, or in phase
with acceleration. At frequencies higher than critical frequency,
pressure is pure real, and it decays from a maximum value at critical
frequency as the frequency increases (reminding one over cosine
factor). In the bottom graph, the behavior of the top graph in
y direction is examined. Range of depth is 1 mm. Above critical
frequencies propagating waves exist and their wavelength (inversely
related to ky) tends to decrease with increasing frequency. This
trend can be seen from the thick black lines; each line corresponds
to a wave at a given frequency. Below the critical frequency, no wave
propagation can be observed because of the evanescent behavior of
the pressure value. The decay rate increases as kb − k difference
increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.8 Graph of frequency values against wavelength for flexural waves on
the elastic body and plane waves in enclosed fluid. Wavelengths
become equal at 1.83 MHz. For frequencies smaller than this value
we have λb > λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.9 In this graph, (k2
b − k2) value and absolute value of pressure at

y = 0 are plotted against frequency. In regime I, II, and III, waves
are evanescent. Amplitude of pressure increases till the critical
frequency (red dotted line), decay rate of this evanescent behavior
is controlled by

√

k2
b − k2. In this case, we expect a quite low decay

rate in regime I and III. However, in regime II the decay rate reaches
its maximum. Regime III has high amplitude and low decay rate.
In regime III, pressure value is still in phase with the velocity of the
flexural strip. Regime IV is in in the supersonic region, and there
is no decay factor anymore; however,

√

k2 − k2
b value defines the

magnitude of the wave vector in y direction. Amplitude of pressure
decreases and stabilizes at a nominal value as the frequency gets
higher than the critical value. . . . . . . . . . . . . . . . . . . . . 93

3.10 Sketch of standing flexural wave on the strip, loaded with fluid from
top. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.11 Instantaneous power plotted for cases pressure and velocity are in
and out of phase. Total radiation is the sum of area below the
instantaneous power over a period. When p and v are out of phase,
area sums to zero, so that no power radiation takes place. When p
and v are in phase, area is always positive in other words there is
total power radiation. . . . . . . . . . . . . . . . . . . . . . . . . . 95
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3.12 Pressure (left column) and velocity (right column) distributions are
plotted for various frequencies below the critical frequency. The
amplitude of the strip is taken to be 1µm/s. For the sake of com-
parison, only 3 wavelengths (in z) are plotted. Comments related
to these graphs are given in the text on Pages 94-97. . . . . . . . . 96

3.13 Pressure, radiated power and velocity distribution of two sample
frequencies above the critical frequency values are plotted. In z
direction three half wavelengths are shown. Comments related to
these graphs are given on Pages 97-99. . . . . . . . . . . . . . . . . 98

3.14 Boundary conditions for the capillary vibrating in a flexural mode.
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amplitude v0 in y direction. At the fluid capillary wall interface
radial and tangential components of velocity v0 are shown on the
capillary cross section. . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.15 Visualization of approximation done for the derivative of the mod-
ified Bessel function of order 1 in the range k′rr < 0.5. For this
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minimum at critical frequency. For below 2.5 MHz regime it is
always smaller than 0.3. . . . . . . . . . . . . . . . . . . . . . . . . 105

3.17 Bessel function of the first order; the modified Besssel function of
the first order and y = x/2 are plotted together. As can be seen in
the zoomed in section in the range −0.4 < x < 0.4, all three of these
functions are almost identical and can be used interchangeably.
This small range is due to the small radius of the channel compared
to its length and fluid and structural wavelengths. . . . . . . . . . 106

3.18 Variation of the acoustic pressure amplitude and the phase at the
capillary wall versus frequency in the 0-20MHz regime. Critical
frequency defining the subsonic-supersonic transition is at 1.8 MHz
and indicated by the green dashed line. Resonance half wavelength
cavity mode occurs around 9 MHz (acoustic pressure peak). . . . . 108

3.19 Variation of the acoustic pressure amplitude and the phase at the
capillary wall versus frequency in the 0-2.5 MHz regime. Critical
frequency is indicated by the green dashed line. . . . . . . . . . . . 108

3.20 Variation of pressure inside the capillary in the y-z plane. Blue
sinusoidal lines represent the top and bottom acceleration of the
capillary. For all these plots, pressure and acceleration are in phase
since all are below the resonance frequency. Please note that 30th

mode is above the critical frequency (1.83 MHz); however as found
in the previous section, phase shift occurs after the frequency of
the first radial capillary mode (around 9 MHz). . . . . . . . . . . . 110
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3.21 Pressure and fluid particle velocity distribution for the 3rd flexural
mode of the capillary is given. All length scales are in meters. And
T in Figure f) is the period of flexural vibration. Comments on
figures given here can be found on pages 109-112. . . . . . . . . . 113

3.22 Pressure and fluid particle velocity distribution for the 110th flex-
ural mode of the capillary (after resonance) is given. All length
scales are in meters. And T in Figure f) is the period of flexural
vibration. Comments on figures given here can be found on page
112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.23 Displacement, velocity, acceleration and pressure plots as a function
of time for the fluid particle located at point q. Black curves on
the middle and bottom graphs show pressure for below and above
resonances respectively. . . . . . . . . . . . . . . . . . . . . . . . . 116

3.24 Mechanical lumped parameter modeling of the fluid filled capillary.
The big stiff spring denotes the compressibility of the fluid, and the
small and soft spring represents the flexural stiffness of the capillary.117

3.25 Standing modes in rectangular and cylindrical cavities. Frequency
of the first standing pressure mode inversely depends on the capillary118

3.26 During the longitudinal motion of the capillary, due to the Poisson
effect a slight motion in the transverse radial directions also occurs.
These normal displacements modify the acoustic pressure distribu-
tion inside the cavity and generate periodic plane waves with the
periodicity of the longitudinal capillary modes. . . . . . . . . . . . 121

3.27 Radial pressure and velocity distribution inside the cavity due to
longitudinal vibration of the capillary is plotted. Due to the radially
symmetric boundary conditions no angular dependence is present.
Radial variation of the pressure from the capillary walls to the
center of the capillary is one part in ten thousand. In this case,
it is possible to conclude that all pressure variation happens along
the capillary in the z direction. . . . . . . . . . . . . . . . . . . . . 121

4.1 Part of the capillary clamped between the PZT is modeled. For the
boundary conditions, as seen in the dashed circles clamped-clamped
case would be the best option. . . . . . . . . . . . . . . . . . . . . 125

4.2 The end section of the meshed capillary is shown for the empty and
fluid filled capillary. Red elements (Solid45) represent the capillary
structure, the pink and blue elements represent the fluid (Fluid30).
The layer colored with blue shows the fluid elements which enable
coupling at fluid structure interface. . . . . . . . . . . . . . . . . . 126
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4.3 Types of vibrational modes are listed as follows: a) 3rd flexural
mode, b) 3rd torsional mode, c) 2nd Longitudinal mode of capillary,
d) Internal pressure variation for the 3rd mode of standing longitu-
dinal waves in enclosed fluid. In figures a, b, c, the mode shapes
are color coded to show displacement as they are the vibrational
modes of the capillary. In figure d however, the color code shows
the pressure variation, as this case is not a fundamental vibrational
mode of the capillary and imaginary lines show the capillary. . . . 127

4.4 Dispersion curves for each mode are shown. As expected from the
theory part, only the flexural mode is dispersive. . . . . . . . . . . 129

4.5 Top: 3rd harmonic of longitudinal pressure waves inside the cap-
illary plotted in 3D. Bottom: Pressure variation along z axis is
plotted for the same mode. . . . . . . . . . . . . . . . . . . . . . . 131
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ments on the top of the capillary are plotted. Radial uy and tan-
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a water filled cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.9 The figure on top shows that there is no radial variance of pres-
sure, as expected. While a trend due to longitudinal mode in axial
direction is present, superposition with another mode exists. The
bottom figure shows the decomposition of two waves, which demon-
strate the strong coupling of cavity modes due to close frequency
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.10 The tangential displacement distribution for the 3rd torsional mode
of the capillary is shown on top. As expected, radial and axial
displacements are much lower than the tangential displacements.
Periodic radial displacement is due to the presence of 8th cavity
pressure mode which has almost the same frequency. . . . . . . . 138

4.11 Variation of acoustic pressure inside the capillary around 500 kHz.
Since most of the torsional displacement is tangential, no effect of
the 3rd torsional mode can be observed. Pressure variation is due
to the 8th cavity mode around 500 kHz. . . . . . . . . . . . . . . . 139

4.12 Dispersion relationship for the torsional modes. Presence of fluid
inside the cavity does not cause any loading, so that the dispersion
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4.13 3rd flexural mode of the capillary is shown on top. As expected,
most of the displacement occurs in y axis. Since the capillary bends,
some axial strain occurs symmetrically around the central axis.
This strain causes displacement in axial direction which is related
to the first derivative of the normal velocity. . . . . . . . . . . . . 141

4.14 Normal (uy) and axial (uz) displacement distributions are com-
pared. From the circular cross section, radial and angular depen-
dence of the axial distribution can be seen. . . . . . . . . . . . . . 144
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lated by ANSYS with the theoretical one given in Equation 2.47.
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case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
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and experiments. ANSYS and theoretically expected results match
very well. Frequency values obtained from experiments show about
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mode shape. The enclosing capillary is not shown. Cross sectional
views show the radial and angular pressure variation. In each oscil-
lating cycle, variation of pressure changes sign, generating a radial
standing wave mode. Distribution of the pressure in yz plane is the
same as the theoretical distribution shown in Figure 3.21. . . . . . 148

4.19 Variation of absolute pressure value with frequency. Theory and
ANSYS results are the same for normal velocities taken to be 1m/s. 149

5.1 Effect of the particle size on the pressure field. Large particles act
as reflectors, particles having sizes comparable to wavelength of
the acoustic waves cause diffraction, and small particle generate an
evanescent field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
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xxi



5.4 Forces about the center of the capillary and vibration maxima act
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maximum in the middle of a displacement node and maxima. Ar-
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explanation, see page 170 (Units: Pressure in Pascal; spatial coor-
dinates in meters; and potential energy is Joules). . . . . . . . . . . 171
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5.16 Hydrodynamic forces between two spherical particles in an oscillat-
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6.2 Electrical impedance and the phase versus frequency of the PZT-
glass capillary actuator. The three curves represent; the PZT plate
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6.11 On the top, the collection of 500 nm silica nanoparticles under
acoustic actuation are shown. The pictures on top are taken with
a hand held point and shoot digital camera. The picture in the
middle shows the microscope image of collection. The series of
pictures on the bottom reveal that as the particles size goes to the
submicron regime, a closed packed collection style leaves its place
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6.20 Bubbles generated due to cavitation can be forced to oscillate be-
cause of the ambient acoustic field. Vibrational modes of the bub-
bles generate streaming jets in which particles suspended in the
neighborhood are captured. . . . . . . . . . . . . . . . . . . . . . . 232
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CHAPTER 1

INTRODUCTION

Acoustics in microfluidic systems, either man-made or naturally made, has

been an active area of research for last two decades, providing significant advan-

tages in microfluidic manipulation over competing techniques. Presented in this

thesis are the theory of the generation of sub-wavelength acoustic stationary waves

in a vibrating PZT-glass capillary coupled actuator as well as applications and ex-

perimental results on the collection and separation of micro-nanoparticles and mi-

crobiological entities. This introductory chapter plays a central role in presenting

the principal ideas and organization of the rest of the chapters.

In the first and second parts of this chapter, a short review on the broad field of

microfluidics and approaches utilizing acoustic interactions are given. Next, pre-

vious work which led to the present work and principal ideas are introduced. This

chapter ends by briefly summarizing the other chapters and major contributions of

the work presented here. The summary of the entire thesis can be found in pages

15 through 20, and a concise guide is given in Figure 1.5.

1.1 Microfluidics: A Short Review

The field of microfluidics dates back to the 1980s, the time inkjet printing became

available, yet microfluidics has always been ubiquitous in nature. In the formation

of a rain droplet or ice up in the sky; in the fall of rain or snow; in the absorption

of water in the ground and then the absorption of same water by a plant root and

the transference to leaves through capillaries in the stem; in the organization of

channels on a leaf and the tremendous transport taking place through channels;
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in the circulatory system of our body, and the uncountable interactions taking

place within and between the cells therein; in the purification of soiled water in

the underground; microfluidic effects has been everywhere from the beginning.

Verily, nature is full of hidden secrets and signs for those of understanding. As

humankind gets better in reflecting on nature, nature opens its secrets one by

one. The concept of microfluidics is one such phenomenon. There are uncountable

microfluidic phenomena taking place in the body of the author, right now as he

writes this dissertation. Possibly on the same order of magnitude, microfluidic

phenomena are taking place in the eyes, brain, vessels, cells, fingers and nervous

system of the unaware reader.

Currently, the topic of microfluidics is a very interdisciplinary field, spanning

the fields of physics, chemistry, biology, electrical engineering, mechanical engi-

neering and systems engineering. In recent years, interest in microfluidics has been

driven by the many potential benefits to current technological developments, espe-

cially in the field of biology and medicine. Small sample requirement, small device

volume, less power consumption, and potential mass production using integrated-

circuit fabrication, as well as the possibility of performing a large number of assays

in parallel, make microfluidics attractive for portable and disposable diagnostic

devices and research systems. More than the fabrication of small systems, con-

trolling objects inside a microfluidic system is a challenging problem. Strongly

statistical behavior at the micro scale, lack of precise mechanical tweezers, and

high surface-to-volume ratio for analysis require new ways to manipulate particles.

Only a small portion of the classical methods used in analytical biochemistry can

be miniaturized to be able to work on a tiny chip. This is the main reason that

microfluidics is still a developing field.
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Breathtaking development in the field of integrated circuits enabled the replace-

ment of conference room size computational machines manufactured to execute

mathematical algorithms with hand held devices like the laptops, calculators and

cell phones of today. While the big dream of “Lab-on-a-Chip” —in other words,

miniaturization of a analytical biochemistry lab to a chip size— had been there

for so long, the absence of physical steps enabling execution of this dream became

a major research field for many scientists and engineers. While many researchers

are keeping the aforementioned dream as their motto, many people are amazed

about the complicated and expensive-to-manufacture but at the same time state-

of-the-art microfluidics systems. However, the need is not for a state-of-the-art

system but an inexpensive and easy-to-fabricate component which is either able to

perform a necessary action in an easier, faster or cost-effective way, or to enable

new directions to solve or deal with new unanswered questions.

Another challenge in the field of microfluidics is that, contrary to microfluidics

in nature, most of today’s microfluidic systems lack the necessary flexibility of

integrability function with other systems performing other desired actions. Since

many microfluidic actuation mechanisms depend on specific conditions or require

other bulky mechanisms, an integrated approach becomes a nontrivial problem to

solve.

An ideal Lab-on-a-Chip system may need to be able to perform sampling,

separation, pumping, mixing, handling, detection of fluids and analytes which

vary from a few nanometers to tens of micrometers in size. At the same time, this

so called “Micro Total Analysis System (µTAS)” should not be expected to need a

refrigerator-sizes host system to function or get powered up where neither of these

components can fit on a “chip”.
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Today, many scientists and engineers work on various ways to manipulate or

actuate fluids and micro-nano components through performing the specific actions

mentioned above. A good review of these methods and the field in general can

be found in [5, 6, 7]. Some of these methods include electro-osmotic and elec-

trophoretic interactions, magnetic effects, pneumatic actuation, porous materials,

fluid mechanics tricks, optical tweezers, modification of electrochemical properties

or wettability of surfaces, and so on. The list is long and, as expected, all of these

methods have advantages and disadvantages or certain limitations. For instance,

electrical effects depend on certain electrolyte and enclosing microchannel surface

properties; magnetic effects require paramagnetic beads and magnet sources; opti-

cal tweezers require bulky microscope and laser systems; et cetera. Many of these

applications perform well enough in their area of usability or point of interest; how-

ever, at the same time, many of these methods lack applicability as an integrated

component of a chipscale stand-alone microfluidic platform.

Nonlinear acoustic interactions are one example of a promising way for the ma-

nipulation of micro and nanoparticles in microfluidic systems. As these interactions

predominantly depend on factors like size and material properties such as modu-

lus and density, acoustic actuators are less dependent on electrical, ionic and pH

concentration of the samples with respect to electro-osmotic or magnetic effects.

One must especially consider that almost all Lab-on-a-Chip devices are aimed for

biological sample detection or characterization; therefore, alternate methods that

complement each other gain more importance. In addition, due to the possibility

of manufacturing highly compliant micro structures with high vibration ampli-

tudes, nonlinear acoustic interactions can be established in microfluidic systems

even at a low electrical power drive. This process may eliminate the high power

requirement as being one of the major challenges for the production of portable
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diagnostic devices. In the next section, a brief review of acoustical methods for

microfluidic applications will be given.

1.2 Ultrasonic Microfluidics

It has been known ever since the 19th century that high amplitude acoustic waves

have nonlinear interactions with the fluid medium they propagate and other sus-

pended materials they encounter during the propagation. Two major types of inter-

actions are known to be acoustic streaming and acoustic radiation forces stemming

from acoustic radiation pressure. Since all materials have different elastic prop-

erties, their response in regards to propagation and absorption of a sound field is

unique. In this way, acoustical effects at micro regime can be useful in terms of

being applicable to a broader range of materials for implementing various desired

functions. Acoustical interactions do not require any preprocessing, as they stem

from the natural material properties of materials.

As will be shown later in Chapter 5, acoustic streaming and radiation forces

are nonlinear effects, and quadratic functions of the of the acoustic pressure and

velocity. In the macroscopic world, in many cases, observing these effects requires

power hungry piezoelectric actuators, and usually the observed effects are weak.

However, at the microscale, high amplitude oscillations can be generated at low

power drives. Theoretically, this enables the generation of nonlinear acoustic effects

at the micro regime even, at a low power drive.

While use of acoustics in microfluidics is a very promising field because it

does not require any preprocessing of materials, and it does not delicately depend

on electrostatic interactions, the major challenge comes with the design. This
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is because acoustical fields and their effects depend on the boundary conditions,

both at linear and nonlinear range. At the same time, in the case of acoustics,

the nonlinear effects can change linear boundary conditions, and so that analytical

modeling of an experimental result obtained by intuition is very challenging. The

reason is that there are an abundant number of parameters to analyze that require

some expertise in physics, fluid dynamics and nonlinear acoustics, contrary to the

other methods used in microfluidics.1 In fact, looking to developments in the

history of acoustics, it is possible to say that, in many cases, interesting results

obtained by experimenters led to the developments in the theory. This is also

true at the microscale acoustics. In this sense, acoustics in microfludics is a very

interesting field full of surprises for a curious researcher.

In recent years, there has been a tremendous increase in microfluidic appli-

cations which use acoustical interactions as the source of actuation. Methods of

acoustical actuation can be categorized into several subgroups such as use of sur-

face acoustic waves, use of flexurally excited plates and generation of standing

waves in a microfluidic cavity. Depending on the design, specific actuators focus

on either the streaming effects for pumping or mixing, or radiation force effects for

the separation and manipulation of the micro-nanoparticles or biological entities.

In most cases, designs enabling propagating elastic waves on the fluid structure

boundary are used for pumping or mixing, and designs enabling standing waves

on the cavity are used for capturing and manipulating particles.

Compared to the long and rich history of acoustics, recently, acoustic waves

generated on a microfabricated silicon microfluidic platform have produced signifi-

1Due to the low Reynolds number limit, most viscous and related nonlinear effects can be
ignored in most microfluidic devices. For microfluidic applications, dominant flow type is the
laminar flow, and compared to macroscopic fluid dynamics problems, microscale flow dynamics
can be relatively simpler. Unfortunately, when high amplitude acoustics is involved, second order
terms cannot be ignored as the principle of operation depends on the second order effects.
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Figure 1.1: Standing acoustic waves generated in a microfluidic capillary.
In such configurations, lowest frequency standing waves can be
achieved when channel dimensions are equal to λ/4 or λ/2 de-
pending on the configuration of the actuator mechanism.

cant progress. This platform is used to generate fluid flow [8] enabling microfluidic

pumping due to acoustical effects. Kaajakari and his colleagues [9] demonstrated

the use of streaming vortices generated by flexurally vibrating circular plates for

capturing particles during a steady flow.

In terms of ultrasonic capture and manipulation of particles, acoustic radiation

forces are widely used. The usual method to generate radiation forces is to form

a standing acoustic wave field in a cavity [10]. As shown in Figure 1.1, this can

be achieved by placing the actuator and reflector in parallel separated by a gap

related to the wavelength. At the microscale, acoustic waves launched to a silicon

chip body can also generate a standing wave in a cavity etched into the substrate

if one of the dimensions of the cavity matches the half wavelength of the acoustic

wavelength in the fluid [11]. By this classical method, similar to the macroscale

methods (such as ultrasonic separation of fibers in a laminar flow used in the paper

industry [12]), acoustic separation of materials had been miniaturized to separate

biomaterials at the microscale. A limitation of this method is that because the

wavelength is related to the channel dimensions as shown in Figure 1.1, shrinkage
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in the channel dimensions leads to an increase in resonance frequency. For example,

to be able to generate standing waves in a microchannel with a width of 100 µm

filled with water, the frequency drive of the actuator will be around 10 MHz for the

lowest frequency modes. Most relatively inexpensive piezoelectric materials, and

driving circuitry targeted for ultrasonic transduction are produced to be driven

between kHz and low MHz regime. Another limitation is that the whole actuator

performance depends on the single resonance frequency of the structure or its

harmonics. In addition, when the fluid medium changed to another fluid, resonance

frequency for generating a standing mode will be different. Hence, geometry of

the device, mixed boundary conditions due to packaging, and material properties

of the microfluidics and the structure make performance control difficult. This

thesis addresses these challenges by a novel actuation mechanism described in the

following sections.

1.3 Microfluidic Capillary with Vibrating Walls

One ingenious way developed by Lee et al.[13] is to use high amplitude vibrations

generated on a microfluidic capillary so that an acoustic field inside the capillary

can be generated in an efficient way. In traditional acoustics, most guided systems

are engineered in a way that actuators usually form a small portion of the system,

and the rest of the system is designed to behave as a waveguide to confine the

energy for specific purposes. In a system where whole walls behave like an actuator

and at the same time act as a waveguide, the coupling of mechanical energy from

the structure to fluid is maximized. The initial design of the actuator is given in

Figure 1.2. As shown in the figure, a diced Lead Zirconate Titanate plate (PZT-

4) is adhesively bonded from both sides to a bent silica capillary. Vibrations on
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Figure 1.2: Schematic drawing of glass capillary PZT transducer and sepa-
ration of polystyrene beads. 3 micron (red) and 10 micron blue
beads (look green in the image due to filters) a re collected at a
focal spot and then separated.

the PZT plate are coupled to the silica capillary so that acoustic modes can be

generated inside. By this method, collecting and separating particles in a curved

capillary-PZT coupled actuator had been achieved. The work presented in the

rest of this dissertation is a continuing research effort based on the initial design

presented in [13].

1.3.1 Sub-wavelength Acoustic Stationary Waves

in a Vibrating Microfluidic Capillary

As shown in Figure 1.1, to be able to generate a standing wave field in a microfluidic

capillary, capillary dimensions need to match half or quarter wavelength limits.

One other way to create a stationary wave is to drive two sources in phase while
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the gap between the two sources is much smaller than the wavelength. In such

a configuration, no wave propagation can happen, and because of the boundary

conditions, an oscillating pressure gradient forms. Figure 1.3 shows the formation

of stationary waves under given conditions. When two walls oscillate in phase, and

the gap is much shorter than a wavelength, a stationary pressure gradient forms in

the enclosed fluid. When the walls are accelerating upwards, the pressure becomes

maximum at point A and minimum at point B, which is denoted by the blue curve

in the plot of acoustic pressure in the figure. When the walls are accelerating

downwards, the gradient is reversed. During the cycle of oscillations, the slope of

the pressure gradient between point A and B oscillates in a way that a pressure

node is formed at the center of the enclosed fluid. By using this method, pressure

nodes can be generated in extreme sub-wavelength cases. Here, generation of a

stationary acoustic wave field does not depend on the gap of the capillary. In

other words, acoustic wavelength and cavity dimensions are not related to each

other for generating a stationary field. In this case, as long as two walls oscillate

in phase and the gap is smaller than the acoustic wavelength, a stationary field

can be generated inside in any frequency.

Now, the next problem is to make two walls oscillate in phase in a chip scale

platform. This can be achieved by exciting flexural waves in a thick walled cap-

illary. At lower harmonics, a thick walled capillary cross section moves up and

down as a whole such that the top and bottom of the capillary moves in phase,

meaning that, in any harmonic of the flexural modes of the capillary, pressure

gradients at the capillary cross section can be generated. In addition, since the

motion along the axis of the cylinder will also be a sinusoidal, periodic gradients

along the central axis of the capillary will be present.
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Figure 1.3: When two walls enclosing a fluid column oscillate in phase and
the gap between them is much shorter than the acoustic wave-
length, an oscillating stationary acoustic pressure field is gener-
ated. When walls accelerate in the upward direction, pressure
at the bottom becomes maximum and the pressure at the top
becomes minimum. When the walls accelerate in the downward
direction, the pressure values are reversed. This leads to a pres-
sure node at the center of the capillary.

Generating a high amplitude acoustic field depends on the particle acceleration

at the fluid structure boundary level. If the forces applied to the fluid in terms of

pushing and pulling are high, a higher amplitude acoustic field is generated. While

Lead Zirconate Titanate (PZT) plates are one of the most reliable and efficient

ways of electromechanical energy transduction, the maximum achievable particle

velocity vm is low. Given in [14], the maximum achievable particle velocity is

limited by the maximum strain (Sm) a material can handle and the speed of sound

c, such that vm = Smc. PZT is a ceramic material which cannot handle high strain.

While PZT has a maximum achievable particle velocity of about 1 m/s, glass have

about 620 m/s. In this case, by coupling mechanical energy generated by PZT

into a glass capillary acting as a waveguide, much higher particle velocities can be

achieved compared to the case of direct PZT-fluid coupling.

In this way, high amplitude vibrations can be generated in a glass capillary
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driven by a PZT plate, which leads to the generation of high amplitude nonlinear

acoustical effects in a micro-capillary at low voltage drives.

Need for New Actuator Mechanism

The PZT-glass capillary actuator mechanism presented in Figure 1.2 is an excel-

lent way to generate flexural waves on a capillary. While the actuator displayed in

Figure 1.2 has demonstrated an impressive achievement related to low power ultra-

sonic manipulation at the microscale, the folded structure of the capillary presents

some challenges. First of all, because these preliminary devices are handmade,

alignment of a folded capillary during bonding becomes a critical issue. Bound-

ary conditions and dimensions are extremely important for standing wave acoustic

systems and a slight variation during the simple assembly process may cause a

significant change in device behavior. As the capillary folds around the PZT plate,

it also defines length of resonating capillary section, which may vary from device to

device due to the manual alignment procedure. In this case, the characterization

of the device becomes difficult.

The second challenge is related to the polyimide coating. Silica capillaries, by

themselves, are quite fragile. The polyimide coating enables flexibility so that it

can be bent at 180◦ and dropped without generation of a fracture or breakdown.

However, this coating layer may not always be desirable if high quality optical

imaging in the capillary is required. As seen in Figure 1.2, under the UV light

not only do fluorescent beads emit photons, which is the signal of interest, but

polyimide also self fluoresces (glowing reddish under UV light), adding noise to

the desired signal. When we are working with particles with a size of several

microns and heavily doped with fluorescing molecules, this does not become a
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critical issue. However, experiments in which samples may not emit as much

photons as polyimide (as in case the of the platelets whose only surface membrane

proteins are fluorescently tagged), emission from polyimide dominates the target

signal coming from fluorescent markers. In short, polyimide not only absorbs and

thus filters a part of UV light, but also dominates in the case of emission when the

signal coming from the sample is low. While several methods for the nondestructive

removal of polyimide coating are available (when the capillary is free of stress, i.e.,

straight), it is not straightforward when there is built-in-stress on the capillary

due to its folded shape. As soon as the polyimide coating is removed, the glass

capillary becomes extremely fragile and cannot support the stress built on by the

folding. To overcome these challenges, a new actuator structure has been designed

to eliminate the bending and associated problems mentioned above.

Fabrication

To generate standing waves on the capillary by coupling vibrations generated by

an electrically excited PZT plate, symmetric boundary conditions are needed at

the end of resonating capillary regimes where the capillary is bonded to the PZT

plate. Instead of curling the capillary around the PZT, the structure is changed so

that the capillary stays straight. For the following reason, the 0.5mm PZT-4 plates

(available from EBL Products Inc.) are laser micromachined (with a Q-swithched

Nd:YAG laser) into C-shaped structures. Trenches 250µm wide and 250µm deep

are opened at the cantilever parts by laser micromachining to form bond grooves for

better capillary bonding. A polyimide coated (polyimide thickness=12µm) silica

capillary (PolyMicro Technologies) of ID=100 µm and OD=200µm is adhesively

bonded to the C-shaped PZT plate via trenches mentioned above by 3MTM in-

stant glue. A low viscous glue is chosen so that no gaps remain for better coupling
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V~

50-2000 kHz,

10 Vpp max.

PZT

1.5 cm

0.5 cm

Polyimide coated 
Fused silica 
capillary tubing         
ID: 100 μm

Figure 1.4: Schematic drawing of coupled C-shaped PZT capillary ultrasonic
transducer (top) and picture of the actual device (bottom). The
size of the PZT piece is 5mm by 15mm and the thickness is
0.5mm; the length of the capillary between the PZT cantilever
ends is 11mm.

reasons. In some devices, for improved optical imaging sensitivity, the polyimide

layer of the capillary between two cantilevers section is selectively ablated by using

an open flame torch. The polyimide coating outside the PZT region is kept to en-

able robustness and flexibility for input-output connections. Finally, the actuator

mechanism shown in Figure 1.4 eliminates all of the challenges mentioned before.

Similar to the previous actuator design, two electrodes are soldered at the center

of the PZT plate since a node of the displacement is at the center. The PZT plate

is driven by a function generator in a frequency range of 35-2000 kHz and voltage

drive range of 1-10 Vpp.
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Estimated Cost of an Actuator

The total cost of a such actuator presented here is in the order of a few U.S. dollars.

With automated mass production, the cost can be reduced further. With the low

voltage drive factor included, cost efficient microfluidic actuators for point-of-care

devices for the pharmaceutical and biomedical industry will be realized. A signifi-

cant portion of the world population lives in underdeveloped regions where there is

no access to bioanalytical laboratories or advanced hospitals. Unfortunately, every

year millions of people, lose their lives because simple pathogenic diseases which

could be treated with medicine only if the pathogen could be diagnosed correctly

in a timely manner. In this case, cheap-to-fabricate, battery operated, portable

point of care devices can help to save lives of millions of lives [15].

1.4 Guide to This Thesis

In Figure 1.5, a brief guide for the rest of this thesis is given. In Chapter 2,

vibrational modes of the fluid filled thick walled silica cylindrical microcapillary are

given. For the low frequency range, solutions of flexural, longitudinal and torsional

modes are investigated from the elementary beam theory. It has been shown that

for the flexural modes, elementary beam theory is not accurate enough. However,

by including shear and rotary inertia effects through Timoshenko’s approach and

fluid loading, dispersion relation relating frequency and wave number can be found.

In Chapter 3, acoustical modes inside the microfluidic capillary, which vibrate

in vibrational modes calculated in Chapter 2 are given. In particular, the acoustic

field that results from the flexural motion of the capillary gets the most attention.
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It has been shown that when the capillary vibrates in its flexural modes, in both

subsonic and supersonic frequencies, acoustical modes can be generated inside the

capillary efficiently because capillary dimension is much smaller than the acous-

tic wavelength inside the capillary. At subsonic frequencies, even the evanescent

decay factor is large compared to the acoustic wavelengths. These factors en-

able sub-wavelength generation of acoustical radial modes inside the capillary. In

Chapter 4, finite element modeling of the liquid filled cylindrical capillary is given.

Analytically obtained dispersion relations and vibrational mode shapes match the

simulation results excellently.

In Chapter 5, nonlinear acoustic interactions in a cylindrical micro capillary

are investigated. First order acoustic pressure field, a necessary starting point

for second order effects, is obtained from Chapter 2. Particularly, the acoustic

radiation force field in a cylindrical capillary undergoing flexural vibrations is cal-

culated in three dimensions. The analytical results achieved suggest that while

pressure gradient plays an important role in terms of the acoustic force field, in

the radial directions, the fluid particle velocity gradient plays the major role in

the axial direction,. These two factors lead to particle collection and separation at

specific locations. Force field and particle collection and separation locations are

in excellent agreement with the experimental observations.

In Chapter 6, characterization of the PZT-glass capillary actuator and exper-

imental results obtained on particle capture and focusing; separation of particles

with respect to size; separation of particles with respect to acoustic contrast fac-

tors; planar chipscale centrifugation of processed and unprocessed fresh canine

blood; eshceria-coli bacteria; and results on particle capture due to vibration of

microbubbles are presented.
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A Brief Visual Guide to This Thesis

Chapter 2
Vibrational modes of the fluid filled, thick walled micro capillary

Chapter 3
Acoustic field generated inside the vibrating cylindrical micro 

capillary in its flexural modes.
Chapter 4
Verification of analytical models 

developed in Chapters 2 and 3 via 

Finite Element Modeling in ANSYS
Chapter 5
●Nonlinear acoustic interactions in a microcapillary based on 

models developed in Chapters 2, 3 and 4. ● Analytical modeling 

of acoustic radiation pressure forces, secondary forces due to 

inter-particle interactions in an acoustic field, and acoustic 

streaming

Chapter 6
Characterization of the PZT-Glass capillary coupled 

actuator. ●Experimental results, and applications. 

(Particle collection, separation, manipulation, mixing, 

planar centrifuge of complex biological fluids like 

blood, bacteria and cells)

Chapter 7

Results on possible use of PZT-Glass 

capillary coupled actuator for 

experimental characterization of 

collective diffusion and collection of 

charged colloidal nanoparticles.

Chapter 8
Other PZT actuated, silicon 

microfabricated microfluidic actuators 

for particle collection and separation.

ID: 100μm 

V~

50-2000 kHz, 

10 Vpp max.

PZT

1.5 cm

0.5 cm

Polyimide coated 

silica capillary

Blood

Collection

Separation

Collective Diffusion or Collection of silica nano-particles

Electrical signal

Enclosed Fluid

Acoustic field generated inside 

the capillary due to vibration of 

capillary leads to nonlinear 

acoustic interactions enabling 

manipulation of micro-

nanoparticles

Steps from electrical signal to 

particle collection

PZT

(electromechanical conversion)

Glass capillary

(vibrations coupled from PZT)

Acoustic Streaming

Figure 1.5: One page brief visual guide to this thesis. Details are described
in Section 1.4
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In Chapter 7, the application of the PZT-glass capillary actuator in terms of

characterization of colloidal nanoparticles is demonstrated. It has been shown,

under acoustic radiation force, that silica nanoparticles collect at particular loca-

tions. Due to the surface charge of the particles, modification of the distribution

of the particles induces an electric field inside the channel. It has been shown,

with the turning off the acoustic field, that particles undergo a collective diffusion,

much higher than their normal diffusion. In this way, the device can be used to

estimate surface charge related collective behavior of particles, and characterize

the colloidal system. It has been also shown, after such a characterization, that it

is possible to empirically estimate the acoustic force field because at equilibrium,

acoustic forces counterbalance the acoustic radiation forces.

In Chapter 8, other types of acoustic microfluidic actuators fabricated and

tested during the time of the doctoral study are shown. Similar to the PZT-glass

capillary actuator, in the presented silicon bulk microfabricated actuator, acous-

tic separation is demonstrated. In this actuator mechanism, transverse vibrations

on the silicon nitride membrane, vibrations on the silicon walls of the microflu-

idic chamber and acoustical modes inside the capillary lead to differential particle

manipulation.

1.5 Summary of Major Accomplishments

The novel contributions of this research are:

1. Analytical calculation and Finite Element Modeling (in ANSYSTM) of vi-

brational modes of a fluid filled thick walled cylindrical micro capillary have

been shown.
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2. Theoretical analysis and experimental demonstration of extreme sub-

wavelength standing acoustic fields in a flexurally vibrating microcapillary at

subsonic and supersonic frequencies are presented. In this way, sub-harmonic

cavity modes are harmonically generated. For instance, by the method pre-

sented in this thesis, in between 30kHz–2MHz regime, more than 20 harmonic

modes can be produced (all leading to particle manipulation), whereas the

naturally occurring half wavelength cavity mode can be uniquely excited

around 10MHz. Here, the harmonicity of sub-wavelength cavity modes de-

pends on the harmonicity of the flexural modes of the enclosing micro capil-

lary.

3. A three-dimensional analysis of acoustic radiation forces and secondary inter-

particle forces in a cylindrical acoustic cavity is performed. A strong influence

of fluid particle velocity gradient on the acoustic radiation forces, in addition

to the acoustic pressure gradient, have been verified. Excellent agreement

between theoretical models developed and experimental results have been

achieved.

4. CMOS compatible low voltage collection of micro-nanoparticles, cells and

bacteria has been demonstrated in a cheap and easy to fabricate microflu-

idic chip. Results on the separation of microparticles with respect to size;

separation of particles with respect to acoustic contrast factors or density;

planar centrifugation of blood in a capillary; and controlled bubble dynamics

for capture of particles have been demonstrated.

5. Microscale characterization of colloidal nanoparticles under ultrasonic forces

is performed. Formation of a macroscopic electric field by concentrating of

charged nanoparticles in a confined region due to acoustic force field have

been investigated.
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6. Collective diffusion of charged nanoparticles after release of acoustic forces

and related to that, a method for characterization of acoustic radiation forces

in a microcapillary against interparticle electrostatic repulsion of colloidal

nanoparticle system are presented.

7. Utilization of various vibrational modes excited in a silicon bulk microfabri-

cated actuator for controlling and separation of microparticles in low voltage

drive has been demonstrated, with integrated piezoresistive sensors.
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CHAPTER 2

ON THE VIBRATIONS OF CYLINDRICAL CAPILLARY

Introduction

In this chapter, vibrational modes of a cylindrical capillary are analyzed. It is

proven that cylinders have many different vibrational modes, and simple formula

which define the eigenfrequencies of these modes easily do not exist. Depending

on the aspect ratios and excitation frequencies many approximate shell theories

have been introduced for specific cases. Some of these methods are described due

to possible future relevance to capillary ultrasonic microfluidics. Many of these

approximate modes work for the case of thin shells, in which thickness of the shell

is small compared to its diameter.

We show that due to the aspect ratios of our cylindrical capillary (long cylinder

with thick shell, h = r1 ≪ λ < l), some modes involving thickness, breathing or

shear are not relevant, as frequency regime in which experiments are run is be-

low the cutoff frequencies (<2.5 MHz). This is the reason in the great portion of

this chapter, focus is mostly given to flexural, longitudinal and torsional modes.

Particularly, flexural modes gets the highest attention as it is shown in the Chap-

ter 3, that the flexural modes are responsible for subharmonic and subresonance

generation of standing pressure waves inside the capillary.

In developing analytical approach of flexural vibrations, in this chapter it is

shown that while for low frequency regime, the approximate Euler-Bernoulli beam

theory explains well the behavior of the frequency response of the standing flexural

vibrations, consideration of rotary inertia and shear corrections established by
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Rayleigh [16] and Timoshenko [17] become necessary.

In the last part of the chapter, comparison of frequencies of modes are given

for highlighting any coupling possibilities.

2.1 A Short Review of Exact Linear Elasticity Theory

Three dimensional theory of elasticity suggests that any elastic disturbance in an

unbounded isotropic medium is propagated by two types of waves called dilata-

tional and distortional. Dilatational waves are also called P-waves and propagate

by restoring volume change by plane stresses. Distortional waves are mostly called

S-waves and propagate by the transfer of shear deformation. Both wave types have

distinct constant phase wave speeds which depend on material properties. In case

of bounded mediums, reflection of wave from a boundary initiates other types of

waves as well. In short, waves in bounded elastic medium are most often mixture

of P and S waves. Speed of waves in bounded mediums are no longer constant

but generally dispersive. This is why solution of wave propagation problems in

bounded mediums by use of three dimensional theory of elasticity is extremely

difficult. Solutions can be only obtained under certain conditions like semi infinite

media, infinitely long plates or rods [18]. These solutions result in transcendental

equations leading to infinitely many dispersion curves and results usually are ob-

tained by numerical computing. With additional boundary conditions such as for

finite media, superposition of infinitely many number of modes need to be included,

which make analytical treatments very difficult.

For cylindrical structures, Pocchammer [19] and Chree [20] independently found

solutions for infinitely long cylinders by using linear theory of elasticity. They
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transformed fundamental equations and boundary conditions into cylindrical co-

ordinates. While their solutions were not applicable for finite cylinders, they were

still useful to understand the physics of wave propagation in cylinders. One can

find a summary of their approach in classical text books such as [21, 22].

In case of hollow cylinders or cylindrical shells, most of the available theories

ignore the transverse stress and strain components and this reduces the solution

to only case of thin walled cylinders 1, which is why it is possible to find a great

amount of literature for the case of thin walled shells. In order to find a solution

for thick walled cylindrical shells by using three dimensional theory of elasticity,

all six stress and strain components are needed, which makes the problem quite

complex and not favorable to analytical analysis [23]. For cases where researchers

were interested in the solution of thick walled cylindrical shells, studied certain

cases of the problem such as: Mirsky and Herrmann, axially symmetric motion

[24], non-axially symmetric motion [25]; Gazis, plane-strain vibrations [26]; Green-

spon, flexural vibrations [27]. Gazis finally found the solution based on theory of

elasticity by using Helmholtz potentials for the general case for the propagation of

waves in infinitely long hollow circular cylinders [28]. He derived all 36 coefficients

of the characteristic equation for the general case with stress free boundary con-

ditions and derived dispersion relations for some cases. In the same year, Gazis

published numerical solutions of his equations derived for thick cylinder for various

shell thickness ratios and various vibrational modes [29]. This was a remarkable

step since standing waves on simply supported finite shells is equivalent to the

wave propagation in an infinite shell for the given mode and frequency. However,

in cases of other boundary conditions such as free or clamped cases, various ap-

proximate shell theories are needed, otherwise infinite number of shell modes are

1In most cases thin walled cylinder theories require shell thickness to be at least 10 times
smaller than the average shell radius.
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required to be superimposed. Later Armenakas, Herrmann and Gazis published a

booklet including the numerical results of frequency equations for hollow cylinders

of various thicknesses and vibrational modes [30]. Singal and Williams [31] used

energy method based on 3D theory of elasticity to analyze circumferential modes

of vibrations of thick hollow cylinders.

As many approximate theories exist in literature regarding the topic, good

comparisons of earlier methods can be found in the literature such as [32, 33].

Recently, Loy and Lam found a solution for finite cylinders with simply sup-

ported and clamped-clamped boundary conditions [23]. They analyzed the thick

cylinder as a combination of many discrete thin cylindrical shells. From the prin-

ciple of minimizing the stored energy, they found general eigenvalue equations

from which they obtained numerical frequency values for various modes and cylin-

der thickness ratios. Another recent semi-analytical approach is provided by Mo-

fakhami et al. [34], where they used techniques of variables separation on the basis

of 3D theory of elasticity. Even their solution needed to satisfy special boundary

conditions approximately. Their solution required a relatively smaller coefficient

matrix and led to good convergence of the solution with moderate number of series

terms.

2.2 Vibrational Modes and Their Frequency

Spectrum for Liquid Filled Micro-Capillary

Most of the first harmonics of the various form of vibrational modes of a infinite

cylindrical capillary are shown in Figure 2.1. For estimating the frequency range
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roughly, it is possible to associate radial -thickness related modes of the cylinder

with a plate having same thickness as the cylinder wall. The width of the plate

can be the diameter of the cylinder and the length of the plate be the length of

the cylinder. In this case we can associate breathing mode with the longitudinal-

width mode of the plate, e.g. for cylinders having r ≪ l we expect two distinct

frequency regimes for various types of vibrations. Modes which depend on the r

or thickness would have much higher frequencies since frequency is inversely re-

lated to dimension along the vibration. In this case, bending, longitudinal and

torsional vibrations would have low frequency values while modes involving thick-

ness and radial modes and r-thickness related shear modes would have much higher

frequencies.

For the PZT/capillary device, to be able to choose an analytical method, we

need to reflect on aspect ratio of our cylindrical shell, and compare physical pa-

rameters of the cylindrical shell to wavelengths in the frequency range in which the

actuator is run (Figure 2.1 is quite helpful in terms of visualizing this reflection).

Length of the clamped-clamped part of the capillary (11mm) is much longer com-

pared to its internal diameter (100µm). The shell wall (50µm) can be considered

to be quite thick because it is half of the total diameter. Flexural wavelengths in

the relevant frequency range (30kHz-2MHz) change from 10mm to 0.5mm. Hence,

even for the smallest wavelength, the wavelength is about 10 times larger than

the diameter or shell thickness of the capillary. Similarly, the circumference of the

shell of the cylinder is also quite small compared to the wavelengths on the silica.

By back of the envelope calculations using identity giving the wavelength λ = c/f

(where c is the speed of the elastic wave2 and f is the frequency) we can estimate

torsional, flexural and longitudinal modes would have modes at frequencies as low

2For silica speed of P and S waves are about 5760 m/s and 4000 m/s respectively
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l

Figure 2.1: First harmonics of various vibrational modes of thick cylinder.
To have a rough estimate of frequency range, radial and thick-
ness modes of the cylinder cross section can be associated with a
plate having the same thickness and its length is the diameter of
the cylinder (the red line denotes the opening point). Here, the
capillary has high aspect ratios (r ≪ l).
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as below 100 kHz, whereas thickness, radial and thickness modes would start at

frequencies like 8-10 MHz range.

Frequency range in which the capillary has been actuated, covers the lower

harmonics of vibrational modes such as flexural, longitudinal and torsional modes.

In this range, use of simple approaches analyzing the force and displacement of

the capillary elements, yields sufficiently accurate results. In [29] Gazis confirms

this claim by comparing lower harmonics he calculated through the 3 dimensional

linear theory of elasticity to the values given in [35], in which a Timoshenko-type

shell theory has been used. In the following sections, we will introduce stress and

strain, and from there analytically derive different types of vibrations present on

the capillary, give dispersion relations for these vibrations and compare frequencies

of modes of these vibrations with each other.

2.2.1 Stress, Strain and Hooke’s Law

Elastic properties of materials strongly depend on their molecular structures. Here,

the case of an isotropic solid will be investigated, where elastic properties are the

same in all directions. This derivation can be found in many references related to

elasticity or wave phenomena such as [36]. As shown in Figure 2.2 we start with

a rectangular solid beam made up from an isotropic material. If we fix one end of

the rectangular beam and apply a force to the other end of the beam, beam gets

longer in the axis of the force applied. It is important to note that forces applied

here stay in the regime such that no plastic or hysteresis deformation occurs in the

beam, when the force is applied. Linear elastic theory dictates that:

1. When the applied force is increased, extension of the beam (δl) increases
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A
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Figure 2.2: Linear deformation of a rectangular solid beam under a force
applied in one dimension.

linearly with force.

2. When the area (A) of the beam is increased, extension of the beam (δl)

decreases linearly.

3. Shrinkage in the height of the beam (δh) is proportional to the extension of

the beam (δl).

Using these assumptions, linear elasticity gives:

δl ∼ l
F

A
(2.1)

Furthermore, δl depends linearly on the material property, Young’s Modulus E,

δl =
1

E
l
F

A
. (2.2)

Rewritten we have:

δl

l
E =

F

A
. (2.3)
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The quantity ( δl
l
) is the ratio of extension to length and is known as strain (ε).

Strain ε is proportional to force per unit area ( δF
A

), which is the stress (σ).

ε = Eσ (2.4)

This fundamental relation relating strain to stress is often called Hooke’s Law

and the general relationship between stress and strain is called the constitutive

relationship.

The stress σ = δF
A

is the normal stress due to the force applied in normal to the

surface A; however, solids can also be under other types of stress due to tangential

forces. If one places their palm over a thick book placed on a surface and move

the palm parallel to the surface, each page under the palm will slide with respect

to the page just below it and the cross section of the book will transform to a

parallelogram. Shear stress is defined by the ratio of tangential force (Fxy) applied

to area (A) resisting this tangential force:

σxy =
Fxy

A
. (2.5)

When shear stress is present, as shown in Figure 2.3, the block of material

deforms and this deformation is called shear strain and is measured by the angle

of deformation (γ) in radians,

∆x

h
= tan γ ≈ γ (2.6)

Similar to normal stress and strain, shear stress and shear strain are proportional

to each other by a constant. This constant is called shear modulus or modulus of

rigidity and is defined by,

G =
σxy

γ
. (2.7)
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Figure 2.3: Deformation of a block of material under tangential forces.

Utilizing the information given above, and using classical analytical results in

beam theory, elastic resonant response of the fluid-filled glass capillary driven by

PZT plate is investigated in the following sections for the cases of flexural, torsional

and longitudinal modes.

2.3 Flexural Modes of the Cylindrical Capillary

Here we now derive the beam bending theory from the linear Hooke’s law. The

theory of beam bending is dependent on beam cross section area with respect

to length (A/l) as these effect not only the peak stress and strain but also the

distribution of these across the beam cross section.

2.3.1 Euler-Bernoulli Beam

The Euler-Bernoulli approach to the bending of a beam is one of the more simpler

theories that gives relatively good results for long thin beams. General assumptions

related to this theory’s derivation are:
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1. Compared to beam length, lateral beam deflections are small.

2. Deformation of the shape is related to the pure bending, in other words as

shown in part (a) of Figure 2.4 ( dashed circle), all planes normal to the

beam remains normal. This means that as shown in part (b) of Figure 2.4,

the longitudinal strains (so the stresses) along the thickness of the beam vary

linearly, which also means that shear deformations in the cross section are

neglected.

From Figure 2.4 we can write

∆x′ = (R− z)dθ (2.8)

∆x = Rdθ . (2.9)

R
dθ

M0M0 z

Δx

Δx`

z

τx

a) b)

Figure 2.4: a) Bending of a beam element, b) stress in the z-axis
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Strain on the small element is defined by,

ε(z) =
∆x′ − ∆x

∆x
(2.10)

ε(z) =
(R− z)dθ −Rdθ

Rdθ
= − z

R
(2.11)

since

σ(z) = Eε(z) (2.12)

dF = −E z

R
dA . (2.13)

If we calculate the moment at point z = 0

M(x) =

∫

dF (x, z)dz (2.14)

M(x) = −
∫ h/2

−h/2

σ(z)zdA (2.15)

from Equation 2.12

M(x) = −
∫ h/2

−h/2

E
z2

R
dA (2.16)

M(x) = −E
R

∫ h/2

−h/2

z2dA

︸ ︷︷ ︸

. (2.17)

In this equation, the value of the integral is called Second Moment of Inertia or

Area Moment of Inertia and is denoted by I. It should not be confused with the

Moment of Inertia which is used for angular acceleration. Area moment of inertia

defines how much a beam resists the bending. The equation above takes the form

M(x) = − 1

R
EI (2.18)

where the quantity EI is called the flexural rigidity. This equation means that

beam bends in a way that the internal moment cancels the external moment at

point x = 0.
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For the case of a thick hollow cylinder (although still l >> A),

I =

∫ r1

r2

z2dA . (2.19)

In the case of a cylinder body dA = 2πzdz so

I =

∫ r1

r2

z22πzdz (2.20)

I =
π

4
(r4

2 − r4
1) . (2.21)

x

z

r1

r2

Figure 2.5: Cross section of the cylinder.

In Equation 2.18 the only item was left to be defined is 1
R
, which is the radius

of the curvature. We would rather have a mathematical equivalent of this item,

which would fit better in an equation.

As is shown in Figure 2.6, the length of the beam element ds can be related to

radius of curvature R as,

ds = Rdθ . (2.22)

The relation between increase on the length of the beam ds and dx can be written

as

ds =
dx

cos θ
. (2.23)
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Figure 2.6: Radius of curvature in a bending beam.

Since the θ is small, cos θ ∼= 1 and so ds ∼= dx On the other hand, for small angle θ

∂y

∂x
= tan θ ∼= θ (2.24)

from these we can conclude that for small angle θ

∂2y

∂x2
=

1

R
(2.25)

replacing 1/R term in Equation 2.18 we reach to the relationship between the

bending moment and the curvature,

M(x) = −EI ∂
2y

∂x2
. (2.26)

2.3.2 Time Varying Flexural-Bending Waves in Thin Rods

In this section, we will analyze the transverse motion of the beam. Under the

assumption of the Euler-Bernoulli beam theory, we will derive the equation of

motion. We will neglect the shear and rotary effects, assuming the central axis

remains vertical with respect to the motion of the beam as shown in Figure 2.7.
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We start with the equation of motion for the beam element having cross sec-

tional area A and density ρ shown in Figure 2.7. Bending moment M , shear force

V and other external forces q act on the beam. Balancing these forces leads to the

equation of motion:

− V + (V +
∂V

∂x
dx) + q dx = ρAdx

∂2y

∂t2
(2.27)

which reduces to

∂V

∂x
+ q = ρA

∂2y

∂t2
. (2.28)

If we write the equation for the moment of the beam element,

(V + (V +
∂V

∂x
dx))

dx

2
+M − (M +

∂M

∂x
dx) = 0 (2.29)

assuming ∂V
∂x

(dx)2 is small compared to the rest, we find

V =
∂M

∂x
. (2.30)

dx
x

V
V

∂
∂

+

V

dx
x

M
M

∂
∂

+

M

dx x

y

x

y

dx

),( txq

Figure 2.7: Transverse motion of the beam and the beam element.
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If we substitute 2.30 in 2.28 we find

∂2M

∂x2
+ q = ρA

∂2y

∂t2
. (2.31)

Substituting Equation 2.26 forM , and noting that cross sectional area and physical

parameters are constant along the beam we finally get

EI
∂4y

∂x4
+ ρA

∂2y

∂t2
= q (2.32)

which represents the equation of motion for the beam element. This is not a usual

wave equation as we see the 4th order derivatives involved, however we will see

that this formula will be the governing formula in analyzing the flexural waves

in a beam. This is a 4th order differential equation, and needs four boundary

conditions to solve. These boundary conditions can include combinations of y(x)

and its derivatives related to the shear and the moment.

In case no external forces are involved, the equation of motion is reduced to

∂4y

∂x4
+

1

a2

∂2y

∂t2
= 0, a2 =

EI

ρA
. (2.33)

If we assume the propagation of harmonic waves,

y(x) = Aei(αx−ωt) (2.34)

and substitute in 2.33 we find

α4 − ω2

a2
= 0 (2.35)

so α = ±
√
ω

a
, α = ±i

√
ω

a
. (2.36)

Since ω = cpα, where cp is the phase velocity, we find the dispersion relation,

cp = ±aα = ±
√
aω . (2.37)
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Real roots of the α refer to traveling wave solutions, while the complex roots refer

to nonpropagating, spatially decaying standing wave solutions; both are dispersive

as they are related to ω by
√
ω.

Equation 2.37 suggests that the phase velocity (cp) of the wave increases with

frequency. While this confirms with the experimentally observed results in low

frequency regime, it creates an anomaly for higher frequencies since formula in

its current case suggests there is no limit to the phase velocity and can diverge

to infinity at high frequency limit. This is not a possible case for any type of

wave and this anomaly will be discussed in a later part by including rotation and

shear effects [16, 17]. Before proceeding to that part we will use the equations we

derived here to get the mode shapes of a finite hollow cylinder and the approximate

dispersion relation.

2.3.2.1 Natural Frequencies of a Fluid-Filled Finite Hollow Thick

Cylinder

We may use the separation of variables technique here. Assuming the solution has

the form

y(x, t) = Y (x)T (t) (2.38)

and substituting in Equation 2.33 we find,

a2 1

Y

∂4Y

∂x4
=

1

T

∂2T

∂t2
= ω2 . (2.39)
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From this T and Y follow up as,

T (t) = Aeiωt (2.40)

Y (x) = C1 sin βx+ C2 cos βx+ C3 sinh βx+ C4 cosh βx (2.41)

where

β4 =
ω2

a2
(2.42)

for the simplicity related to our boundary conditions a better equivalent of Y would

be

Y (x) = D1(cos βx+ cosh βx) +D2(cos βx− cosh βx)

+D3(sin βx+ sinh βx) +D4(sin βx− sinh βx) . (2.43)

In our case, the capillary is fixed at two points where grooves opened on the

PZT plate. So for the regime we are interested we treat the ends as fixed boundary

conditions as shown in Figure 2.8 as:

Y (x)
∣
∣
x=0

=
dY (x)

dx

∣
∣
∣
x=0

= 0 (2.44)

Y (x)
∣
∣
x=l

=
dY (x)

dx

∣
∣
∣
x=l

= 0 (2.45)

From the boundary condition at x = 0 we find D1 = D3 = 0, and from the fixed

x = l case we find the frequency equation

cos(βl) cosh(βl) = 1 (2.46)

resulting in βnl = 4.73, 7.85, 11.00, 14.14, 17.279, ......, βnl− π, βnl, βnl+ π, .......

After the 5th mode, the incremental increase in the frequency parameter converges

to π, as seen in Figure 2.9.The resulting wave function can be written as,

yn(x, t) =
(

D2(cos βnx− cosh βnx) +D4(sin βnx− sinh βnx)
)

eiωt (2.47)
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Figure 2.8: Boundary conditions for the capillary; both ends are fixed.
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Figure 2.9: Roots of the frequency equation; the increase in the frequency
parameter converges to π after the 5th mode.

and the relation between D2 and D4 is

D2

D4

= − sin βnl − sinh βnl

cos βnl − cosh βnl
(2.48)

= −1.018, −0.999, −1, −1, ......(converges to -1 after n=3) (2.49)

From these, we can plot the mode shapes for the clamped clamped case. A few

modes are plotted in Figure 2.10.

For quick and handy calculations for higher modes, yn(x, t) given in Equation
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Figure 2.10: 1st, 3rd and 8th flexural mode shapes for the clamped-clamped
case.
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Figure 2.11: At higher modes, yn(x, t) given in Equation 2.47 approaches a
simple sine function given in Equation 2.50.

2.47 can be approximated as

yn(x) ≈ A sin (
nπx

l
) (2.50)

where amplitude A should be re-normalized accordingly. As shown in Figure 2.11

for the 11th sine will give an approximate solution.

From 2.33 and 2.42 we find the final form of the dispersion relation,

fn =
(βnl)

2

2πl2

√

EI

ρA
(2.51)

where I for the hollow cylinder is given in Equation 2.21, and A = π(r2
2 − r2

1). In

fact in this equation, the part included in the square root is nothing but the ratio

of flexural rigidity over the mass per unit length. This equation can be generalized
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for structures composed of different materials within this analogy and EI can be

replaced by the total flexural rigidity of the composite structure and ρA can be

replaced by the total mass per unit length of the composite structure.

r1

r2

r3

Fluid enclosed

Silica capillary

Polyimide layer

Figure 2.12: Drawing of silica capillary with the fluid enclosed and the poly-
imide coating.

As shown in Figure 2.12, in our case, the capillary is composed of a silica

capillary and water, and in some cases, we also have a thin layer of polyimide

coating on the capillary. In this case, we can generalize equation 2.51 as follows

fn =
(βnl)

2

2πl2

√

E1I1 + E3I3
ρ1A1 + ρ2A2 + ρ3A3

(2.52)

where E3I3 is the flexural rigidity of polyimide coating, ρ2A2 is the mass of liq-

uid enclosed per unit length and ρ3A3 is the mass of polyimide coating per unit

length. In Figure 2.13, frequency versus mode numbers for flexural modes are

plotted for various cases (i) silica capillary, (ii) silica capillary including water,

(iii) silica capillary including polyimide coating, and (iv) silica capillary including

water and polyimide coating. As shown in Table 2.1, polyimide has much lower

elastic modulus value compared to silica and also because it is a thin layer so it

shifts the resonance frequencies by about 7%. Water, as a standard fluid charac-

teristic, does not have any elastic modulus value and it only acts as a uniform mass

load, decreasing the resonance frequencies by 7%. The polyimide coated capillary
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including water case is plotted as the black curve showing about 13% decreased

frequency.

Table 2.1: Material and geometrical properties for silica, polyimide and wa-
ter.

Water Silica Polyimide

Elastic Modulus (Gpa) -- 73-68 7.5-10

Shear Modulus (Gpa) -- 31 1-10

Bulk Modulus (Gpa) 2.2 41 <10

Density (kg/m
3
) 1000 2200 1420

Poisson's Ratio -- 0.17 0.35

Inner Radius (μm) 0 50 100

Outer Radius (μm) 50 100 112
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Figure 2.13: Frequency versus harmonic number of the flexural mode.
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Figure 2.14: Frequency versus harmonic number of the flexural mode: Com-
parison of theoretical and experimental results.

2.3.2.2 Comparison of the Theory and Experimental Results

We can compare the theoretical dispersion relationship obtained in the previous

section with the experimental results. Figure 2.14 shows the comparison of the

frequency and mode number relationship we obtained from Euler-Bernoulli ap-

proximation with the experimental results. Experimental results were obtained

through the frequency scan of the actuator, and visually monitoring the collection

of particles under a microscope. At resonant frequencies the particles are collected

at nodes, providing the wavelength of the standing wave. Hence, the umber of

focusing locations gives the flexural mode number. While for low frequencies we

see a relatively good match, for higher frequencies Euler-Bernoulli (EB) predicted

mode number seems to diverge away from the experimental results. As shown in
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subplot of Figure 2.14 we observe a systematic error which increases with increas-

ing mode number and frequency. At the 28th mode error goes up to 55%. We see

that this discrepancy can be minimized by introducing a constant (0.75) to the

dispersion relationship3

fn = (
3

4
)
(βnl)

2

2πl2

√

E1I1 + E3I3
ρ1A1 + ρ2A2 + ρ3A3

. (2.53)

With this correction, the results are plotted in Figure 2.15. The percentage error

has been decreased, and although the theoretical and experimental values match

within an order-of-magnitude, we still see a significant mismatch. This deviation

is mostly related to the mismatch in the curve shape suggesting, additional terms

might be needed for a better fit. While the EB approach suggests a quadratic

3This ambiguity will be re-touched in future sections.
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Figure 2.15: Comparison of theoretical and experimental results after intro-
ducing the constant.
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tendency in frequency, experimental results show a linear increase at higher fre-

quencies. This anomaly is due to ignored shear and rotary inertia effects in the

EB approach, and will be estimated in the following section.

2.3.3 Corrections for the Shear and Rotary Inertia

The assumptions made to derive Euler-Bernoulli equations begin to fail at high

frequencies. First correction to EB approach came from Rayleigh [16] as he in-

cluded the effect of rotary inertia. When calculating total energy of the beam he

included kinetic energy due to the angular velocity of infinitesimal sections. In

Equation 2.24 it was shown that angle θ is given by ∂y/∂x; in this case angular

velocity θ̇ is

θ̇ =
∂

∂t
(
∂y

∂x
) =

∂2y

∂x∂t
(2.54)

so the kinetic energy term due to the rotation is given as

Kr =
1

2

∫ l

0

I0(
∂2y

∂x∂t
)2dx (2.55)

where I0 is the mass moment-of-inertia about the central axis, per unit length, and

is given by

I0 = ρI (2.56)

where in the case of hollow cylinder, I is given by Equation 2.21.

From total energy and by using Hamilton’s principle,4 Rayleigh has found the

equation of motion as

EI
∂4y

∂x4
+ ρA

∂2y

∂t2
− ρI

∂4y

∂x2∂t2
= q (2.57)

4More information about the Hamilton’s principle can be found in many classical mechanics
textbooks like [37], in particular in [38] Rayleigh’s derivation is given as an elegant example of
Hamilton’s principle.
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which reduces to EB case given in Equation 2.32, in the absence of rotary inertia.

Rayleigh’s correction was good enough to predict that the phase velocities are

bounded so that they can not diverge to infinity. However, they were not good

enough to match the upper limit, and Timoshenko [17] included shear effects and

obtained the closest approximation to the exact theory. As shown in Figure 2.16,

beam elements not only have restoring force due to bending (springs kb), but also

due to the shear of the beam elements (springs ks) [1].

kb

ks

Figure 2.16: Lumped parameter modeling of Timoshenko model [1]. En-
ergy can be stored in bending springs, shear springs and also
in rotation of beam element around its central pivot. Total an-
gle of deflection reflects the angle due to flexing of the beam
element while remaining normal to its axis and angle due to
shear-rotation around the pivot.

In this case, during the motion of the beam element, kinetic energy is stored in

the vertical direction (ẏ), and rotation of beam element (θ̇). On the other hand,

potential energy is stored in the bending of the beam (bending springs kb), and

shear stress on each beam (shear springs in the lumped system, kb). While it is

possible and easy to use Hamilton’s principle to derive the equation of motion from

46



energy terms, here, for the sake of simplicity we will add the force related to shear

effects to the Rayleigh’s equation of motion and proceed from there as done by

Timoshenko [17].

+

=
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∂
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∂
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+
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Figure 2.17: Beam element showing deflections due to pure bending; pure
shear; bending and shear combined. Total angle of deflection
includes distortion due to pure bending and the shear.

As shown in Figure 2.17 the angular deformation beam element undergoes, is

not only due to angle of bending (θ) but also due to shear strain (γ). As shown in

Figure 2.17 in this case, Equation 2.24 changes to

∂y

∂x
= θ + γ . (2.58)

Related to the bending of the beam element, Equation 2.18 still holds where

the radius of the curvature is R,

1

R
=
∂θ

∂x
(2.59)
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and

M(x) = −EI ∂θ
∂x

. (2.60)

Shear Force V can be calculated by

V =

∫

σxydA (2.61)

from Equation 2.7 we have

V = G

∫

γdA = (GγA)κ (2.62)

where κ is defined by Timoshenko as shear coefficient and depends on the shape

of the cross section of the beam. In [39] values of κ for various beam cross sections

are given and in the case of a hollow cylinder we have

κ =
6(r2

2 + r2
1)

2(1 + ν)2

7r4
2 + 34r2

2r
2
1 + 7r4

1 + ν(12r4
2 + 48r2

2r
2
1 + 12r4

1) + ν2(4r4
2 + 16r2

2r
2
1 + 4r4

1)

(2.63)

where ν is the poisson ratio for fused silica. By using values given in Table 2.1, we

find κ = 0.63 for our hollow cylinder.

Rephrasing Equation 2.58 and replacing γ we have

V = AGκ(
∂y

∂x
− θ) . (2.64)

Similar to Equation 2.27-2.29 from Figure 2.17, we can write equations of mo-

tion for rotation and translation. For the rotation we have

(V + (V +
∂V

∂x
dx))

dx

2
+M − (M +

∂M

∂x
dx) = ρIdx

∂2θ

∂t2
(2.65)

where this equation is equivalent to Equation 2.29 except the right side equals to

the angular acceleration due to the inclusion of rotary inertia in the calculation.

Ignoring the square of small terms, equation of motion for rotation becomes

V − ∂M

∂x
= ρI

∂2θ

∂t2
(2.66)
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from Equation 2.64 and Equation 2.60 we have

EI
∂2θ

∂2x
+ AGκ(

∂y

∂x
− θ) − ρI

∂2θ

∂t2
= 0 . (2.67)

Similar to Equation 2.28 for the case of pure translation, equation of motion follows

as

− V + (V +
∂V

∂x
dx) + q dx = ρAdx

∂2y

∂t2
(2.68)

so,
∂V

∂x
+ q = ρA

∂2y

∂t2
(2.69)

If we replace V From Equation 2.64 we have

ρA
∂2y

∂t2
− AGκ(

∂2y

∂x2
− ∂θ

∂x
) = 0 . (2.70)

At the end, we have two coupled equations of motions; for any external force

that is zero (q(x, t) = 0) we have

ρA
∂2y

∂t2
− AGκ(

∂2y

∂x2
− ∂θ

∂x
) = 0 (2.71)

EI
∂2θ

∂2x
+ AGκ(

∂y

∂x
− θ) − ρI

∂2θ

∂t2
= 0 (2.72)

Taking the partial derivative of Equation 2.72 with respect to x and eliminating θ

and terms we find the equation of motion for the beam:

EI
∂4y

∂x2
+ ρA

∂2y

∂t2
− ρI

(

1 +
E

Gκ

) ∂4y

∂x2∂t2
+
ρ2I

Gκ

∂4y

∂t4
= 0 (2.73)

or

a2 ∂
4y

∂x2
+
∂2y

∂t2
− k2

(

1 +
E

Gκ

) ∂4y

∂x2∂t2
+
k2ρ

Gκ

∂4y

∂t4
= 0 (2.74)

where

a2 =
EI

ρA
and k2 =

I

A
(2.75)

where k is defined as radius of gyration. Similar to Equation 2.38, we assume a

solution by separation of a variable as

y(x, t) = Y (x)T (t) (2.76)
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where Y (x, t) and T (t) are given in Equation 2.43 and 2.42. Then,

∂2Y

∂x2
= −β2Y + β2e−βx ∼= −β2Y (since for high β, e−βx → 0) (2.77)

∂4Y

∂x4
= β4Y (2.78)

Since boundary conditions given in Equation 2.44 are the same, here, relationship

between constants of Y and the relation giving values of βnl are the same. From

Equation 2.74 we have

a2β4 − ω2 − k2
(

1 +
E

Gκ

)

β2ω2 +
k2ρ

Gκ
ω4 = 0 . (2.79)

Solving this equation for frequency gives two distinct solutions,

ω1,2 =
1√
2

√
√
√
√GAκ

ρI
+
(Gκ

ρ
+
E

ρ

)

β2 ∓
√
[GAκ

ρI
+
(Gκ

ρ
+
E

ρ

)

β2
]2

− 4
EGκβ4

ρ2

(2.80)

or

ω1,2 =
1√
2

√
√
√
√Λ ∓

√

Λ2 − 4
EGκβ4

ρ2
(2.81)

where

Λ =
GAκ

ρI
+
(Gκ

ρ
+
E

ρ

)

β2 (2.82)

This dispersion relation gives us information about the characteristics of the wave

propagation. As β → ∞ we have

ω1 =

√

Gκ

ρ
β and ω2 =

√

E

ρ
β (2.83)

which lead to limited wave speeds that are non-dispersive at high frequency limit

c1 =

√

Gκ

ρ
and c2 =

√

E

ρ
(2.84)

When we look to β → 0 case, we observe,

ω1(0) = 0 as expected and ω2(0) =

√

GAκ

ρI
(2.85)
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Figure 2.18: The figure on top shows the frequency values for given wave
numbers. The first mode represents the flexural vibrations and
it does not have a cut off frequency. The second mode repre-
sents the thickness shear mode which has a cut off frequency.
The bottom figure shows the wave speed for two modes. While
phase speeds tend to increase monotonically for low wave num-
bers, they are bounded from top by speed of shear waves and
bulk waves. At high frequencies these curves converge to given
values.
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which indicates that the second mode we observe has a cut off frequency.

Dispersion curves obtained from above analysis are plotted in Figures 2.18.

The speed c1 is analogous to the flexural wave speed we obtained from the simple

beam theory; this type of wave propagation is dispersive in the low β regime and

converges to a nondispersive behavior with a limited wave speed. Quantity c2 is

not predicted by the simple bending beam theory, and it is the flexural thickness

shear mode, also predicted by the exact theory [40]. At frequencies below its

cut off, this mode has imaginary wave numbers which result in non-propagating

decaying disturbances. However, when the wavelength of the shear mode becomes

comparable to the value of the radius of gyration k, the thickness shear mode also

starts to contribute to the wave dynamics of the capillary structure we have. From

Equations 2.21 and 2.75, we calculate radius of gyration as 55 µm. This mode

shows dispersive behavior in the beginning and c2 starts from a low value and

tends to increase with wave number or frequency; however, this increase is limited

from above by the speed of bulk waves in the hollow cylinder. This means that

contrary to low frequency regime, at high frequencies, speed of the wave becomes

a constant of frequency and wave behavior becomes non-dispersive.

For parameters given in Table 2.1, high frequency limit values of c1 and c2 are

3063 m/s and 5502 m/s respectively. And the cut off frequency for the thickness

shear mode is 8.62 MHz. This value is quite high compared to the frequency regime

(20-2000 kHz), relevant to our experimental conditions. For this reason, we do not

observe or expect any wave dynamics associated with this mode.

Frequency dispersion relationship given in Equation 2.80 is the exact solution

of Equation 2.79; however, in our case we have a multilayered cylinder including

a polyimide coating and enclosed liquid. In order to include this multilayered
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configuration we are interested in such a formula:

fn = H
(βnl)

2

2πl2

√

EI

ρA
(2.86)

where H is the desired correction from the Timoshenko theory. In such a configu-

ration, we can switch to the multilayered case easily.

As we actuate the capillary below 10 MHz regime, the last term in Equation

2.79 is two orders of magnitude smaller compared to first three terms. Ignoring

the last term, we find the frequency equation as

fn =

(βnl)2

2πl2

√
EI
ρA

√

1 + (βnl)2k2

l2

(

1 + E
Gκ

) (2.87)

In fact, for low frequencies, one can use Taylor expansion and linearize the

square root term in the denominator for simpler expressions. However, this results

in a deviation at higher frequencies and does not help in our case.

As in Equation 2.53 when we include the effect of enclosed fluid and polyimide

coating we have

fn =

(βnl)2

2πl2

√
E1I1+E3I3

ρ1A1+ρ2A2+ρ3A3

√

1 + (βnl)2k2

l2

(

1 + E
Gκ

) . (2.88)

As shown in Figure 2.19, if we compare fn values obtained here with the exper-

imental data we see that two curves have the same trend. Nevertheless, as in the

previous case, there is a consistent error which increases as the frequency increase,

in this case, again, a multiplier value is needed to fit the data exactly. This number

in our case is 0.87 and final form of the frequency equation is given as

fn =
87

100

(βnl)2

2πl2

√
E1I1+E3I3

ρ1A1+ρ2A2+ρ3A3

√

1 + (βnl)2k2

l2

(

1 + E
Gκ

) (2.89)
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which gives an average deviation of less than 2% (Figure 2.20).

There are couple of reasons which may lead to 13% difference between theory

and experiment. It will be shown in future chapters that the theoretical calculated

values before introducing the correction factor is in very close agreement to the

results obtained from finite element modeling. Boundary conditions and elements

contributing to the motion are the same in two analysis. In these two analysis,

boundary conditions are taken to be fixed through the circular cross section of

the capillary at the ends. In experiments this is not the real case as capillary is

adhered through its circumference, and in addition it does not end, but continues.

Capillary in fact spans a longer regime compared to the PZT boundaries. Another
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Figure 2.19: Correction by inclusion of shear and rotary inertia compared to
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factor which may lead to diminishing of frequencies is the adhesive. Capillary

is adhesively bonded to the grooves on the PZT. And coupling between PZT and

capillary happens through the adhesive bond. Most adhesives have very low elastic

modulus which leads to softened boundary conditions.

Flexural waves are also heavily influenced by the surrounding fluid loading. In

above derivation and finite element modeling, fluid enclosed had been included,

however fluid present outside the cylinder, namely air, is ignored. Air outside

will also have mass loading effect and reduce resonance frequencies. The energy

coupling into air can potentially introduce damping as the energy is radiated away

from the actuators.
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2.3.4 Effect of the Density Variation of the enclosed Fluid

For our microfluidic actuator one of the components which may vary from device to

device or sample to sample is the fluid enclosed inside the capillary. In this sense

we need to further investigate the effect of density of fluid enclosed inside the

capillary. From Equation 2.89, we can conclude that change in density will result

in a shift in the dispersion curve or in a specific resonance frequency. Variation of

dispersion curve versus density is plotted as a surface in Figure 2.21. Lines on the

surface plot represent the variation of frequency versus density at a given mode.

Black line represents the density dependency of the frequency in the 3rd flexural

mode and blue line represents for the 28th flexural mode. It can be concluded

from this plot that shift in the resonance frequencies gets bigger at higher modes.

Variation of the resonance frequency versus density for the 28th flexural mode is

plotted in Figure 2.22. Two dots on the curve represent the density of water and

mercury. Variation of frequency versus density around density of water is about 1

kHz per 10 g/m3. In this case, typical frequency shift at 1.751 MHz (28th mode)

will be about 3 kHz when sea water (1027 kg/m3) is used instead of pure water

(1000 kg/m3).

From Equation 2.86, it is possible to conclude that resonance frequencies of

the flexural modes are inversely related to the square root of the fluid density such

that

fn(ρf ) = A(βnl)
2(B + ρf )

−1/2 (2.90)

where A and B are constants and ρf is the fluid density. Then the change in the

resonance frequency as a function of change in the fluid density becomes

d(fn(ρf )) = −A
2

(βnl)
2(B + ρf )

−3/2d(ρf ) . (2.91)
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Figure 2.21: Variation of the resonance frequency with respect to the density
of the fluid enclosed, for different modes.
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Figure 2.22: Variation of the resonance frequency with respect to the density
of the fluid enclosed, for the 28th mode.
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Following these, the percent change in the frequency value (d(fn)
fn

× 100) becomes

− 50(B + ρf )
−1d(ρf ) (2.92)

which is independent of the frequency. Here, it is possible to conclude that the

percent change in the resonance frequencies are the same for all harmonics. In

terms of device performance this means that, replacing DI water with the sea wa-

ter, for example, would change the 28th harmonic (at 1.751 MHz) by 3 kHz and

the 5th harmonic (at 90 kHz) by 0.1 kHz. As long as these changes are within

the bandwidth of the resonance peak, device performance will not be altered sig-

nificantly. However, as mentioned in [41] the quality factor for flexural vibrations

of mechanical oscillators operated in air tends to increase at higher harmonics.

Higher quality factor results in more sensitivity in the change of resonance fre-

quency per given variables. As a result at higher harmonics, density variation may

have a more sensible effect on the resonance frequencies. A more robust conclusion

can be reached after the characterization of the actuator performance with various

fluid samples.

2.3.5 Conclusions

In summary, flexural vibrations are the main reason behind the collection and

separation mechanism and how they modify the acoustic pressure distribution

inside the capillary will be further investigated in Chapter 3. However, before

proceeding to those parts it is worth to describe the other types of vibrational

modes in the frequency range of 10-2000 kHz, such as torsional and longitudinal

modes. Matching frequencies of different modes may result in further interesting

results to be analyzed in experiments.
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2.4 Torsional Modes of the Cylindrical Capillary

In this section, torsional modes of the cylindrical capillary are described. While

these modes do not play a significant role in particle collection; due to the tangen-

tial motion at the fluid structure boundary, they can contribute to streaming effects

that may help in mixing in general or particle separation at particular harmonics

which have matching frequency values with the flexural harmonics.

As shown in Figure 2.23, we can relate torque applied to the beam element,

with the balancing shear stress on the body as

T =

∫

τθxrdA . (2.93)

Using the constitutive equation for shear modulus given in Equation 2.7 we have

T =

∫

GγθxrdA =

∫

Gr
∂θ

∂x
rdA = G

∂θ

∂x

∫

r2dA . (2.94)

The integral in the right hand side of the equation is defined as polar moment of

inertia in the x axis.

Jx =

∫

r2dA (2.95)

so the torque T is reduced to

T = G
∂θ

∂x
Jx . (2.96)

For the hollow cylinder in our case we find polar moment of inertia as

Jx =
π

2
(r4

2 − r4
1) (2.97)

Similar to what was done in the case of flexural vibrations in previous parts,

we can write the equation of motion for torsional motion of the beam element. As
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Figure 2.24: Beam element under differential torque.

shown in Figure 2.24, similar to the force acceleration relation we can relate torque

with angular acceleration via polar moment of inertia (J ).

− T +
(

T +
∂T

∂x
dx
)

= ρJxdx
∂2θ

∂t2
. (2.98)

which reduces to

∂T

∂x
= ρJx

∂2θ

∂t2
(2.99)
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Replacing T from Equation 2.96 we find the wave equation

∂2θ

∂x2
=

1

c2t

∂2θ

∂t2
, where ct =

√

G

ρ
(2.100)

This result confirms that torsional waves on a rod are not dispersive and travel

with the speed of shear waves. A general solution of the wave equation would have

the form

θ(x, t) = Xθ(x)Tθ(t) (2.101)

where

Xθ(x) = Aθ sin(βx) +Bθ cos(βx) (2.102)

Tθ(t) = eiβctt . (2.103)

Since we have clamped-clamped boundary conditions and beam length of l we have

Bθ = 0 and β = mπ/2l (2.104)

resulting in,

θm(x, t) = Aθ sin
mπx

2l
eimπctt/2l (2.105)

where m is the mode number.

The frequency equation can be given as

fm =
mct
2l

. (2.106)

Then for parameters given in Table 2.1, we expect to have torsional modes in

frequencies given as

fm = 171, 341, 512, 682, 853...,m · 171, .... (kHz) (2.107)

Results are also plotted in Figure 2.25, where we can see that first 13 modes fit

in the 30-2000 kHz range. Torsional vibrations might help in mixing of fluids or

suspensions. Due to the polyimide coating and liquid enclosure, there will be slight

shift in the resonance frequencies however for now these results will be sufficient.
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Figure 2.25: Dispersion relationship for torsional waves on the capillary in
0-2MHz range.

2.5 Longitudinal Modes of the Cylindrical Capillary

Related to longitudinal waves, we assume displacement, body displacement and

wave propagation all happen in parallel to the central axis of the cylinder. When

we consider the beam element shown in Figure 2.26 and write the force equation,

− σ(x, t) +
(

σ(x, t) +
∂σ(x, t)

∂x
dx
)

+ q(x, t)Adx = ρAdx
∂2u(x, t)

∂t2
(2.108)

where A is the area, ρ is the density, q(x, t) is the external body force per volume

and u(x, t) is the displacement of the beam element. Equation is reduced to,

∂σ(x, t)

∂x
+ q(x, t) = ρ

∂2u(x, t)

∂t2
. (2.109)

From Equation 2.4 and definition of strain we have

ε = Eσ(x, t) = E
∂u(x, t)

∂x
. (2.110)
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Figure 2.26: Force diagram for the beam element under longitudinal stresses;
black arrows on the cylinder faces indicate body stresses and the
red arrow indicates the external body force per volume applied
everywhere. Displacement of the beam element is u(x, t).

Using these in Equation 2.109 we have

E
∂2u(x, t)

∂x2
+ q(x, t) = ρ

∂2u(x, t)

∂t2
(2.111)

When there is no external forces we have the wave equation

∂2u(x, t)

∂x2
=

1

c2
∂2u(x, t)

∂t2
, where c =

√

E

ρ
(2.112)

where c is the speed of longitudinal waves on the capillary. Since the capillary

wall is relatively thick (just half of the capillary diameter) we do not need to

worry about any major modification to the Equation 2.112. This equation is very

similar to the we found in case of torsional waves, and the boundary conditions

are also matching this is so one can just use results (Equations 2.105 and 2.106)

from Section 2.4. We will replace G with E; θm(x, t) with um(x, t); ct with c; Aθ

with A in Equation 2.105. Then we have,

um(x, t) = A sin (kmx)e
jωt (2.113)
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where

km =
2πm

λ
=
πm

l
and ω = ckm (2.114)

and the frequency equation is

fm =
mc

2l
(2.115)

The results of the frequency equation is plotted in Figure 2.27, and the first 8

harmonics of longitudinal modes are in the range of less than 2 MHz regime and

are given as

f = 258, 516, 775, 1033, 1291...,m · 258, .... (kHz) . (2.116)
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Figure 2.27: Dispersion relation for longitudinal waves on the capillary in
0-2MHz range

The existence of the enclosed fluid will also have some slight effect on the

resonance modes, however, this will be only due to the boundary viscous-shear

effect. Compared to the size and mass of the capillary, amount of fluid involved in

this shear dissipation will be small, for simplicity we omitted that part of analysis.
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We will further investigate validity of this assumption via finite element modeling

in Chapter 4.

Table 2.2: List of frequencies of resonance modes of various vibrations of
the capillary are given. Only modes having frequencies less than
2MHz are listed here. Frequencies having letters in parentheses
indicate the mode shapes which have close frequency values.

Theoretical Frequency values of various vibrational modes

Mode Number  Flexural Torsional Longitudinal (Hz)

1 6877 170630 (a) 258220 (i)

2 18917 341250 (i* ) 516450 (ii)

3 36967 (i* ) 511880 (b) 774670

4 60840 682510 (ii* ) 1032900

5 90407 853130 1291100

6 125470 (ii* ) 1023800 (iii* ) 1549300

7 165840 (a) 1194400 1807600 (iii)

8 211280 1365000 (iv* ) 2065800

9 (i) 261530 (iii* ) 1535600

10 316360 1706300 (c)

11 375460 1876900

12 438600 (iv* ) 2047500

13 (iii) 505490 (b)

14 575820

15 649380

16 725870

17 805060

18 886690

19 970580

20 1056500

21 1144200

22 1233500

23 1324300

24 1416400

25 1509700

26 1603900

27 1699100 (c)

28 (iii) 1795100
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2.6 Comparison of Vibrational Modes of the Capillary

We have found various transverse, torsional and longitudinal resonance modes of

the capillary in previous parts. Some of these resonance frequencies of different

vibrational modes are close to each other. This degeneracy might be useful in cases

when a quick shift of actuator behavior is needed. In another way this degeneracy

might be also useful for separation “tricks” and modalities. In Table 2.2, we have

listed frequencies of resonance modes of the capillary for flexural, torsional and

longitudinal modes (material properties and dimensions are listed in Table 2.1).

In Figure 2.28, the difference of resonance frequencies of flexural modes and

torsional modes are plotted as a surface. Locations where surface gets a minimum

value represent the resonance frequency matching regime for given modes. Simi-

larly difference of frequency values of flexural modes and longitudinal modes are

plotted in Figure 2.29, and torsional and longitudinal modes are plotted in Figure
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Figure 2.28: Frequency difference for given flexural and torsional modes.
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Figure 2.29: Frequency difference for given flexural and longitudinal modes.
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Figure 2.30: Frequency difference for given torsional and longitudinal modes.
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2.30. Due to the dispersive behavior of flexural modes, minimum lines on flexural-

longitudinal and flexural-torsional difference surfaces tend to be quadratic, while

the minimum line on torsional-longitudinal difference surface tends to be linear, as

neither of them are dispersive.

From these plots we can analyze and correlate the close values. In Table 2.2,

we have indicated modes of different vibration types which are closer to each other

with differences being smaller than 20 kHz.
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CHAPTER 3

ACOUSTIC PRESSURE WAVES INSIDE THE GLASS CAPILLARY

Introduction

In this chapter dynamics of acoustic pressure waves inside the cylindrical glass

capillary is investigated. Acoustic waves in unbounded fluids is first introduced.

Next the narrow channel effect reducing the speed of sound in a cylindrical capillary

is presented. Following that, inside the capillary is treated as a bounded cylindrical

cavity and natural the acoustic modes of this cavity are derived.

In the second part of this chapter, the coupling of flexural waves in an elastic

medium to the fluid at the boundary is analyzed. A focus on the capillary case and

conditions for radiation are investigated. It is proven that by utilizing harmonic

flexural vibration of the capillary, subharmonic acoustic pressure standing waves

in fluid can be generated inside the cavity. In this case standing waves can be

generated at frequencies as low as 30 kHz while naturally occurring cavity modes

are expected to appear at least at 8.26 MHz. It is also shown that harmonicity of

these acoustic standing pressure wave modes depend on the harmonicity of flexural

modes.

In the final part of this chapter, acoustic pressure distribution due to quasi-

longitudinal vibration of the capillary will be investigated. It will be shown that

due to the finite thickness of the capillary, radially symmetric transverse velocity

distribution is also present, although they are two orders of magnitude smaller

than the axial capillary motion. It is shown that, similar to the flexural motion

case, this radially symmetric transverse velocity couples acoustic pressure waves
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inside the cavity.

3.1 Acoustic Modes inside the Capillary:

Cylindrical Cavity Problem

In this part, we will derive propagation behavior of sound waves in bulk fluids,

and fluids confined in a narrow channel. Later inner part of the capillary will be

modeled as a cylindrical cavity and we will investigate the acoustic modes inside

capillary.

3.1.1 Sound Waves in Nonviscous Fluids

Compared to wave propagation in solids analysis of acoustic wave propagation in

fluids tends to be simpler. In case of nonviscous ideal fluids, there are no restoring

forces against any shear disturbances.1 The only stress component in a fluid is the

scalar pressure. When a time dependent oscillating pressure variation or force is

introduced to the fluid, individual elements of the fluid move back and forth along

the direction of forces applied and series of compression and decompression effect

is introduced. This compression and decompression is also felt by the adjacent

fluid element which enables propagation of the wave. This propagation is identical

to longitudinal waves in solids.

1No fluid in real life is an ideal fluid and exhibits some shear effects due to its viscosity. This
property is important in case of nonlinear or second order acoustic phenomenon. However, for
simply deriving propagating sound waves, these effects are ignored as these shear interactions
cannot form any kind of restoring force to generate a propagating transverse wave as in the case
of solids.
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While the acoustic wave equation for nonviscous fluids is derived here, we

will assume that acoustic pressure p is much smaller than the equilibrium P or

instantaneous P0 pressure of the fluid element which can be formulated as

p = P − P0 and p≪ P, P0 . (3.1)

Taking a fluid element of volume V into consideration, the equation of continuity

can be found by equating the change in the total mass of this given volume per time

with the net mass flow through the whole surface of the volume. In differential

form this relation is given as

∂ρ

∂t
+ ∇ · (ρv) = 0 (3.2)

where ρ is the density of the fluid and v is the fluid particle velocity.

The momentum equation for nonviscous fluids can be found by using Newton’s

law for the fluid element having volume V . Change of momentum for volume V

per unit time should be equal to the sum of all external forces (such as gravity

etc.), and the net momentum flow through the surface of the volume V carried by

the fluid.

∂(ρv)

∂t
+ ∇(ρv) · v + ∇p = ρB (3.3)

where B is the body force per unit mass.

Since the temperature change in the volume element due to its compression

or expansion, the temperature gradient within the neighboring fluid elements and

the thermal conductivity are all small, acoustical interactions for linear regime are

mostly treated as adiabatic and reversible processes. For the perfect gas under

these conditions, pressure values can be associated with density values through

P

P0

= (
ρ

ρ0

)γ (3.4)
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where γ is the ratio of heat capacities. Having δρ = (ρ−ρ0), if we take the Taylor’s

expansion of Equation 3.4 we get

P = P0 +
(∂P

∂ρ

)

ρ0

δρ+
1

2

(∂2P

∂ρ2

)

ρ0

(δρ)2 + ... (3.5)

The first term gives

p = P − P0 =
(∂P

∂ρ

)

ρ0

δρ = ß
δρ

ρ0

(3.6)

where ß is the adiabatic bulk modulus relating the density change2 with the pres-

sure change

ß = ρ0

(∂P

∂ρ

)

ρ0

(3.7)

Now we can proceed to the next step for deriving the wave equation. If we

take the divergence of the momentum equation (Equation 3.3) for linear case and

ignoring all external body forces we have

∇∂(ρv)

∂t
+ ∇2p = 0 (3.8)

We can take the time derivative of the continuity equation, we get

∂2ρ

∂t2
+
∂

∂t

(

∇ · (ρv)
)

= 0 (3.9)

The second term of Equation 3.8 and first term of Equation 3.9 are equivalent

which leads to

∂2ρ

∂t2
= −∇2p (3.10)

From Equation 3.6 we can relate pressure and density variation and also noting

that the time derivative of δρ will be equal to the time derivative of ρ (since ρ0 is

constant). Taking the second time derivative of Equation 3.6 and replacing density

terms in Equation 3.10, we find the acoustic wave equation for fluids given as,

∇2p =
1

c2
∂2p

∂t2
(3.11)

2Reminding conservation of mass, this is equivalent to replace density with volume and say
bulk modulus is nothing but relating volume change with pressure change.
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where c is the speed of the sound wave in the fluid, which is given by

c2 =
ß

ρ0

(3.12)

For a time harmonic plane wave given as

p(~r, t) = Ae−j(~k~r−ωt) (3.13)

equation 3.11 takes the form of the Helmholtz equation

∇2p+ k2p = 0 (3.14)

where

k =
ω

c
(3.15)

is the wave vector.

3.1.1.1 Speed of Acoustic Waves in Narrow Channels

It has been known that acoustic waves do not exhibit same propagation charac-

teristics that they show in infinite bulk, when they are confined. Especially in

the case of layered media, different acoustic properties and the geometry of the

structure define the propagation characteristics. For example, in the case of a plate

immersed in a fluid, when the propagating waves are incident on the boundary at

an angle, such that total internal reflection occurs, then waves can couple into and

propagate in the solid layer. However, when the angle of incidence is less then the

critical value, then some part of the incident wave is refracted to the fluid enclosing

the solid layer. In this case, propagation is affected by the boundary, and even

could be leaky in case of an infinite or absorbing boundary.

This topic draws attention of geologists and seismologists as there are many

naturally occurring multilayered waveguides in nature, such as earth’s crust, ice
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layers on lakes or oceans, etc. Scientists and engineers, working on projects related

to fluid transport pipelines or tubing systems like in reactors where tubes or pipes

are subject to vibration, also have to take this topic into consideration. Recent

technological advancements in the field of MEMS and microfluidic systems also deal

with elastic and acoustic properties of materials at microscale as well as acoustic

wave propagation.

In general analysis of multilayered waveguides, different combinations might be

investigated separately such as, finite-finite media, finite-infinite media, infinite-

infinite media.

In cases of fluid-fluid or fluid-thin solid interfaces solving wave equation consid-

ering boundary conditions are enough. However, in cases of fluid-solid or solid-solid

media, the problem formulation is more complex and a more detailed investigation

through the general theory of elasticity is needed.

In our case, we are interested in propagation of internal waves in liquid en-

closed in a thick hollow cylinder. Early observations regarding this topic dates

back to the 1800s. Working on organ pipes, Wertheim observed his calculations

on wave dynamics of organ pipes deviate when air filling is replaced with water

[42]. In 1848 Helmholtz [43] first showed how to predict such phenomenon theo-

retically, and commented on Wertheim’s experiments. While for gases, this effect

is not very significant; in case of liquids enclosed in a channel, change is consider-

able. Later, in 1878, Korteweg [44] published a more comprehensive mathematical

derivation. Following Korteweg, in 1898, Lamb [45] confirmed Korteweg’s analysis,

and included the solution for the case of a thick cylinder.

Following the calculations in [46], in Appendix A, speed of sound in a cylin-
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drical capillary for the cylindrical capillary case is calculated. During the analysis

pressure inside the capillary is assumed to be constant, and displacement of the

capillary due to this pressure is taken to be axis-symmetric. The length of the cap-

illary is long enough compared to the radius or thickness so that shear or moment

related edge effects are negligible, and deformation of the capillary remains normal

to the radius (so all displacement is in plane). Lastly, the wavelengths are much

larger compared to cylindrical radius and thickness. It is also assumed that due

to the pressure normal to the capillary-fluid boundary, both displacements in fluid

and solid structures are only in radial (r) direction. Following these equations,

pressure inside the channel is equated to the normal stresses on the solid struc-

ture at the internal boundary. In addition from non slip boundary conditions, the

displacement in the fluid and the displacement of solid structure at the boundary

are also equal. Finally, the speed of acoustic plane waves in a cylindrical cavity is

obtained as

c = c0
1√

1 + 2Mλ1

(3.16)

where c is the speed of sound in bulk fluid and M is given by

M =
r2
1

2(λ2 + µ2)(r2
2 − r2

1)
+

r2
2

2µ2(r2
2 − r2

1)
(3.17)

Following the values in Table 2.1, at room temperature we find speed of sound in

bulk water (c0) to be 1485 m/s. In the fluid filled silica cylindrical capillary with

inner radius 50 µm and the outer radius 100 µm, the speed of sound in the fluid

core (c) is found to be 1410 m/s from Equation 3.16, which results in a 5% lower

value than the value in the bulk. In the calculations in the following sections, this

value (c) given above will be used in place of speed of sound in bulk water (c0).
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3.1.2 Solution of Wave Equation for a Cylindrical Cavity

As shown in Figure 3.1, acoustic modeling of fluid enclosed in a cylindrical capillary

can be modeled through solution of wave equation for a cylindrical cavity. In our

case, due to the glass capillary, the cylinder walls are rigid and the ends of the

channel are open.

L

l

r1

r2

z

r
θ

y

x

Figure 3.1: Fluid column of length L enclosed in a silica capillary of length
l.

The problem will be first investigated by treating the capillary as a waveguide

and then propagating modes and cut off frequencies will be extracted. Further-

more, limiting the length of the capillary, the modal frequencies and wave functions

will be investigated. Rephrasing the wave equation given in Equation 3.11in cylin-

drical coordinates, we have,

(∂2

r2
+

1

r

∂

∂r
+

1

r2

∂2

θ2
+

∂

∂z2

)

p =
1

c2
∂2p

t2
(3.18)

As we are seeking harmonic solutions, the standard approach is the method of

separation of variables.

p(r, θ, z, t) = R(r)Θ(θ)Z(z)ejωt (3.19)
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If we place the p(r, θ, z, t) value in Equation 3.19 in Equation 3.18 we find

1

R

∂2R

∂r2
+

1

R

1

r

∂R

∂r
+

1

r2

1

Θ

∂2Θ

∂θ2
+

1

Z

∂2Z

∂z2
= −ω

2

c2
. (3.20)

Starting with components depending on z, θ and r values, we have the following

equations

∂2Z

∂z2
+ k2

zZ = 0 (3.21)

∂2Θ

∂θ2
+m2Θ = 0 (3.22)

∂2R

∂r2
+

1

r

∂R

∂r
+
(
k2

r −
m2

r2

)
R = 0 (3.23)

ω2

c2
= k2 = k2

r + k2
z . (3.24)

The z dependent part gives the solution

Z(z) =






cos kzz

sin kzz




 (3.25)

and the θ part

Θ(θ) =






cosmθ

sinmθ




 . (3.26)

As given in Equation 3.23, r dependent part is known as Bessel’s equation of order

m. The solutions to Bessel’s equation can be found in many applied mathematics

or physics books [47, 48] and are given as,

R(r) =






Jm(krr)

Nm(krr)




 or






H
(1)
m (krr)

H
(2)
m (krr)




 (3.27)

The first set of solutions Jm and Nm are called ordinary Bessel and Neuman func-

tions, and are used particularly for interior problems such as radiation into a cavity

(which applies to our case). Neuman functions go to infinity as r approaches to
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zero, this is not a likely situation in our case so Neuman functions are not a pos-

sible solution case in our experiments (and generally in most experiments). The

second set of equations Hm are the the Hankel functions and they are used in the

case of exterior problems such as a cylindrical structure radiating to free space.

As a result, having arbitrary constants A and B, we have the general solution of

acoustic waves in a cylindrical cavity,

p(r, θ, z, t) =






A

B






(

Jm(krr)

)






cosmθ

sinmθ











cos kzz

sin kzz











cosωt

sinωt




 (3.28)

In our case acoustic cavity or waveguide is surrounded by rigid cylinder walls

and in such cases, due to the nonslip fluid-solid interface the radial velocity (vr) of

fluid particles at fluid-solid boundary (r = r1) is zero,

vr(r1) = 0 (3.29)

In the case of harmonic waves, we can write Equation 3.8 (known as Euler’s

equation), as

v = − 1

jωρ
~∇p . (3.30)

Then the velocity (v) becomes

v(r, θ, z, t) = −krJ
′

m(krr)

jωρ






A

B











cosmθ

sinmθ











cos kzz

sin kzz











cosωt

sinωt




 (3.31)

where J ′

m(krr) is the first derivative of Jm(krr) with respect to r.

For generalized kr values related to our solution, the boundary condition given

in Equation 3.29 can be written as

vr(krr1) = 0 (3.32)
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where kr values can be chosen as

kr = α′

mn/r1 (3.33)

and α′

mn is the nth zero of J ′

m. The first few values of α′

mn can be found in Table

3.1.

Table 3.1: Roots of the first derivative of Bessel functions.

J' mn (x)=0 m

n 0 1 2 3 4 5

1 0 1.8412 3.0542 4.2012 5.3175 6.4156

2 3.8317 5.3314 6.7061 8.0152 9.2824 10.5199

3 7.0156 8.5363 9.9695 11.3459 12.6819 13.9872

4 10.1735 11.706 13.1704 14.5858 15.9641 17.3128

For waves propagating in the z direction, from Equation 3.24, the frequency

equation is found as,

k2
z =

ω2

c2
− k2

r (3.34)

following

k2
z,mn =

ω2

c2
− α′ 2

mn

r12
. (3.35)

Since the phase velocity is given by

cph =
ω

kz(mn)

(3.36)

we have,

cph = c
1

√

1 −
(

α′

mnc
ωr1

)2
(3.37)

from which we find cut off frequencies as

fmn =
α′

mnc

2πr1
. (3.38)

For a fluid column of finite length (L), we expect to observe modes in z direction

as well. Depending on the end locations of the fluid column, frequency harmonics
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of standing modes can be calculated. Boundary conditions for end locations in our

case, are open to air and so pressure value can be treated as zero. In this case

from Equation 3.28 we have

p(z=0) = 0 ⇒ sin 0 = 0 and p(z=L) = 0 ⇒ sin kzL = 0 (3.39)

from which we have,

kz =
Nπ

L
. (3.40)

Then from the frequency equation given in Equation 3.24, and value of kr we

defined in Equation 3.33 we find the modal frequencies as

fmnN =
c

2

√
(α′

mn

πr1

)2

+
(N

L

)2

(3.41)

and wave function as

pmnN(r, θ, z, t) = AmnJm(
α′

mn

r1
r) sinmθ sin

Nπz

L
sinωt (3.42)

Interpreting the results we have, from Table 3.1 for m = 0, n = 1, we have

α′

01 = 0. Since J0(0) = 1 we have a mode which is independent of r and θ. This is

the simple longitudinal plane wave mode, and the time harmonic wave function is

given as

p01N(r, θ, z, t) = A sin
Nπz

L
sinωt (3.43)

Here, A depends on the driving forces. The phase velocity c is given in Equation

3.37. This mode is not dispersive and does not have any cut off frequency; the

frequency relationship is given as,

fN =
cN

2l
= Nf1 (3.44)

As shown on the top sketch of Figure 3.2, this mode is due to the fundamental plane

wave propagating through the cavity inside the capillary. An important aspect of
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this mode is that it is independent of the source location and geometry which means

that except for locations close to the source, wave propagation is uniform. Figure

3.2 also shows two other radial modes. Radial pressure and displacement variation

inside the capillary for various modes are computed and graphed in Figure 3.3. As

seen on the top of the figure, in the plane wave mode, no radial or angular variation

exists. This is the axial in plane mode inside the capillary and only variation is

through the z axis. All other modes plotted in Figure 3.3 are radial and/or angular

modes, and due to this radial and angular variation, we have velocity trajectories

guided by the pressure variation.

Table 3.2 shows the cut off frequencies of the modes. Since the next smallest

Figure 3.2: Several capillary modes are sketched. On the side cross section
view of the middle of the capillary is shown. Top: m=0, n=1,
N=5 mode, f=320 kHz. Middle: m=1, n=1, N=1 mode, f=8.27
MHz. Bottom: m=1, n=1, N=2 mode, f=8.29 MHz. The rela-
tively small difference between frequencies of middle and bottom
modes is due to the high aspect ratio of the capillary. Due to the
small radial distance, radial modes have high cut off frequencies.
From Equation 3.41, it is possible to see that the contribution
of N modes (z axis) is small compared to high values of radial
modes.
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Pressure Velocity

m=0, n=1

No cut off 
Frequency

m=1, n=1

fc= 8.26 MHz

m=2, n=1

fc= 13.7 MHz

m=2, n=2

fc= 30.1 MHz

a

b

c

d

Figure 3.3: Cavity cross section pressure values and corresponding fluid ve-
locity distributions are plotted for various modes. As expected
the plane mode plotted on the top does not have any radial or
angular variation and this is why this mode does not have any
angular or radial component for the fluid velocity. This mode has
velocity variation in z direction which is not plotted here. All of
the other three modes given have radial and angular variation of
pressure and velocity components in these axes.

82



Table 3.2: Cut off frequencies of various modes are computed from Equation
3.38. All values are in MHz.

Cut off Frequencies (MHz)

n m 0 1 2 3 4 5

1 0.0 8.3 13.7 18.9 23.9 28.8

2 17.2 23.9 30.1 36.0 41.7 47.2

3 31.5 38.3 44.8 50.9 56.9 62.8

4 45.7 52.6 59.1 65.5 71.7 77.7

value of α′

mn is 1.84 from Table 3.1, next mode of propagation is expected to

appear at frequencies higher than 8.27 MHz (Equation 3.38). This is much higher

than the drive frequency range in our experiments (20kHz–2MHz). Since all other

α′

mn values and their cut off frequencies are higher, we can conclude that in the

frequency regime in which the capillary is actuated, only the axis symmetric plane

waves can propagate through the channel. Other modes at low frequencies are

evanescent and cannot propagate. However, they exist in the local neighborhood

of the actuation. While these higher modes do not exhibit any importance for the

naturally occurring cavity modes, we will see in the following sections that they

are important because of the localized excitation of the cavity through the flexural

modes of the enclosing capillary.

3.2 Interaction of Flexural Waves with the Fluid Medium

During the propagation of flexural waves, the surface of the elastic medium moves

harmonically normal to the surface. In the presence of a fluid boundary, these

periodic displacements are coupled to the fluid and may cause sound to be emitted

from the surface and carried in the fluid medium. In depth details of structure

borne sound can be found in references [49, 50, 51], which are used by the author
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for derivations and comments made in this section.

For a plate (which might be also infinite) analysis usually is done through

a selection of a strip from the plate. In our case, we have a vibrating cylinder

vibrating transversely. As shown in Figure 3.4, we can approximately3 treat the

bottom and the top part of the inner part of the cylinder as two long strips (moving

in phase with the cylinder flexural mode), and approach problem similar to the

plate case. Waves on these strips will have the same frequency and wavelength of

the entire capillary, which is already modeled in Chapter 2.

a)

b)

Cross section

Flexural waves on the plate strip from plate

strips from top and bottom 
of the inner part of the 

cylinder (moving in phase)

Flexural waves on the capillary, length l

l >> r  and  λb >> r1

(wavelengths are not to 

scale  λb >> r1 )

2r1
r1

Figure 3.4: Similar to the strip taken from a plate, the top and the bottom
of the inner capillary can be treated as two strips away from each
other by 2r1 and moving in phase. Please note that wavelength
of the strips taken from the cylinder’s inner surface are not to
scale. In fact we have λb ≫ r1 and l ≫ r1.

3It will be confirmed in later sections that resulting derivation of pressure inside the cap-
illary related to this approximation gives a reasonably good match with FEM modeling and
experimental results.
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3.2.1 Case of Infinite Plate Loaded with Fluid Medium

above

For far field acoustic radiation analysis, finiteness of the plate length is very im-

portant as there will be two distinct region on the plate, places where there is

harmonic motion and places that do not move at all. A far field point will be able

to feel the contribution of all moving locations. However, as shown in Figure 3.5,

in the case of near field –especially thinking of the regime which is much smaller

compared to the length of the beam (or plate or capillary in our case)– a fluid

particle will only be able to feel pressure and displacement differences mostly due

to its close boundary. From this we can conclude that as long as l ≫ d, treatment

of the problem as finite or infinite in z axis will not create any major difference.

Since treatment of a finite case involves more steps of algebra and numerical in-

tegration of the radiation field, we will choose the infinite approach, which has a

more straightforward analysis.

First, we will start with one strip and after we find the solution we will include

the other. As shown in Figure 3.6, flexural wave propagating in z direction gen-

erates a propagating plane wave in fluid in the direction of wave vector (k). In

such a configuration, the direction of wave propagation in fluid is determined by

the angle such that λfluid = λflex sin θ.

Related to our case, interaction of a standing flexural wave with the fluid

medium will be investigated. Here, length of the elastic medium vibrating in

flexural mode is infinite and the fluid medium is also infinite. Assuming a flexural
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d

l

l >>d

Figure 3.5: The Red dot indicates the fluid volume in the close neighborhood
of the vibrating medium. Since l ≫ d pressure and displacement
variations of this fluid volume will be mostly controlled by the
close neighborhood vibrations of its location. So an finite or infi-
nite case will not bother this particle at all. This will be different
for the far field and also the end locations. This ambiguity related
to end locations will be clarified in later sections.

λbending

λfluid = λflex sinθ

θ

k

kb
v(x,t)=v0 e

-jkbz eiωt

z

y

Figure 3.6: Acoustic radiation from a flexural wave propagating on an infinite
plate.

standing wave having the velocity profile (just normal4 to the strip),

v(z, t) = v0 sin(kbz)e
jωtŷ (3.45)

Please note that, since final results will be interpreted in cylindrical coordinates, in

order not to cause any ambiguities, horizontal axis is taken to be the z direction.

4For a strip of very small thickness, the tangential component of the velocity will be very
small compared to the normal velocity and can be ignored. In this case, the shear effects in
the fluid at close boundary is also neglected. We will further examine in future sections that if
negligibility of shear associated tangential velocity is valid, as the strip or plate thickness gets
higher. These shear effects might have some influence on some second order acoustic streaming
effects.
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We would like to find pressure waves in the fluid medium. Conditions which will

guide us through the investigation can be listed as;

1. Pressure, p, has to satisfy Helmtholtz’s differential equation given in 3.14.

2. Due to the continuity of the boundary, instantaneous normal velocity of the

elastic surface should be in phase and equal to the normal velocity of the

fluid.

Following conditions given above, we can guess a general form for pressure such

as

p(y, z, t) = p0 sin(kbz)e
−jkyyejωt . (3.46)

Now, we have to find ky and p0 in agreement with the given conditions above.

Inserting this pressure value into the Helmholtz equation in 3.14 we find

ky =
√

k2 − k2
b (3.47)

where

k =
ω

c
(3.48)

where c is the speed of waves in fluid. From Euler’s equation given in 3.30 we find

normal velocity of the fluid as

v(y, z, t) =
p0ky

ρfck
sin(kbz)e

−jkyyejωt (3.49)

from boundary conditions mentioned above at y = 0, normal components of the

fluid and flexural velocities should be the same, from which we find the unknown

p0,

p0 =
v0ρfck

ky

. (3.50)

Then we find the pressure waves in the fluid

p(y, z, t) =
v0ρfck

ky

sin(kbz)e
−jkyyejωt (3.51)
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or using 3.47

p(y, z, t) =
v0ρfc
√

1 − k2

b

k2

sin(kbz)e
−j
√

k2
−k2

b
yejωt . (3.52)

Commenting on the result we have; as long as k > kb or equivalently λb > λ

square root term in the denominator is always real and positive. This means that

as long as wavelength of flexural waves are longer than wavelength of fluid waves,

pressure waves will be propagating in the fluid and sound radiation will occur.

Since λfluid = λflex sin θ, and λ = 2π/k we have

kb

k
= sin θ and

√

1 − k2
b

k2
= cos θ (3.53)

then pressure can be written as,

p(y, z, t) =
v0ρfc

cos θ
sin(kbz)e

−j
√

k2
−k2

b
yejωt for λb > λ (3.54)

In the above equation, the only parameter that changes with the frequency is

the cos θ term. This means that amplitude of pressure depends highly on the

relationship of wavelengths. As the difference between wavelength values of fluid

and flexural medium gets smaller, we observe that amplitude of pressure waves

tends to increase. Interestingly, as k = kb, the amplitude of the pressure tends

to infinity. At this value, the angle of propagation becomes 90o. This condition

is used in endfire sonar radiators to radiate high sound energies in very select

directions. While the derivation above suggests an infinite amount of pressure

amplitudes, this will not be the case in experiments as everything will be limited

by the energy supplied to the flexural beam. However, it is possible to say that

compared to other frequency ranges in this range, energy transfer to fluid will be

drastically higher.

We still have not looked to the regime where wavelength of the flexural waves

is lower than the fluid waves (kb > k or equivalently λ > λb). The frequency value
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where the k value is equal to kb is called critical frequency. Below the critical

frequency ky will be imaginary. Rearranging Equation 3.52, we have

p(y, z, t) =
jv0ρfc
√

k2

b

k2 − 1

sin(kbz)e
−

√
k2

b
−k2yejωt for λ > λb . (3.55)

However, this is not a propagating wave, rather it decays exponentially in y

direction, so this is an evanescent wave, periodic in z direction following the flexural

wave. Decay rate
√

k2
b − k2 increases as the kb and k difference increases, which

means we expect a stronger decay in y direction at lower frequencies. Furthermore,

this pressure value is π
2

out of phase with the velocity of flexural wave. Since power

radiated is related to the real part of pv product, no net power is radiated to the

far field. All power remains reactively in the close neighborhood of the flexural

displacements. Results of equations obtained above are plotted in Figure 3.7.

Critical Frequency

In the previous section, it was demonstrated that wave dynamics in fluids due to

flexural vibrations depend on the wavelength of the plane waves in fluid, and the

wavelength of flexural waves on the elastic medium at a given frequency. Related

to our case, we need to further investigate if there exists a frequency where the

wavelength match occurs. It is a logical guess to expect such a frequency since,

as shown in Section 2.3.2, flexural waves exhibit dispersive behavior and their

wavelength frequency relationship is not a linear one.

Since this critical frequency value strongly depends on material and geometrical

properties, we will specifically check for the critical frequency for the our capillary

cylindrical actuator. For our fluid filled capillary structure, dispersion relationship

was given in Equation 2.89. Using this equation, frequency values of harmonics of
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Figure 3.7: Pressure values in fluid are plotted. In the top graph, absolute
value of the pressure and phase are plotted respectively against
frequency. It can be clearly seen that below critical frequency
phase is π/2 so that only imaginary pressure values exist. In
other words, pressure is out phase with the velocity of flexural
beam, or in phase with acceleration. At frequencies higher than
critical frequency, pressure is pure real, and it decays from a
maximum value at critical frequency as the frequency increases
(reminding one over cosine factor). In the bottom graph, the
behavior of the top graph in y direction is examined. Range of
depth is 1 mm. Above critical frequencies propagating waves
exist and their wavelength (inversely related to ky) tends to de-
crease with increasing frequency. This trend can be seen from
the thick black lines; each line corresponds to a wave at a given
frequency. Below the critical frequency, no wave propagation can
be observed because of the evanescent behavior of the pressure
value. The decay rate increases as kb − k difference increases.
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flexural waves can be found, and corresponding wavelengths are given as

λfn =
2l

n
(3.56)

where l is the length of the capillary and n is the number of harmonics. The

wavelength frequency relationship for plane waves in fluid is simpler and given by

the formula

λn =
c

fn

(3.57)

where c is the speed of sound in a fluid medium enclosed in a channel, given in

Equation 3.16.

Plotting frequency values against wavelengths in Figure 3.8, we can see the

critical frequency to be 1.83 MHz. Below the critical frequency regime is defined as

the subsonic regime in which flexural waves on the strip or capillary cannot generate

propagating acoustic waves in fluid rather generate evanescent waves which are out

of phase with the normal velocity of the elastic medium. Similarly above the critical

frequency is defined as supersonic regime in which flexural waves on the strip or

capillary will able to generate propagating waves in the fluid medium.

Critical frequency value we found (1.8 MHz) is quite meaningful for our case

since it resides in the 30 kHz-2 MHz regime in which we excite the capillary. This

means that it is possible to observe subsonic and supersonic regime in the given

frequency range.

Another important parameter whose behavior over the frequency variation is

also needed to be investigated is the value of (k2
b − k2). Reminding the equation

giving pressure distribution;

p(y, z, t) =
v0ρfc
√

1 − k2

b

k2

sin(kbz)e
−j
√

k2
−k2

b
yejωt .
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Figure 3.8: Graph of frequency values against wavelength for flexural waves
on the elastic body and plane waves in enclosed fluid. Wave-
lengths become equal at 1.83 MHz. For frequencies smaller than
this value we have λb > λ.

In this equation, exponent of the term representing y variation becomes real and

negative in the subsonic regime. In this case, as the (k2
b − k2) value gets higher,

the decay rate gets higher. From Figure 3.9 we find that the (k2
b − k2) value gets

its highest in subsonic regime at 813 kHz. As shown in Figure 3.7b, the magnitude

of pressure value gets higher with frequency at (y = 0). However, for the subsonic

regime its decay rate becomes maximum around the 600-1000 kHz regime which

is denoted as regime II in Figure 3.9. In the next section, pressure distribution

from various frequency regimes mentioned in roman numerals in Figure 3.9 will be

compared.
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Figure 3.9: In this graph, (k2
b − k2) value and absolute value of pressure at

y = 0 are plotted against frequency. In regime I, II, and III, waves
are evanescent. Amplitude of pressure increases till the critical
frequency (red dotted line), decay rate of this evanescent behavior
is controlled by

√

k2
b − k2. In this case, we expect a quite low

decay rate in regime I and III. However, in regime II the decay
rate reaches its maximum. Regime III has high amplitude and
low decay rate. In regime III, pressure value is still in phase with
the velocity of the flexural strip. Regime IV is in in the supersonic
region, and there is no decay factor anymore; however,

√

k2 − k2
b

value defines the magnitude of the wave vector in y direction.
Amplitude of pressure decreases and stabilizes at a nominal value
as the frequency gets higher than the critical value.

Coupling in Subsonic and Supersonic Regimes

Since our capillary actuator has a very high aspect ratio (r1 = 50×10−6m and l =

1.1×10−2m), before proceeding to the capillary case, we rather give the picture for

a case in which we have more reasonable aspect ratios. In Figure 3.10, an infinite

strip vibrating at a standing mode is bounded by fluid (water in this case) from

the top. In Figures 3.12 and 3.13, wave dynamics of the dashed region is plotted
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at sample frequencies from ranges in Figure 3.9 that are indicated with roman

numerals.

3 mm

Fluid

1.1 cm

Absorbing 
boundary

z

y

z=0

Figure 3.10: Sketch of standing flexural wave on the strip, loaded with fluid
from top.

Figure 3.12 shows pressure and velocity distribution for frequencies below the

critical value. In this range as given in Equation 3.55, pressure is purely imaginary.

Which means that velocity of the plate and pressure distribution are out of phase

by π/2. From Euler’s equation given in Equation 3.30 we find velocity distribution

to be

uy(y, z, t) = v0 sin(kbz)e
−

√
k2

b
−k2yejωt (3.58)

uz(y, z, t) = − v0
√

1 − k2

k2

b

cos(kbz)e
−

√
k2

b
−k2yejωt . (3.59)

As we can see, contrary to pressure values, velocity components of the fluid are all

real. Power intensity is given by the formula

~I =
1

T

∫ T

0

p(t)~u(t)dt (3.60)

where T is the period of the wave, or in frequency domain

~I =
1

2
Re
[
p(ω)~u(ω)∗

]
(3.61)
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where (∗) represents the complex conjugate. In this case, for below critical frequen-

cies we do not have any power radiation since pressure values are purely imaginary

and velocity values are purely real, in other words, they are out of phase by π/2.

This is shown in the plots in Figure 3.11.
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- Pressure

- Velocity

P and v out 
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P and v in 
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time
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time

time

Figure 3.11: Instantaneous power plotted for cases pressure and velocity are
in and out of phase. Total radiation is the sum of area below
the instantaneous power over a period. When p and v are out
of phase, area sums to zero, so that no power radiation takes
place. When p and v are in phase, area is always positive in
other words there is total power radiation.
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Figure 3.12: Pressure (left column) and velocity (right column) distributions
are plotted for various frequencies below the critical frequency.
The amplitude of the strip is taken to be 1µm/s. For the sake of
comparison, only 3 wavelengths (in z) are plotted. Comments
related to these graphs are given in the text on Pages 94-97.
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What happens here, below the critical frequency, fluid in the near boundary

moves with the plate in phase (similar to the case of a mechanical harmonic os-

cillator driven under resonance). Since movement on the boundary is a sinusoidal

wave, fluid in the boundary regime where displacement is upward, is pushed to-

wards the regime that is moving down. This is an hydrodynamic short circuit

effect. Since energy transferred to the fluid during the push is absorbed in the

next half cycle as a pull, no net power is radiated to the fluid. This can be clearly

seen through the arrows in velocity distribution graphs on the right column of

Figure 3.12. As seen in velocity distributions, as the frequency gets higher (and

wavelength in z direction gets lower) most of fluid particles move back and forth

mostly in z direction.

The graphs on the top in Figure 3.12 represent the frequency regime marked

as I in Figure 3.9. In accordance with the amplitude of the pressure variation with

frequency, we have relatively low amplitude of pressure in this regime. However,

since (k2
b − k2) is small, the decay rate is also small. The middle section of the

same figure shows pressure distribution at section II of Figure 3.9. We observe

larger amplitude at the boundary but a faster decay since (k2
b − k2) value gets

its maximum at the below critical frequency regime. Lastly, in the bottom part

of Figure 3.12 we have pressure distribution plotted for regime III of Figure 3.9.

In this range, frequency is very close to the critical value, and the amplitude of

the pressure gets close to its maximum value (two orders of magnitude higher

compared to regime I: upper graph). In addition, the decay rate is low compared

to regime II, as expected.

For the frequency regime above the critical frequency, Equation 3.52 represents

the pressure distribution in the fluid. In this case, pressure value has both real
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Figure 3.13: Pressure, radiated power and velocity distribution of two sample
frequencies above the critical frequency values are plotted. In z
direction three half wavelengths are shown. Comments related
to these graphs are given on Pages 97-99.
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and imaginary terms, indicating a traveling wave. From Euler’s equation given in

Equation 3.30 we find velocity distributions to be

uy(y, z, t) = v0 sin(kbz)e
−j
√

k2
−k2

b
yejωt (3.62)

uz(y, z, t) = j
v0

√
k2

k2

b

− 1
cos(kbz)e

−j
√

k2
−k2

b
yejωt (3.63)

From Equation 3.61 we can find the power radiated as,

Iy(y, z, t) =
v2

0ρc
√

1 − k2

b

k2

sin2(kbz) (3.64)

Iz(y, z, t) = 0 (3.65)

since the plate vibrates in a standing mode, there is no power radiated in z di-

rection5; however, there is fluid sloshing back and forth between displacement

maxima.

The results obtained above for above the critical frequency regime is shown in

plots in Figure 3.13. Pressure, velocity and power radiation are plotted for two

frequencies from the regions marked as IV and V in Figure 3.9. From the pressure

distribution, we observe traveling waves in y direction. Wavelength in y direction

and absolute power decreases with increasing frequency. Quiver plots in the middle

show the power radiation is only in y direction and gets maximum at locations

where plate displacement has antinodes. In frequencies close to critical frequency,

most of the fluid particle velocity is in z direction and it is oscillating locally

but is not propagating. At much higher frequencies (such as 2.45 MHz), particle

velocities in z direction can be observed as well. However, this does not contribute

to an increase to the radiated power since amplitude of pressure decreases with

increasing frequency.

5Standing wave is the superposition of two waves propagating in opposite directions. If we
rather had a traveling wave then we would also find a real value for Iz. In such a case, the
angle of propagation would be found from the ratio of y and z components of power radiated, or
directly from Equation 3.53.
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3.2.2 Pressure Distribution inside Capillary Vibrating in

Flexural Mode

In the light of the analytical experience we acquired in the previous section, here,

pressure and velocity distribution inside the capillary will be investigated. In sec-

tion 2.3.2.1 of Chapter 2, we had found the displacement equation for the flexural

vibrations of the capillary. Due to clamped-clamped boundary ends hyperbolic

sin terms contributing to end locations will be ignored here, so we will simply

assume sinusoidal variation of capillary velocity. The capillary will be vibrating in

a standing flexural mode with a velocity in y direction given as

v(z, t) = v0 sin(kbz)e
jωtŷ . (3.66)

Compared to this vibration velocity, variation of velocity inside the capillary wall

will be negligible. In this case, as shown in Figure 3.14, velocity of a capillary

element at any angle θ at the boundary (r = r1) in cylindrical coordinates, will be

v(r, θ, z, t) = v0 sin (kbz) sin θejωtr̂ + v0 sin (kbz)cosθe
jωtθ̂ (3.67)

For the fluid cavity in cylindrical coordinates, we had found the possible solu-

tions of Helmholtz Equation (3.14) such that, a general form of the solution was

given in Equation 3.28

p(r, θ, z, t) =






A

B






(

Jm(krr)

)






cosmθ

sinmθ











cos kzz

sin kzz











cosωt

sinωt






For a boundary value problem, the desired function can be a combination of various

orders of modes. In this case the general form can be written as

p(r, θ, z, t) =
∞∑

m=0

∞∑

n=0

Jm(kmnr) sin (knz)(Amn sinmθ +Bmn cosmθ)ejωt . (3.68)
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Figure 3.14: Boundary conditions for the capillary vibrating in a flexural
mode. The entire capillary wall moves up and down with the
same velocity amplitude v0 in y direction. At the fluid capillary
wall interface radial and tangential components of velocity v0

are shown on the capillary cross section.

Amn and general behavior of the series will be determined by the boundary

conditions. From Figure 3.14, it can be seen that radial component of the fluid

particles at r = r1 have to be equal to the radial component of the capillary

elements.

vr(r1, θ, z, t)fluid = vr(r1, θ, z, t)capillary . (3.69)

Since no fluid can pass through the capillary or no fluid can emerge from the

capillary wall, this is trivial. Then the boundary condition for the fluid elements

at r = r1 becomes

vr(r1, θ, z, t) = v0 sin (kbz) sin θejωt . (3.70)

Since the normal velocity at the fluid capillary interface vr(r1) is a function of z,

θ and t we have a nonhomogeneous boundary condition.
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Fluid particle velocity at any point can be found by inserting Equation 3.68

into 3.30. At r = r1, the radial part gives

vr(r1, θ, z, t) = −
∞∑

m=0

∞∑

n=0

AmnkmnJ
′

m(kmnr1)

jωρ
sin (knz) sin (mθ) ejωt . (3.71)

Since we know the left hand side of the above equation from Equation 3.70, this is

nothing but a Fourier series [48] in θ and z. Then Amn values can be found from

the integral

Amn = − j2ωρ

πlkmnJ ′

m(kmnr1)

∫ 2π

0

∫ l

0

sin (knz) sin (mθ) vr(r1, θ, z) dθdz (3.72)

inserting vr(r1, θ, z) from Equation 3.70

Amn = − j2v0ωρ

πlkmnJ ′

m(kmnr1)

∫ 2π

0

sin (mθ) sin (θ) dθ

∫ l

0

sin (knz) sin (kbz)dz (3.73)

This is an interesting result as two integrals have nonzero values only for the cases

m = 1 and kn = kb; for other values other than these, Amn becomes zero. Then

we do not have a series solution, due to the single non zero Amn value left in hand.

Then for m = 1 and kn = kb we have

Amn = − jv0ωρ

krJ ′

m(krr1)
if m = 1, kn = kb (3.74)

= 0 for others (3.75)

where kr is used instead of kmn due to the single value at a given frequency.

Using identity ω = ck from Equation 3.24, and for pressure inside the fluid, p,

we find

p(r, θ, z, t) = − jv0ckρ

krJ ′

1(krr1)
J1(krr) sin (kbz) sin (θ) ejωt (3.76)

where from Equation 3.24, kr is given by

kr =
√

k2 − k2
b (3.77)
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and J ′

1(krr1) can be written[47] in terms of ordinary Bessel functions from the

identity,

J ′

1(krr1) =
1

2
(J0(krr1) − J2(krr1)) . (3.78)

The results given above are in agreement with the ones estimated in [52] by

using Green’s function approach.

One point that needs to be recalled is that, the above solution is valid when

kr =
√

k2 − k2
b is real, which is only true when k > kb in other words above the

critical frequency (supersonic regime). For below the critical frequency, in other

words in the subsonic regime, kr will be imaginary and can be written as

kr = ∓jk′r (3.79)

where k′r is real (for below critical frequencies) and given by

k′r =
√

k2
b − k2

r . (3.80)

In this case, Bessel functions of kr turn out to be Jm(ik′rr). This is equivalent

to the modified functions which are the solutions of the Helmholtz equation in

cylindrical coordinates when kr is imaginary. They are related to ordinary Bessel

functions with the relationship [48],

Jm(jx) = jmIm(x) (3.81)

Plugging this to Equation 3.76, we find the pressure values below the critical

frequency.

p(r, θ, z, t) = − jv0ckρ

I ′1(k
′

rr1)
I1(k

′

rr) sin (kbz) sin (θ) ejωt (3.82)

where k′r is real and given by 3.80. As shown in Figure 3.15, in the range k′rr < 0.5

I ′1(k
′

rr) can be approximated as follows:

I ′1(k
′

rr) =
k′r
2

√

I0(k′rr)
2 + I1(k′rr)

2 (3.83)
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in our case, for below critical frequency, we have k′rr is limited from the top such

that k′rr < 0.5. Equation 3.82 is already defined to be valid only in this regime so

this approximation is very accurate and no further comments are necessary.
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Figure 3.15: Visualization of approximation done for the derivative of the
modified Bessel function of order 1 in the range k′rr < 0.5. For
this range, the two curves look indistinguishable.

In contrast to Bessel functions, modified Bessel functions take an exponential

form and they go to infinity for larger values. This can be interpreted as a decay

of pressure from the capillary wall in a way that its value becomes zero at r =

0. However, as shown in Figure 3.16, below critical frequencies, absolute value

of krr2 is always less than 0.3. In this range we do not expect I1 to exhibit

any exponential behavior. Even though J1(x) and I1(x) have completely different

asymptotic ends, in the range −0.4 < x < 0.4 they are almost identical and they

can be approximated as

J1(x) ≈ I1(x) ≈
x

2
for − 0.4 < x < 0.4 (3.84)

which can be seen clearly in Figure 3.17. In our case, for frequencies below 2.5

MHz, we have |krr| < 0.3 and since critical frequency of 1.8 MHz is below 2.5 MHz,

it is safe to use one equation given in 3.76. This due to so small value of radius

(r) compared to the fluid and structural wavelengths. For cylinders of larger r,
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this approximation cannot be made. For the sake of accuracy capability in hand,

in our calculations we used two separate equations for below and above critical

frequencies. However for this range, the approximation given in Equation 3.84

could also be used conveniently.
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Figure 3.16: Absolute value of krr1 value is plotted against frequency. It gets
minimum at critical frequency. For below 2.5 MHz regime it is
always smaller than 0.3.

3.2.2.1 Frequency Dependence of Pressure Amplitude

In calculating critical frequency on Page 89, since we used the frequency equation

derived in Equation 2.89 for the capillary, the critical frequency obtained in Figure

3.8 is the critical frequency for the capillary fluid actuator, having the value fc =

1.83 MHz.

For structures vibrating in a flexural mode, when the same amount of energy is

supplied to the system for different frequencies, it is expected to have the velocity

amplitude of the vibrations will remain unchanged6. This is due to energy is related

to velocity square. From this, assuming the same amount of energy is supplied to

6 In reality this is not very practical in our case since actuating mechanism -PZT here- has
impedance dependence on frequency. In addition it is expected so that coupling of different
modes of PZT to the capillary would also be different
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Figure 3.17: Bessel function of the first order; the modified Besssel function
of the first order and y = x/2 are plotted together. As can be
seen in the zoomed in section in the range −0.4 < x < 0.4, all
three of these functions are almost identical and can be used
interchangeably. This small range is due to the small radius
of the channel compared to its length and fluid and structural
wavelengths.

the capillary fluid system, it is possible to monitor amount of pressure variation

over the frequency range. In fact, this is simply the specific acoustic impedance

since the specific acoustic impedance is given by pressure divided by velocity, which

is given by

z =
p

v
(3.85)

In this case, assuming a constant velocity value v0 = 1m/s, in Figure 3.18 the pres-

sure amplitude at θ = π/2 and r = r1 is plotted against frequency (reminding k is

also a function of frequency) using Equations 3.76 and 3.82.7 Contrary to the case

of strip-fluid coupling shown in Figure 3.7, we do not observe any major change at

the critical frequency (green dotted line in Figure 3.18). This is because while the

7The author would like to mention again that PZT related impedance and geometric fac-
tors are not included here. These factors can be obtained via experimental measurements of
the capillary vibration at various frequencies at a constant power supplied to the PZT. These
measurements are given in Chapter 6.
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kr =
√

k2 − k2
b value in the denominator goes to zero at critical frequency, J1(krr)

also goes to zero, which limits any blow up in the pressure value. Pressure stays

rather stable at critical frequency. However, pressure peaks around 9 MHz, which

represents the first half wavelength resonance of the capillary in radial mode. As

expected the phase also changes 180o at resonance. Before resonance frequency

pressure (and thus the acoustic impedance) is imaginary and negative, and above

the resonance frequency it happens to be positive and imaginary. Below the reso-

nance frequency fluid acts as a mass load and gives inertial response to the push

and pull from the capillary. However, after resonance frequency compressibility of

the fluid starts to become dominant so that fluid acts as a spring. This is com-

parable to the impedance variation of a forced harmonic oscillator (of mass and

spring attachment) around the resonance frequency spectrum. In a mass-spring

system oscillating below the critical frequency, system acts more inertial such that

mass moves inertially in phase with the driving force. However, passing resonance

frequency we observe mass moves out of phase with the driving force. Different

from the harmonic oscillator, in acoustics, acoustic impedance maxima and min-

ima may both denote the resonances depending on the boundary and conditions

and actuating mechanism. At an impedance maximum, pressure is high for low

particle velocity, and at a minimum, particle velocity is maximum for a limited

pressure. For a closed system maxima are the resonances, and for an air open

system, minima denote the resonances. This is an important factor for musical

instruments; for example, while a flute operates at minima, a clarinet operates in

maxima [53]. This can be explained as follows, when the cavity is closed maxi-

mum velocity is controlled by the velocity of the cavity. Then value of pressure

is important related to interior acoustics. However in an open air system, at the

opening, pressure is set to air pressure, and air flow is important for the acoustic
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Figure 3.18: Variation of the acoustic pressure amplitude and the phase at
the capillary wall versus frequency in the 0-20MHz regime. Crit-
ical frequency defining the subsonic-supersonic transition is at
1.8 MHz and indicated by the green dashed line. Resonance
half wavelength cavity mode occurs around 9 MHz (acoustic
pressure peak).
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Figure 3.19: Variation of the acoustic pressure amplitude and the phase at
the capillary wall versus frequency in the 0-2.5 MHz regime.
Critical frequency is indicated by the green dashed line.
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energy transfer.

In a typical cavity or waveguide ultrasonic transducer, this resonance frequency

mentioned above is the first possible resonance frequency to obtain a standing mode

in radial direction. And most of the micro or macro scale acoustic capture and

manipulation devices work with this principle; and they are designed and actuated

so that half or quarter wavelength acoustic modes can be generated in the cavity.

In our case, we eliminate this requirement. Details of this claim will be mentioned

in details in the next section.

Since the glass capillary actuator presented here is run mostly in the 30kHz-

2MHz region, the variation of the pressure over frequency focused at this region

is also plotted in Figure 3.19. In this section, we clearly see no major happening

or change around critical frequency which defines the transition from subsonic to

supersonic regime (indicated by green dotted line).

3.2.2.2 Acoustic Pressure Variation inside the Capillary due to Flexu-

ral Vibrations

In this section, radial and side view pressure distribution for above and below

critical frequency cases are investigated. Equations 3.76 and 3.82 give the pressure

distribution inside the capillary due to flexural vibrational modes that were derived

in the previous section. Figure 3.20 shows the acoustic pressure distribution inside

the capillary in the y-z plane. We observe that pressure distribution follows flexural

movement of the capillary, suggesting that as the frequency –and so the number of

harmonics of the flexural modes of the capillary– increases, number of transverse

pressure variations along z axis increases accordingly.
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3rd flexural harmonic (36 kHz)

7th flexural harmonic (165 kHz)

16th flexural harmonic (722 kHz)

30th flexural harmonic (1.97 MHz)

Pressure distribution along the capillary cross section for 
various flexural harmonics

y

z

110th flexural harmonic (9.6 MHz) (after the 1st radial mode)

Figure 3.20: Variation of pressure inside the capillary in the y-z plane. Blue
sinusoidal lines represent the top and bottom acceleration of
the capillary. For all these plots, pressure and acceleration are
in phase since all are below the resonance frequency. Please
note that 30th mode is above the critical frequency (1.83 MHz);
however as found in the previous section, phase shift occurs after
the frequency of the first radial capillary mode (around 9 MHz).
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A detailed analysis of a sample particular flexural harmonic (3rd harmonic) of

the capillary is plotted in Figure 3.21. Part a) of this figure shows three radial

pressure variations along the capillary since this is the third flexural mode. The

blue sinusoidal curve on top represents the distribution of the acceleration of the

capillary. We observe that capillary acceleration and the pressure variation are in

phase. Part b) and d) shows pressure variation in the y-z and x-y planes respec-

tively. Part c) and e) show the fluid particle velocities due to pressure variations

shown in part b) and d). We observe that particles tend to flow (escape) from

high pressure regimes to low pressure regimes as expected. Fluid particle flow

exists only in one dimension, parallel to the vibration axis of the capillary. At

the frequency regime described here, fluid moves inertially with the push or pull

of the capillary, as we see the pressure variation is in phase with acceleration a.

From velocity distribution plots it can be seen that this is a strong hydrodynamic

short circuit effect. In the z axis, fluid particle velocity gets maximum in vibration

maxima. Part f) shows the radial pressure variation. Dotted lines shown in Part

a), b), d), and f) all represent the same line in different views. Graph f) shows

that standing wave pattern is a triangular wave.8 This is an interesting result,

which confirms that even at frequencies much lower than the radial resonant cav-

ity modes, we observe standing waves of triangular form. In Chapter 3, we will

show that these standing waves are responsible for generating radiation force fields

to capture and manipulate micron scale particles. In the 30kHz-2.5MHz regime,

the characteristics of the pressure and velocity variations are almost same as this

sample case given in Figure 3.21, only the number of repetitions in the z direction

increases with the frequency. As the frequency gets higher, major change happens

with radial variation of the pressure. Radial distribution of the pressure starts to

8We already mentioned about this in the previous section, as for small (krr) values, J1(krr),
I1(krr) are almost the same and can be approximated as krr/2 (Figure 3.17).
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look more like the J1(krr) function.

Similar to Figure 3.21, in Figure 3.22, pressure and velocity distribution at the

110th flexural harmonic (at 9.6 MHz) is analyzed in a detailed manner. In fact,

this harmonic is not in the range in which we perform our experiments; however, it

is included to highlight the differences at high frequencies. This frequency is above

the frequency corresponding to the peak value of pressure given in Figure 3.19,

which denotes the first radial resonance. After this resonance frequency, phase of

the pressure value gets a 180o of shift. Pressure is still reactive (imaginary) and

180o out of phase with the acceleration (Graph a). Accordingly, phase of the fluid

particle flow is also affected and gets reversed.

A physical explanation could be as follows; before the resonance frequency

fluid volume acts as a inertial mass (like the neck of a Helmholtz resonator). Any

acoustic disturbance is answered by an inertial motion (flow). Since wavelength is

much larger than the fluid volume dimensions, compressibility of the fluid volume

is quite low. However, when dimensions of the fluid volume start to become com-

parable with the wavelengths, fluid volume starts to be compressible and acts as

a spring (like the cavity part of Helmholtz resonator). At the point where these

effects become equal in magnitude is the resonance in the cavity. In our case this

happens when the denominator of pressure equation, becomes zero J ′

1(krr) = 0,

which is the first maximum of J1(krr).

In fact, we can also see this in Part f) of Figure 3.22, as the pressure variation

looks more like the Bessel function from first minimum to first maximum. In this

case the krr/2 approximation is no longer valid. In the figure, the dotted lines in

parts a), b), d) and f) are all represent the same line.
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Figure 3.21: Pressure and fluid particle velocity distribution for the 3rd flex-
ural mode of the capillary is given. All length scales are in
meters. And T in Figure f) is the period of flexural vibration.
Comments on figures given here can be found on pages 109-112.
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Another observation from this figure is that, in part c) fluid particle velocities

are not all parallel with the capillary motion. Since the wavelength in z direction

is diminished and its value gets close to the radius of the capillary, hydrodynamic

short circuit is no longer occur only in y direction (top-bottom) but also in z

direction. In this case, neighboring maxima and minima in z direction start to

interact as their separation gets close to the r1 value.

Regarding power radiation, in our microcapillary case, for the frequency regimes

<2MHz, pressure and fluid particle velocities due to flexural waves are found to

be always out of phase by 90o. From Equation 3.61, we find that no power is

radiated. The physics of this motion can be explained as follows: In the first half

acoustic cycle, kinetic energy is transferred to the fluid by the capillary motion,

and is received by the capillary as a push from the fluid in the next half cycle. All

the instantaneous power transmitted to fluid is received in the next cycle. This

does not mean that the presence of fluid does not have any effect. We already

included mass loading of the capillary when we calculated the dispersion relation

for the flexural waves of the fluid filled cylinder in Section 2.3.3, and we found that

the presence of fluid lowers the frequencies of harmonics significantly.

Before we conclude this section, tracking the life cycle of a specific fluid particle

at the boundary during an acoustic cycle might be helpful for a better understand-

ing. As shown in Figure 3.23, assuming that at t = 0 capillary is at the minimum

displacement, its velocity will be zero; at the same time acceleration will be at its

maximum value. At this point, since the acceleration towards the top is maximum,

fluid particle will be feeling the strongest force during the cycle which makes the

acoustic pressure at this point to be maximum. At t = T/4, the capillary will have

its maximum velocity towards the upward direction and acceleration will be zero;
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thus the fluid particle will not be sensing any pressure momentarily. At t = T/4,

the fluid particle would be interested to move upward with the momentum it gained

during the previous quarter cycle, however in the t = T/4 − T/2 range, since the

neighboring capillary wall is slowing down, it will sense a negative pressure.

At frequencies higher than the resonance frequency, since the compressibility

of the fluid dominates, effect mentioned above is reversed. This can be understood

easily with the help of the lumped parameter mechanical analogy shown in Figure

3.24. Since the stiffness coming from the compressibility of the fluid is much higher

compared to flexural stiffness of the capillary (the capillary is very long compared

to its diameter), at low frequencies, any periodic motion will be controlled by the

TT/2

Displacement, Velocity and Acceleration of the 

capillary wall as a function of time at point q
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Movement of capillary in y axis 
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Figure 3.23: Displacement, velocity, acceleration and pressure plots as a
function of time for the fluid particle located at point q. Black
curves on the middle and bottom graphs show pressure for below
and above resonances respectively.

116



weak spring. In this case, the big spring will not compress or expand at all but

just move with the fluid mass attached to the other end. In higher frequencies,

however, this large spring will start to absorb some of the displacement, depending

on the frequency. As we already have the solution in hand, further analysis of the

lumped parameter model will be skipped here.

F=f0 ejωt

Compressibility water

Flexural stiffness of the 

capillary

Mass per length of 

capillary

Mass per length of 

fluid encloseddx
dx

dx

Below resonance

Above resonance

Big spring does not compress 

or expand at all, just moves 

with the fluid mass. Effect of 

the big spring is minimal.

Big spring expands in response 

to compression of smaller 

spring, inertial effect of the fluid 

mass is minimal. Stiffness of 

the big spring dominates

Figure 3.24: Mechanical lumped parameter modeling of the fluid filled capil-
lary. The big stiff spring denotes the compressibility of the fluid,
and the small and soft spring represents the flexural stiffness of
the capillary.

3.2.3 Conclusions and Summary

As shown in Figure 3.25, in most acoustic applications for particle capture or

streaming, resonators are designed in a way that standing waves can occur in
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Figure 3.25: Standing modes in rectangular and cylindrical cavities. Fre-
quency of the first standing pressure mode inversely depends on
the capillary

the fluid cavity. In microfluidic applications, as the size of the cavity diminishes,

frequency value required to generate a standing mode also increases. For exam-

ple, for a rectangular microfluidic channel filled with water and having width of

100µm, the first standing wave mode appears at 7 MHz. In our case for the cap-

illary of inner diameter 100µm this value was calculated as 8.26 MHz in Section

3.1.2. However, due to axis antisymmetric motion of the flexural vibrations, it

is possible to generate subharmonic stationary modes in a harmonic way. In this

case, harmonicity of the acoustic pressure standing modes depend not on the fluid

wave dynamics but the harmonicity of the flexural motion of the capillary or the

structure containing the fluid. In this way, for example, we can observe about 100

standing acoustic pressure modes before the actual expected resonance around the

100th flexural mode. This means that below the naturally occurring cavity modes,

100 early standing modes can be generated. This lowers the frequency required to

form the first standing mode significantly. In our case, theoretically, it is possible
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to generate the first standing mode as low as 20 kHz via the first flexural mode

of the capillary. In experiments, this is demonstrated as low as around 30 kHz

via the 3rd flexural harmonic, (whereas the naturally occurring standing modes

start around 8.26 MHz). This enables a broad range of frequency applicability

and gives a strong trade off capability in terms of designing other parameters such

as performance dependence related to PZT impedance and vibration coupling,

and dimensions or geometry of PZT itself. By utilizing this method the cavity

dimension requirements are no longer that strict.

3.3 Interaction of Longitudinal Waves with the Fluid

Medium

The coupling of structural motions with the fluid to generate sound waves only

happens through the displacements normal to the fluid-structure interface. Any

other displacements do not create any pressure variation (though they contribute

via second order streaming effects).

In the case of dilatational waves in bulk, compression and expansion only hap-

pens in normal to the propagation direction. However, in the case of plates and

beams of finite thicknesses, due to compressibility and volume preservation, some

compression and expansion also occurs in the cross section, which is why in many

references longitudinal waves in beams and plates are named as quasi-longitudinal

waves.

Amplitude of transverse strain is related to axial strain through the well known

Poisson’s ratio ν.
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Assuming the solution given in Equation 2.113, for the longitudinal mode we

will have velocity distribution in z direction as follows:

vz(z, t) = v0 sin(klz)e
jωt (3.86)

where

kl =
2π

λ
=
πn

l
(3.87)

where n is the harmonic mode number of the longitudinal mode of the capillary.

Due to radial symmetry, there will not be any angular (θ) dependence. Velocity

in transverse direction at the inner surface of the capillary is given by [54]

vr(z, t) =
ν(r2 − r1)

2(1 − ν)

∂vz

∂z
(3.88)

from which we can find vr in our case,

vr(z, t) = v0

(

klν(r2 − r1)

2(1 − ν)

)

cos(klz)e
jωt . (3.89)

The value of the items inside the brackets is 3 × 10−3 in our case, which means

that radial velocity will be about two orders of magnitude smaller than velocity in

z direction.

In the case of longitudinal waves on the capillary, boundary conditions at the

fluid capillary interface are given in Figure 3.26. Solution method will be exactly

the same as given in Section 3.2.2. Due to boundary conditions, since there is no

angular dependence value of m given in the general solution in Equation 3.68 will

be zero. In this case, the radial solution will be the Bessel function of the zeroth

order (J0). Since kl > k always, there will not be any subsonic regime which

requires other types of solutions like the modified Bessel functions. Continuing

to follow the same steps given in Section 3.2.2, we find the pressure inside the
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Figure 3.26: During the longitudinal motion of the capillary, due to the Pois-
son effect a slight motion in the transverse radial directions also
occurs. These normal displacements modify the acoustic pres-
sure distribution inside the cavity and generate periodic plane
waves with the periodicity of the longitudinal capillary modes.

Pressure Velocity 

Figure 3.27: Radial pressure and velocity distribution inside the cavity due
to longitudinal vibration of the capillary is plotted. Due to the
radially symmetric boundary conditions no angular dependence
is present. Radial variation of the pressure from the capillary
walls to the center of the capillary is one part in ten thousand.
In this case, it is possible to conclude that all pressure variation
happens along the capillary in the z direction.
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capillary due to longitudinal waves on the capillary as

p(r, θ, z, t) = − jv0ckρ

krJ ′

0(krr1)

(

kν(r2 − r1)

2(1 − ν)

)

J0(krr) cos (kbz) e
jωt . (3.90)

The radial pressure distribution is plotted in Figure 3.27.

Since the krr2 value is low, radial variation of acoustic pressure will be rea-

sonably small. In this case, most of the pressure variation will be in the z axis.

From this, we can conclude that pressure waves will be in the form of plane waves

as given in the top sketch of Figure 3.2, with small radial dependence. Please

note that periodicity in z will follow the periodicity of longitudinal waves of the

capillary, not the periodicity of plane waves in fluid. However, if there is a mode

coincidence at a given frequency, observation of superposition of two plane waves

with different wavelengths is expected.
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CHAPTER 4

FINITE ELEMENT MODELING OF THE ACTUATOR

Introduction

In this chapter, Finite Element Modeling (FEM) of the actuator is presented.

The complexity of the problem is diminished in terms of dividing problem into

sections. Here, results of a modal analysis for the fluid filled capillary clamped from

the ends are presented. Vibrational modes, displacement variations and pressure

distribution inside the capillary due to structural vibrations are congruent with

the results of theoretical analysis given in Chapters 2 and 3.

4.1 Finite Element Modeling

Introduction to FEM

While we developed an analytical model of the capillary actuator in the previous

chapter, computer simulations help further to analyze and improve the actuator

design and performance. Especially in such a case where many different compo-

nents are gathered and with relating vibration and acoustics at the microscale, it

is not possible to generate a comprehensive analytical model. One of the major

and most powerful tools to fill this gap in engineering research is finite element

modeling. Here, we have a complex system having piezoelectric material serving

as the source of actuation, capillary structure for amplification of the vibration

and acoustic cavity and the fluid sample enclosed in this capillary cavity. In our
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model, we also need to consider solid fluid boundary conditions and interactions.

For the FEM we particularly used the ANSYSTM multiphysics edition.

The modal analysis of the fluid filled capillary is investigated to extract possible

harmonics of vibration modes in the given frequency range. During the analysis,

fluid filled and empty capillary cases are also compared.

As the capillary geometry is cylindrical and some of the vibrational modes are

expected to be axis antisymmetric, modeling have been done in 3D. In order to

make the results meaningful, element sizes after meshing kept to be much smaller

than 1/10th of the shortest wavelength possible. In fact, element size-wavelength

ratio becomes the limiting factor for higher frequency simulations; one possible

solution to this would be to simulate a smaller portion of the actuator for higher

frequencies.

4.1.1 Simulation of the Capillary/PZT Device

In this part, details and results of finite element modeling of the capillary will be

given. For the capillary, only the part which is clamped between the PZT plate is

modeled. As shown in Figure 4.1, the capillary is clamped to the PZT plate from

two points, which will be the end locations of the modeled part of the capillary.

Boundary conditions for the end locations are taken to be clamped so that first

and second order derivatives of displacement with respect to the central axis is

zero. The length of the capillary is 11 mm, and the inner and outer diameter are

taken as 50µm and 100µm. For the simulations, in which fluid enclosed in the

capillary is also included, static pressure values at the end openings are taken to

be zero so that any pressure variation inside the capillary related to alternating
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motion of the capillary will be centered around zero value.

11 mm

Figure 4.1: Part of the capillary clamped between the PZT is modeled. For
the boundary conditions, as seen in the dashed circles clamped-
clamped case would be the best option.

For the modeling of the capillary part in ANSYS, Solid45 element has been

chosen, which is used in 3D modeling of solid structures. The cubic structure

of the element enables 8 nodes each having 3 degrees of freedom for translations

in 3D. Solid45 element encompasses critical capabilities such as large deflection,

plasticity and large strain. Out of the many output capabilities that the Solid45

element has, we are most interested in displacement, stress, strain and pressure

load on the surfaces and the capillary structure. Figure 4.2 shows the end of the

meshed capillary structure.

For the modeling of the fluid part, we are interested in acoustic properties.

Fluid30 element is used for acoustic modeling and fluid structure interaction prob-

lems. Fluid structure interaction is modeled by the coupling of the acoustic pres-

sure of the fluid with the structural motion at the interface. The Fluid30 element

has 8 nodes, each having 4 degrees of freedom; 3 translation and 1 pressure. The

key output variables in which we are interested are pressure and pressure gradient.

125



Figure 4.2: The end section of the meshed capillary is shown for the empty
and fluid filled capillary. Red elements (Solid45) represent the
capillary structure, the pink and blue elements represent the fluid
(Fluid30). The layer colored with blue shows the fluid elements
which enable coupling at fluid structure interface.

More information about elements used in the simulations can be found in ANSYS

Reference Manual [55]. As mentioned in the Coupled Field Analysis Guide in

the ANSYS manual [55], fluid structure interface (FSI) loads are specified on the

fluid elements. In Figure 4.2, blue colored fluid elements next to solid boundary

indicates the fluid structure interaction regime.

After meshing, the total number of elements modeled is 55440. Simulation is

run in the frequency range 10-700 kHz. Modal analysis is done in order to obtain

the resonance modes of the capillary actuator.

4.1.1.1 Simulation Results

In this section, individual vibration types and influence of these vibrations on the

capillary structure will be mentioned. As expected in the theory part, modal anal-

ysis of the capillary in ANSYS showed the existence of eigenmodes in the form
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a. 3 rd Harm onic of Flexural 

Mode of Capillary

d. 3 rd Harm onic of Longitudinal 

Waves in Fluid Enclosed in 

Capillary

c. 2nd Harm onic of Longitudinal 

Mode of Capillary

b. 3 rd Harm onic of Torsional

Mode of Capillary

Displacem ent Displacem ent

Displacem ent Pressure

Figure 4.3: Types of vibrational modes are listed as follows: a) 3rd flexural
mode, b) 3rd torsional mode, c) 2nd Longitudinal mode of capil-
lary, d) Internal pressure variation for the 3rd mode of standing
longitudinal waves in enclosed fluid. In figures a, b, c, the mode
shapes are color coded to show displacement as they are the vi-
brational modes of the capillary. In figure d however, the color
code shows the pressure variation, as this case is not a fundamen-
tal vibrational mode of the capillary and imaginary lines show
the capillary.

of flexural vibrations, torsional vibrations, longitudinal vibrations of the capillary

and longitudinal modes of the fluid enclosed inside the capillary. A sample har-

monic from each set of different vibrational modes is shown in Figure 4.3. Each

vibration type has specific effects on the pressure variation inside the capillary. In

the following sections, we will investigate details of a sample harmonic from each

vibration type.
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ANSYS FSI elements approach acoustic problems related to the normal dis-

placement of the boundary. This is why only the first order variation of pressure

due to these vibrations are analyzed. Nonlinear acoustic effects such as acoustic

and boundary layer streaming effects due to tangential and axial displacements

are not calculated. However, tangential and axial velocities calculated in this anal-

ysis will be the guide in Chapter 5 calculating the streaming effects for various

vibrational modes.

Figure 4.4 shows the dispersion curves for the vibrational and cavity modes of

the actuator. As expected from the theory, only the flexural mode shows dispersive

behavior. In the next sections, results obtained from ANSYS simulations will be

compared with the theoretical and experimental values.

4.1.2 Cavity Modes:

Plane Waves in Fluid Enclosed in the Capillary

As mentioned in section 3.1.2, the capillary acts as a waveguide or cavity for prop-

agating waves within the enclosed fluid. Out of various possible guided modes,

only longitudinal waves can propagate inside the capillary in the given frequency

range. All other modes exist at frequencies higher than the cut off frequency and

the lowest value is found to be 8.26 MHz in Section 3.1.2. Depending on the

boundary conditions, the capillary may act as a cavity and in this case longitudi-

nal waves form resonance modes in terms of standing waves inside the capillary.

Pressure variation only happens in the axis parallel to the capillary (z direction in

cylindrical coordinates). It is completely uniform through the radius of the fluid

volume and does not have any angular dependence. Pressure variation for the 3rd

128



0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8
x 10

5

Dispersion Curves of Resonance Modes 
Obtained from ANSYS Simulations      

# of Harmonics

F
re

q
u

e
n

c
y
 (

H
z
)

Flexural Mode

Longitudinal Modes
in Cavity

Torsional Modes

Longitudinal Modes
of Capillary

Figure 4.4: Dispersion curves for each mode are shown. As expected from
the theory part, only the flexural mode is dispersive.

harmonic mode is plotted in Figure 4.1.2.

The dispersion relationship for this mode is presented in Figure 4.4. In the

1-800 kHz frequency range, we have about 12 harmonic modes and it can be seen

that frequency is linearly dependent on the harmonic mode number. Since, for

standing waves, half of the wavelength has to be a multiple of the cavity length,

the slope of the dispersion relation could be used to find the speed of acoustic

pressure waves in the cavity by the formula,

slope =
fn − f ′

n

n− n′
=

c

2l
(4.1)

where fn is the frequency of nth mode, l is the length of the cavity and c is the
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speed of the wave. From this relationship and simulation results, speed of acoustic

waves in this case is found to be 1380 m/s. In the simulation parameters speed of

sound in water in bulk was 1460 m/s. This 5% difference is due to the decrease of

speed of sound in narrow channels. This effect was already mentioned in Section

3.1.1.1, and a 5% decrease found from simulation results matches well with the 5%

decrease suggested from the analytical methods.

Frequencies of harmonics of this mode strongly depend on the length of the

fluid column. In experiments, it is possible to control the length of the capillary

end locations and structural vibrations of the capillary. However, the end locations

of the fluid column inside the capillary are not as controllable. In this case, for

the longitudinal pressure waves, a shift in the resonance frequencies from one

experiment to another is unavoidable.

4.1.3 Longitudinal Vibrations of the Capillary

In the case of longitudinal vibrations, the entire crossectional area of the capillary

moves back and forth only in an axis parallel to the center of the capillary. Figure

4.6 shows the 2nd harmonic of the longitudinal mode at 514 kHz. Due to the Poisson

effect, a minimal displacement in radial direction also exists. As shown in Section

3.3, the amount of radial displacement is two orders of magnitude lower than the

displacement along the central axis. Displacements in z, x, and y directions are

plotted in Figure 4.6. As predicted from theory, it can be seen from the figures

that displacements in x and y directions (ux,uy) are almost 3 orders of magnitude

smaller than the displacement in z direction (uz). Variation of uz is a function

of sine as expected from theory. In this case, radial displacement is expected to

be a cosine, from Equation 3.88. Displacement in y direction, (uy), seems to be a

130



0 0.002 0.004 0.006 0.008 0.01 0.012
−3

−2

−1

0

1

2

3
x 10

8

z (m)

P
re

s
s
u
re

 a
t 
th

e
 C

e
n
te

r

Figure 4.5: Top: 3rd harmonic of longitudinal pressure waves inside the cap-
illary plotted in 3D. Bottom: Pressure variation along z axis is
plotted for the same mode.

function of cosine; however, the completely unrelated behavior of ux needs further

investigation and explanation.

The wave number of ux is 5, however this plots are for the second longitudinal
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mode and there should be another wave coupled at this frequency.

One way to explain what happens here is if a particle follows a trajectory on

a cylinder parallel to its axis, it just travels the length of the cylinder. However,

when a slight angle is present, particle trajectory changes from a straight line to

a helix around the cylinder. What happens here is that the particle will keep

rotating around the cylinder however while its every turn, it will also proceed in z

direction depending on the angle.

Waves work similarly. What we observe in Figure 4.7 is that, in z direction,

the second mode of longitudinal mode is present. If we open the cylinder in an

axis parallel to its circumference to be as a plate, we can extend the number

of plates depending on the angle of the wave vector. Here we observe 5 modes

in the circumferential direction. In this case, it means that wavelength in the

circumferential direction is two circumferences 2πr′, where r′ is a value between r2

and r1, approximately. In this case, we expect the speed of waves in this direction

to be approximately between 300-600 m/s. From Equation 2.37, we find this value

is in the range of phase speed of flexural waves for a plate with a thickness around

(r2 − r1) at this frequency.

In short, as shown in Figure 4.7, this is a superposition of two different modes

of vibration. Axial length (l) of the capillary is a multiple (2) of wavelength of

longitudinal modes. And in the circumferential direction, we have the 5th flexural

“plate” mode from the beginning to the end of the capillary. It is important to

note that displacements due to the helical flexural mode are 3 orders of magnitude

lower than displacement variation in uz, which is due to longitudinal mode.

In Figure 4.8, a comparison of dispersion relationship for the longitudinal mode
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Figure 4.7: Assuming the cylinder thickness as a plate, circumferential modes
also contribute to wave dynamics. Shifting of the wave vectors
from the axial direction results in helical waves.

is presented for two different cases. One curve represents the empty capillary and

the other represents the capillary filled with water. We observe almost no shift

in the frequency values. This means that fluid loading is negligible in the case

of longitudinal modes. This is expected since most of the displacements are in

parallel to the fluid column enclosed, and fluid loading becomes effective in the

case where normal displacements are dominant.

From the dispersion relationship sketched in Figure 4.8, it is possible to find
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phase speed of the longitudinal waves on the capillary by using Equation 4.1, given

in the previous section. The phase speed found from this dispersion relationship is

5664 m/s, which is less than 1% close to the theoretical expectation of 5648 m/s

given in Equation 2.112 in Chapter 2.

4.1.3.1 Cavity Pressure due to Longitudinal Modes

It was mentioned in Section 3.3 of Chapter 3 that the acoustic pressure variation

due to longitudinal vibrations only happen because of small transverse displace-

ments due to the Poisson effect. In this case, acoustic pressure variation inside the

cavity should follow the distribution of the radial (transverse) displacements in z,

and that is why most of the periodic variation is expected in z direction, whereas

radial variation of pressure inside the cavity can be neglected. Acoustic pressure

distribution found from the FEM analysis is shown in the top graph of Figure

4.9. We observe no radial variation, as pressure distributions at the fluid-capillary

boundary (r = r1) and center of the cavity are indistinguishable from each other.

However, distribution of pressure variation is different than the expected transverse

displacement distributions given in the bottom graph of Figure 4.6.

If we take Fourier transform of this data, we observe that the pressure variation

is a superposition of two distinct modes inside the cavity. As shown in the bottom

graph of Figure 4.9, one mode (orange color) has a wave number of 2, matching the

expected distribution from the longitudinal case and makes sense. The other mode

is the natural acoustic pressure mode of the cavity. If one observes the dispersion

graphs shown in Figure 4.4, around 500 kHz, there also exists the 8th harmonic

of the cavity modes. Since two frequencies are close to each other, we observe

two distinct modes are coupled to each other in a way to match the boundary
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Figure 4.8: Longitudinal mode dispersion relationship. The presence of fluid
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Figure 4.9: The figure on top shows that there is no radial variance of pres-
sure, as expected. While a trend due to longitudinal mode in
axial direction is present, superposition with another mode ex-
ists. The bottom figure shows the decomposition of two waves,
which demonstrate the strong coupling of cavity modes due to
close frequency values.
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conditions (pressure of being zero at the ends). We would like to mention that

since this is a modal simulation, we believe ANSYS makes a normalization so that

pressure amplitudes are the same for the cavity mode and the longitudinal mode.

This requires further analysis and can be done through running the simulation

in harmonic analysis mode; however, locations for driving forces and amplitudes

should be pre-defined.

As a verification of what is observed above, it is noteworthy to mention that

while figures are not included here, in the experiments, the same coupling is ob-

served in the first harmonic of the longitudinal mode. At that frequency (257

kHz), pressure variation due to the 1st harmonic of the longitudinal modes and

4th harmonic of the cavity modes are coupled to each other.

4.1.4 Torsional Vibrations of the Capillary

In the case of torsional modes, the circular cross section of the capillary rotates

back and forth. As a sample, 3rd flexural mode displacement around 500 kHz is

shown in the top sketch of Figure 4.10. In this case, most of the displacement is in

the tangential direction in the cylindrical coordinates. Displacements in tangential,

radial, and axial (z) directions are plotted in Figure 4.10. Tangential displacement

can be easily distinguished from radial and axial displacements. Under normal

conditions for pure torsional mode, no radial or axial displacements are expected.

However, in this case, while being low in amplitude compared to tangential, there

are radial and axial displacements. These are, in fact, due to coupling of other

modes and before further explaining these displacements, it may be helpful to look

into pressure distribution inside the capillary.
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Figure 4.10: The tangential displacement distribution for the 3rd torsional
mode of the capillary is shown on top. As expected, radial and
axial displacements are much lower than the tangential displace-
ments. Periodic radial displacement is due to the presence of
8th cavity pressure mode which has almost the same frequency.
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Figure 4.11: Variation of acoustic pressure inside the capillary around 500
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no effect of the 3rd torsional mode can be observed. Pressure
variation is due to the 8th cavity mode around 500 kHz.
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Figure 4.12: Dispersion relationship for the torsional modes. Presence of
fluid inside the cavity does not cause any loading, so that the
dispersion relationship is almost the same for the case of empty
and water filled capillary.

Figure 4.11 shows the acoustic pressure distribution along the axial direction

(z) inside the cavity. Two curves representing pressure distribution at the center

and the fluid-capillary wall boundary are indistinguishable. As shown in Figure 4.4

around 500 kHz, the 8th harmonic of the cavity modes is also present. Since two

distinct modes have very close frequencies, internal pressure is fully managed by

the cavity mode. In this case, on the capillary, a radial displacement due to internal

pressure variation might be expected; however, this will be really low and in reality
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hard to observe. For the torsional mode, all displacements except the tangential

one can be ignored. In addition, since there is no normal displacement present,

there will not be any contribution of torsional modes to inside pressure variation.

However, these modes have much to contribute through forming streaming vortices

inside due to boundary layer streaming. This effect will be treated in detail in

Chapter 5.

Similar to the previous section, for the empty and fluid filled capillary, disper-

sion relations for the torsional mode are plotted in Figure 4.12. Since presence of

fluid does not cause any loading, there is no change in the dispersion curve. As

mentioned in Section 2.4, restoring force for the torsional waves is the pure shear

on the the circular cross section of the capillary and they are not dispersive. This

is also confirmed by the FEM analysis. From the slope of the curve in Figure 4.12,

by using the method given in Equation 4.1, we find the phase speed of shear waves

to be 3698 m/s. This is less than 1% close to the value 3693 m/s, predicted by the

formula given in Equation 2.100.

4.1.5 Flexural Vibrations of the Capillary

Flexural vibrations happen due to restoring of transverse, bending displacements

by the stiffness of the structure. Of the all vibrational modes mentioned above,

related to our case, flexural modes are the most important in terms of acous-

tic pressure variation inside the fluid. Flexural vibrations enable relatively high

normal velocities, which contribute to generation of pressure variation. As an ex-

ample, 3rd flexural mode of the capillary structure is shown in Figure 4.13. As can

be seen from the mode shape and the graph given below, displacement is mostly

in y direction, normal to the z axis. Mode shape is identical to the theoretical
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prediction given in Equation 2.47 in Chapter 2.
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Figure 4.13: 3rd flexural mode of the capillary is shown on top. As expected,
most of the displacement occurs in y axis. Since the capillary
bends, some axial strain occurs symmetrically around the cen-
tral axis. This strain causes displacement in axial direction
which is related to the first derivative of the normal velocity.

In cartesian coordinates, the entire capillary circular cross section moves up and

down in y axis. If the coordinate system is switched to the cylindrical coordinates,

it will be seen that radial displacement will have angular dependence as shown in

Figure 3.14 of Section 3.2.2.

During the displacement of the capillary in y direction, due to the stress distri-
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bution, there will be a slight displacement (uz) in z direction. This is shown by the

green curve in Figure 4.13. However, since in the case of flexural waves, stresses in

y direction are symmetric around the z axis, distribution will be reversed for the

bottom half of the capillary.

Analytical approach: displacement in z direction due to displacements in y are

given by

uz = −rφ . (4.2)

In section 2.3.1, it was shown that1

φ =
∂y

∂z
(4.3)

for small displacements.

Writing uy given in Equation 2.47, in cylindrical coordinates, we have

uy(r, θ, z) = A
(D2

D4

(cos βnz − cosh βnz) + (sinβnz − sinh βnz)
)

sin θ (4.4)

where A is the amplitude and the relation between D2 and D4 is given by

D2

D4

= − sin βnl − sinh βnl

cos βnl − cosh βnl
(4.5)

Combining all of the above, for uz we find,

uz(r, θ, z) = Aβnr
(D2

D4

(sin βnz + sinh βnz) + (cos βnz − cosh βnz)
)

sin θ (4.6)

where D2/D4 ratio is given by Equation 4.5. In this back of the envelope deriva-

tion we assumed a full cylinder; however, this is a hollow cylinder, which means

that actual uz will be slightly different than given above. By intuition, a 10-20%

difference is expected.

1θ was used instead of φ in Section 2.3.1. Since θ is used as an axis of cylindrical coordinates
here, φ represents the bending angle of the cylinder off the z axis.
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In Figure 4.15, for normalized value of A = 4.45 10−4m, we see that uy given

in Equation 4.4 exactly matches the shape of FEM result. By using the same

amplitude in Equation 4.6, we find the expected displacement in z. Expected

and simulation results are given in Figure 4.15. As mentioned above, there is an

expected difference between simulated value and theoretical value for the whole

cylinder. This difference matches the expectations due to the hollow core of the

cylinder.

One important point regarding uz is that uz depends on θ. In cylindrical

coordinates, at θ = π/2, uz gets its maximum value, becomes zero at θ = 0 and

θ = π and gets reversed between 0 and π. This is shown in Figure 4.14: while the

top part of the capillary moves in one direction in z axis, the bottom part moves

in the negative direction. So this tangential displacement distribution is different

compared to the longitudinal displacements in z direction.

4.1.5.1 Dispersion of Flexural Modes

As mentioned in Section 2.3.2, flexural waves show dispersive behavior. At low

frequency regime, phase velocity of the wave is related to the square root of the

frequency. As shown in Figure 4.16, since most of the displacement is normal to

the fluid-structure boundary, flexural waves are considerably influenced from fluid

loading. In each cycle of upward and downward motion, the capillary has to move

fluid enclosed with the same displacement amount. In this case fluid, acts as a

mass load. While contributing to the load, since most fluids does not exhibit any

shear or stiffness related restoring forces, the capillary remains single in terms of

restoring any displacement happening off the axis. In Section 2.3.2.1, influence of

the fluid loading was about a 7% decrease in the resonance frequencies. ANSYS
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pendence of the axial distribution can be seen.
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Figure 4.15: The top figure shows the exact matching of the mode shape
calculated by ANSYS with the theoretical one given in Equation
2.47. Axial displacements calculated for the whole cylinder in
Equation 4.6 show a similar trend to the ANSYS result for the
hollow cylinder case.
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FEM results plotted in Figure 4.16 show the similar reduction of frequency values

about 8-10% in the case of fluid loading compared to empty cylinder.

In Figure 4.17, the dispersion curve obtained from FEM is compared with the

theoretical value given in Equation 2.88 (without the 0.87 factor). Both results

are in agreement with each other since both curves are in the 3% neighborhood of

each other.

Figure 4.17 shows all dispersion relations obtained from ANSYS, theory and

experiments. As mentioned before good agreement between ANSYS and theory is

present. However, dispersion relation obtained from experiments have about 10%

and 13% lower values than ANSYS and theoretical results respectively. There are

couple of reasons for the mismatch. First of all, in theoretical analysis and sim-

ulations, boundary conditions in which the capillary is adhered to the PZT plate

is assumed to be clamped through the all circular cross section. However, in ex-

periments, this is not the case. The space between the PZT and the capillary is

filled with thin adhesive material. Adhesive material fixes the capillary through

the circumference, rather than through the cross section. In addition, most glue

materials (including the 3M superglue we use) have very low modulus, which en-

ables softness in the case of high frequency vibrations. Another parameter not

included in theoretical analysis or FEM is that the capillary does not end at the

point where it is attached to the PZT plate. As shown in Figure 4.1 after PZT,

outside the resonating regime, capillary continues. The last item to be mentioned

is the loading of air. In flexural motions, as fluid inside the capillary happens to be

a mass load for the system, in a similar manner outside fluid which is air, is also

a mass load for the capillary actuator. This should not be confused with damp-

ing. Damping reduces the amplitude of vibration; however, its effect on frequency
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Figure 4.17: Comparison of the dispersion curves obtained by ANSYS, the-
ory and experiments. ANSYS and theoretically expected results
match very well. Frequency values obtained from experiments
show about a 10% decrease due to neglected factors such as,
softer boundary conditions and air loading from outside of the
capillary.

values is not that high.

All these effects mentioned above contribute to lowering the resonance frequen-

cies. Within these conditions, a 10-13% difference matches the reduction expected

due to the factors mentioned above.
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4.1.5.2 Acoustical Pressure Variation due to Flexural Modes

It was shown in Section 3.2 that flexural motions generate high normal displace-

ments which generate pressure variations inside the cavity following the distribu-

tion of the normal displacements. Different from all other modes mentioned above

in this chapter, pressure variation due to flexural motion not only exists in z di-

rection but also in the radial direction. Axis anti-antisymmetric motion of the

capillary generates alternating pressure variances in the radial direction. ANSYS

results presented in Figure 4.18 shows the mode shape and the pressure variation

of the fluid column. The fluid column is enclosed with the capillary (not shown

here) having the same displacement. Pressure distribution plotted in cylindrical z

and r axes is shown as the bottom graph of Figure 4.18. Distribution shown here

matches the expected distribution from the theoretical approach given in Section

3.2.2.2.

Since energy distribution is related to the square of the velocity, similar to

what we had done in Section 3.2.2.2, ANSYS also performs modal analysis with a

constant velocity amplitude. From displacement results found by ANSYS we can

find the normal velocities. From this, we can extract the velocity and pressure

relationship. For 1 m/s normal velocity values, the theoretical and ANSYS simu-

lation results for the frequency dependence of the internal pressure due to flexural

waves are the same. This confirmation is plotted in Figure 4.19.

In summary, we have transverse acoustic pressure standing fields along the

capillary, and variation in z axis follows exactly the variation of uy. In the case

of constant energy supply, amplitude of the pressure increases linearly with the

frequency. ANSYS simulation results does not span the frequency regime where

we observe change in this trend, as shown in Figure 3.19. This why Figure 4.19
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flexural mode shape. The enclosing capillary is not shown.
Cross sectional views show the radial and angular pressure vari-
ation. In each oscillating cycle, variation of pressure changes
sign, generating a radial standing wave mode. Distribution of
the pressure in yz plane is the same as the theoretical distribu-
tion shown in Figure 3.21.

148



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10

4

10
5

Frequency (MHz)

A
b

s
o

lu
te

 P
re

s
s
u

re
 (

P
a

)

Theory

ANSYS

Figure 4.19: Variation of absolute pressure value with frequency. Theory and
ANSYS results are the same for normal velocities taken to be
1m/s.

axes are left in linear scale rather than logarithmic scale.

149



CHAPTER 5

NONLINEAR ACOUSTIC INTERACTIONS INSIDE THE

CYLINDRICAL CAPILLARY

Introduction

In this chapter, nonlinear acoustic interactions inside the capillary will be exam-

ined. Particularly, manipulation of micro and nanoparticles with the acoustic field

generated by the flexural vibrations of the capillary gets the highest interest.

The first part discusses acoustic radiation forces in a acoustic field generated

inside a microfluidic capillary due to the flexural motion of the capillary. Analytical

results for forces are in excellent agreement with the experimental results.

The second part examines secondary forces which occur due to the inter-particle

interactions in an acoustic field. It has been shown that, band formations observed

in some experiments can be explained by the inter-particle secondary forces present

in an acoustic field.

In the last part, acoustic streaming effects in a flexurally vibrating capillary

are shown. While acoustic radiation forces are more influential in our experiments,

streaming effects help particles or fluids to mix. In addition, in small particle limits,

streaming effects influence the particle collection as the radiation force gets smaller.
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5.1 Acoustic Radiation Forces on Micro and nanoparticles

5.1.1 Introduction: Acoustic Radiation Pressure

The concept of “acoustic radiation pressure” was first introduced by Lord Rayleigh,

with the idea, similar to the electrodynamics waves, that acoustic waves should

also exhibit a nonzero average pressure on the medium. While this effect had been

verified experimentally for long time, various researchers came up with different

analytical explanations of the phenomenon. In [56] Robert Beyer gave a review

of four different approaches to the topic. These can be listed as Eularian radi-

ation pressure, Lagrangian radiation pressure, Rayleigh’s radiation pressure and

Langevin’s radiation pressure. A quote from the abstract of the article summarizes

the complexity of the topic:

It might be said that radiation pressure is a phenomenon that the

observer thinks he understands -for short intervals, and only everynow

and then.

Another quote from the conclusion part of the same article is a good indicator

of the long-run debate over the topic:

“It takes nerve as well as ability to criticize Lord Rayleigh successfully,

and Brillouin had both. But as we have seen even a Brillouin can make

a faux pas. On the other hand so can I, and so can any of you. I’ve

already made plenty on my part; now it’s someone else’s turn.”

There exist a couple of reasons for the different results available in the literature.

First of all, since this effect is completely non-linear, approaches in Eulerian and
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Lagrangian coordinates give different results. In addition, unfortunately, not every-

one’s understanding of “acoustic radiation pressure” is the same. For instance, in

the case of Rayleigh and Langevin, physical understandings of the concept are dif-

ferent. Rayleigh defines acoustic radiation pressure as the difference between the

mean pressure at the neighborhood of the reflecting or absorbing structure and

the ambient pressure present in the fluid, whereas Langevin takes the unperturbed

pressure on the other side of the structure as the reference ambient pressure.

A comprehensive review of the topic can be found in references [57, 58, 59, 60,

61]; curious readers may refer to these references. In this section, focus is given to

the force on the particles due to the acoustic radiation pressure. In this case, using

the Eulerian approach would be meaningful and a brief derivation of the radiation

pressure is introduced.

5.1.1.1 Acoustic Radiation Stress Tensor

From Newton’s second law, momentum is conserved for a sample fluid volume. For

an arbitrary volume equation governing momentum, conservation can be written

in tensor notation as,

ρ
(∂vi

∂t
+ vj

∂vi

∂xj

)

= −∂P
∂xi

(5.1)

where vi is the i component of the fluid particle velocity, ρ is the density and P is

the net pressure and is given by

P = P0 + p (5.2)

where P0 is the ambient pressure and p is the acoustic pressure.

Since the mass is also conserved, the continuity equation can be written as,

∂ρ

∂t
+
∂(ρvi)

∂xj

= 0 . (5.3)
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Multiplying the continuity equation with vi and combining with the momentum

equation, they give;

∂(ρvi)

∂t
+
∂(ρvjvi)

∂xj

= −∂P
∂xi

. (5.4)

Taking the time average over a cycle leads to

∂〈ρvjvi〉
∂xj

+
∂〈P 〉
∂xi

= 0 (5.5)

which can also be written as

∂

∂xj

(

〈ρvjvi〉 + 〈P 〉δij
)

= 0 . (5.6)

Since

P0

∂xj

= 0 , (5.7)

Equation 5.6 can be written as,

∂

∂xj

(

〈ρvjvi〉 + 〈P − P0〉δij
)

= 0 . (5.8)

Focusing the items inside the parentheses a new term is introduced:

Sij = −〈ρvivj〉 − 〈P − P0〉δij . (5.9)

Sij is called the acoustic radiation stress tensor and was first derived by Brillouin

in 1938. Since the change in the density over a cycle is zero,

〈ρ〉 = 〈ρ0 + ρ(t)〉 = ρ0 . (5.10)

Then the final expression for Sij becomes

Sij = −〈P − P0〉δij − ρ0〈vivj〉 (5.11)

where the quantity 〈P − P0〉 is called the mean excess pressure.
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5.1.1.2 Mean Excess Pressure

In the first order approximation, mean excess pressure becomes zero, however

the inclusion of second order terms reveals non zero terms. Here the second order

approximation to the mean excess pressure in Eularian coordinates will be included

due to its relevance. Original derivation can be found in [62].

The first assumption is that fluid is taken to be nonviscous. In this case, all

effects of sound will be irrotational which makes the curl of a possible velocity

potential always zero. This results in v = ~∇φ where φ is the velocity potential.

Plugging the above identity into Equation 5.1, the momentum equation becomes,

~∇
[∂φ

∂t
+

1

2
|~∇φ|2

]

= −
~∇P
ρ

. (5.12)

Change in the enthalpy per unit mass, dw, as a function of change in the entropy,

ds, and change in the pressure, dP , can be written as,

dw = Tds+
1

ρ
dP (5.13)

where T is the temperature. For an adiabatic process, change in the entropy is

zero. This reduces the enthalpy change to

dw =
1

ρ
dP (5.14)

which can be written in generalized coordinates as

~∇w =
1

ρ
~∇P . (5.15)

Equating the above equation with the Equation 5.12, enthalpy becomes formulated

as a function of velocity potential,

w = −∂φ
∂t

− 1

2
|~∇φ|2 + C ′ (5.16)
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where C ′ is a constant.1

Taylor expansion of the pressure as a function of the enthalpy at constant

entropy and equilibrium can be written as,

P = P0 +
(∂P

∂w

)

s
w +

1

2

(∂2P

∂w2

)

s
w2 + · · · (5.17)

where partial terms in parentheses needs to be found. From Equation 5.13, at

constant entropy ds = 0, we get,

∂P

∂w
= ρ (5.18)

and

(∂2P

∂w2

)

s
=
( ∂

∂w

(∂P

∂w

))

s
=
( ∂ρ

∂w

)

s
=
( ∂ρ

∂P

)

s

(∂P

∂w

)

s
= ρ
( ∂ρ

∂P

)

s
. (5.19)

Newton derived the speed of sound relating pressure variance of a gaseous com-

pressible medium to the change in the density; the fundamental result he found

for small acoustic amplitudes was,

c2 =
∂ρ

∂P
. (5.20)

Using this fundamental formula, we find

(∂2P

∂w2

)

s
=

ρ

c2
. (5.21)

Plugging the values found in Equations 5.18 and 5.21 into the Taylor expansion

given in Equation 5.17 leads to,

P = P0 + ρ0

(

− ∂φ

∂t
− 1

2
|~∇φ|2 + C ′

)

+
1

2

ρ

c2

(

− ∂φ

∂t
− 1

2
|~∇φ|2 + C ′

)2

+ · · · (5.22)

where C ′ is a second order quantity and becomes zero for linear acoustics. Since

time average of first order terms give zero, only second order terms are the point of

1From the derivation it can be concluded C ′ is constant of spacial distribution. However, it
may be a function of time.
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interest. Combining all second order terms, mean excess pressure takes the form,

〈P − P0〉 =
1

2

ρ0

c20

〈(∂φ

∂t

)2〉

− 1

2
ρ0〈|~∇φ|2〉 + C (5.23)

where C is defined as, C = ρ0〈C ′〉. Since (~∇φ = v) and (∂φ/∂t = −p/ρ0), mean

excess pressure in Eulerian coordinates can be written as,

〈P − P0〉 =
1

2ρ0c20
〈p2〉

︸ ︷︷ ︸

− 1

2
ρ0〈v · v〉
︸ ︷︷ ︸

+ C (5.24)

= 〈U〉 − 〈K〉 + C (5.25)

where U and K are the potential and kinetic energy densities respectively.

5.1.2 Acoustic Radiation Forces on a Particle

When an object is placed in an acoustic field, the wave field is modified depending

on the size of the object. As shown in Figure 5.1, if the size of the particle

is larger than the wavelength (kr ≫ 1), then the particle significantly scatters

the wave incident on it. In addition, depending on the elastic properties, the

object may generate some acoustic radiation due to its vibrations excited by the

absorbed acoustic energy from the present ambient radiation. If the particle size is

comparable to the wavelength (kr ∼ 1), then diffraction is expected in addition to

the radiation due to the vibrations generated by the absorbed energy. If the particle

size is much smaller than the wavelength (kr ≪ 1), then the scattering is very

small, but it is large enough to generate a small decaying field in its neighborhood.

At this scale, contribution of the compressibility of the particle will be smaller

compared to the large cases. Here, these definitions are made on a single particle.

Modification of the sound field under many particles case will be obviously different.

Interaction of particles with the acoustic field was first studied by Kundt [63].
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Figure 5.1: Effect of the particle size on the pressure field. Large particles act
as reflectors, particles having sizes comparable to wavelength of
the acoustic waves cause diffraction, and small particle generate
an evanescent field

Kundt studied displacement of randomly dispersed sand particles inside a tube

with the acoustic field generated inside the tube. In his experiments, he found that

sand particles tend to collect where the standing acoustic pressure distribution has

minima. From the measurement of the periodicity of the sand collections,2 he

successfully calculated speed of sound in different materials.

5.1.2.1 Non-compressible Spherical Particle in a Gaseous Medium

Compared to the theoretical models proposed on the general case of acoustic ra-

diation pressure, there is less debate on the resulting forces of acoustic radiation

pressure on a spherical particle. First, the theoretical explanation of the acoustic

radiation forces on a small particle was presented by King [64] in 1934. In his paper,

2In a Kundt’s tub experiment while a major collection at nodal points is observed, fine stri-
ations also occur when the acoustic field is present. Those fine striations are not related to the
acoustic radiation force but is related to the streaming effects.
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King studied solid and liquid particles in a gaseous medium. Since compressibility

of liquids and solids are very low compared to the gases, in his analysis he took

the particles as rigid and not compressible. Assuming the presence of a known

acoustic pressure field incident on the particle, a secondary acoustic field due to

the scattering from the particle can be obtained from the boundary condition that

the fluid particle velocity at the rigid particle surface will be zero (since particle

is not compressible). In this case, total acoustic pressure around the particle can

be calculated as a summation of these two acoustic fields. As the resulting acous-

tic pressure field around the particle is known, King calculated the force on the

sphere by integrating the normal component of the radiation stress tensor given in

Equation 5.11 over the surface S:

Fz =

∫

S

SijnjdS (5.26)

where Sij is given by Equation 5.11 and mean excess pressure is given by Equation

5.24. Since the compressibility of the particles is ignored, normal velocity is zero.

Then only the mean excess pressure contributes to the integral such that,

Fz = −
∫

S

〈P − P0〉 cos θdS (5.27)

where θ is the angle between the radial vector of spherical coordinates and z axis

of cartesian coordinates. From the approach mentioned above, for a standing

acoustic radiation field (pi0 = A sin kz), King found the acoustic radiation force on

the particle

Fz = −5π

6

A2kR3

ρ0c20
sin 2kz (5.28)

where A is the amplitude of acoustic radiation pressure, k is the wave vector and R

is the particle radius. The force in this case is always towards the pressure nodes.

At the nodal points, the force reduces to zero and around the nodal points, the

force field acts as a spring force balancing the particles at the nodal point. For the
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case of a progressive wave, the radiation force on the particle is

Fz = −11π

8

A2k4R6

ρ0c20
. (5.29)

Force by the progressive waves is (kR)3 times the force generated by the standing

waves. Since kR ≪ 1, the forces generated by the progressive waves are very low

compared to the forces generated in a standing wave field.

Experimental verification of the theoretical force values calculated by King in

1934 are reported in 1977 [65] and 1981 [66].

5.1.2.2 Compressible Spherical Particle in a Liquid Medium

In a gaseous medium, compressibility of the particles compared to the medium can

be easily ignored. However, in the case of a liquid or solid particles suspended in

a in a liquid medium, compressibility of the particles and liquid medium has close

values which fails the above assumption. In 1955, Yosioka et al. [67] generalized

King’s theory by including the compressibility of the particles. There were two

main fundamental differences in their approach. First, the boundary condition

at the medium-particle surface boundary changed. In King’s theory, since the

particles were not compressible, pressure was taken to be zero at the boundary;

however, in the compressible case, this is not required and since the boundary can

move because of the compressibility, normal particle velocity has to be continuous.

The second update was the method of integration. Force field was calculated in

terms of far field relations using the Gauss’ theorem. In the compressible sphere

case, since the normal velocity terms in the integral given in Equation 5.26 are non

zero, the force calculated included terms related to the material properties of the

material such as density and compressibility. Following the method summarized
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above, the acoustic radiation force on a compressible spherical particle is found as

Fz = −f(̺, σ)
πA2kR3

ρ0c20
sin 2kZ (5.30)

where f(̺, σ) is named as the acoustic contrast factor, and given by

f(̺, σ) =
[(3̺− 2

3 + 6̺

)

− 1

3̺σ2

]

where ̺ =
ρ1

ρ0

and σ =
c1
c0
. (5.31)

Here ρ1 and c1 are the density of the particle and the speed of the sound in the

particle. The first term of f(̺, σ) in the square brackets is the contribution of the

scattered pressure field from the particle in terms of a dipole radiation. This dipole

radiation stems from the oscillatory motion of the particle along the incident field.

The second term, however, is related to the monopole radiation which stems from

the the compressibility of the particle. In the case of a gaseous medium, the above

formula converges to King’s formula.

While King’s formula predicted radiation forces to be always towards the pres-

sure nodes, Yosioka’s formula the leaves decision to the sign of the acoustic contrast

factor. In the above formula, f(̺, σ) can be either negative or positive depending

on the material properties of the particles and the medium. If f(̺, σ) is positive,

the forces are towards the pressure nodes, and if f(̺, σ) is negative, then the forces

are towards the antinodal locations. Figure 5.2 shows the f(̺, σ) = 0 curve in the

̺-σ plane. Materials which fall above the curve tend to collect at pressure nodes,

and materials that fall below the curve tend to collect at antinodes.

In 1962, Gor’kov [68, 58] calculated the total potential energy for the particle

in an acoustic radiation field in terms of the local incident pressure wave field such

that,

U = 2πR3
[ f1

3ρ0c20
〈p2〉 − f2ρ0

2
〈~v · ~v〉

]

(5.32)
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Figure 5.2: Particles that remain above the f(̺, σ) = 0 curve feel acoustic
radiation force towards the acoustic pressure nodes, and on the
other hand, materials of particles that remain below the curve
feel the force towards at loops.

where

f1 = 1 − ρ0c
2
0

ρ1c21
and f2 =

2(ρ0 − ρ1)

2ρ0 + ρ1

. (5.33)

Once the potential energy for the particle is calculated through the above re-

lationship, radiation forces can be found in 3 dimensions using the relationship,

~F = −~∇U . (5.34)

For the conditions of Yosioka et al., forces calculated by the Gor’kov’s method

give very close values to Equation 5.30. The major advantage of the Gor’kov’s

approach is that, since it is a scalar quantity, it is easier to calculate potential

energy, especially for 3-dimensional systems. And after potential energy is found,

force can be calculated through the gradient in a particular direction.
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5.1.3 Acoustic Radiation Forces on Particles in a

Flexurally Vibrating Cylindrical Micro-Capillary

Gor’kov’s formula method can be used to calculate radiation forces in a vibrat-

ing cylindrical capillary; however, distribution of the pressure field (p) inside and

velocity components needs to be known. In Section 3.2.2 of Chapter 3, pressure

distribution inside the capillary due to flexural vibrations of a micro-capillary was

derived. Pressure generated for subharmonic frequency range was given by the

relationship,

p(r, θ, z, t) = − jv0ckρ0

I ′1(k
′

rr1)
I1(k

′

rr) sin (kbz) sin θ ejωt (5.35)

where v0 is the normal velocity of the flexurally vibrating capillary, which can be

measured by an interferometric scan of vibrating surface.

Velocity components of the fluid particles inside the capillary can be found

from pressure distribution via the relationship,

~v = − 1

jωρ0

~∇p (5.36)

where gradient in cylindrical coordinates is given by

~∇ =
∂

∂r
r̂ +

1

r

∂

∂θ
θ̂ +

∂

∂z
ẑ . (5.37)

Then, velocity components in cylindrical coordinates are given by

vr =
v0

I ′1(k
′

rr1)
I ′1(k

′

rr) sin (kbz) sin θ (5.38)

vθ =
v0

rI ′1(k
′

rr1)
I1(k

′

rr) sin (kbz) cos θ (5.39)

vr =
v0kb

I ′1(k
′

rr1)
I1(k

′

rr) cos (kbz) sin θ (5.40)

where I ′1(k
′

rr) is the first derivative of I1(k
′

rr) with respect to r.
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In this case, 〈~v · ~v〉 is found to be3

〈~v · ~v〉 =
1

2

v2
0

(
I ′1(k

′

rr1)
)2

[
(

I ′1(k
′

rr) sin (kbz) sin θ
)2

+
(1

r
I1(k

′

rr) sin (kbz) cos θ
)2

+
(

kb I1(k
′

rr) cos (kbz) sin θ
)2
]

.

(5.41)

Plugging formulas given in Equations 5.38 and 5.41 in Equation 5.32, the radiation

force potential on a particle suspended in a fluid column in the flexurally vibrating

cylindrical capillary can be found as

U =
πR3ρ0v

2
0

(
I ′1(k

′

rr1)
)2

[

f1

3

(

kI1(k
′

rr) sin (kbz) sin θ
)2

− f2

2

[(

I ′1(k
′

rr) sin (kbz) sin θ
)2

+
( 1

r
I1(k

′

rr) sin (kbz) cos θ
)2

+
(

kbI1(k
′

rr) cos (kbz) sin θ
)2 ]

]

(5.42)

where f1 and f2 were defined in Equation 5.33. Using the potential given above

and Equation 5.34, it is possible to find force fields. In fact, for calculation and

modeling purposes after the calculation of potential in 3D, force field in specific

directions can be calculated numerically through the gradient of the potential field

in a specific direction.

Acoustic radiation potential given in Equation 5.42 consists of 4 terms which

–distinctly from each other– depend on the spatial location, various wave vectors

(k′r, kb, k), and material properties. If forces were calculated directly from this

equation, three force equations in three dimensions would have still four distinct

terms coming from the potential. In this case, to be able to conclude which terms

3 ( 1

2
) comes from the time averaging of the time dependent sine and cosine squared terms.
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dominate at what direction and at a given frequency range, analysis of 16 sur-

face plots per given mode would be necessary, which requires a lot of time and

space. Since the potential equation is very long and does seem to be very prac-

tical, some meaningful approximations may increase its functionality. In section

3.2.2, it was shown that in the range of −0.4 < k′rr < 0.4, I1(k
′

rr) and J1(k
′

rr) can

be approximated as

I1(k
′

rr) = J1(k
′

rr) =
k′rr

2
for − 0.4 < k′rr < 0.4 (5.43)

and this was visually demonstrated in Figure 3.17. In this case, their derivatives

become,

I ′1(k
′

rr) = J ′

1(k
′

rr) =
k′r
2

for − 0.4 < k′rr < 0.4 (5.44)

For below 4 MHz frequency regime, it is always true that −0.4 < k′rr < 0.4. Since

in our case experiments are run in a 30kHz-2MHz range, the approximate values

given above can be used safely. Calculations show that these approximations only

contribute error in the order of 1%. Another benefit of these approximations is

that, by this way, both subsonic and supersonic cases are governed with the same

spatial function.

Replacing I1(k
′

rr) and I ′1(k
′

rr) terms with their approximations given in Equa-

tions 5.43 and 5.44, radiation force potential becomes surprisingly independent of

k′r and much simpler:

U = πR3ρ0v
2
0

[

f1

3

(

kr sin (kbz) sin θ
)2

− f2

2

[ (

sin (kbz)
)2

+
(

kbr cos (kbz) sin θ
)2 ]

]

.

(5.45)

The negative of the gradient in z direction gives Fz:

Fz = πR3ρ0v
2
0kb sin (2kbz)

[

f2

2
− (sin θ)2

(f1

3
(kr)2 +

f2

2
(kbr)

2
)
]

. (5.46)
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Figure 5.3: Similarity between the force on the particle in a traditional cen-
trifugal setup, and the force on the particle in a capillary vibrat-
ing in a flexural mode. While in centrifugal setup tangential v0

increases with radius, in a capillary case, variation of the v0 is
more complex and corrected by some sinusoidal terms.

Force in z direction, Fz, depends on many parameters; however a broad way of

looking reveals that it is kind of analogous to the centrifugal force (
m′v2

0

r
∼ m′v2

0

λb

since kb = 2π
λ

and f2πR
3ρ0 ∼ m′). A physical explanation would be as follows: as

shown in Figure 5.3, during the flexural motion of the capillary, over a half cycle

capillary segment rotates around a nodal point, and in the next cycle it rotates

around the same point in the reverse direction. Here, having an imaginary pivot

at a nodal point, vy becomes a component of the tangential velocity with respect

to this point. Since vy is not constant but increasing over the half wavelength till

the maximum point, particles suspended in this segment feel a kind of centrifugal

field. Since the curvature decreases the increase in the vy as a function of z, vy does

not linearly depend on the length of the wavelength i.e., radius in the centrifugal

concept, in fact the sine term complements this factor. In this regard, acoustic

actuator presented here works as a non-rotating, micro-centrifuge.

Having the gradient of Equation 5.45 in radial and tangential directions, forces
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in these directions are found as,

Fr = 2πR3ρ0v
2
0r sin θ

[

f2

2
(kb cos (kbz))

2 − f1

3
(k sin (kbz))

2

]

sin θ (5.47)

Fθ = 2πR3ρ0v
2
0r sin θ

[

f2

2
(kb cos (kbz))

2 − f1

3
(k sin (kbz))

2

]

︸ ︷︷ ︸

cos θ . (5.48)

It is easy to see that Fr and Fθ have the same terms until the sine and cosine of θ

terms at the end. Combining these and the rsinθ = y relationship result elegantly

in Fy and Fx in cartesian coordinates. Then we have

Fx = 0 (5.49)

Fy = 2πR3ρ0v
2
0y

[

f2

2
(kb cos (kbz))

2 − f1

3
(k sin (kbz))

2

]

(5.50)

Fz = πR3ρ0v
2
0kb sin (2kbz)

[

f2

2
−
(f1

3
(ky)2 +

f2

2
(kby)

2
)
]

(5.51)

where y is the axis parallel to the flexural motion of the capillary and y = 0 is the

radial center of the capillary.

Commenting on the final form of the forces, it can be noted that force on the

particle depends on many parameters such as densities (f1) and acoustical prop-

erties of the materials (f2), frequency drive (k and kb), vibrational velocity of the

capillary (v0) and the particle size (∼ R3). Out of these parameters, particle size

and the vibrational velocity draw more attention. An order of magnitude reduc-

tion in the particle volume decreases the net force a thousand times. Vibrational

velocity of the capillary can be measured interferometrically and is related to the

voltage drive of the PZT plate. In this case, an order of magnitude increase or

decrease in the voltage drive causes the force field to change a hundred times.

Direction of the forces depend on the spatial location and material properties.

In z direction, the first term in the square brackets is the dominating term since
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kr and kbr terms are squared and less then 1. In this case f2, which is the density

relation given in Equation 5.33, defines the direction of the force. For particles

denser than the liquid medium, force is attractive towards points where there

exist a displacement-vibration maximum (sin 2kbz = 0). Due to the sinusoidal

distribution, at these locations force field will behave as a spring holding particles

in balance. When particles are in these locations, force will be zero. It is also

true that Fz will gets its maximum value at the y=0 plane due to the sin θ term.

For the particles less dense with respect to the fluid, collection point will be the

displacement nodes. For either case, along the z axis, force gets maximum in

the exact middle location of the nodal and maximal displacement points. It is

mathematically possible that at a specific frequency and material selection, terms

in square brackets will cancel each other so that Fz becomes zero, independent of

the spatial location. This situation needs to hold the condition,

f2 =
2f1(kr)

2

3(1 − (kbr)2)
. (5.52)

For silica particles in water, this equation can hold true around frequencies in the

range of gigahertz, which is way above the frequency regime in which this actuator

is driven.

For the force in y direction, the magnitude of Fy increases linearly in y direction,

getting maximum at the boundaries and zero at the center where y = 0. Direction

of the force field depends on the location of the z axis. For silica particles in water,

for example, at locations sin(kbz) = 0, force acts as a spring causing particles to

concentrate at the center, and at nodal points where cos(kbz) = 0, direction of the

forces is away from the center.

The results in Equation 5.50 show Fx = 0. While Fx is expected to be orders of

magnitude smaller compared to Fz and Fy, in reality a small value is expected due
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to scattering from the collected particles. The net acoustic field will be modified

so that there will be some interaction between the particles themselves and also

the modified field. In experiments, it has been observed that particles tend to

be collected in a plate-like platform, which reveals that forces in y direction are

superior compared to forces in x direction.

Since the radiation potential and the force field values depend on material

properties and specific frequency, plots of these values can only be done for specific

conditions. To give a general idea, some examples will be shown in the next section.

It is observed that the forces in y and z directions are functions of the spatial

location, and they become zero at the center of the capillary where also a maxima

of the flexural vibration exists. In this case, as shown in Figure 5.4, radiation

forces act as springs trying to hold particles in a balance. Taking the negative

gradient of the force fields, spring constants in y and z directions at the center of

the capillary (y = 0 and z = nλb/2) can be found as,

ky =
2

3
f1πR

3ρ0v
2
0k (5.53)

kz = f2πR
3ρ0v

2
0k

2
b cos (2kbz) . (5.54)

It can be seen that while the spring constant in y direction is linear, the spring

constant in z direction (kz) is nonlinear and even gets negative values, for dense

particles kz becomes a real spring around a vibrational maxima pulling particles

to the vibrational maxima center, and around vibrational nodal points, it acts as

a negative spring pushing particles away.
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5.1.3.1 Acoustic Radiation Force Fields for Polystyrene Microbeads in

Water

In this section, acoustic radiation potential and radiation forces will be shown

for a 2 micrometer polystyrene bead suspended in water, which is enclosed in a

silica capillary vibrating in one of its flexural modes. Results shown in this section
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will be similar for other type of materials which are in the same category as the

polystyrene with respect to the curve shown in Figure 5.2. The silica beads, most

types of cells, most types of bacteria, metallic micro and nanoparticles all fall into

this category. While the shape of the curves will be similar, magnitudes will be

different due to the change in the density and the particle size of the sample.

The top schematic given in Figure 5.6 shows the 5th flexural mode of the cap-

illary vibrating up and down in y-z plane. Acoustic pressure field -due to the

flexural motion- is also plotted along the channel. Part (b) of this figure shows the

pressure distribution on the y-z plane for 3 half flexural wavelengths along the z

direction. Part (c) shows the pressure variance at the cross sectional area shown

in the schematic given in part (a). Part (d) is the surface plot of the acoustic radi-

ation force potential obtained from the Equation 5.45. In this figure, most of the

variation appears along the z axis; however, the reader should be reminded about

the high aspect ratios (y ≪ z). In this case, since the space in y direction is much

shorter, at low frequencies where (r1 ≪ λb), some slight variation in y direction

may lead to equivalent or even larger forces in magnitude in y direction compared

to z direction. Part (e) shows the acoustic radiation force potential at the cross

section of the capillary shown in part (a). Parts (f) and (g) of this figure show the

quiver plots revealing the direction of the forces in the yz plane and the indicated

cross section. In all graphs of this figure, locations marked with ‘A’ indicate the

center of the capillary where there exist a flexural displacement maxima. Part (h)

shows the microscope image of the collection of polystyrene particles inside the

capillary vibrating in its 5th flexural mode at 88.7 kHz and the computed force

field (arrows). Location of the particle collection and motion of the particles

towards the collection point are in excellent agreement with the force field derived

analytically (arrows in the picture). At this particular frequency, for polystyrene
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5th flexural mode at 88 kHz, 4 μm polystyrene particles 
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Figure 5.6: Acoustic pressure and radiation force potential distribution, and
the acoustic radiation forces for the 5th flexural mode. For the
explanation, see page 170 (Units: Pressure in Pascal; spatial
coordinates in meters; and potential energy is Joules).
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11th flexural mode at  370 kHz, 4 μm polystyrene particles
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Figure 5.7: Acoustic pressure and radiation force potential distribution, and
the acoustic radiation forces for the 11th flexural mode. For the
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coordinates in meters; Force in Newton; and potential energy is
Joules).
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beads suspended in water and at 1 m/s flexural vibration velocity, the maximum

value of the force in y direction is 3×10-13N and the maximum value of the force

in z direction is 8×10-13N. Both forces act as spring forces pulling particles to the

collection spot. Force values in y and z directions reach zero at the collection spot,

which means that once the particles are focused, force acting on them is close to

zero. This is an important point for biological or other type of delicate samples.

Forces act mainly during the collection process, which may take seconds to minutes

depending on the sample, size and voltage drive.

Figure 5.7 shows details for the 11th flexural mode. In this figure, surface plots

for the acoustic radiation forces in y and z directions are also included. The major

difference observed at this frequency is that maximum force in y direction and in

z direction have the same value of 1×10-12N. As shown in the microscope image of

the particles while they moving to the collection spot, forces in y direction at the

vibration maxima push all particles to the center. In other locations, particles still

float and move along the z axis as at those locations where Fy is zero. At the nodal

locations, Fy changes sign, which implements particles tending to move away from

the center which can be observed in the microscope image. Results presented here

confirm that the derived analytical force field explains experimental observations at

this frequency very well. As it was mentioned above, force field depends on many

parameters including the material properties; for example, if particles suspended

here were made up of silica instead of polystyrene, in this case Fzmax would still

be higher than Fymax and the collection mechanism would be still similar to the

one presented in Figure 5.6.

As frequency gets higher, y variance of acoustic radiation potential gets more

dominant. Figure 5.8 shows the radiation potential at 1.7MHz. At this frequency,
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27th flexural mode at 1.7 MHz, 2 micron polystyrene beads
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Figure 5.8: Acoustic pressure and radiation force potential distribution, and
the acoustic radiation forces for the 27th flexural mode. For the
explanation, see page 173 (Units: Pressure in Pascal; spatial
coordinates in meters; and potential energy is Joules).

Fzmax is around 2×10-12N and Fymax is around 2×10-11N. Also at this frequency,

maximum force in y direction is an order of magnitude higher, which can be seen

from the microscope fluorescent image which shows the disc shape collection of

particles at the center of the capillary.
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5.1.3.2 Frequency Dependence of the Radiation Forces for Various Ma-

terials

As it can be seen from Equations 5.50–5.51, Fy gets its maximum value at the

capillary wall where y = r1 and Fz gets its maximum value at y = 0, z = (2n+1)π
4kb

which is the mid point between a vibration node and vibration maxima at the

center of the capillary. Under these conditions, Fymax and Fymax can be written

as,

Fymax =
2f1

3
πR3ρ0v

2
0k

2r1 (5.55)

Fzmax =
f2

2
πR3ρ0v

2
0kb . (5.56)

It can be seen that Fymax depends on the k2 where Fzmax depends on the kb. In

this case, forces in y direction increase faster compared to the forces in z direction,

which confirms the observations mentioned in the previous section. It is important

to note that an increase in the force values is not limitless. In other words, the

forces are not monotonically increasing indefinitely with the frequency. Reader

should be reminded that force values found above are valid in the −0.4 < k′rr < 0.4

region. When krr value gets higher than 0.4, J1(krr) ∼ krr/2 approximation does

not hold. In this case, as J1(krr) is bounded and forces will be function of bessel

functions, they will have a upper bound at the first maxima of the J1(krr), which

happens around 10 MHz.

Figure 5.9 shows the maximum forces in y and z directions for 2 micrometer

silica, polystyrene particles and oil droplets as a function of frequency. Here,

frequency regime is within the −0.4 < k′rr < 0.4 region. It should be noted that

since the acoustic contrast factor for the oil droplets have opposite sign compared

to the silica and polystyrene, in fact, forces will be negative; however, here, the

absolute value is plotted to be compared with other samples side by side. It can
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Figure 5.9: Variation of the maximum force in z and y directions against
frequency for silica, polystyrene and oil. Particle size is taken to
be 4 micrometers, and v0=1 m/s.
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be seen that due to the material properties for silica particles, forces are higher.

Forces in z direction increase as a function of frequency; however, it can be seen

that due to the square term, forces in y direction increase faster.

Figure 5.10 shows the frequency dependence of the spring constants for silica,
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polystyrene and oil samples. Again, velocity of the capillary is taken to be constant

at 1 m/s. It can be seen that spring constants reach to values about 10-6 N/m which

is comparable to a typical optical tweezer trapping spring constant. Comparing the

bulky setup and powerful laser requirements, the silica capillary actuator serves as

a low power portable replacement to such systems. It may be a point of interest

that in this configuration, the force field spans a much greater field so that all

particles in the field are affected by the force field rather than a single particle in

the case of optical tweezers.

It is important to mention that here in the above figures, the velocity of the

capillary vibration is taken to be constant (v0=1 m/s). In real experiments, due

to the change in the impedance of the actuator over the frequency, v0 is also a

nontrivial, but an experimentally measurable function of the frequency.

5.1.3.3 Acoustic Radiation Force Fields for Air Microbubbles in Water

In previous sections, force fields and acoustic radiation potentials were calculated

for silica and polystyrene particles. Both of these materials have higher speed of

sound and density values compared to the water, resulting positive values for f1

and f2 (Equations 5.33). In this case, forces were always towards the center of

the capillary and locations where vibration maxima exist. However, materials that

are less dense and have lower speed of sound (or lower compressibility) compared

to the water, will have negative values for f1 and f2. In this case, forces will be

reversed. This means that such materials will move in opposite directions and end

up accumulating in a different location. Oil droplets, fats, air bubbles and most of

the materials which exhibit creaming effects will be in this category.

Figure 5.11 shows the analytical approach and the experimental result for the
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Forces on the oil droplets (air bubble gives similar results) (yz plane)

Flexural motion of the capillary and the corresponding acoustic pressure 
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Figure 5.11: Separation of 500nm silica nanoparticles and air bubbles.
Acoustic radiation forces for silica and air bubbles generated
from the same acoustic field are different such that two materi-
als are collected at different locations inside the capillary. For
a further explanation, see page 177.
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air bubble silica nanoparticle mix. At 88 kHz, the capillary vibrates in its 5th flexu-

ral harmonic. It is experimentally observed that at this frequency, silica beads are

collected at locations where vibration maxima exist. These locations are marked

by “A” in the figure. Computed forces for the silica nanoparticles match with

the microscope image. In the case of air bubbles, as shown in the bottom figure,

forces4 act differently and they are towards nodal locations which are marked by

“B” in the figure. It can be seen that the image is blurred at locations marked by

“A”, which is due to the vibration of the capillary at these locations. Whereas at

location “B” image is clear and no blurring effect is observed. This is where the air

bubble is pushed. In Chapter 6, it will be shown that in a similar way blood can

be separated into its components and device can be used as a planar, non rotating,

portable micro-centrifuge.

5.1.4 Dependence of the Force on the Size of the Particles

Both of the acoustic radiation forces in y and z directions are a cubic function of

particle radius, which means that an order of magnitude decrease in the particle

size results in three orders of magnitude reduction in the radiation forces. Here, one

may ask a valid question about the bottom limit for the particle size, or in other

words, what is the smallest particle size which enables particle to be manipulated

by the acoustic radiation forces?

All micro and nanoparticles exhibit Brownian motion. Detailed information

about Brownian motion and its relation to this work are given in Chapter 7. This

motion stems from the momentum transfer by the randomized collisions of the fluid

4In the given figure, computed force field is calculated for oil droplets rather than air bubbles.
This is only due to the fact that since air has 3 orders of magnitude lower density compared to
water, force values blow up and does not look understandable in the quiver plots.
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molecules with the particle. As molecules have a distribution of energies, at the end

at a given short time scale particle will feel a net momentum gain in a particular

random direction. The equipartition theorem suggests that all degrees of freedom

in a system shares the energy in an equivalent way. In thermal equilibrium, energy

value for each degree of freedom becomes 1
2
kT , where k is the Boltzmann constant5

and T is the temperature in Kelvin. In the case of a micro or nanoparticle since

particle is free to move in 3 dimensions, total translational average kinetic energy

for this particle will be 3
2
kT .

Through Gor’kov’s analysis, we can conclude that acoustic radiation pressure

generates potential wells which leads to the capturing of particles. Depth of the

potential wells depends on the cube of the particle size. As the particle size gets

smaller, the depth of the potential wells gets smaller. At a certain limit depth of

the potential becomes shallow enough so that the thermal kinetic energy of the

particle (3
2
kT ) will be enough to overcome this potential well. Figure 5.12 shows

such a configuration. The top graph of this figure shows the acoustic radiation

potential for 40 nm size silica particles (v0=1 m/s at f=1.7 MHz). The bottom

graph of this figure is the variation of acoustic radiation potential at the center of

the capillary along the capillary (also the black bold line in the top figure). In this

graph, it can be seen that the depth of the potential well is smaller than the 3
2
kT

value. For this case, statistically, most of the particles will not feel the existence

of the potential wells and Brownian motion will completely dominate. Figure 5.13

shows the variation of the depth of the potential well versus particle size. It can

be concluded that for a capillary actuator vibrating at 1.7 MHz with a vibrational

speed of 1 m/s, Brownian motion takes over for particles smaller than 40 nm.

5This phenomenon is only true for this particular section. In the rest of this chapter, k denotes
wave vector for the acoustic waves in fluid and should not be confused with the Boltzmann
constant.
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To be able to get meaningful forces and collect most of the particles, potential

wells having a depth of around 15kT would be reasonable, which corresponds to

the particle size 100nm. This size range is in agreement with the experimental

observations.

Here, particles are assumed to be non interacting. In most cases, this is not

valid as most micro and nanoparticles bear surface charges and depending on the

solution and particle material type, electrostatic interactions may add a few tens

of kT energy to the particle kinetic energy. In this case, the size limit gets higher.

It is possible to increase vibration velocities with some power amplification. In

this way, particle size limit may be reduced to sub 100 nm. However, it should not

be forgotten that when nonlinear acoustic interactions are present, not only the

acoustic radiation forces are present but also the acoustic, Rayleigh and boundary

layer streaming effects are observed. While the effect of radiation forces gets lower

with the particle size, the influence of streaming effects does scale down in a similar

way. In this case, it can be concluded that unless streaming effects are engineered

to be eliminated, it may not be very trivial to manipulate particles below 100–200

nm size.

5.1.5 Effect of Viscosity

Acoustic radiation force equations calculated by King, Yosioka and Gor’kov are

related to the cube of the radius of the particle and these equations are considered

to be valid for the nonviscous cases. In fluid dynamics, if the length scale is

larger than the boundary thickness shear layer (δ), the system can be treated as

nonviscous, which leads to the fact that all approaches mentioned above are valid
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in the δ/R ≫ 1 limit, where δ is given by,

δ =

√
2η

ρω
. (5.57)

Here, η is the viscosity of the fluid, ρ is the density of the fluid and, ω is the

angular frequency of the acoustical waves. Figure 5.14 shows variation in the

thickness of the boundary shear viscous layer over the frequency. For samples

suspended in water at room temperature, the thickness of the boundary layer take

values between 3µm-0.4µm in the 30kHz-2MHz range.
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Figure 5.14: Thickness of the shear viscous layer versus frequency. In the
30kHz-2MHz region, the thickness of the viscous boundary layer
has values between 3µm-0.4µm.

Westervelt [69, 70] has shown that both the experimental and theoretical results

he reached confirm that viscous effects are negligible in a case where δ/R ≫ 1

holds. However, comparing the size range of particles we have (300nm-10µm) with

the range of viscous boundary layer thickness range (400nm-3µ), it is clear that

the effect of viscosity cannot not be fully eliminated and should be kept under

consideration.

More recently, Doinikov [71, 72, 73] had calculated the contribution of the

viscous and thermal effects on the radiation force for the cases of plane progressive
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and plane standing waves. Later, Danilov and Mironov [74] showed that viscous

effects cannot be ignored for δ/R ≤ 1 cases. His major conclusion is that, as the

particle size gets smaller compared to the thickness of the boundary layer, forces

that result from streaming effects start to dominate.

While experimental verification for the above methods is still not available, an

experimental study by Yasuda and Kamakura [75] shows the size dependence of

the acoustic radiation forces on particles in a planar standing wave field excited

at 500 kHz. Their data show that for the particles larger than 5 µm, F ∼ R3

relation predicted by the general theory (by Yosioka or Gor’kov) holds reasonably

well. However, their results show a significant deviation from the F ∼ R3 theory

for the particles smaller than 5 µm. For the particle size range in the 300nm– 3µm

region, rather than F ∼ R3, they suggest an empirical relation such that

F ∼ (R + χ)3 (5.58)

where χ is found to be 1.5µm from the fit. Their result suggests that as R gets

smaller, the force does not go to zero but a finite value of χ3. Their findings

suggest an important result: because the acoustic forces do not scale down with R3,

manipulation of particles smaller than thought might be possible. In their paper,

the researchers mention that χ =1.5 µm value can be attributed to two possible

effects. One possibility is the viscous boundary layer effects as the thickness of

the shear-viscous layer at 500 kHz is about 0.8 µm, and the other possibility is

the ionic diffuse layer around the particle, which has a thickness value of about

1 µm for pure water at pH 7. It is not very trivial to trace back the origin of

the modification in fact, because the force field is not measured directly. Rather,

they measured the velocity of the particle, from which the force is calculated using

Stoke’s law. In this case, there is no way to guarantee that the force calculated

is only due to radiation pressure. As mentioned in [74], the force might be a
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summation of radiation forces and streaming forces for the viscous regime.

In short, here we conclude that while the effect of viscosity on the radiation

force does not change everything, and the calculated force fields agree reasonably

well with our experimental results, viscous effects still cannot be fully ignored in

the δ/R ≤ 1 regime. From the experimental results presented by Yasuda and

Kamakura [75], it is possible to conclude that the effect of viscosity appearing in

the low particle size limit may influence the device performance in a positive way.

In Chapter 6, it will be shown that possible competition between streaming

and radiation forces may be used to separate particles with respect to their sizes

by applying some frequency hopping tricks.

5.2 Secondary Forces on Particles in an Acoustic Field

When acoustical waves and vibrations are present in a particle-suspended-in-fluid

system, there are other interactions which lead to secondary forces in addition to

acoustic radiation forces. In this section, such forces will be briefly introduced.

5.2.1 Bjerknes Forces

As it was already mentioned in this chapter, acoustic radiation forces on small

spherical particles are generated due to the modification of the incident acoustic

field by the scattering from the particle and the compression of the particle. When

two particles are close enough, this scattered field is also felt by the secondary

particles. Due to their high compressibility, these forces are dominant in the case
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of bubbles present in an acoustic field and first introduced by Bjerknes [76]. A

detailed analytical and experimental investigation of Bjerknes forces on bubbles in

a stationary acoustic force is given by Crum [77]. The general time averaged value

for the Bjerknes force is given by

Fb = −〈V (t)∇p(r, θ, z, t)〉 (5.59)

where V (t) it the volume of the particle as a function of time, and p(r, θ, z, t) is

the acoustic pressure as a function of time and location. As shown in Figure 5.15,

Bjerknes forces are always attractive and given by the formula[78]:

Fb = −ρω2 [V0pβ(1 − β∗/β)]2

4πD2
(5.60)

where V0 is the volume of the particle, β is the compressibility6 of the fluid, β∗ is

the compressibility of the particle, ω is the angular frequency, ρ is the density of

the fluid and D is the distance between the center of the particles. For 1µm silica

particles in water with acoustic pressure values around 1 MPa, the Bjerknes force

between two particles separated by 3µm is in the order of 10-10N. This value will

be reached at a pressure antinode.

When particles are away from each other, Bjerknes forces can be ignored due

to the inverse square relationship with separation. Bjerknes forces are influential

when particles are close in the order of couple of micrometers. In addition, since

Bjerknes forces are related to the amplitude of the pressure, at pressure nodes

Bjerknes forces will be low, which means that after particles find their stable

collection locations, similar to the acoustic radiation forces, Bjerknes forces will be

small as long as particles stay in their stable collection locations at the pressure

nodes.

6Compressibility is the inverse of the bulk modulus.
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Compressible particles in an acoustic field

Figure 5.15: Bjerknes force between two compressible spherical particles in
an acoustic field.

Away from the collection spots, Bjerknes forces will be higher; however, parti-

cles will not able to come close. At these locations, particles are moving towards

collection spots due to the acoustic radiation forces. In addition, because of the

motion of the particles, hydrodynamic-viscous effects will dominate.

5.2.2 Secondary Acoustic Field Forces

When two particles are present in the acoustic field, independent of the compress-

ibility, particles will modify the acoustic field due to the scattering effects. In this

case, similar to the Bjerknes forces, there will be an interaction among the par-

ticles. This interaction force is calculated by Zheng and Weiser [79, 78] through

kinetic and potential energy of the particles due to this secondary field as,

Fi =
2π(ρ∗ − ρ)2v2

0R
3
1R

3
1

3ρD4
(3 cos2 θ − 1) (5.61)

where θ is the angle between propagation direction of the acoustic field and the

direction in which particles are lined up. This force gets maximum at pressure

nodes, where the acoustic pressure is minimum and the acoustic velocity of the
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Figure 5.16: Hydrodynamic forces between two spherical particles in an os-
cillating fluid medium. These forces get maximum at pressure
nodes; in other words, where particles collect.

fluid elements are maximum. In fact, the same problem was treated by Konig in

1891 just using the hydrodynamic interactions. By just taking the oscillating fluid

term around the particles into consideration, Konig reached an equation which is

very similar to Equation 5.61. Details of his approach can be found in [16].

When particles are lined up in normal direction to the propagation of the field

and so parallel the oscillating flow direction, angle θ will be π/2 and the force will be

negative, which means the particles will be pulling each other. As shown in the top

schematic of Figure 5.16, this can be explained by the hydrodynamic interactions;

when the particles are in proximity, the net flow between the particles will be higher

and so the pressure will be lower. This means that particles will be sucked towards
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the center between them. When the angle is zero, so the alignment of particles is

parallel to the oscillating flow (in other words normal to the propagation of the

field), due to the Stokes flow, the net flow between the particles will be diminished

and so the pressure between the particles will be higher and particles will push

each other away, as shown in the bottom schematic of Figure 5.16.

When the particles are aligned at an arbitrary angle, the net force on the system

of particles will apply a torque about the center of mass of the particle system. If

particles are attached to each other, this torque will cause the two-particle system

to be aligned with the direction of the field.

For 1 µm silica particles which are a few micrometers apart from each other,

the force given in Equation 5.61 becomes in the order of 10-11N for a fluid particle

velocity of 1 m/s. This value is comparable to the primary acoustic radiation force

magnitude which means, as will be shown in Section 5.2.5, that this secondary

force has a considerable effect on the collection style of the particles.

5.2.3 Viscous Drag Forces

As shown in Figure 5.17, when a flow is present around an object at low Reynolds

numbers, creeping flow about the object generates a drag force directly related to

the magnitude of the relative velocity of the flow. This is called Stokes law and

the drag force is given by,

Fd = 6πηRvf (5.62)

where η is the fluid viscosity, R is the particle radius and vf is the fluid velocity.

In an acoustic field, flow is oscillatory and this leads to an oscillating motion of
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the particle. At low frequencies, due to the low effect of inertia of the particle, the

difference between the particle and fluid velocity, and the phase difference between

the oscillation of particle and the fluid are low. However, at higher frequencies,

viscous effects get diminished and inertia of the particle becomes more dominant.

In this case, some difference between particle and fluid velocity and a phase differ-

ence between oscillation of particle and fluid are expected. For vf = v0 sinωt, the

frequency dependent formula relating particle motion to the fluid motion is given

by [80],

vp =
vf

√

1 +
(

4pρpfR2

9η

)2
= κvf (5.63)

where vp is the amplitude of the oscillatory particle velocity, p is the pressure, ρp

is the density of the particle, f is the frequency and κ is the one over square root

term. The phase difference is given by,

φ = tan−1
(4pρpfR

2

9η

)

. (5.64)

In this case, the instantaneous viscous drag force will be

Fd = 6πηR(vf − vp) = 6πηRvf (sin (ωt) − κ sin (ωt+ φ)) . (5.65)

This force is a pure oscillatory, and the time average gives zero. It can be concluded

that viscous drag forces in an acoustic field does not result in any steady net force.

For 1 µm particles suspended in water where the magnitude of the oscillatory fluid

velocity is 1 m/s, the amplitude of the oscillatory force will be in the order of

10-8N. While the average of this force is zero, instantaneous values seem to reach

couple of higher order of magnitude compared to the acoustic radiation forces. So

the effect of this force is zero except for the case of streaming driven flow.
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Figure 5.17: Viscous forces occur due to drag of fluid particles oscillating
around the particle.

5.2.4 Oseen Forces

When a steady flow is present, the vibration of the particle in the acoustic field

generates an asymmetry around the particle along the direction of the flow [2].

This asymmetry in the flow field causes a force between the particles, depending

on the location of the particles. Oseen forces are observable in fluidic systems

where the Reynolds number is greater than 1. Since most acoustic systems involve

water as the fluidic medium, Oseen forces are taken to be negligible compared to

other interactions mentioned before in this section.

5.2.5 Total Forces on the Microparticles Collecting at the

Pressure nodes

At the pressure nodes, due to the low p value, Bjerknes forces will be very small

and can be ignored. In this case, at pressure nodes, only two force fields are

present. Primary acoustic radiation forces Fy and Fz given in Equations 5.50, 5.51

and secondary acoustic field-hydrodynamic forces given in Equation 5.61. In the

flexurally vibrating capillary case, oscillatory flow of the fluid particles and the
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propagation of acoustic field are parallel to the y axis. In this case, the secondary

forces in z direction are attractive forces on the particles themselves. Since the x

axis is also normal to the direction of the propagation-vibration, secondary field-

hydrodynamic forces will be acting in the x-z plane. In this case there will be no

balancing force7 terms in the x-z plane so that all particles are expected to come

close to each other in the x-z plane at the nodal points at y=0.

At the y axis, the primary acoustic field is attractive towards the pressure node

and particles will start to collect. As particles start to collect and come into closer

proximity, particles which line up parallel to the y axis will feel the repelling force

due to secondary field-hydrodynamic interactions. In other words, in y direction,

two force fields will be competing each other: one is effective in a broad range and

the other is dominant in the proximity of particles. In this case, formation of band

structures are expected. This phenomenon is sketched in Figure 5.18. The gap

between the particle bands depends on where the primary field force cancels the

secondary field force. Assuming two symmetric bands around y = 0 at a stable

point, the net force will be zero such that,

4π(ρ∗ − ρ)2v2
0R

3
1R

3
1

3ρD4
− 2π

3
f1R

3ρ0k
2v2

0D = 0 . (5.66)

From this formula, for 1µm polystyrene particles the gap between the bands is

expected to be about 25µm. Due to the viscous effects at this particle size limit,

the acoustic radiation force is expected to be higher (since F ∼ (R + σ)3) which

leads to a smaller gap than 25µm.

Band formations observed in some of our experiments can be explained with this

approach. Such formation of bands at various frequencies for silica and polystyrene

7Here only acoustic forces are meant. Related to DVLO theory, depending on the surface
charge of particles, particles may or may not stick to each other.
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Figure 5.18: While the major acoustic radiation forces given in Equations
5.50 and 5.46 collect particles at pressure nodes, hydrodynamic
forces given in 5.61 counterbalances particles aligned with the
field. In this case particles form band structures. Number of
bands forming depends on the number density of the particles.

beads is shown in Figure 5.19. In most cases, the gap between the bands is ob-

served to be 5-20 µm, in agreement with the analytical result achieved above. For

polystyrene beads, band formations are observed mostly below 400 kHz. How-

ever, for silica beads, band formations are observed up to 2 MHz regime. One

interesting phenomenon recorded during the experiments, as shown as a series of

images on the right of Figure 5.19, is that turning on the ultraviolet light for fluo-

rescent imaging tends to increase the gap size. This increase happens in the order

of 5 seconds and then reaches a new semi stable state in which some randomized

movements are present on the bands. While a clear explanation requires further

detailed experiments focusing on this observation, a simple suggestion would be

that fluorescent coupling of particles with UV light may in turn lead to micro-

thermal effects which may lead to temperature related viscosity gradients in the

fluid in the neighborhood of the particles. In such a case, the effect of secondary

forces related to hydrodynamic surrounding of the particles may tend to increase.
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collection bands. (The capillary diameter is 200µm).
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5.3 Acoustic Streaming Effects in a Cylindrical Capillary

Another nonlinear interaction observed in acoustic systems is acoustic streaming.

Related to the work presented in this dissertation, acoustic streaming effects are not

as influential as acoustic radiation forces. For this reason, acoustic streaming will

be briefly touched on for a couple of special related cases. A more comprehensive

review of acoustic streaming can be found in [57, 58, 59, 60, 61].

Acoustic streaming is a second order nonlinear phenomenon that results from

the attenuation of the sound waves. When acoustic waves are present in a medium,

dissipation of the acoustic energy causes a gradient in the momentum flux. Assum-

ing a small fluid volume, the difference in the momentum flux between two faces of

the sample unit volume generates the so called Reynolds stress8 (〈ρ0vivj〉), leading

to the force causing steady streaming. Attenuation of the sound waves happens

because of the viscosity of the fluids. Interestingly, while this force is generated

because of the viscous properties of the fluid, in most cases, streaming does not

depend on the viscosity of the fluid due to the fact that the resistance produced

against this streaming flow by the fluid itself is also a result of viscosity.

Attenuation of acoustic energy can happen in two major ways. One happens

because of the energy dissipation in the body of the fluid during the propagation

of acoustic waves. This dissipation is related to the self viscosity of the fluid

medium. As mentioned above, spatial change in the momentum flux leads to an

time averaged Reynolds stress value. As in the case of any stress, the gradient of

this stress results in a net force in that direction such that,

Fi = −〈∂ρ0vivj

∂xj

〉. (5.67)

8Where ~v is the acoustic particle velocity and 〈〉 denotes the time average.
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As mentioned above, here, ~v is the first order acoustic particle velocity. This force

acts as a body force and can generate a flow. Assuming only the contribution

of this force, mean velocity of the fluid due to this motion can be given by the

steady state (zero acceleration) solution of equation of motion given in terms of

the Navier-Stokes equation,

ρ(v′j
∂v′i
∂xj

) = Fi −
∂〈p〉
∂xj

+ η∇2v′j, (5.68)

and the continuity equation in acoustic terms [59],

ρ0
∂v′i
∂xj

= − 1

c2
∂Īj
∂xj

. (5.69)

Here ~v′ is the streaming velocity due to the body force Fi given in Equation 5.67, 〈p〉

is the mean pressure and ~I = 〈p~v〉 is the acoustic intensity. In the above equation,

viscous terms representing the compressibility are ignored. Solving Equations 5.67,

5.68 and 5.69 for ~v′ leads to the solution.

The second and the more common type of attenuation happens at the neighbor-

hood of a stationary boundary. Due to the shear viscous effects, when an acoustic

field is generated near a stationary boundary, attenuation occurs near the bound-

ary. Similarly, a stationary fluid on top of an oscillating boundary will result in

a similar picture. In fact, acoustic streaming was first observed as a boundary

streaming near an oscillating boundary. Savart found that while most of the pow-

der is collected in nodal lines in a Chladni’s experiment, fine powders do gather

at antinodes where the vibration is maximum. He noted that collections of fine

powders at the antinodes were cloudy. Since this unexpected behavior of the fine

powder did not happen in vacuum, Faraday, for the first time, concluded that

these collections at the antinodes are due to the streaming effects generated by the

flexural vibrations of the plate. Later on, Kundt and Dvorak observed that dust

particles collect at nodal points of a stationary sound wave excited in a tube. First
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the analytical approach to these observations came by –as in the case of many other

acoustic phenomena observed before– Rayleigh in 1883 [4]. In his paper, Rayleigh

formulated the streaming vortices generated by an flexurally vibrating plate and

streaming vortices generated in a tube by the acoustical stationary waves in the

tube.

In his famous review, Lighthill [59] concludes that Rayleigh’s approach can be

also used for the case where a boundary oscillates in a tangential direction where

the fluid is stationary. This is because of the fact that in both cases (oscillating

fluid-stationary boundary and oscillating boundary-stationary fluid) relative mo-

tion between the boundary and fluid generates a frictional dissipative layer at the

fluid-structure boundary. This important claim has been experimentally confirmed

in the case of a cylinder-fluid system. Streaming vortices generated near a station-

ary cylinder in an oscillatory flow field [81] are almost identical to the streaming

vortices generated near an oscillating cylinder in a stationary fluid medium [82, 83].

In a fluid structure boundary where an oscillatory relative motion exists, due

to a no-slip boundary condition and shear viscosity, the first order velocity decays

very fast. This change in the velocity generates the second order streaming. Av-

erage streaming velocity at the end of boundary layer is called the slip velocity.

Confirmed by many other researchers, slip velocity was first calculated by Rayleigh

[4] as,

vs = − 3

4ω
U(x)

∂U(x)

∂x
(5.70)

where U(x) is the amplitude of the relative velocity between fluid and surface and

ω is the frequency.

In the next section, in the light of conclusions drawn by Rayleigh and Lighthill,

streaming effects in a capillary due to the oscillating capillary walls will be given.
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5.3.1 Acoustic Streaming in a Flexurally Vibrating

Capillary

In Section 3.2.2, velocity of the fluid particles inside the cylindrical capillary was

calculated from boundary conditions. There, in terms of boundary conditions, only

the normal velocity at the fluid structure boundary was taken into consideration,

since at the time the point of interest was the acoustic pressure at the fluid structure

interface and shear viscous effects were ignored. Here, however, the point of interest

is the tangential velocities. In a flexurally vibrating capillary, tangential velocities

appear in two distinct ways in two planes. In this section, streaming velocities in

two planes will be calculated.

5.3.1.1 Streaming Effects in y-z Plane

Since the capillary body is relatively thick, a nonzero tangential velocity at the

fluid structure boundary occurs due to the shearing of the capillary walls. This

tangential motion parallel to the central axis of the cylinder was calculated in

Section 4.1.5. There, analytical results were matching reasonably well with the

ANSYS simulation results. Here for simplicity, flexural motion of the capillary in

y direction will be taken to be

vr(r, θ, z)wall = v0 sin (kbz) sin θ . (5.71)

In this case, following up with the same methodology given in Section 4.1.5, tan-

gential velocity becomes approximately

vz(r, θ, z)wall = v0r1kb cos (kbz) sin θ . (5.72)
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In the frequency range 40kHz-1MHz, we have r1kb ∼ 0.1. Then average slip velocity

from Equation 5.70 becomes,

vs =
3v2

0r
2
1k

3
b

8ω
sin (2kbz) sin θ . (5.73)

Now we need to find the secondary streaming effects due to this non zero slip

velocity at the fluid structure boundary. In reality, this slip velocity exists at

about 5δ away from the boundary. This value changes between 8-1µm in the

40kHz-2MHz range. However, since the capillary diameter is higher, for the sake

of simplicity, we will consider slip velocity at the boundary r = r1 rather than

r = r1 − 5δ.

Navier-Stokes and continuity equations are given as,

ρ[
∂v

∂t
+ (v · ∇)v] = −∇p+ η∇2v + (ζ +

1

3
η)∇(∇ · v) (5.74)

∂ρ

∂t
+ ρ∇ · v + η∇ρ = 0 (5.75)

Here, the point of interest is given to the second order acoustic streaming velocities

which are small compared to the speed of sound and oscillatory fluid particle

velocities. In this case, fluid can be treated as non-compressible, meaning that in

2d cartesian coordinates, the continuity equation reduces to,

ρ∇ · v = 0 ⇒ ∂vx

∂x
= −∂vy

∂y
(5.76)

Following this, there exists a function ψ such that

v = ∇ ×ψ . (5.77)

Here, ψ is called the stream function. In 2D ψ will have only one component

(ψ = (0, 0, ψ)), and components of the velocity can be found as

vx =
∂ψ

∂y
and vy = −∂ψ

∂z
. (5.78)
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Ignoring the last term (due to the non-compressible case) and taking the curl

of Navier-Stokes equation given in Equation 5.74, the curl of the gradient of the

pressure is eliminated. Following some vector calculus identities, we have,

∂(∇ × v)

∂t
+ (v · ∇)∇ × v − ((∇ × v) · ∇)v = η∇2

∇ × v (5.79)

Following Rayleigh [16], since secondary streaming velocities are low, all quadratic

second terms can be ignored. Then, in a steady state, all terms in the left hand

of above equation are neglected. Plugging in v from Equation 5.77, the above

equation becomes,

∇4ψ = 0 . (5.80)

Here ∇4 is called the biharmonic operator, which appears in elasticity and stokes

creeping flow problems. Apparently, here we have the second case.

Considering the y-z plane of the cylinder, problem can be reduced to two di-

mensions. Since the acoustic wavelength is much larger than the capillary diameter

(k ≪ 2r1) and we are seeking an approximate solution, biharmonic equation can

be written as [84, 4],
( ∂2

∂y2
+

∂2

∂z2

)2

ψ = 0 . (5.81)

The solution of the above equation is expected to be symmetry around the

central axis of the cylinder and in z direction it should have the same periodicity

as given in Equation 5.73. In this case, taking the center of the capillary as y=0,

and the stream function is found to be,

ψ(y, z) = (Ay +By3) sin(2kbz) . (5.82)

From Equation 5.78, streaming velocities, v′y and v′z can be found as,

v′y = −2kb(Ay +By3) cos(2kbz) (5.83)

v′z = (A+ 3By2) sin(2kbz) . (5.84)
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Since fluid is bounded by the cylinder at the fluid structure boundary r = r1, the

normal velocity vy has to be zero9, so A = −Br2
1. At the fluid structure boundary,

slip velocity is given in Equation 5.73. Then at r = r1,

v′z(r1) = B(3y2 − r2
1) sin(2kbz) =

3v2
0r

2
1k

3
b

8ω
sin (2kbz) then, (5.85)

B =
3v2

0k
3
b

16ω
. (5.86)

Finally secondary streaming velocities inside the capillary become

v′y(y, z) =
3v2

0k
4
b

8ω
(r2

1r − r3) cos(2kbz) (5.87)

v′z(y, z) =
3v2

0k
3
b

16ω
(3r2 − r2

1) sin(2kbz) . (5.88)

The top schematic in Figure 5.20 shows the normal and tangential velocities

during the flexural motion of the capillary.10 The graph in the middle of same figure

shows the plotting of streaming velocities calculated via Equations 5.87 and 5.88.

For the capillary structure flexurally oscillating with a vibration velocity (vy wall)

of 1m/s (vy wall), the slip velocity (vS) becomes about 10 µm/s. Another streaming

which is not shown in this graph is called Schlichting streaming, which happens in

the close boundary. This is drawn in the bottom figure. The thickness of this close

boundary streaming is very small (5δ). Further information about close boundary

streaming can be found in [2]. For capillary or microfluidic systems where cavity

dimensions get close to (5δ), Schlichting streaming cannot be ignored and in fact

become the dominant streaming effect due to the boundary layer oscillation.

9Here, the velocity terms we are talking about are the streaming velocities which are the
second order velocities. Motion of the fluid due to the flexural motion of the capillary is not
included here; in that case, apparently normal velocity will not be zero but the same as the
capillary wall velocity.

10For simulation and analytical results regarding this tangential motion, please see Section
4.1.5 in Chapter 4
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Figure 5.20: Top: Schematic of the normal and tangential velocities at the
capillary wall due the flexural motion of the capillary. Middle:
Quiver plot of streaming velocities, calculated by Equations 5.87
and 5.88. Bottom: Schematic of Schlichting streaming at the
close boundary [2].
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5.3.1.2 Streaming Effects in x-z Plane

In this section, streaming effects in x-z plane (capillary cross section) will be in-

troduced. Since in the x-z plane normal and tangential velocities get maximum at

vibrational maxima, the streaming effects will be calculated at vibration maxima.

As shown in Figure 5.21, for a capillary cross section oscillating up and down with

velocity v0, at points A and C, tangential velocity will be maximum. At these

points, normal velocities will be minimum. At points B and D, it will be the op-

posite. Then at the capillary-fluid boundary, tangential velocity can be written

as

vθ(r1, θ) = v0 sin θ . (5.89)

In this case from Equation 5.70, slip velocity becomes,

vs(r1, θ) =
3v2

0

4r1ω
sin(2θ) . (5.90)

Here, rather than solving the problem, it is possible to make an analogy to the

solutions found in the previous part through a curvilinear transformation. In this

way, an approximate but a quick solution can be achieved. As shown in Figure

5.21, if we open the oscillating circle from point A, the motion of the boundary

looks like a motion of a plate in which flexural and longitudinal modes are coupled

in a way that their amplitude is distributed spatially out of phase. Here, the point

of interest is tangential velocities. In such an analogy, the relationship between

circumference and wavelength becomes 2πr1 = λ = 2π/k, which leads to kz = θ

and kr1 = 1. In this case, in replacing all these terms in Equations 5.87 and 5.87,
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der boundary resembles a plate vibrating in a coupled flexural-
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become maximum which are the point of interest. Just be-
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streaming velocities obtained by Equations 5.91 and 5.92.
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we have

vr(r, θ) =
3v2

0

4r4
1ω

(r2
1r − r3) cos(2θ) (5.91)

vθ(r, θ) =
3v2

0

8r3
1ω

(3r2 − r2
1) sin(2θ) . (5.92)

Results obtained in the above equations are plotted in the graph given at the

bottom of Figure 5.21. Streamlines and orientation of streaming velocity vectors

shown in the graph are in agreement with the proposed streamlines by Nyborg

[85].

For a capillary oscillating with a velocity of 1m/s at 100 kHz, slip velocity at the

boundary is about 10 mm/s. This value is much higher compared to the streaming

velocities calculated in the y-z plane. This is because that tangential velocity in

x-z plane at a vibration maxima is much higher than the tangential velocities at

the vibration minima, which resulted in three orders of magnitude lower streaming

slip velocities.

Here, close boundary Schlichting streaming vortices are not included. There

will be other streaming vortices in the 5δ neighborhood of the circular cross-section.

These vortices, in fact, are the reason behind the nonzero slip velocity as mentioned

in the previous section.

Experimental results we obtained show that streaming effects are not influential

as long as radiation forces are high enough to capture particles. Streaming effects

might be useful for applications where mixing of fluids or samples are desired,

and that is another challenging phenomenon due to the laminar flow behavior.

Streaming vortices with a speed of 10 mm/s in a microcapillary would trigger fluid

mixing in the order of seconds.
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CHAPTER 6

EXPERIMENTAL RESULTS AND THE APPLICATIONS

Introduction

Experimental measurements regarding the characterization of the PZT-glass cap-

illary ultrasonic actuator mechanism and the applications in collection and sepa-

ration of various samples at the microscale will be introduced in this chapter.

In the first part, serving as the characterization of the actuator mechanism:

electrical impedance of the PZT plate, interferometric vibration analysis of the

capillary, vibration spectrum of the capillary, vibration amplitude versus voltage

drive and particle collection and voltage drive linear relationship are introduced.

In the second part, experimental results achieved are presented. These results

include the collection of micro and nanoparticles and biological samples such as

cells, bacteria and sperm cells; separation of materials with respect to acoustic

contrast factor; separation of materials with respect to size; planar centrifugation

of the blood; fast and efficient mixing at the laminar flow regime; and utilization

and control of oscillating bubbles for particle capture. In the last part, some

interesting observations such as a stylish collection mechanism of nanoparticles

and observations on the generation of Faraday waves in a microfluid platform have

been presented.
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6.1 Characterization of the PZT-Glass Capillary Coupled

Actuator

The main working principle of the PZT-Glass capillary actuator is the generation

of high amplitude acoustic waves in a sub-wavelength size microcapillary. This

acoustic excitation inside the capillary is generated by the flexural motion of the

capillary, and the flexural motion of the capillary is generated by the coupling of

the PZT plate’s vibrations. In this sense, designing the device subcomponents in an

integrated approach is very important. A superior example would be the ear. The

human ear consists of many different acoustical parts made up of different materials

and shapes such as the soft material of the outer ear, the channel, membrane, bones

suspended in a viscous fluid, the spiral and the nerves; all these components have

different characteristics but they combine to provide acoustic to electrochemical

transduction in such a superior way that it cannot even be modeled properly in

today’s information age.

As shown in Figure 6.1, in the case of the PZT-glass capillary actuator mech-

anism, there also exists a transduction pathway; however, it is simpler compared

to the case of the ear. Chapters 2, 3, 4, and 5 are dedicated to the modeling of

the parts of this transduction cascade. This chapter finalizes the characterization

by adding the last loops to the chain. One way to improve the performance of any

device depends on the proper characterization of the prototype. In an integrated

system in which subcomponents are designed to work in harmony, electrical signal

to cavity acoustics coupling may get enhanced. Following these principles, individ-

ual subcomponents of the PZT glass capillary actuator, and their coupling with

each other will be examined here.
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6.1.1 Electrical Impedance

Starting with the PZT plate, Figure 6.2 shows electrical impedance and the phase

plots of the PZT plate over the frequency range of 20kHz–2MHz. The spectrum

shows many resonance modes where the electrical impedance drops significantly.

Since the capillary mass is small compared to the PZT mass, its effect on the

electrical impedance of the PZT is not significant for the most of the resonance

modes of the PZT. While a finite element modeling of the PZT modes is under

investigation by using ANSYS, it will be included in a future reference, but not

in this thesis. From an intuitive point of view, it is possible to conclude that, es-

Chapter 5PZT

Capillary
Cavity/ fluid

acoustics

Input

Electrical signal

Output

Particle collection-separation

Nonlinear 

acoustic effects

Capillary/  fluid 

interaction
Chapter 2 and 4 Chapter 3 and 4

Figure 6.1: Transduction mechanism from electrical signal input to particle
manipulation. Electrical signal applied to the PZT, vibrates the
PZT. PZT vibrations couple to the capillary and capillary vi-
brates. Capillary vibrations modify the acoustic field inside the
capillary such that, through the nonlinear acoustic interactions
particles can be manipulated.
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Figure 6.2: Electrical impedance and the phase versus frequency of the PZT-
glass capillary actuator. The three curves represent; the PZT
plate before the attachment of the capillary; the PZT plate and
empty glass capillary; and the PZT plate and the water filled
glass capillary. Results show that slight change occurs at some
frequencies with the inclusion of the glass capillary.

pecially resonance frequencies of flexural, torsional and shear modes which involve

transverse motion, are not heavily influenced by the introduction of the capillary.

However extensional modes, especially the ones along the capillary, will be the

ones which are influenced. This is why at some resonance modes, resonance or

antiresonance frequencies are shifted a little bit. Impedance and phase curves of

the water filled PZT-glass capillary system and the empty case are almost iden-

tical, which reveals that the addition of water does not influence the rest of the
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system at all. This also confirms the intuitive approach presented above. Since

the fluid is not clamped, it is free to slide inside the capillary when the capillary is

extended due to a extensional mode of the PZT. In this case, it cannot change the

total elasticity of the actuator. It only acts as a mass load, and since the mass of

the fluid enclosed is small compared to the PZT, the impedance curve of the fluid

filled and empty cases is almost identical.

6.1.2 Interferometric Laser Doppler Measurements

of the Capillary Flexural Motion

Using a laser Doppler vibrometer is a powerful method for non contact measure-

ment of the surface vibrations. When a laser beam is pointed towards a vibrating

surface, a Doppler shift in the reflected beam is generated because of the normal

motion of the surface, and it is detected through its interference with the original

laser beam. Since this method of measurement is contactless and so does not lead

to a mass load or change in the boundary conditions, the measurements are con-

sidered to be very accurate. Figure 6.3 shows the interferometric vibrometer scan

of the capillary at various frequencies. In this figure the merit is to demonstrate

the flexural motion of the capillary, and the amplitude study will be given later in

this section. Scans include several harmonics of the flexural modes of the capillary.

In Figure 6.4, vibrational velocity amplitude at the capillary center point is

plotted against the frequency for the the empty and fluid filled capillary cases. This

is a point scan at the center of the capillary where only odd numbered harmonics

could be detected. For all of the even modes, the capillary center is a vibration

node and does not reveal any displacement or velocity. Comparing the fluid filled
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Figure 6.3: Interferometric laser Doppler scan of the resonating capillary
regime reveals flexural modes at various frequencies. Here these
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study on the amplitude analysis will be presented in the next
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Figure 6.4: Interferometric laser Doppler scan (amplitude spectrum) of the
center of the capillary for both empty and fluid filled capillaries.
Since the measurements are done at the center of the capillary,
peaks only show the odd modes. All even modes are suppressed
because the middle point is a node in those cases. Curves reveal
that fluid loading changes the frequency of the flexural harmonics
significantly

and empty capillary cases, it can be concluded that except for the low frequency

regime, there is a significant change in the frequency of the peaks because compared

to the mass of the capillary, the mass of the fluid cannot be ignored and causes a

significant shift in the peaks. Since the capillary internal radius and the capillary

wall has the same length, the addition of the water increases the mass by more

than 15%. Since the entire fluid is also pushed and pulled during the motion, in

transverse modes, fluid loading shifts the resonance frequencies deliberately.

Plots in Figure 6.5 compare the vibration amplitude of the center of the cap-

illary (in other words, odd numbered harmonics) with the electrical impedance of

the PZT. Both the fluid loaded and the empty capillary cases are examined. Vi-

brational amplitudes are related to the beam mechanics of the capillary, and this

is why they do not follow the impedance of the PZT plate. However, especially at

frequencies where a flexural harmonic matches a mode of the PZT plate, a huge

amplification of the vibrational amplitude can be observed. In experiments, this

212



200 400 600 800 1000 1200 1400 1600 1800 2000
10

1

10
2

10
3

10
4

Frequency (kHz)

Im
p

e
d

a
n

c
e

 (
O

h
m

))

Vibration Amplitude and PZT Impedance vs Frequency for Empty Capillary

0

20

40

60

80

100

V
ib

ra
ti
o

n
 A

m
p

lit
u

d
e

 (
m

m
/s

)

200 400 600 800 1000 1200 1400 1600 1800 2000
10

1

10
2

10
3

10
4

Frequency (kHz)

Im
p

e
d

a
n

c
e

 (
O

h
m

))

Vibration Amplitude and PZT Impedance vs Frequency for Water−filled Capillary

0

20

40

60

80

100

V
ib

ra
ti
o

n
 A

m
p

lit
u

d
e

 (
m

m
/s

)

Figure 6.5: The vibration amplitude at the center of the capillary is com-
pared to the electrical impedance of the PZT for fluid loaded
and empty capillary cases. Plots show that at flexural harmonics
where a PZT mode exists, vibration amplitude is amplified.

matching has also been observed that, while the voltage drive was kept constant,

at various frequencies, particle collection happens faster. This is a very important

information for device characterization. When designing future devices, enabling

some the harmonics of the fluid loaded capillary to match resonance modes of

the PZT may further device performance in terms of increasing efficiency during

electrical signal to cavity acoustics transduction pathway.

Electrical power is related to the square of the voltage (V 2/R), and the kinetic

energy of the flexural beam is related to the square of the velocity (mv2
0). In

this case, voltage drive and the vibration amplitude relationship is expected to be

linear. Figure 6.6 shows that amplitude of the vibration increases linearly with

the voltage drive. The slope of the curve also defines the conversion efficiency
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Figure 6.6: Vibration amplitude versus voltage drive. The plot reveals that
vibration amplitude linearly increases with the increasing volt-
age. The slope of the curve is 6.7 mm/s/V.

which in this particular frequency is 6.7mm/s/V. This plot is not produced in one

of the fundamental harmonics of the capillary and is just included to reveal the

linear behavior in the vibration amplitude-voltage drive relationship. However,

this is not the always case, for example, at frequencies such as around 77 kHz,

90 kHz and 300 kHz, PZT has resonance modes which can heavily couple to the

capillary flexural modes. In this case, nonlinear oscillations are observed. At these

frequencies, amplitude of the oscillation of the capillary varies in the range of 1–

60 m/s. This is much higher than the maximum achievable particle velocity in

the PZT (5 m/s). Such a case is shown in Figure 6.7. Interestingly, Fast Fourier

analysis of these modes reveal that subharmonic modes of the capillary flexural

modes are generated.1 For example, the interferometric scan and experimental

results confirm that around 77 kHz, the 5th or sometimes the 3rd flexural harmonics

of the capillary is excited. Actual frequency of these mode, however, are around

90 kHz and 36 kHz.

1Subharmonic modes mentioned here should not be confused with the subharmonic and sub-
wavelength stationary wave generation inside the capillary cavity mentioned before in the previ-
ous chapters. Here only the flexural modes of the capillary are mentioned.
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Vibration at 

300 kHz

Figure 6.7: Microscope images of the capillary. On the left, actuation is off
and the capillary is stationary. On the right, capillary is vibrating
during a 300 kHz drive while the mode excited is a lower harmonic
mode. Amplitude of the vibrations calculated from the observed
displacement gives 1-60 m/s. Capillary diameter is 200µm.
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Figure 6.8: Particle collection time versus the voltage drive.

Figure 6.8 shows the collection time versus the voltage drive. It has been shown

in the previous sections that collection speed of the particles depends linearly on

the acoustic force (vs ∼ F ) by Stokes law; acoustic force is related to the square

of the vibration velocity of the capillary (F ∼ v2
0); and velocity of the capillary

is linearly related to the voltage. In this case, collection speed of the capillary

is expected to depend on the square of the voltage drive (vs ∼ V 2). Since the

collection time is inversely related to the collection speed, collection time is related
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PZT PZT

Figure 6.9: Asymmetric loading on the capillary and the relatively free PZT
cantilever arrangements possibly increase the amplitude of the
flexural vibrations.

to the inverse square of the voltage drive (t ∼ V −2).

Regarding device characterization, the last part is related to the efficient cou-

pling of the PZT vibrations to the capillary. Figure 6.9 shows two actuator mech-

anisms. Experiments showed that the device on the right did not perform well in

terms of particle collection and separation, which can be attributed to the fact that,

free to move PZT cantilever ends and bending load generated by the asymmetric

loading increases flexural coupling.

6.2 Applications

Applications of PZT glass capillary actuator in collection and separation of mi-

croparticles and biological entities are presented in this section.

6.2.1 Collection of Micro-Nanoparticles

As it was shown in Chapters 4 and 5, flexural vibrations generate subwavelength

stationary acoustic pressure fields inside the capillary which lead to the particle
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collection. Particles collect at the vibration maxima of the capillary and collection

pattern follows the harmonicity of the capillary flexural modes. In Figure 6.10,

microscope images (negative) show the collection spots over a broad frequency

range. As expected from the theory given in Chapter 2, the wavelength of the

flexural modes shows dispersive behavior.

In Figure 6.10, collected particles are 3 µm polystyrene beads, which have a

density of 1050 kg/m3. This is very close to the density of the water. As the acous-

tic forces are related to the density difference, many materials which have higher

density differences than polystyrene–water case can be collected easily. Polystyrene

beads are very functional in terms of bioanalytical assay related applications in the

microfluidics. In this case, the actuator mechanism presented here may have many

other application areas not presented in this study.

One interesting observation included in Figure 6.10 is that, at some frequen-

cies, collection happens at the center of the capillary, while at some frequencies it

happens along the capillary. This can be related to the coupling of the acoustic

modes generated by the flexural motion and the plane acoustic wave modes along

the capillary. Further study is needed for the mechanism of this possible coupling.

While the collection dynamics happen at the micro and nanoscopic regime, due

to the high aspect ratio of the capillary (long length), results can be monitored with

the naked eye. As shown in Figure 6.11, the collection of 500 nm silica particles

are captured with a point and shoot digital camera, which enables monitoring of

the system performance even with a simple camera included in a cell phone.

Images on the bottom of Figure 6.11 show the collection behavior of the actua-

tor at different particle size limits. It can be observed that for particle sizes above
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Figure 6.10: Collection of 3 µm fluorescent polystyrene beads at various flex-
ural harmonics of the capillary.
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a micrometer, these particles are tightly packed; however, as the particle size gets

smaller, the acoustic radiation force decreases, and the collection location become

cloudy due to Brownian motion. Still a substantial concentration difference is gen-

erated across the capillary which can be observed by the naked eye, as shown in

the top images of the same figure.

500nm silica nanoparticles are randomly distributed

At 72 kHz, 3 collection spots

At 1.6 MHz, 26 collection spots

10 micron beads 3 micron beads 300 nm beads

Figure 6.11: On the top, the collection of 500 nm silica nanoparticles under
acoustic actuation are shown. The pictures on top are taken
with a hand held point and shoot digital camera. The picture
in the middle shows the microscope image of collection. The
series of pictures on the bottom reveal that as the particles size
goes to the submicron regime, a closed packed collection style
leaves its place to a cloudy collection.
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6.2.2 Collection of Cells and Bacteria

Since all materials have unique material properties which are different than the

fluid medium in which they are suspended, acoustic forces can be used to manip-

ulate almost all materials. Biological samples such as bacteria and cells also fall

in this wide category. The typical size for the bacteria is in the 2-8 µm range and

for the cells it is in the 2-20µm range. This range of particles can be efficiently

collected in the PZT-glass capillary actuator.

Figure 6.12 shows the collection of various biological samples. On the top, mice

sperm cells (not live) are collected at a vibrational maxima. This method can be

used to separate healthy sperm cells from the unhealthy ones. Healthy sperm cells

are good swimmers targeted to find the egg cell for fertilizing. After sperm cells

are collected, a slow flow can be introduced to the medium and radiation force

can be adjusted in a way that good swimmers can statistically run away from

the collection spot. In this way while bad swimmers are captured in the acoustic

traps, good swimmers can be transported with the flow. The second and the third

line of images show collection of Escheria Coli bacteria under ultrasonic actuation

in which bacteria concentration at certain locations is drastically increased. The

image on the third line shows the increased light scattering from the right section

of the capillary due to the collected bacteria. In the food and health industries,

detection of bacteria significantly depends on the concentration and detection of

very pathogenic bacteria at low concentrations which need treatments to increase

the concentration. The actuation mechanism might be helpful in this area.

The images in the fourth and the fifth line of Figure 6.12 show collection and

growth of HeLa cells inside the capillary. While this part is under development, by

using acoustic radiation forces, three dimensional surface free cell growth might be
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Escherichia 

coli bacteria

Escherichia 

coli bacteria 

(light 

scattering)

HeLa cells

HeLa cells

Figure 6.12: Collections of the biological cell samples are presented. On the
top, thawed mice sperm cells are collected. Pictures in the sec-
ond and the third line show the bacteria collection. Bacteria
were alive and actively swimming during and after the actua-
tion. Images in the fourth and the sixth lines show HeLa cells
collected in a vibrational antinode.
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possible. Since stem cells differentiate depending on their community and spatial

location, this may have new application possibilities in stem cell research.

6.2.2.1 Safe Zone for the Biological Samples

In microbiology labs acoustic horns are used to damage cells and bacteria so that

the proteins and organelles can be released to the fluid in which they are suspended.

In the low kHz frequency regime, high amplitude acoustics generate cavitation.

Cavitation is a nonlinear phenomenon in which generation of the gaseous bubbles

occur due to the high amplitude of the sound. As soon as these bubbles are

generated, as shown in Section 6.2.7, they start to oscillate. When they are not

confined, they also move. These energetic micron size bubbles can generate enough

shear stress in their fluid neighborhood and damage the cell wall.

In our experiments, except for very highly coupled sub 100 kHz frequencies, cav-

itation has not been observed. In the case of the E.Coli bacteria sample mentioned

above, bacterium cells were alive and were swimming even during the actuation.2

In addition, experiments with cells also revealed that most of the cells continue to

grow. One challenge regarding cell growth in a capillary is that cells need nutrition,

oxygen and carbon-dioxide to grow. This requires a supply of materials through a

continuous flow. In our experiments, a supplement flow was not included. In fu-

ture cell biology related applications, this flow can be generated by electroosmotic

or pressure driven flow.

2A video recording showing the collected bacteria while swimming is available from the author
upon request.
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6.2.3 Separation of Materials with Respect to Acoustic

Properties

It was shown in Chapter 5 that the sign of the acoustic radiation force depends

on the acoustic factor. As was shown in Figure 5.2, materials which have positive

and negative acoustic contrast factors feel forces in the opposite direction, which

enables particle separation related to the acoustic contrast factors. Details of this

process are given in Section 5.1.3.3. Figure 6.13 shows the separation of air bubbles

and 500 nm silica beads under actuation. While 500 nm silica beads collect at the

pressure nodes generated at the vibration maxima, air bubbles are collected at

vibration nodes. In the images, locations where particles are collected are blurred

due to the motion of the capillary, whereas the the image looks sharp at the

vibration nodes where bubbles collect. Most of the materials which have creaming

72 kHz

90 kHz

No vibration

No vibration

Maximum vibration Maximum vibration

Maximum vibration

Figure 6.13: Demonstration of separation of materials with respect to the
acoustic contrast factor. Here 500 nm silica beads are collected
at vibration nodes where acoustic pressure nodes are formed,
and air bubbles are collected at vibration nodes. The orange
colored arrow points out the motion of a micron size dust par-
ticle oscillating with the capillary. (As a scale, the capillary
diameter is 200µm.)
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effect in the fluid they are suspended in will behave in the same way as the bubble

shown here.

6.2.4 Experiments on Blood

As is shown in the previous section, materials can be separated with respect to

their acoustic contrast factor. Blood is a very complex fluid. Almost half of its

volume is formed by cells of various sizes, and the plasma includes thousands of

different proteins, lipids, sugars, or simply whatever the individual ate a few hours

ago. Experiments performed with fresh canine blood reveal that as happens in

the case of the silica-air bubble mix, red and white blood cells are collected in the

vibration maximas, whereas fats and some platelets are most likely collected at

the vibration nodes, as shown in Figure 6.14. As in the previous cases, separation

bands can be seen with the naked eye and be captured by a point and shoot camera.

Lipids and some 

platelets

Taken by a point and 

shoot camera

Blood plasmaRed and white blood 
cells

Red and white blood cells 

(white blood cells are 

stained and look black)

Lipids and some 

platelets

Figure 6.14: Planar chipscale centrifugation of blood components via ultra-
sonic actuation.
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Increased density of  white blood cells at certain 

locations after acoustic flushing  (black dots are 
the stained white blood cells )

More white 

blood cells

Less white 

blood cells

Only white 

blood cells

Concentration of white blood cells

Only white 

blood cells

Figure 6.15: The pictures on the left show increased white blood cell number
density after a portion of the red blood cells are flushed away.
Here, the white blood cells are stained for imaging purposes
and appear black. At certain collection spots, collection of only
white blood cells can be observed.

The actuator mechanism presented here performs as a chipscale planar cen-

trifuge for the initial separation of blood components. In hematology experiments

in which mice is used, blood sampling influences the metabolism of the mice. In

order to prevent that, a very small volume of blood sampling is needed requiring

small volume bioanalytical equipment. The actuator presented here may help in

that area.

One interesting effect that happened during the experiment is that, due to the

high amplitude vibrations generated at the free ends of the capillary, some portion

of fluid enclosed inside the capillary is acoustically pumped away. During this

flow, many of the cells were also flushed out. When the remaining samples were

re-concentrated, it was observed that at some collection spots, concentration of the

red blood cells were significantly lower. In fact, there were spots where only white

blood cells were present. In other words, most of the red blood cells were flushed

away so that the concentration of the white blood cells was selectively enhanced.
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Resulting pictures showing the concentrated white blood cells after the flush of red

blood cells are shown in Figure 6.15. White blood cells are stained with methylene

blue, which is why they appear as black colored cells. One explanation for the

separation observed here might be as follows: white blood cells are two to three

times larger than the red blood cells and the acoustic drag during the flushing of

the fluid might have lead to a concentration of white blood cells.

6.2.5 Separation of Microparticles with respect to Size via

Mode-switching

As it was shown in the two previous sections, acoustic radiation forces lead to

particle separation, depending on the acoustic contrast factor. Another nonlinear

acoustic phenomenon that happens near an oscillating surface is acoustic stream-

ing. In a closed cavity, an acoustic streaming effect generates circulating vortices.

These streams also capture particles and keep them circulating. Acoustic radiation

forces scale with the cube of the particle size, whereas the streaming related Stoke’s

drag force scales down linearly with particle size. In this case, as the particle size

gets smaller, a limit exists in which acoustic radiation forces become smaller than

the drag forces. In such a case small particles can be captured in the stream while

the bigger particles are held by the radiation force. By this method, as shown in

Figure 6.16, an initial mixture of 10 µm blue fluorescent and 3 µm yellow fluo-

rescent polystyrene beads can be separated. At 72 kHz, 10 µm beads collect at

the vibration antinodes, whereas 3 µm yellow beads are captured in the stream

vortices generated at the vibrational nodes. However, at this frequency (72 kHz),

yellow beads span a wide circulation range. To eliminate this, frequency can be

shifted to 335 kHz, in this case, the 10th harmonic of flexural mode. In this case,
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Figure 6.16: Separation of 10µm and 3µm polystyrene beads. At 72 kHz,
10µm beads are captured at vibration antinodes by acoustic
radiation forces, whereas 3µm beads are captured in the circu-
latory acoustic streaming. Switching the resonance frequency
to a higher harmonic value of the flexural mode, yellow beads
are also captured in a close neighborhood.

a pressure node is generated near the circulatory yellow beads and all beads in

the neighborhood are captured. Since the acoustic forces increase with the fre-

quency (Section 5.1.3.2), smaller beads can be captured without any difficulty in

a higher harmonic. In this way, beads are localized and separated up to an almost
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millimeter apart.

During the separation process mentioned above, blue beads are always stopped

by the radiation forces and never captured in the stream. However, in some cases,

some portion of yellow beads cannot be fully captured by the stream and get

caught by the radiation forces. In this case, locations where yellow beads are

captured consist of 100% yellow beads; however; in some experiments, it has been

observed that at the spots where blue beads are captured, some yellow beads can

be found. However, these beads can still be further separated locally as pictured

in Figure 6.17. A fully developed explanation of such a separation needs further

investigation but a rough explanation would be as follows: acoustic radiation forces

are spring like forces and they become zero at the acoustic pressure nodes. In this

case, if a net force is applied to a particle in a certain direction, the particle will

move towards that direction until the radiation force gets high enough to balance

that applied force. In this case, stokes drag force applied by the slow streaming

balances different sizes of particles at different locations which may lead to the

observed local separation. Another reason would also be related to the scattering

of the primary acoustic field by the large beads collected at the center of the

pressure nodes. These scattering effects may modify the net acoustic field such

that a secondary minimum can occur in the close neighborhood of the primary

minimum.

6.2.6 Mixing

The PZT-Glass capillary actuator presented here can also be used for mixing an-

alytes, beads or fluids which can be a challenge due to the laminar flow governed

microfluidics. Figure 6.18 shows the mixing process of the 3µm and 10µm beads
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Figure 6.17: While large beads are never captured in the flow field and small
beads form 100% pure collections, yellow beads in some exper-
iments get caught by the radiation force so that the acoustic
pressure nodes consist of mostly large and some small beads.
However, at certain frequencies, these can get further separated
locally, as shown here.

which were separated by the methods presented in the previous section.

The greater proportion of this dissertation focuses on the flexural modes of

the capillary; however, it is shown in Chapters 2 and 4 that longitudinal and

torsinal modes also exist in 20kHz–2MHz frequency regime. In addition, there

are frequencies in which no resonance mode of the capillary is found, but due to

the PZT resonance, huge amplitude vibrations are coupled to the capillary. This

kind of actuation generates propagating waves on the capillary and in the fluid

enclosed in the capillary. These interactions lead to statistically semi-controlled

motion inside the capillary similar to the process of stirring sugar inside a cup of

tea with a spoon. In such a process, while the action and the aim are clear, events

taking place are completely chaotic though controllable. In this way, as shown in

Figure 6.19, microstorms can be generated inside a microscopic cavity which lead
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time

Figure 6.18: Mixing of the 3µm and 10µm polystyrene beads. Beads were
previously separated by the acoustical methods presented in the
previous section.

271 kHz

376 kHz

Figure 6.19: Micro“storms” generated inside the capillary can enable fast
and efficient mixing in a laminar flow governed regime.

to fast and efficient mixing.
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6.2.7 Bubbles

At the resonance modes of the PZT plate, capillary ends suspended freely outside

the resonating regime can vibrate rigorously. These very high amplitude oscil-

lations create vibration amplitudes in the order of 10 mm/s or higher. During

those vibrations, cavitation effects can be observed and bubbles are introduced

into the cavity. These micron size bubbles oscillate at their resonant frequencies

and their subharmonics. These high amplitude bubble vibrations generate well-

defined streaming jets. As shown in pictures in Figure 6.20, these jets can capture

particles randomly suspended in their neighborhood. As illustrated in the top im-

age, there are no particles left in the central zone where two bubbles are oscillating.

At the edges, however, freely suspended particles can be observed. Orientation of

these fluid jets depends on the vibrational mode of the bubble and so changes

with the frequency; a slight change in the drive frequency around the resonance is

enough to modify the orientation of the jets. In addition to particle capture, these

jets can also be used as a tool to investigate vibrational modes of the bubbles.

The use of oscillating micro-bubbles for microfluidic applications is a another

research field which is beyond the scope of this thesis. Here, the method is briefly

mentioned as another method to generate and control the bubbles. Since the

bubbles are enclosed in a capillary control and monitoring of them can be easier.

Another interesting phenomenon observed during the experiments is that a

large bubble is observed to decay in the order of roughly 10-30 seconds. The decay

of the bubble was steady, and when the actuation was released the bubble did not

appear back. This observation is presented in Figure 6.21.
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Top view

Figure 6.20: Bubbles generated due to cavitation can be forced to oscillate
because of the ambient acoustic field. Vibrational modes of the
bubbles generate streaming jets in which particles suspended in
the neighborhood are captured.
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623 kHz

Figure 6.21: Fast decay of a large bubble under ultrasonic actuation. Decay
is observed to take place in the order of 10-30 seconds roughly.

6.2.8 Alignment of Asymmetric Microparticles

Until now, most of the particles or biological samples tested in the PZT-glass

capillary actuator were round or ellipsoid particles. Here, collection behavior of

thin film silicon dioxide (glass) tablet letters is presented. C-O-R-N-E-L tablet

letters were fabricated in a way that from C in the beginning to L at the end,

particle size goes from biggest to smallest. Few of these letters can be seen in the

top picture of Figure 6.22. In the experiments, it is observed that the acoustic field

did not regard the letter size difference very much because of the huge asymmetry

and high aspect ratios of the particle dimensions. In the acoustic field, these letter
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tablets are aligned with respect to the orientation of the acoustic field and can be

used as alignment markers helping to find out the orientation and distribution of

the acoustic field. The second line of pictures presented in the same figure reveals

different angle of orientations at different frequencies. The picture on the right

edge also reveals the two sets of collected tablets with a gap comparable to the

observations presented in Figures 5.18 and 5.19.

Because glass has strong a density difference (2200 kg/m3) with water (1000

kg/m3), it quickly sediments due to gravity. Applying the acoustic forces gradu-

ally enables lifting of the structure in a controlled manner. This moment effect

may have potential applications in terms of lifting high aspect ratio sedimented

particles.

6.3 Other Interesting Observations

6.3.1 Wavy Collection Pattern

As shown in the top picture of Figure 6.23, in most cases, particles are collected at

the center of the capillary. However, at some frequencies, these collections are not

centered but follow a wavy pattern inside the capillary. This happens in both higher

and lower frequencies, but is easier to observe at higher frequencies due to the lower

wavelengths. While further investigation is necessary, these secondary effects may

stem from coupling of other modes such as capillary longitudinal and torsional

modes or acoustical cavity modes, which are the plane modes along the capillary.

Another possibility might be the helical wave propagation over the cylinder walls.

When an acoustic wave propagates along the cylinder, there are three dimensions
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Silicon dioxide thin film C O R N E L L letters are randomly distributed.

Actuation off 367 kHz Act. 

off

1.216 

MHz

1.01 

MHz

Asymmetric letter particles 
align themselves with the 
acoustic pressure field.

Figure 6.22: Silicon dioxide thin film letter tablets inside the capillary are
shown in the top image. Due to the high aspect ratio of the
tablet letters, they align themselves with respect to the acous-
tic field. A gradual increase of the acoustic field generates a
moment lifting up the particles sedimented due to the gravity.

it can propagate: radial, angular and along-the-axis directions. The thickness of

the capillary in radial direction is very short and resonance frequencies are in much

higher frequency regime. And in regular analysis of the flexural modes, only the

propagation in the axial (z) direction is considered. However, elastic disturbances

can also propagate in the angular directions. When combined with the propagation

in the axial direction, waves propagate in a helical manner. Another version of

this case was briefly sketched in Figure 4.7. In short, further analysis is needed to
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1713 kHz

501 kHz

1.61 MHz

Figure 6.23: In most flexural harmonics, particles collect at the center of the
capillary, as shown in the picture on the top. However, at some
frequencies, collection locations follow a wavy pattern.

achieve a formal conclusion.

6.3.2 “Designer” Collection of Submicron Particles

At higher frequencies, during the cloudy collection of submicron particles, beautiful

shape collection patterns occur. Such collections are shown in Figure 6.24. These

splendid artistic patterns may also help to characterize the acoustical microcavity

in future studies.

6.3.3 Extreme Slow Waves

When particles are suspended inside the capillary and no actuation is applied,

they gradually sediment to the bottom of the capillary. As shown in Figure 6.25,
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Figure 6.24: Formation of artistic shapes during the collection of submicron
particles.

it can be observed that when the particles are at the bottom and in contact with

the capillary surface, and the actuation is turned on, they instantaneously form

collection patterns with a period of 20-60 µm. These patterns do not form when

the particles are suspended. Similar patterns are also generated in another micro

actuator mechanism presented in Figure 8.18, which utilizes plane acoustic modes.

These periodic formations correspond to a wave speed of 2-10 m/s, an extremely

low wave speed to appear in an elastic medium. This is an extremely low wave

speed to be appear in an elastic medium. These formations can be related to the

striations observed in the Kundt’s tube experiments.

In addition, surface waves with similar wavelengths are observed in a water
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Figure 6.25: When particles sediment to the bottom of the capillary and the
actuation is turned on, these particles form periodic collection
patterns on the bottom of the surface with wavelengths in the
order of 20-50 µm.

Water film actuation off

Actuation at 79 kHz 

Crispations occur on the 

water surface, λ= 60 μm

Figure 6.26: In a fluid thin layer, generation of Faraday waves is presented.

meniscus left on the capillary walls. When the actuation is on, the periodic wave

pattern forms, and that can be seen in Figure 6.26. These waves have wavelength

of 60 µm at 79 kHz which result in wave speed of 5 m/s. These waves are possibly

the Faraday waves observed at the microscale.
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CHAPTER 7

COLLOIDAL DYNAMICS AND MICROACOUSTICS

Introduction

In this chapter, the behavior of charged colloidal suspensions under ultrasonic

concentration and their dispersion behaviors after the release of the acoustic forces

will be introduced. The results presented here may lead to new bio-analytical

techniques at the microscale, which may serve as the microscale alternative to

bulky centrifugation systems. The technology can also be used in drug testing.

The typical time line for a drug to be available in the pharmacy takes 12-20

years from the beginning of the project including FDA approval. The total cost

of such a development process is in the order of few hundred million dollars [86].

All the necessary tests performed at different stages of development contribute

to the increase in the amount of preparation time and the cost of the product

such as valuable protein samples. The investment is risky as not all innovative

projects pass the necessary stages and become marketable products. In this regard,

microfluidic systems are promising for reducing the possibility of fast and accurate

characterization of new drugs with low sample use.

This chapter consists of three major sections. In the first section, theoretical

and practical background information on colloidal systems is given. Major attrac-

tive and repulsive interactions between suspended particles which lead to colloid

stability are also introduced in this section.

In the second section, dispersion of colloidal particles after release of acoustic

forces is investigated. Before the release of the acoustic forces, particles were
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concentrated at preferred locations due to the acoustic forces present. Results

prove the generation of a macroscopic electric field, when charged particles are

collected at preferred locations. After the release of the acoustic force, this self

generated electric field leads to fast dispersion of the particles (few hundred times

the rate of regular diffusion). From the dispersion speed and independent zeta

potential measurements, the magnitude of the electric field is estimated.

In the third section, characterization of the collective behavior of colloidal sys-

tems under acoustic forces is presented. In the first part of this section, zeta

potential-particle stability relation is re-demonstrated by use of PZT-glass capil-

lary actuator. In addition, it is shown that PZT-glass capillary actuator can be

used to monitor and estimate long term stability of the colloidal systems with

relatively short experiments.

The second part of the third section is related to the calibration of acoustic

forces against the counterbalancing dispersive forces. While collecting particles

at preferred locations, the acoustic force fights against the dispersive electrostatic

forces. As the particle concentration increases at the collection points, the electric

field reaches a limit to balance the acoustic force. Through the approximate value

of the electric field obtained in the second part, the order of magnitude of the

acoustic force is obtained. While the acoustic forces can be calculated through

first order approximations, strongly nonlinear behavior at some frequency regimes

require a measurement-based calibration of the acoustic force. As the actuator

mechanism presented here can be potentially used on biological entities, an em-

pirical way of estimating acoustic pressure amplitudes would be helpful so that

amplitudes where disruption begins can be strictly prohibited.

240



7.1 Colloids and Electrochemistry

7.1.1 Colloids: A Short Definitive Introduction

The term colloid can be defined as a system of two substances, in which one

substance is distributed evenly in a discrete phase throughout the second substance

of continuous phase. The dispersed materials, and the continuous medium they

are in may be in gaseous, liquid or solid phases. Macromolecules can also be

the dispersed materials. In most cases, dispersed phase substances show colloidal

behavior in the size range of 1-1000 nm [87].

Under the umbrella of the above definition, systems such as, fog, smoke, styro-

foam, milk, paints, fruit ciders, micro and nanoparticles suspended in fluid, bac-

teria in water, proteins dissolved in water or other solutions, waste water, shaving

cream, drug suspensions, are all colloidal systems. Most available products in

the market pass through stages during production in which colloidal interactions

became the limiting or the significant factor, which is why developments in the

science of colloidal physics and chemistry draw a great deal of attention from very

diverse disciplines in academia and industry.

Colloid stability is one of the main subject of interest. For example in paint

industry colloidal system of dye particles in the solvent is stabilized enough not

to coagulate and also be suitable for mixing (with other colors); however in waste

water plant, pollutants need to be precipitated. While the scale is different, col-

loidal physics and chemistry methods used in a waste water treatment plant to

precipitate pollutants and in a biochemistry lab to separate proteins by gradual

salt concentration sedimentation, are the same.
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While the history of colloidal science dates back to the early 19th century, in

nature, colloids and colloidal interactions can be find anywhere and have dominated

in importance from the beginning. Blood, skin and milk are examples of very

complex and stable colloidal systems. The utilization of colloidal systems and

their stabilizing by human beings have also been present for a long time. In many

parts of the world, for thousands of years, to prepare good food, people used

traditional recipes whose speciality many times relied on colloidal chemistry. One

example, Fatma Serhatlioglu, who for many years managed her own vegetable and

fruit garden in Elazig, Turkey, used the white soil collected from the hills around

her garden, to eliminate the muddy look of the fruit ciders and fruit leathers

she prepared from the home grown produce. During the boiling process of the

juice, white soil was added to solution, which appeared clear after sedimentation.

Careful pouring of supernatant to floured sheets and drying under the sun for a

day was the last step before cutting the fruit leathers into single serving pieces. By

this method, Serhatlioglu prepared fruit leathers as delicious winter fruit snacks

for other family members (including the author). Using her recipe, her dried

fruit snacks were always shiny and transparent with an “eat me” look for the

kids, rather than a dull and foggy appearance that could spoil their appetite.

From a more scientific perspective, her magic white soil was no more than lime

carbonate (calcium carbonate) and the process she was following was reducing the

acidity and changing the ionic concentration of the solution so that the colloidal

fruit particles and fibers start to agglomerate and then precipitate with the added

calcium carbonate, so that the supernatant becomes clear. Throughout the history,

human kind unknowingly used colloidal chemistry in similar forms and developed

experimental experiences which had been transferred from one generation to the

next.
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In this chapter, among many colloidal systems, the point of interest is on the

solid particles dispersed in fluids, particularly their behavior under ultrasonic fo-

cusing, and behavior after release of acoustic forces.

7.1.2 Diffusion of Colloidal Dispersions

When a drop of water soluble ink is dropped on the surface of a glass of water,

it is observed that ink does not stay where it is dropped but starts to mix with

the rest of the water. At the point where ink is introduced to water, the ink

concentration is very high and ink diffuses from high concentration region to low

concentration region. In 1855, A. Fick [88] formulated the law of diffusion. In his

first law, he related the flux J(z, t) of the material passing through at point z to

the spatial gradient of concentration (n(z, t)), so two quantities are related to each

other through a constant called diffusion coefficient (D).

J(z, t) = −D∂n(z, t)

∂z
(7.1)

From his first law, assuming the concentration is changing in time due to particle

flux, he also derived the second law of diffusion, which relates concentration change

in time to the change in the behavior of the flux in spatial coordinates. Assuming

the diffusion constant D is the same for everywhere in the solution, the second law

of diffusion is given by,

∂n(z, t)

∂t
= D

∂2n(z, t)

∂z2
. (7.2)

While Fick’s formulation through macroscopic observations was very successful in

terms of explaining general diffusion behavior, a microscopic explanation became

clear afterwards.

The microscopic explanation of diffusion is related to molecular dynamics. Flu-
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ids consist of molecules and these molecules have velocities whose average is related

to temperature. Velocities of these molecules have a distribution and this distri-

bution had been modeled by the Maxwell-Boltzmann distribution [89]. Micro and

nanoparticles suspended in a fluid are subject to collisions of fluid molecules mov-

ing with certain velocities. Each colliding fluid molecule transfers some amount of

momentum to the particle. Since velocities of these hitting molecules have a dis-

tribution, most of the time net momentum transfer to the particle is not zero, but

rather has a random net value and direction. This random momentum transfers

result in short time jiggling motions and cause a statistical average displacement of

the particle. This phenomenon is known as Brownian motion after Robert Brown,

due to his early observations on random displacements of plant pollens under the

microscope [90](1827). In fact, random motion of particles in fluids and gases was

observed much earlier by many other researchers, Jan Ingenhousz on the random

motion of coal dust particles in alcohol solution [91]. However, Brown was the first

to make systematic experiments and conclude that these movements are not due to

bubbles, interactions among particles, nor the particles themselves. While a strong

debate was active for the following 50 years about the cause of these random mo-

tions, with the development of the molecular theory, in 1877, Delsaulx suggested

motion is due to random impact of liquid molecules [92]. After him, many theoret-

ical approaches including relating the motion to temperature have been published.

In early 1900s, independently, Smoluchowski and Einstein published articles giving

a more complete theoretical approach. While its area of interest is primarily elec-

trical noise, beginning section of article published by Abbott et al. [93] gives the

brief history and references of this phenomenon. In his work, Einstein used the fact

that in equilibrium, free energy should be zero and he calculated the equilibrium

dynamics due to concentration change and osmotic pressure [94]. Relating the flux
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of particles passing an area to diffusion constant, he found the diffusion constant

for a particle given as1

D =
kT

6πηa
(7.3)

where k is the Boltzmann constant, T is the temperature in Kelvin scale, η is the

viscosity of the fluid and a is the radius of the particle [94]. For a particle having

size of 500 nm, suspended in water, at room temperature, the diffusion constant is

expected to be around 0.85 µm2/s which is in the order of experimentally obtained

values given in the literature [95].

AssumingN0 is the initial concentration of noninteracting molecules or colloidal

particles introduced to a solution at z = z0 at t = 0, the solution of Fick’s second

law of diffusion for the concentration in one dimension gives

n(z, t) =
N0√
4πDt

e(z−z0)2/4Dt . (7.4)

If there is only one particle, then the above formula simply gives the probability

distribution of finding the particle at a particular location. The mean displace-

ment of the particle or distribution of particles can be found from the distribution

function. Since this function is a Gaussian distribution, the mean displacement

will be given as

λz =
√

2Dt. (7.5)

As seen, the mean displacement is related to the square root of the time.

As an example, assuming 1000 silica particles (d=300 nm) are introduced to

the solution at z = 0 point, at t = 0, the change in the concentration distribution

is given in Figure 7.1. In this plot, total area under the each curve gives the total

particle number (1000).

1Since the derivation can be found in many sources such as [94], it is skipped here.
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Figure 7.1: Diffusion of 1000 non interacting particles. Since particles as-
sumed to be noninteracting, at t = 0, particle density at z = 0 is
infinite (Dirac-delta function). As time passes, distribution func-
tion takes the form of a Gaussian distribution. Here, particle
size is 500 nm and solution is water at room temperature. While
the mean displacement increases with square root of time, the
tail of the distribution moves faster. In a system of interacting
particles, like silica beads, particle density distribution cannot be
infinite due to the exclusion principle. For such cases, particle
distribution at t=0 can be approximated as a step function or a
Gaussian in which t is replaced by (t+ t0) where t0 > 0.

7.1.3 Inter-particle Forces in Colloidal Dispersions and the

Colloidal Stability

7.1.3.1 DLVO Theory and van der Waals Interactions

Particles suspended in a fluid medium are subject to many different interactions.

Some of these interactions can be listed as van der Waals, electrostatic, hydration

interactions. Depending on the electrolytic or steric conditions, this list can be
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expanded. Assuming no steric interactions are present due to the absence of any

absorbed micellar or polymer layers, van der Waals and electrostatic interactions

have more significant influence compared to other forces listed above. The theory

developed by Derjaguin, Landau, Verwey and Overbeek2 has been known as DLVO

theory for more than half a century. Although it has been known that DLVO

theory fails at certain ranges such as low colloidal and salt concentrations, or high

salt concentrations and colloidal crystallization, it remains as the fundamental

first order approach in terms of characterization of colloid stability. DLVO theory

predicts the interaction energy between two particles to be the sum of van der

Waals (Uv) and electrostatic forces (Ue),

U = Uv + Ue (7.6)

van der Waals interactions are always attractive and for short gaps in the order

of particle size, interaction energy between two identical spherical particles due to

van der Waals effect is given as [96]

Uv = −A12a

6h
(7.7)

where a is the particle radius, h is the gap between the particles, and A12 is the

Hamaker constant, named after H.C. Hamaker [97].

Before introducing electrostatic interactions of colloidal particles suspended in

fluid, it is necessary to investigate further the electrochemistry of the system.

7.1.4 Electrochemistry of Dispersions and Zeta Potential

Many particles bear surface charges when they are suspended inside a fluidic

medium. Usually this phenomenon stems from capturing of ions present inside

2Derjaguin and Landau, and Verwey and Overbeek had developed this theory independently.
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the fluid, or losing some surface ions present on the particle or both. Due to this

ionic exchange, as shown in Figure 7.2 an electrical double layer forms in the fluid

particle boundary region. Inner ions in the double layer are strongly attached to

the particle surface and move with it, and they form the Stern layer [98]. Outside

of the Stern layer, remaining counter ions form a diffuse region which defines the

shear layer in which particle moves with respect to the stationary fluid molecules.

The electric potential at this layer is called zeta potential (ζ) which defines the

electrokinetic properties of the particle. Being the only measurable quantity re-

lated to the charge information of the particle inside the fluid, zeta potential is

used in place of surface potential in analytical calculations.

Zeta potential, ζ is an experimental quantity and can be obtained from elec-

trophoretic mobility of the particles by the formula

ζ =
3ηυ

2εEf(κa)
(7.8)

where η is the viscosity of the fluid, υ is the particle velocity with respect to

stationary fluid, E is the applied electric field, ε is the dielectric constant of the

material, and f(κa) is a constant number related to Debye length, and a the radius

of the particle; in this case f(κa) is 1.5 [98]. Zetasizer Nano Z series by Malvern

Instruments [3] is used to characterize zeta potential of the particle samples. As

shown in Figure 7.3, the idea behind the measurement is as follows: as particles

are accelerated in a fluidic channel by the electrical potential applied at the ends,3

their velocity is measured by laser particle image velocimetry. As the limit velocity

of the particle depends on the limit where the Stokes drag force balances the force

due to the electric field, zeta potential can be extracted as long as other parameters

are known.

3This phenomenon is known as electrophoresis.

248



Surface Potential

Stern Potential

Zeta Potential

-100 mV

0 mV
Distance from surface

S
te

rn
 l
a

y
e

r

S
h
e
a
r 

la
y
e
r

Figure 7.2: Particle in a fluid, surrounding double layer, stern layer and po-
tential. Zeta potential with respect to distance is sketched after
[3].

v
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Figure 7.3: Particle suspended inside the fluid moves due to the electric field.
From the speed of the particle, its electrical mobility can be ex-
tracted, which leads to Zeta potential through Equation 7.8.
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Another method used to characterize zeta potential of the colloids is the elec-

troacoustic method, in which vibration of the colloid due to acoustic waves gen-

erates an oscillating electric field. Since the size of the colloidal particle is much

bigger than the molecules of the fluid or the ions dissolved in it, particle vibrates

in the acoustic field while diffusing shear layer remains stationary. This changes

the local neutrality and generates an oscillating electric field. Through the cor-

relation of the acoustic wave frequency and electric field or current measurement,

zeta potential can be extracted. The reverse is also possible, in which acoustic

waves generated by the applied oscillating electric field are detected. From the

correlation, zeta potential can be extracted [99, 100]. While electrophoretic mea-

surements are used widely, due to the limitation of light scattering at high colloidal

concentrations, the electroacoustic method is preferred for dense dispersions.

In colloidal science, Zeta potential is one of the most crucial parameters from

which colloidal stability is predicted. Zeta potential and colloidal stability are af-

fected in the similar way by various factors. One important variable on the Zeta

potential is the pH of the solution in which particles are dispersed. A typical vari-

ation of the Zeta potential of a negatively charged silica particle would look like

the graph given in Figure 7.4. A qualitative explanation to this variation can be

given as follows: negative particle suspended in water attracts positive hydrogen

ions to form a surrounding double layer. As the acidity increases, concentration

of the hydrogen ions gets higher so that the potential at the diffuse layer initially

decreases and then starts to get positive values at higher pH values. The point

where zeta potential gets its zero value is the isoelectric point. At the isoelec-

tric point, electrostatic forces between particles gets minimal and particles do not

respond to the external electric field. Proteins can be separated with respect to

their isoelectric point. Since each protein has a unique amino acid chain format,

250



its isoelectric point is also unique; in this case, target protein can be separated

through precipitation by changing the pH of the solution accordingly.
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Figure 7.4: A typical variation of zeta potential for silica particles suspended
in fluid at various pH values. For below 30 mV or above -30
mV, colloidal system is not stable and coagulation followed by
precipitation or creaming is expected. This colloidal system is
not expected to be stable between pH values 4 and 6.5.

Another parameter which affects zeta potential is the ionic concentration of the

solution. The presence of ions dissolved in the solution affects the length of the

diffuse layer (also known as Debye-Huckel length). Diffuse layer thickness, κ−1, is

related to the ionic strength of the solution through the formula

κ−1 =

√

εkT

e2I
(7.9)

where ε is the dielectric permittivity of the fluid, e is the electric charge and I is

the ionic concentration. Entering ε, kT and e parameters for water at 25 oC, the

above formula is reduced to

κ−1 =
1

3.29
√
I
. (7.10)

We can deduce from the above relationship that when the ionic concentration

increases, thickness of the diffuse layer decreases; this causes a faster potential
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drop from the surface of the particle and results in a decrease in the zeta potential.

The typical variation of zeta potential in the case of increased ionic concentration

is shown in Figure 7.4.

While calculating the net interaction energy between two particles suspended

in the fluid through the DLVO theory in the previous section, electrostatic in-

teractions were left untouched. Here now that will be completed. In the case of

colloidal particles suspended inside the fluid, instead of the surface charges and

surface potential, charge density at the diffuse layer and correspondingly zeta po-

tential become the determining factor. In this case, the interaction energy between

two particles surrounded by the diffuse layers can be written as [96],

Ue = πεζ2ae−κh . (7.11)

From Equations 7.6 and 7.7, total interaction energy between two spherical parti-

cles predicted by the DLVO theory is found to be

U = −A12a

12h
+ πεζ2ae−κh . (7.12)

Now it is possible to find the total interaction energy predicted by the DLVO

theory for silica beads suspended in water. For silica in water, A12 is 0.82 10−20 J

[96]; diameter of the silica beads is 500 nm; at pH 7, zeta potential would be around

30 mV and assuming slight salt concentration, typical κ would be 1/3 nm-1. For

these given parameters, interaction energy of two colloidal silica particles are given

in Figure 7.5. In the same figure, it is observed that when the zeta potential is

around 30 mV, two particles at a long distance are in a negative energy state and

they will attract each other. However, as they come closer, electrostatic repulsion

will start to increase exponentially. For example, in this case, they will observe an

energy barrier of 100kT . If only a force field pushes them harder than this barrier,
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they can coagulate. In the same plot, total energy at 15 mV Zeta potential is also

plotted. In this case, electrostatic repulsion is not strong enough to generate an

energy barrier, and particles will keep attracting each other until they stick and

flocculate. At higher Zeta potential and κ values, the effect of the electrostatic

pushing would span much longer distances up to several microns.
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Figure 7.5: Energy diagram of two interacting spherical charged particles.
While the van der Waals attraction pulls particles to each other,
electrostatic interactions push them away from each other. When
particles have zeta potential of 30 mV, electrostatic repulsion
generates an energy barrier. When zeta potential is lower, elec-
trostatic repulsion is not high enough to generate a barrier. In
this case, particles eventually collapse to each other. Even in
the presence of an energy barrier, depending on the conditions,
the electrostatic field may decay faster than van der Waals inter-
actions (zoomed in sub-figure). Then particles will be stable in
such a distance.

Before concluding this section, it is also noteworthy to highlight that the change

in the ionic concentration not only affects the diffuse layer length but also the Zeta
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potential, which was mentioned before. In this case, for a constant surface charge

(σ), and thin diffuse layer (κa≫ 1), it is possible to have an approximate relation

between κ and zeta potential;

ζ =
σ

εκ
. (7.13)

From this relationship, we can conclude that as the thickness of the diffuse layer

(κ−1) increases, zeta potential increases. However, for very low ionic concentra-

tions, diffuse layer may get comparable to or even larger than the particle size, in

which case the above approximation may not give accurate results.

7.1.5 Sedimentation Potential

In colloidal systems, when the homogeneity of the fluid particle density is altered

with external effects like gravity or centrifugation, a macroscopic electric field

forms inside the solution parallel to the concentration gradient [101]. This macro-

scopic field can be measured with careful experiments. Magnitude of the electrical

potential is usually in the order of 1-10 mV . This field also causes equilibrium

distribution profile to deviate strongly from a predicted barometric profile [102].

The equation for sedimentation potential under a gravitational force field was

calculated by Ohshima et al. [101] as

Vsed = −εζh(κd)g∆ρφ
ηχ

(7.14)

where g is the gravity, φ is the total volume fraction of particles, d is the distance

between high particle density and low particle density points, and χ is the con-

ductivity of the suspension. h(κa) is a known dimensionless function [103]. In the

equation, the ( g∆ρVp) phrase represents the gravitational force. The electric field,
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Figure 7.6: Sedimentation potential is generated when the distribution of the
colloidal particles changes due to the external force fields such as
gravity or centrifugal acceleration.

Esed, due to the sedimentation potential, can also be approximated as

Esed =
Vsed

d
. (7.15)

It has been known that internal electric field due to sedimentation leads to an

equilibrium density profile of sedimentation in ultracentrifugation experiments.

7.2 Dispersion of Colloids Concentrated

under Acoustic Radiation Force

Since acoustic forces only depend on the density and the elastic properties of the

materials, they can be used to investigate other properties of the colloidal system,

such as diffusive, electrokinetical, or hydrodynamic properties.
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By using the actuator mechanism defined in this thesis, it is possible to con-

centrate dispersed colloidal particles to a very small volume. As it was shown in

Chapter 6, focusing of dispersed micron size or larger particles is in the order of

seconds. Since acoustic radiation force is related to the third order of the particle

radius, some drop in collection time is expected.

Faraday found that colloidal particles causes scattering of incident light [104].

His clever comments on the experiments guided J. Tyndall to further develop the

method4. Today this phenomenon is known as Tyndall effect. Lord Rayleigh

further formulated the scattering theory for the case particle sizes are smaller than

the wavelength of the light beam (and this is known as Rayleigh scattering). By

using this scattering principle it is possible to monitor concentration change before

or after actuation. Experimental setup is shown in Figure 7.7. As sketched on top

of the given figure, external light source is projected onto the capillary with an

angle so that, only some portion of the light scattered from the colloidal dispersion

enclosed inside the capillary can be collected in the microscope objective.

Hand held camera images show that results are visible without any magnifica-

tion. Before actuation, a continuous illumination from the capillary is observed.

After actuation light is scattered only at locations where silica particles are fo-

cused. As expected from theory, at 30 kHz, 3 collection points are observed, and

at 1.625 MHz, 25 collection points are observed.

4Being a very successful experimenter full of intuitive capabilities, for Faraday this was not
the only case. Some history books comment that his mathematical training level was not more
than basic trigonometry and he did not have a proper calculus training. However, many exper-
imental results and clever conclusions reported by him led many other scientists, who have a
good mathematical training and intuition, to further develop theories. Two important examples
would be; his early observations and notes on relation of electricity and magnetism led Maxwell
to develop the electromagnetic theory (this topic later led to the development of the field theory);
his early experiments on the displacement of particles in a standing sound field led Rayleigh to
develop streaming effects. The “controlling microparticles with acoustical effects” theme of this
dissertation also dates back to Faraday’s early observations.
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Figure 7.7: Top schematics show the experimental setup related to the imag-
ing. Part of the light scattered from the colloidal particles inside
the capillary is collected at the microscope objective and trans-
ferred to the computer through the microscope digital camera.
As seen from the pictures, results are visible to the naked eye.
Pictures shown here are taken with a regular digital camera.
The picture taken before the actuation shows a constant scat-
tering along the capillary. After actuation, collection of particles
changes the distribution of the scattered light. In this config-
uration, dispersion can be monitored with a hand held digital
camera (not shown here).
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Figure 7.8: Hand held, point and shoot digital camera images show the dis-
persion of collected particles after the release of acoustic actua-
tion. Results are visible to the naked eye and dispersion can be
monitored without a microscope.

Pictures shown in Figure 7.8 are taken by a point and shoot digital camera.

These pictures showing the dispersion of silica particles, demonstrate that disper-

sion of nanoparticles can be observed with a regular digital camera which eliminates

the need of a microscope.

In the following sections, dispersive behavior of the colloidal particles will be

investigated with the help of acoustic focusing in a PZT-capillary coupled actuator.

7.2.1 Silica Nanoparticles Dispersed in Water

The image shown on top of Figure 7.9 shows the 500 nm silica nanoparticles dis-

persed inside the capillary. Silica nanoparticles were obtained from Kisker-Biotech

with a particle concentration of 50mg/ml from which volume fraction was calcu-

lated to be 0.11. While particles had red fluorescent dye at their core, fluorescence
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property is not used in this experiment.5 The second image from top shows the

capillary and focused particles, after 3 minutes of actuation at a resonance fre-

quency. Here, the 5th flexural mode is excited around 90 kHz with a voltage drive

of 17 Vpp. Keeping the actuation time (∼5 min) longer, it is possible to have

similar focusing volume at much lower voltages like 5 Vpp. Voltage dependent col-

lection efficiency will be investigated in Section 7.3.3; in this section we are more

interested in dispersive behavior of particles after the actuation is turned off.

As mentioned in Section 7.1, particles tend to spread due to diffusion and

electrostatic interactions. The series of images taken at different times after the

acoustic actuation is turned off is given in the middle section of Figure 7.9. In-

tensity data are obtained from these images by use of ImageJ freeware [105]. For

each image, intensity through the central axis is extracted. To be able to reduce

the fluctuations and monitor the broad variation of the concentration, data are

smoothed through taking the moving average of each data point with its neigh-

bors. While this process did not have a significant effect on most of the images,

it also smoothed out the saturation observed at the focal volume locations in the

figures. Surface plot shown in the bottom of Figure 7.9 shows the variation of the

intensity of the light scattered along the central axis of the fluid column enclosed

in the capillary over time.

It has been shown that the intensity of the light scattered from colloidal sus-

pensions depends on the concentration. In bulk solutions, this is valid for a very

low concentration regime. However, the fluid column width in our case is only

100µm, and intensity saturation is observed in much higher concentrations. As

a first order approximation, we assumed concentration is linearly dependent on

5In fact, instead of light scattering, light intensity due to fluorescence emission could also
be used. One reason this is not preferred over the static light scattering is that intensity of
fluorescent emission decreases over time due to the phot-bleaching effect.
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the capillary structure. In this case, total area under each curve should result in

the same value. This is because the total number of particles does not change

over time. While values of total area under each curve were in the same range,

a consistent drop was observed as the focal volume decreases (in other words lo-

cal concentration increases). This observation is in agreement with the limitation

mentioned for the high concentration cases. To fix this ambiguity, a first order

approximation is modified by normalizing each curve so that the area under each

curve gives the same value. During the normalization process, most spread cases

were taken as the reference since the intensity-concentration relation is more valid

in lower concentrations.

As mentioned in the beginning of this section, the particle volume fraction is

0.11. When particles are focused due to acoustic forces at the 5th flexural mode, all

particles dispersed inside the capillary in a range of 2.2 mm are focused to a range

of less than 400 µm. This collection raises particle volume fraction to around 0.6

at the focal point, which is very close to the close-packed structure of the particles.

In a close-packed crystal structure (cubic or hexagonal), particle volume ratio gets

its highest value of 0.74.6 In this case, at the focal point, particles are squeezed

very close to each other and further investigation of any crystallization behavior

may give interesting results. Confocal microscopy techniques would be helpful for

such an investigation.

Utilizing the above assumptions, we find the volume fraction distribution of

particles along the capillary at different times. Results are plotted in Figure 7.10.

6This is known as Kepler Conjecture, proposed by Johannes Kepler in 1611. Kepler came
to this conclusion based on the results of Thomas Harriot, on the problem of maximizing the
number of cannon balls to be stacked in the ship decks. Much later Hariot’s model became the
basis for the modern atomic theory. With his conjecture, Kepler did not include a proof and
only 2 centuries later, Gauss came with a proof for the periodic lattice case. 120 pages long
formal proof for the general case of Kepler Conjecture -based on computational calculations- was
published recently in 2005 by Hales [106].
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The highest and also the narrowest distribution shows the volume fraction distri-

bution when the acoustic actuation is just turned off. All the other distributions

show the spreading of particles. While initial distributions seem like Gaussian dis-

tributions, later distributions are different. Zooming in to the area where there

are slopes, we observe particles disperse in a different way compared to the Gaus-

sian distribution shown in Figure 7.1. In a Gaussian distribution, the slope at the

variance value decreases with time. In this case, there is a a change in the slope,

however it is not distinguishable since the its spatial location moves much faster

compared to the change in the slope value. This suggests that, in the spreading of

particles in this case, effects other than diffusion are more dominant.

Figure 7.11 shows the first derivative of the volume fraction with respect to the

central axis of the capillary. Curves plotted here show that the magnitude of the

maximum slope decays in time, and this decay is comparable to the decay expected

by the diffusion of the beads. However, the location of the maximum slope moves

with a different and higher rate. The dots in Figure 7.12 show the location of the

maximum value of the slope, z′bound, with respect to time. The fitted black line on

the data shows a square root relation given as

z′bound = α
√
t (7.16)

where α is found to be 6×105µ/s1/2. This relationship shows that the diffuse layer

where particle volume fraction change is maximal, moves at a rate of the square-

root of time. In fact, this relationship is analogous to the mean displacement of

diffusion given in Equation 7.5. Defining α =
√

2Df and rephrasing the above

equation accordingly, we get for the fit function

z′bound =
√

2Df t (7.17)

where expansion coefficient Df is found to be 550µm2/s.
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Figure 7.12: Displacement of the peaks given in in Figure 7.11. In other
words displacement of the boundary versus time.
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Figure 7.13: Speed of the movement of the peaks plotted in Figure 7.11

Figure 7.13 shows the dispersion velocity where the concentration gradient is

maximal. It is observed that in the beginning, concentration spreads with veloci-

ties in the order of 5−6 µm/s. Later on the velocity of the boundary exponentially

decays down to 1−2 µm/s with time as the concentration decreases due to spread-

ing. This suggests that the force responsible for the spreading should be a function

of concentration or concentration gradient.

In colloidal systems, dispersive effects occur due to; diffusion; build up of os-

motic pressure due to concentration change; and electrostatic interactions. The
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possible contribution of these effects will be examined in order.

7.2.1.1 Contribution of the Diffusion

An expansion coefficient with a value of 550 µm2/s is about 650 times larger

than the diffusion constant of 0.85 µm2/s for 500 nm silica particles at room

temperature. This result shows that particles spread with a velocity 650 times

larger than they would spread just with pure diffusion. The boundary spreads

with velocities around 5 µm/s in the beginning and decreases to 1.5 µm/s around

300 seconds. If particles would spread just with the influence of diffusion, then the

concentration distribution expected at t = 300 seconds would be identical to the

concentration distribution observed at t = 1 second. Since two curves are almost

identical, sketching is skipped here. In summary, the contribution of diffusion to

the spreading observed is very minimal and can be ignored. It is, in fact, lower

than the experimental measurement errors in this case.

7.2.1.2 Contribution of Osmotic Pressure

One may argue that the fast dispersion observed in experiments is due to the

osmotic pressure built from the dense collection of colloids. Osmotic pressure

Pφ(z) for the colloids can be found through the Carnahan-Starling formula [107]:

Pφ(z) =
3kT

4πr3
φ(z)

(1 + φ(z) + φ2(z) − φ3(z)

(1 − φ(z))3

)

(7.18)

where k is the Boltzmann Constant, T is the temperature, r is the particle radius,

and φ(z) is the particle volume fraction as a function of z. Osmotic pressure values

calculated for increasing time measurements are shown in Figure 7.14.
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Figure 7.14: Spatial distribution of the osmotic pressure due to the concen-
tration distribution of the particles. When external forces are
not present, particles will be pushed away from a high pressure
region to a low pressure region. However, this push is expected
to be very low due to the low peak value of the osmotic pres-
sure. This is due to the microscopic size of the colloidal parti-
cles. (Value of osmotic pressure is inversely related to the cube
of the radius of the particles and can reach significant levels, for
example, in the case of ions.)

In a pressure gradient, net force on a particle can be calculated approximately

as

f(z) =
∂Pφ(z)

∂z
dzAp (7.19)

where f(z) is the force on the particle and dz the change in z, and Ap is the cross

sectional area of the particle (this formula is obtained simply from equation of

motion; the difference between force due to the pressure from one side and force

due to the pressure from the other side is the net force acting on the particle). Since,

here, particle sizes are small compared to the length of the capillary (nm≪mm),

we can approximate dz as the particle diameter; then the formula becomes

f(z) =
∂Pφ(z)

∂z
Vp (7.20)

where Vp is the particle volume.
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This force will be limited by the Stokes drag force [94] due to the viscosity of

the water. Stokes drag force is given as

fs = −bvl (7.21)

where vl is the particle limit velocity and b is the drag coefficient given by

b = 6πηr (7.22)

where η is the viscosity of the fluid (1 mPa·s for water).

In this case, due to the osmotic pressure, limit velocity of the particles is found

to be

vl =
Vp

6πνr

∂Pφ(z)

∂z
(7.23)

where Pφ(z) is given by Equation 7.18. Limit velocity due to the osmotic pres-

sure built by the concentration variation of the particles is plotted in Figure 7.15.

Magnitude of the velocities obtained due to osmotic pressure is highest when the

concentration gradient is the highest; this is just after turning off the actuation.

Even the highest velocity value (about 5-6 nm/s) due to osmotic pressure is three

orders of magnitude lower than the velocity of the dispersion observed in the ex-

periment. Following this, it is possible to conclude that osmotic pressure built up

due to the high particle concentration gradients cannot be the reason behind the

fast spreading of the 500 nm particles.

For the case of the charged particles, the radius of the particle used to calculate

osmotic pressure in Equation 7.18 should be modified to include the diffuse layer

around the particle. This increase in the radius will further lower the osmotic

pressure and its effect on spreading.
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Figure 7.15: Velocity of the particles due to the osmotic pressure gradient.
500 nm particles are still large compared to water molecules and
so the influence is negligible.

7.2.1.3 Contribution of Electrostatic Interactions

In Section 7.1.5, it was mentioned that when the concentration distribution of col-

loidal dispersions is changed due to external forces such as gravity or centrifugation,

a voltage difference is generated between high and low concentration regions. This

difference in the electrical potential is known as sedimentation potential.

In the case of concentrating colloids at particular locations inside the capillary,

the same phenomenon occurs. At locations defined by the flexural modes of the

capillary, colloidal particles are concentrated close to their close packed structure.

Due to this concentration effect, build up of an electric field is expected. When

the actuation is turned off particles start to disperse due to this self built elec-

tric field by their concentration at specific locations. By using the electrophoresis

phenomenon mentioned in Section 7.1.4, build up of an electric field can be calcu-

lated from the measured dispersion velocity of the particles. Since velocities due
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to osmotic pressure and diffusion are negligible, it is assumed that the observed

high velocity spreading of the particles is due to the self generated electric field.

Modifying Equation 7.8 to relate the electric field with the particle velocities, we

have

E =
3η

2εζf(κa)
υ (7.24)

where f(κa) = 1.5. Applying this relationship to the velocity values shown in

Figure 7.13 for the expanding boundary locations, we find the electric field values

depending on time. Results are plotted in Figure 7.16. In this case, electric

field values in the order of 200V/m can be responsible for the fast dispersion of

the particles. This is a really macroscopic voltage difference and electric field for

a microscale experiment. As shown in Figure 7.17, such an electric field would

give voltage differences around 100 mV in 0.5 mm. In macroscopic sedimentation

potential measurement experiments, values obtained are usually in the order of

1-10 mV.

7.2.2 Silica Nanoparticles Dispersed in Alcohol

Performing a similar experiment for a different sample of 500 nm silica nanopar-

ticles suspended in ethyl alcohol, we obtain similar fast dispersion characteristics.

Silica nanoparticles used in these experiments were obtained from the research

group of Prof. Ulrich Wiesner. In this case, particle concentration is much lower

compared to the previous case in which the 300 nm silica particles were suspended

in water. One advantage of the low concentration is that data related to short

time spreading can be extracted more clearly. As shown in the series of pictures

given on top of Figure 7.18, particles collected under ultrasonic force at t = 0 start

to disperse as the actuation is turned off. Two graphs in Figure 7.18 show the
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Figure 7.16: Decay of the electric field with time is plotted. At time zero,
since particles are very concentrated at focal points, amount of
electric field gets the highest level. As the particles spread total
electric field sensed at the boundary decreases.
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Figure 7.17: Voltage difference between two locations inside the capillary,
due to the generated electric field by the concentration of the
particles.

displacement and velocity of the concentration boundary versus time. From the

displacement curve, fitting data to Equation 7.17, we find Df to be 270 µm2/s.

The diffusion coefficient for non interacting silica particles of 500 nm is 0.8 µm2/s.

Here again, it is observed that the boundary of the concentration moves 350 times

faster than it would move with regular diffusion.

As given in the plot of velocity versus time in Figure 7.18, at the beginning

particles at the boundary move with speeds around 25 µm/s. This high speed

dispersion suggests the existence of a significant electric field in the concentration
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Figure 7.18: Dispersion of collected particles suspended in ethyl alcohol.
Imaging is done with the transmitted light, so that any loca-
tion where particles exist look darker. Plots below the pictures
are the mean displacement and the velocity of the boundary
of the particle gradient. The bottom plot shows the estimated
electric field at the boundary.
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regime.

The electric field generated due to the collection particles can be calculated

by using Equation 7.24. The viscosity of the ethyl alcohol is 1.1 mPa.s and the

relative permittivity at room temperature is 24.3 [108]. Pure ethanol does not

have electrolytic properties as much as water does. Due to the lack of any ions

present in solution, zeta potential can be approximated to the surface potential.

In the literature, it is reported that silica nanoparticles suspended in ethanol have

zeta potential values between negative 100-200 mV [109, 110, 111]. Assuming zeta

potential of 100 mV, electric field values are found to be in the order of 1000 V/m.

In the case of the upper limit, if zeta potential is 200 mV, then electric field values

decrease to 500 V/m, which is still considerably significant and much higher than

the electric field values observed in a DI water suspension. This is due to the

presence of H+ and OH− ions in DI water.

Since the size of the particles (500nm) are larger compared to the 300 nm

particles mentioned in the previous section, due to Equation 7.18, the effect of

osmotic pressure will be much lower and will not have any effect. Results obtained

by the dispersion of silica nanoparticles suspended in alcohol strongly suggests the

presence of a significant electric field at the microregime.

7.2.3 Summary

In this section, the build up of a macroscopic electric field has been shown due to

concentration of particles under ultrasonic forces at microscale. 500 nm size silica

particles show good enough collection behavior under ultrasonic forces. In addition,

in this size range, osmotic pressure values generated due to high concentration
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gradients are negligibly low. This factor enables more accurate observance of

effects due to the electric field generated by the collection or sedimentation of

particles. In the literature, it can be found that similar experiments are performed

for 22 nm particles by use of ultracentrifugation [102, 112]. These experiments

require bulky equipments such as ultracentrifuge tools and long centrifuge times

up to a week.

Using the PZT-glass capillary actuator presented here, experiments to obtain

the above presented results can take less than 5 minutes. Considering the porta-

bility and low power needs of the device, the actuator mechanism introduced here

may lead to a new method to analyze and characterize colloidal dispersions. Due

to the high aspect ratio of the capillary, dispersion of the colloids inside the capil-

lary can be monitored even with a regular digital hand held camera and a simple

light source setup (a cheap diode laser) which can even eliminate the need to use

a microscope.

7.3 Acoustic Focusing of Colloidal Particles and

Calibration of Acoustic Field against

Electrokinetic Effects

In this section, the behavior of colloidal nanoparticles under ultrasonic radiation

forces will be investigated briefly. When acoustic radiation is present, to collect

particles at the preferred locations, radiation force has to overcome dispersive

forces. In the previous section, amplitude of dispersive forces was examined. Out of

diffusive, osmotic pressure and electrostatic interactions related forces, electrostatic
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interactions were the dominant dispersive forces. In colloidal systems, electrostatic

interactions highly depend on the parameters related to the electrochemistry of

the system. As mentioned in Section 7.1.4, zeta potential is one of the major

parameters defining electrokinetic particle behavior.

In the first part, experimental results related to the effect of zeta potential

(related to pH of the solution) on the collection behavior is mentioned. In the

second part of this section, a method to calculate acoustic radiation forces by use

of these counterbalancing dispersive forces is introduced.

7.3.1 Acoustic Focusing of Colloidal Particles

Dispersed in Solutions of Various pH Values

As mentioned in Section 7.1.4, concentration of ions in the solution has a great

effect on the thickness of the diffuse layer around the particle. Figure 7.4 shows a

typical pH dependence of zeta potential around the silica particles. When the zeta

potential is low, electrostatic repulsion between the charged particles are screened

with the shrunk diffuse layer and particles flocculate and then start to coagulate.

This can also be seen in the total energy diagram shown in Figure 7.5 obtained

from DLVO theory. The flocculation process can be slow if only van der Waals

interactions are present. However, flocculation can happen much faster in the

presence of external attractive forces.

Figure 7.19 shows the actual zeta potential measurements of 300 nm and 500

nm silica nanoparticles suspended in solutions having various pH values. Measure-

ments are performed in Zetasizer Nano by Malvern instruments [3]. It is observed

that as the acidity of the solution increases (decreasing pH), zeta potential around
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Figure 7.19: Zeta potential measurement of 300 nm and 500 nm silica beads
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Figure 7.20: Collection of 300 nm particles. The top image shows the par-
ticles suspended in a pH 7 solution. The bottom image shows
particles suspended in a pH 3 solution.
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along the z direction.

275



the particle starts to decrease. This is due to the collection of H+ ions around the

negatively charged particles. At pH levels below 4, concentration of H+ ions are

high enough to reverse the polarity of the zeta potential at the diffuse layer. Zeta

potential measurement is a good indicator of particle stability [113]. It has been

known that when zeta potential is between -30 mV and 30 mV, electrostatic re-

pulsion between the particles can not balance attractive forces and particles tend

to flocculate. In pH values above 5, silica colloids tested would be stable since

the zeta potential is lower than -30mV. For pH values below 5, flocculation is ex-

pected. Particle size measurements confirm these expectations. For example at pH

7, particle size distribution peaks are around 300 nm and 530 nm for 300 nm and

500 nm, respectively. However, at pH 3, location and width of the peaks change.

Due to the low zeta potential at lower pH values, particles flocculate and measure-

ments show peaks at larger values such as 700 nm, 1200 nm, and 1800 nm. This

change can also be observed in the PZT-glass capillary coupled actuator. Figure

7.20 shows an image of the collection of the same silica nanoparticles suspended

in solutions having different pH values. Frequency of the actuation is 503 kHz,

which represents the 11th flexural mode of the capillary. While a uniform cloudy

collection is observed at pH 7, consistent brighter spots appeared at the center of

the focal points at pH 3. Figure 7.21 shows the intensity of the scattered light,

which can also be associated with the concentration of particles. As particles stick

and move together, the effect of acoustic radiation force increases, leading to a bet-

ter collection. This is similar to the sedimentation experiments performed under

centrifugation where larger particles settle to the bottom. Here, larger particles

are collected at the center.

At pH 3, all particles go under flocculation, which can be observed clearly in

Figure 7.22. In this figure, at pH 7, collection seems to be more cloudy since particle
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sizes are around 300 nm. However at pH 3, individual particles are distinguishable;

the mixture is not cloudy and a more condensed collection is observed.

pH 7  93 kHz

pH 3  93 kHz
200 μm

Figure 7.22: At a low voltage drive, at pH 7, a cloudy collection occurs. This
is due to the electrostatic repulsion and small particle size. At
lower pH values, due to the small zeta potential value, particles
flocculate under ultrasonic forces. In this case, a clearer col-
lection is observed. In fact, individual particles can be easily
resolved in this magnification, which confirms the particle size
is higher than 300 nm because some particles become stuck to
each other and then move together.

All results mentioned above suggest that the PZT-glass capillary coupled ac-

tuator mechanism can be used to estimate long term stability of particles with

performing short term experiments. Due to the low sample volume need and low

power actuation, actuator may increase the efficiency and decrease the cost and

time needed for the production of materials in which colloidal stability is impor-

tant.

7.3.2 Collection Behavior of Silica

Nanobeads under Acoustic Radiation Forces

In Section 7.2.1, after release of acoustic actuation, dispersion of silica nanoparticles

from preferred concentrated regions were examined. Investigation led to finding the
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existence of a macroscopic electric field generation due to the concentration of the

charged particles. In this section, the collective behavior of colloidal nanoparticles

is investigated.

A series of pictures given on top of the Figure 7.23 shows the collection of silica

nanopartiicles under ultrasonic actuation. Graphs placed in the middle and on the

bottom of the same figure show the intensity variation of the scattered light along

the central axis in z direction, versus time. In Section 7.2, it was mentioned that

the intensity of the scattered light can be correlated with the spatial concentration

distribution of the colloid.

At the beginning, silica nanoparticles were concentrated under acoustic forces.

Then, they were let to disperse as the actuation was turned off (more than five

minutes). The state of the concentration distribution at t=0 shows these dispersed

particles. Observations on the series of pictures and data extracted from these show

that after the acoustic actuation is turned on at t = 0, a drastically fast change

occurs on the axial concentration distribution of the capillary. This change occurs

in the first 30 miliseconds. A particle at the concentration boundary moves with a

drastic speed of 5 mm/s for about 30 milliseconds. After 1 second, we observe that

change in the distribution of the concentration slows down dramatically. Still, in

just 60, seconds concentration distribution takes its new stable form under acoustic

forces.

Four possible explanations exist for the very fast change of concentration distri-

bution in the first 30 milliseconds. Validity of these possibilities will be argued here

briefly. First, when the actuation is turned on acoustic forces are present both in

y and z directions. While the acoustic forces in z direction act to focus particles at

preferred locations along the z axis, forces in y direction do the same in y direction
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Figure 7.23: Focusing of 500 nm particles at pH 7, under ultrasonic actua-
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At about 60 seconds, the particles reach their new stable con-
centrated state. At this point, the electric field generated by the
condensation of particles counterbalance the acoustic forces.
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to focus particles at the center. Since the capillary width is much smaller than its

length, displacement of particles in y direction becomes much faster and results a

major change in the axial concentration distribution. However, from the intensity

distribution along the capillary in z and y directions, it is possible to conclude that

this cannot be the major single reason.

The second explanation is the contribution of the generated electric field. While

in the beginning, particles were dispersed freely, the initial concentration increases

due to the instant appearance of acoustic forces. However, as soon as particle

concentration starts to change, the electric field generated slows down the push of

the acoustic forces. However, because the velocity of the particles are in the order

of 5 mm/s, forces on the particles to generate this speed will be really high and

not very feasible.

The third explanation is through acoustic streaming. Here, it is argued that

both acoustic streaming and acoustic radiation forces contribute to the collection

of the particles. Then, the claim is as follows: when the actuation is turned on,

high amplitude streaming effects cause an initial change in the distribution of the

particles. This streaming is not a steady state streaming but just happens when

the actuation is turned on. This kind of streaming has been observed in some

other experiments; however, further observations are required in order to make

more comments.

The fourth possible reason is the change in the effective acoustic field due to

the concentration of particles. When particles start to come together, their effect

in the internal acoustic pressure distribution will be more dominant. This may

lead to a decrease in the amplitude of acoustic forces on the particles.
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Out of these four explanations for the slowing down of initial sudden change,

finding individual contributions requires further investigation. However, following

the concentration change at the tails of the concentration change, we conclude that

the effect of a self generated electric field and the change in the distribution of the

acoustic field would be more dominant due to the particle collection.

Another observation is that dispersion behavior of the colloidal silica after

turning off the actuation (Figure 7.10) is not the same as the collection behavior

of the colloidal silica (Figure 7.23). This is expected since the spatial distribution of

the acoustic radiation forces is different than the spatial distribution of the electric

field. During the dispersion, electrostatic interactions are the only effective force

source. However, during the collection, two forces act together, acoustic collective

forces and electrostatic repulsive forces. During the collection, as the collection

concentration increases, forces due to the generated electric field increases. At a

certain limit electrostatic repulsion gets high enough to balance the acoustic push.

In the experiment given above, this limit is reached at around 60 seconds. From

the images and plots shown in Figure 7.23, it can be seen that no major change

occurs after 60 seconds. In the next section, this limit will be used to estimate

acoustic forces.

7.3.3 Calibration of Acoustic Radiation Forces through

Counteracting Electrokinetic Dynamics

In Chapter 3, we had calculated the amplitude of the acoustic radiation forces on

particles due to the acoustic pressure waves generated by the flexural motion of

the capillary. Methods used to derive these forces are mostly first order approxi-
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mations. In the capillary structure, depending on the voltage drive, the amplitude

of flexural vibrations may reach high values so that nonlinear approaches should

also be considered. Since these devices are aimed for delicate samples, a better

empirical understanding is needed for the distribution of the radiation forces in-

side the capillary actuator. Use of hydrophones to quantify the acoustic field is not

straightforward due to dimensional limitations; therefore, an alternative method

is needed to measure the radiation force directly.

In the previous sections, we already mentioned that the collection behavior of

the colloidal nanoparticles under acoustic forces is heavily affected by the electric

field generated due to the increase in the concentration of the particles. It was

also mentioned that concentration distribution reaches a new stable state as the

amount of electric field increases to the limit to counterbalance acoustic net forces.

When collection of particles reaches a stable limit and the actuation is turned

off, particles start to disperse due to the electric field. A stable limit during the

actuation suggests that the acoustic force counterbalances the electric field. In this

case, the motion of the particle after turning off the actuation can be associated

with the acoustic force. When the actuation is on, the net force on a particle at

the concentration gradient boundary is given as

Fac − Fe = 0 (7.25)

where Fac is the acoustic net force and Fe is the force due to the electric field.

Since there is no net displacement, the Stokes drag force is zero. Just after turning

off the actuation, equation of motion becomes

Fs − Fe = 0 (7.26)

where Fs is the Stokes drag given in Equation 7.21, which can be calculated from

experimental observation of the expansion velocity of the boundary due to the
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electric field. For the time region just before and after turning off the actuation,

the force on the particle due to the electric field Fe will not change instantly, then

the acoustic force can be approximated as

Fac = Fs . (7.27)

It is important to note that this relationship is only valid just around the time

when the actuation is turned off.

As shown in Figure 7.12, at the beginning, the velocity of the particles at the

boundary is around 7µm/s. In this case, we find the drag force on a particle at

the boundary from Equation 7.21 as, 2 × 10−14 Newton, which is also equal to

the acoustic force on a particle at the concentration gradient boundary after all

particles are collected.

Since the acoustic force here is associated with the drag force, one may ask what

the contribution is of the zeta potential of the particles. Zeta potential affects the

concentration distribution. In other words, when the zeta potential is higher, the

concentrated volume of the particles will be higher and the concentration will be

less dense. Then, the electric field will reach the limit in a more disperse phase

to balance acoustic forces. When zeta potential is lower, then the particles will

form a more dense concentration and the electric field will reach the same limit

at a more dense concentration. In both cases, the limit value of the electric field

will be the same; however, spatial distribution will be different. So as long as zeta

potential is high enough to give enough push, it should not matter. However, if

it is lower than a threshold value, then the electric field cannot reach the limit to

counterbalance acoustic forces and floccillation might happen.

If the particles were not charged at all, they would collapse under acoustic

actuation and the concentration gradient at the boundary would be a steeper line.
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In addition, particles would not disperse as fast and measurements would not be

possible.

7.3.4 Collection Efficiency versus Power Drive

In this section, relationship between collection efficiency and the voltage drive

supplied to the PZT will be briefly mentioned.

In Page 6.1.2, it was shown that amplitude of acoustic forces on the particles

increases with the square of the voltage drive. During the experiments, it was

observed that collection speed and voltage drive are related. Estimate relation

based on empirical relations is given as

vcollection ∼ (V pp)2 . (7.28)

More detailed analysis will be presented in a future reference. Here it will be

only mentioned that the stable collected state of colloidal particles can be reached

in a minute with 17 Vpp drive. It has been experimentally verified that collection

time reduces to few seconds with some slight amplification at 30-40 Vpp drive

regime. Under these higher drive conditions, it has been verified that acoustic

radiation forces are high enough to hold 500 nm beads, during a consistent sample

flow through the capillary.

7.4 Conclusion and Future Studies

Possible use of PZT-glass capillary actuator for the characterization of the colloidal

systems is introduced in this chapter. The actuator presented here may replace
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bulky centrifugal systems because it is small, easy and cheap to fabricate. In

addition results can be obtained very fast with low sample volume requirement (0.6

microliters). The actuator mechanism presented here may be a great contribution

to drug design and development. Since the amount of power consumed by the

actuator is very low, portable battery operated hand held devices are also possible.

Another advantage of the capillary actuator is that, even the internal diameter of

the capillary is 100 micrometers, results are observable to the naked eye and can

be monitored in detail with a regular hand held digital camera or a document

scanner.

The capillary used is the standard fused silica capillary and the actuator pre-

sented here can be integrated with wide range of other larger or same size bio

analytical tools such as HPLC or other microfluidic systems.

It is demonstrated in Section 7.3.1 that device can be used to monitor behavior

of the colloids, at various pH values. In the analysis of the colloidal systems, since

the theory can deviate from experimental results especially in high salt concentra-

tions or acidity, direct experimental observation is always performed in product

development. In this regard, PZT-glass capillary actuator may be a cheap, fast

and accurate characterization device for the colloidal stability.

Results presented in this chapter suggest that device can be used to collect

agglomerating proteins at their isoelectric values.

Since effect of power drive on the collective acoustic forces increases with more

than a linear relation, with some amplification collection and study of smaller

particles would also be possible.
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CHAPTER 8

OTHER MICROSCALE ULTRASONIC ACTUATORS

Introduction

The major foci of this chapter are the new actuator mechanisms inspired by the

PZT-glass capillary actuator. In the first section, the silicon bulk microfabricated

actuator will be introduced. Some introductory approaches related to the charac-

terization of the actuator are given. Similar to the PZT-glass capillary actuator,

the collection and separation results obtained in the new microfabricated actuator

are presented. The bulk-PZT actuation provides high electromechanical coupling

and the microfabricated silicon part constitutes a general purpose platform for

different fluidic capabilities.

In the second section, the design and the fabrication of the 10-100 µm diameter

microfabricated capillary actuator is described. Details of the microfabrication

steps and preliminary characterization results are introduced.

In the third section, the Kundt’s tube is revisited. A capillary serving as a

microcavity is actuated by another microcapillary serving as a piston. As a result,

particle collection under standing pressure plane waves are demonstrated. The

major drawback of this actuator is because the end locations of the fluid column

define the boundary condition, experiment to experiment variations cannot be

controlled, which makes the actuator a device to be perfected in the future.

The last section of this chapter deals with some possible minor advancements

to the PZT-glass capillary actuator.
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8.1 Silicon Bulk Microfabricated Actuator

8.1.1 Introduction

For many bioassays, it is necessary to separate an incoming sample into its compo-

nents, which can be antibody-coated-beads or cells. By separating the components

by size in two dimensions, optical detection can be used to implement assays. In

previous chapters it, was demonstrated that commercial glass capillaries can be

used for acoustic chromatography at microscopic levels. In contrast, here, the

radiation forces are used to manipulate particles in two dimensions on a planar

surface, a major advance for practical devices. The new device process brings the

advantage of silicon fabrication techniques, which enable addition of more features

like optically thin silicon nitride layers for easy optical imaging, poly-resistors for

temperature control of the fluid enclosed by the channel, and a stress-strain sens-

ing mechanism for the characterization of the wave propagation within the bulk

silicon walls.

The device consists of two layers of bulk micromachined silicon layers bonded

together, forming the body of the actuator and a laser-cut PZT (Lead-Zirconate-

Titanate-Oxide) plate as the source of bulk ultrasonic actuation. The silicon bulk-

micromachined microfluidic ultrasonic actuator allows two dimensional ultrasonic

standing waves on an optically transparent silicon nitride membrane. The fre-

quency of selective standing waves can control the radiation pattern to hold and

separate particles of different sizes, forming traps similar to a two-dimensional ar-

ray of optical tweezers. By changing the drive frequency, particles can be brought

together for reactions, and can also be brought apart for interrogation. This de-

vice enables focusing and/or separation of microparticles of different sizes under
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a low voltage drive (0.5-20 Vpp), which may lead to portable, battery operated

diagnostic devices. Silicon-nitride layers on top and on the bottom of the channel

enable optical and UV-fluorescence imaging while coupling the vibrational motion

into fluid. Complete electrical isolation of the fluid inside the channel, no specific

pH or ionic solution requirement (as it is for electrical property based separations),

and easy integration with other microfluidic devices are the main advantages of

the device.

8.1.2 Fabrication

The fabrication process, which is sketched in detail in Figure 8.1, starts with

LPCVD deposition of 1 µm thick low stress silicon-nitride and 0.8 µm thick poly-

silicon layers on the silicon wafer consecutively. After the top poly layer has been

doped via ion implantation and patterned by reactive ion etching (RIE), a thermal

oxide layer of 360 nm has been grown (b). Before the aluminum sputtering (c),

the oxide layer is patterned for the contact holes. Later, the top and the bot-

tom nitride layers are patterned via RIE for the anisotropic bulk etching of the

silicon in tetra-methyl ammonium hydroxide (TMAH) solution without attacking

the aluminum (d) [114]. After the etching (e), two symmetric patterned layers are

bonded together with epoxy, where the middle etched cavities form the channel

(f). Grommets for the fluid transfer, and the PZT plate to actuate the silicon body

are adhesively bonded (Figure 8.1 and Figure 8.3).

288



Si Nitride PolySi AlOxide

LPCVD Silicon-Nitrade and 
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Figure 8.1: Microfabrication steps for the silicon microfluidic actuator.
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Figure 8.2: Details of a fabricated actuator. The PZT plate has not been
attached in this device.
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8.1.3 Experimental Results

After bonding the PZT plate to the silicon structure, the hybrid actuator is driven

with a function generator. Separation and manipulation processes take place be-

tween a 50 kHz to 2 MHz drive frequency.

In the small actuator volume, within the frequency drive range, various dif-

ferent wave dynamics with different phase speeds are present. Vibrations of the

PZT plate can excite many different modes matching to the spectrum of the drive

signal. The vibrational modes of the different device parts can be listed as bulk,

quasi-longitudinal, flexural and shear modes on the silicon cavity walls; flexural

plate and membrane modes of the silicon-nitride membranes; and acoustic cavity

modes in the enclosed fluid volume. It is also known that in silicon, due to its

anisotropic crystalline structure, propagation speeds of waves depend on the prop-

agation direction [115]. The difference in the propagation speed of different modes

result in different wavelengths. Acoustic streaming and force field related to the

dynamics of particles are a combination of all these different modes. The nodes

and antinodes of these fields, tunable by the drive frequency, result in particle

collection and/or separation at some frequencies obtained through experimental

trials.

While this richness of various wave speeds brings flexibility to the device, when

combined with the adhesive layer and the PZT, analytical modeling of the actuator

mechanism becomes a problem of many unknowns. A laser interferometric Doppler

scan (using a PolyTecTM vibrometer) of the vibrating surface helps to identify

specific modes. For example, the surface plot on the right side of Figure 8.3 shows

interferometric scan of dashed area at 1.6 MHz and 1 Vpp drive. Scan reveals high

amplitude transverse oscillations in silicon-nitride membrane and the silicon body.
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Due to the difference material properties and dimensions, vibrations of nitride

membrane and silicon body will have different wavelengths at the same frequency,

which can be used to produce controlled acoustic traps for particle collection and

separation.

mm

mm

mm/s

9
 m

m

PZT

inlet outlet

Inteferometric scan of the surface at 

1.6 MHz, 1 Vpp drive.

Figure 8.3: Left: Silicon microfluidic actuator with PZT plate attached.
Right: Interferometric scan of the area shown on the picture
of the actuator. Amplitude of the vibrations are maximal on the
silicon-nitride plate. Waves on the silicon body get mechanically
amplified due to the triangular cross section. This can be seen on
the interferometric scan (along the arrow amplitude of vibration
increases).

Nitride membrane has high aspect ratios, about 1/100. In this case, vibrational

modes which are related to the transverse motion will be mostly dominant. When

a transverse vibration is present in a boundary, fluid loading significantly effects

the wave dynamics. This is because, when the structure moves in normal direction

to the boundary, significant amount of fluid mass has to be pushed or pulled. For
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cases in which wavelength on the elastic structure or plate is less than the acoustic

(sonic) wavelength, fluid acts as a mass load. In this subsonic case, disturbances

in the fluid can not propagate and evanescently remain close to the boundary [50].

In the reverse supersonic case however, fluid acts as a spring and disturbances

generated at the boundary propagates as acoustic waves into the fluid. Due to the

coupled propagation, in the second case a great portion of the elastic energy in the

structure is coupled to the fluid.

Figure 8.4 shows the collection of particles due to transverse vibrations of

the silicon-nitride membrane. The images displayed are captured by an up-

right epi-fluorescent microscope (Zeiss-AxioPlanII). A picture of focused 3 micron

polystyrene beads at 609 kHz and 440 kHz having the cluster size of tens of microns

was taken under regular light transmission, which also demonstrates optical top to

bottom transparency. Particles collect at the vibration antinodes. Two types of

transverse vibrations can be generated in a membrane, flexural vibrations due to

the flexural rigidity of the plate and membrane vibrations due to the tension on the

membrane. To be able to understand what type of vibration is responsible for the

particle collection, wavelength of the modes are extracted from particle collection

images by placing imaginary nodal lines between the collection spots as shown in

series of images on the right side of Figure 8.4.

From wavelength data, phase speed of the transverse membrane waves can be

estimated (c = λf). Phase speeds found from these figures are plotted in Figure

8.5. Top line in this figure shows the fit to the experimental data which remains

almost constant around 200 m/s. At the same graph, theoretical values for flexural

waves in a silicon nitride plate (in vacuum and liquid loaded cases) are plotted.

292



1.115 MHz

1. 452 MHz

2 MHz

1.115 MHz

1. 452 MHz

2 MHz

440 kHzmm

609 kHz

Interferometric Amplitude Scan of the Surface

Figure 8.4: Left: Collection of 3µm (red) and 10µm (blue) polystyrene beads
due to transverse motion of the silicon nitride membrane. Inter-
ferometric amplitude scan of the membrane area matches the
location of particle collections. At higher frequencies, smaller
particles tend to collect at the edges as the red spots in 1.115
MHz case. Right: Imaginary lines showing the possible nodal
planes of the transverse vibrations. Particles collect at the dis-
placement antinodes.

Phase speed for flexural waves is given by [50]

cf =
√
ω
( Eh2

12(1 − ν2)ρ

)1/4

(8.1)
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Figure 8.5: Graph of phase speed versus frequency. Flexural vibrations show
dispersive behavior and experimental data shows that vibrations
are not flexural modes but membrane modes.

and for liquid loaded case,

cf =
(

ω3 Eh3

12ρ0(1 − ν2)

)1/5

(8.2)

where E is the Young’s modulus, ν is the Poisson’s ratio, ρ is the density of the

plate, ρ0 is the density of the fluid, h is the thickness of the plate and the ω is

the angular drive frequency. For the silicon nitride (E ∼250GPa, ν =0.24, ρ=3290

kg/m3, h=1 m) in 400kHz–2MHz regime, speed of the flexural waves varies between

50 m/s and 150 m/s. Experimentally obtained phase speed shows only a very slight

variation versus frequency and it is almost constant around 200 m/s. It is known

that phase speed for the membrane waves is not dispersive and given by [116]

cf =

√
τ

ρ
(8.3)

where τ is the tensile stress keeping the membrane taut over the silicon etched

substrate. Since flexural and membrane wave motion is almost identical, effect of

fluid loading will be very similar. In this case similar to the flexural case, assuming

fluid loading causes 1/3 reduction in the phase speed, stress over the membrane

can be estimated to be around 270MPa, within the range of the residual stress

value in LPCVD low stress silicon nitride.
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Assuming a sinusoidal membrane motion and solving the Helmhotz’s equation

with fluid-structure boundary conditions [116], one may get the pressure distribu-

tion across the channel as,

p = −(
jAρ0ck

kz

)cos(kxx)sin(kyy)(e
−kzz + ekz(z−g)) (8.4)

where g is the distance between the two nitride membranes, A is the amplitude of

the oscillation, kx and ky are the wave vectors on the membrane and k is the wave

vector in liquid and the net cavity wave vector kz is given by

k =
√

(k2
x + k2

y − k2) . (8.5)

With a phase speed of 200 m/s -lower than speed of sound in water (1450

m/s)- membrane modes are always subsonic and k is real, which means pressure

coupling is evanescent. Equation 8.4 is plotted for various frequencies against z

axis in Figure 8.6. It can be concluded from this plot that, at low frequencies,

due to the low k value, acoustic pressure penetrates more into the cavity. This

also explains the small slope in the fit on the phase speed data in Figure 8.5. (At

low frequencies, membrane ends up pushing more fluid). It is observed that, for

frequencies higher than 200 kHz, acoustic pressure variation happens only in the

close boundary (less than 200 µm). In this case, acoustic radiation pressure forces

do not play a major role in collection of particles. As shown in Figure 8.7, acoustic

streaming generated by the transverse motion of the membrane collects particles

at the vibration antinodes.

From the interferometric scan of the bulk silicon walls, elastic wave speeds in

the silicon walls are observed to be between 3000-8000 m/s. Since these values are

higher than the speed of the acoustic waves in water (1450m/s), in other words

supersonic, normal displacements generated by these vibrations strongly couple
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Figure 8.6: Pressure across the channel due to the vibration of the silicon
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Figure 8.7: Acoustic streaming (outside the viscous boundary) generated by
the transverse motion of the capillary. Calculated from [4].

into the fluid cavity (k in Equation 8.5 becomes imaginary). In this case, acoustic

radiation pressure gradients with pressure nodes can be generated which enables

capture of particles by acoustic radiation forces. Since acoustic radiation forces

are related to the cube of the particle size [58], larger particles feel this force

much higher; whereas small particles are more prone to the streaming effects. As

shown in Figure 8.8, for example at 1.488 MHz, by generating streaming effects

and radiation force field at the same time with some distance, particles can be
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separated with respect to their size. Figure 8.9 shows the series of images showing

the separation of mixed 3µm yellow and 10µm blue1 beads at 1.488 MHz, further

localization of separated beads by switching to 600 kHz (mode shown on the top

of Figure 8.4), and mixing of the separated beads again at 1.766 MHz by exciting

a mode where radiation force field and streaming effects are generated at the same

spot.

Interferometric Scan Silicon Walls

Interferometric Scan Nitride Membrane

Figure 8.8: Interferometric scan of the silicon walls reveals that 10µm blue
particles are collected at the vibrational maximum of the silicon
walls, whereas 3µm yellow particles are captured in the streaming
generated due to the high amplitude vibrations of the silicon-
nitride membrane.

All these experiments mentioned above are performed with few volts peak to

peak drive. Since the losses in the single crystal silicon are low, the vibration

transferred to silicon from PZT generates a considerable amount of vibration. Some

experiments, unfortunately, ended earlier than planned because of the shattering

1In fact, fluorescent dyes in these beads are red and green, instead of yellow and blue. However,
due to the optical filters used, the captured images gave false colors. Here, colors recorded by
the microscope digital camera are used to identify beads.
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3 micron yellow and 10 micron blue polystyrene beads

1.488 MHzMixed

Actuation off

Separated

Mixed 

again at 
1.766 MHz

After separation at 1.488 MHz, 

frequency is switched to 597 

kHz. Separated beads are 
focused away from each other.

~ 1mm

Only blue

Only yellow

Figure 8.9: Separation of 3 micrometer yellow and 10 micrometer blue
polystyrene beads. Beads were mixed before actuation, and
by frequency hopping clusters of beads can be separated up to
millimeters. Separated microparticles can be combined again
through switching to another frequency. After the particles are
separated into two main clusters, by switching the frequency to
597 kHz, they can be localized at the closest possible collective
location.

495 

kHz

Figure 8.10: Shattered silicon-nitride membrane due to the high amplitude
mechanical vibrations coupled from the silicon. This particular
case occurred at 495 kHz with few volts peak to peak drive
where a resonance of the whole pzt-silicon actuator exist.

of the silicon nitride membrane due to the high amplitude of vibrations even at few

volts peak to peak. Figure 8.10 shows the cracks on the silicon-nitride membrane,
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the fragments of which are often ejected from the devices.

8.1.4 Conclusion

A new PZT driven silicon bulk micromachined microfluidic actuator that cou-

ples bulk silicon motion to silicon nitride membrane is presented. Membrane and

bulk modes on the nitride membrane and the silicon body form frequency selected

standing waves producing two dimensional arrays of traps. By changing the fre-

quency, particles of different sizes can be brought together or separated under a

CMOS compatible low voltage drive. Chromatography in a micro-platform with a

separation of 500 µm between 3 µm and 10 µm beads was achieved. Work on cap-

turing cells and studying cell growth at elevated temperatures using the integrated

heaters and stress sensors for the resonance feedback in the presented actuator

remain as future work.

8.2 Silicon Nitride Microcapillary Actuator

8.2.1 Introduction

In this section, fabrication and characterization of suspended optically transparent

microfluidic channels for ultrasonic actuation are presented. This new device may

enable focusing and detection of smaller structures in a submicron regime and has

the advantage of integrability with other lab-on-chip microfluidic systems, lower

voltage drive, better controlled boundary conditions, and better coupling with

respect to the previous models and devices where the construction includes hand
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assembly.

In the previous chapters, CMOS compatible, low voltage ultrasonic actuation of

microfluidic capillaries had been demonstrated as an efficient way of manipulating

microbeads and biological entities at the micro-scale. Devices were consisted of

commercially available silica capillary tubing attached to the laser cut PZT plate

becoming the source of the actuation. During this actuation, the main vibrational

modes excited were bending modes. With the previous system, microparticles

down to 300 nm were successfully collected and also particles of different sizes were

separated in fluid. Here, a new approach enables precise control of the optically

transparent suspended channels with diameters in the order of few µm to 10 µm.

8.2.2 Fabrication

The fabrication process is a modified version of a process available in the literature

[3]. The steps followed are given in Figure 8.11. Fabrication started with growing

thermal oxide on <100> silicon wafers and patterning the oxide by RIE etching.

The silicon substrate was etched anisotropically by DRIE etching by use of Boschr

process. Etching is followed by a thinner layer of thermal oxide growth (b) and

RIE etching of this layer at flat surfaces. After removing of the oxide from the

bottom of the trench, an isotropic plasma etch of silicon was performed, which

formed the template cavity for the channel (c). Removal of all oxide layers by

wet etching (HF solution) followed by deposition of low stress LPCVD silicon

nitride until the channels are sealed from the top (d). Later, the nitride on the

top and bottom surfaces were patterned (e) and the exposed silicon parts were

anisotropically etched in hot KOH solution, releasing the suspended channels (f).
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Figure 8.11: Steps for the microfabrication of silicon-nitride suspended cap-
illaries.

After the silicon die including suspended nitride capillaries is ready, it is adhe-

sively bonded to the PZT plate cut with a dicing saw.
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Cross sectional view

Figure 8.12: In the electron microscope images of the silicon-nitride capillar-
ies, details of the capillary structure, cross section, inlets and
outlets are shown.

8.2.3 Preliminary Results

In a suspended or clamped-clamped tubing, one can excite many vibrational modes

depending on the channel inner and outer radius ratio, material type, the channel

length, and any other geometrical features. Because the aim here is to excite

the capillary flexural modes similar to the PZT-glass capillary hybrid actuator

presented in Chapters 2 and 3, the channel radius and the wall thickness are

designed accordingly. As for optical detection, thermal silicon oxide or LPCVD
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nitride are good candidates with conformal coating capability; LPCVD nitride,

due to its low stress, is used to demonstrate the preliminary devices. The SEM

image of the fabricated device with inlets and outlets, a closer look at a 10 µm

size nitride suspended channel, and a cross section image of another channel are

shown in Figure 8.12. The lengths of the suspended channels vary from 100 µm

to 500 µm.

The final PZT-driven device is shown in Figure 8.13. For the mechanical testing

of the device, the PZT plate is driven with a regular function generator. An

interferometric scan of the nitride capillaries is performed both spatially and in

a wide frequency range (500 kHz-7 MHz). Since the interferometer is sensitive

mostly to normal displacements, flexural modes can be identified more easily. In

the given frequency regime, modes extracted from the interferometric scan are

plotted in Figure 8.14. In the plot, two distinct dispersion curves are identified.

Flexural motion of the capillary can be in two dimensions. When the cylinder

is symmetric around the axis, two resonant states will be degenerate. However,

when the structure is not symmetric, as is the case here, then the frequency values

for the nth mode in two dimensions will be different. When the structure is not

symmetric, flexural rigidity around different axes will be different. Here, since all

material properties are the same, the difference between two curves stems from

different area moment of inertia, Ii, values. In this case, from the curves fit to the

data, the ratio of the area moments of inertia around two different is extracted to

be 2.27. Testing of the device with fluid samples is left as future work.
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Figure 8.13: Silicon dye with PZT plate is attached. Two capillaries can be
seen as they scatter the incident light beam on them.
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Figure 8.14: Dispersion curves for the modes detected from an interferomet-
ric scan. Two distinct quadratic relationships stem from the
asymmetric cross section of the capillary structure. Due to the
asymmetry, area moment of inertias around two orthogonal axes
defining cross section are different.
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8.2.4 Conclusions

Silicon-nitride suspended capillaries are produced through silicon microfabrication

techniques. It has been verified from the optical interferometry scan results that for

the frequency regime actuator is run, flexural modes are the main modes excited.

For microfluidic applications, this enables the familiar working principle with the

PZT-glass capillary actuator.

8.3 Excitation of P-Waves in the Capillary

8.3.1 Introduction

Introduced in this section is the particle collection due to the standing pressure

waves formed along the fluid column enclosed by a cylindrical capillary. As shown

in Figure 8.15, the silica capillary having a 200 µm outer and 100 µm inner diameter

is filled with 3M instant glue and adhesively bonded to a rectangular PZT plate.

Another capillary having an inner diameter of 320 µm and outer diameter of 435

µm is filled with fluid (DI water) with suspended sample microparticles. Then, a

thinner cylinder attached to the PZT is carefully inserted into the larger capillary,

which includes the sample. In this configuration, the thin capillary acts as a piston

inside the larger capillary, which enables selective excitation of cavity modes in

terms of pressure waves because the coupling is directly between the capillary

acting as the piston, and the fluid enclosed by the larger capillary. Similar to the

other experiments, the PZT plate is driven with a function generator.
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Figure 8.15: Top: Schematic for the exclusive excitation of p-waves in a col-
umn of fluid, enclosed in a microfluidic capillary. Internal exci-
tation is enabled by a second thinner capillary attached to the
PZT plate. The picture in the middle shows the PZT plate,
the thin capillary (actuator) attached to the PZT plate, the
capillary enclosing the fluid column and the sample, and the
collection of the particles. The bottom picture shows a magni-
fied version of the above image.
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8.3.2 Results and Discussion

As shown in the pictures included in Figure 8.15, particle collection can be mon-

itored without a microscope. Images shown in this figure were captured with a

point and shoot, hand held digital camera. Here, actuation frequency is 62 kHz.

Wavelength can be measured from the distance between the collection points, in

this case, the speed of the wave inside the capillary is found to be 1450 m/s. This

is, in fact, higher than the theoretical expectation of 1330 m/s calculated through

the method given in Appendix A.

Collection results confirm that the length of the fluid column is the only im-

portant parameter defining the resonance frequencies. In this case, resonance fre-

quencies can be find from the equation

fn =
cp
λn

=
cp
2l
n (8.6)

where cp is the speed of waves, λn is the wavelength of the nth mode, and l is the

length of the fluid column.

Figure 8.16 shows the collection of 10 µm particles due to the standing pressure

wave fields at various frequencies. Wavelengths obtained from the distance between

the collection locations result are used to calculate the speed of the waves as 1450

m/s. As shown in Section 3.1.2, below the cut off frequencies of the radial and

angular modes, the distribution of the pressure waves only depends on the z axis;

these are plane wave modes. The shape of the collection of particles looks like

a disk aligned in the normal direction to the central axis of the capillary. This

observation proves that variation in pressure values exist only along the cylinder.

After particles are collected at a resonance frequency, a small shift in the fre-

quency results in a change in the angular alignment of the collected particles. This
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351 kHz

451 kHz

0.4 mm

Figure 8.16: Particle collection at two different resonance frequencies. Fre-
quencies of the modes are dependent on the length of the fluid
column. When the frequency is lower than the first cut off fre-
quency for the radial modes, P-waves do not have any radial
or angular dependence, so the collection forms a disc shape,
aligned normally to the central axis of the cylindrical capillary.

effect is shown in Figure 8.17. In this way, the packing structure of the micropar-

ticles can be observed. In the same figure, the crystalline packing structure of the

10 µm particles can be observed. This method reveals that microparticles can be

aligned and packed in a crystalline structure under acoustic forces.

In a Kundt’s tube experiment, when sand particles are collected primarily

at pressure node locations, fine structures were observed on the bulk collections.

These striations have been observed in many experiments and their periodicity

cannot be associated with a wave speed. In cavity mode experiments performed

here, similar to the PZT-glass capillary actuator, striations have been observed.

In this configuration, the periodic distance between two fine collections is about
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Small shift on the resonance frequency 

changes the orientation

Side view

Periodic packing

Particles collected are aligned 

normal to the central axis

Figure 8.17: After particles are collected at a pressure node, their alignment
with the central axis can be changed by a slight frequency shift.
This alignment change reveals the crystalline packing struc-
ture of the particles collected under acoustic radiation pressure
forces.

60 µm. This value at 62 kHz corresponds to a wave speed of 7 m/s. Since no

form of wave propagation is known for these values, it can be concluded that these

striations do not follow the periodicity of any P-wave propagation. As shown in

[117], these striations are related to the possible secondary effects, particularly the

streaming vortices occurring inside the cavity.

8.3.3 Conclusion

In this section, exclusive excitation of acoustic cavity modes for p-waves has been

demonstrated. Experimental results show that microparticles are captured at pres-

sure nodes. The location of the pressure nodes and also the capture of the particles

by the acoustic radiation forces in a standing pressure field are found to be in agree-

ment with theoretical expectations. The value of the phase speed of sound waves

calculated from experiments are higher compared to the theoretical value obtained
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62 kHz

48 kHz

115 μm

Figure 8.18: Striations observed in Kundt’s tube experiments show their ex-
istence in microfluidic cavities as well. If the periodicity of the
fine collections are associated with a wave dynamics, then the
speed of such a wave is found to be 7 m/s. This is not possible
and it is argued that these striations might be related to the cir-
cular streaming effects. Observation of striations only happen
when particles were initially waited to sediment to the bottom
of the capillary and then the actuation is turned on.

by the method given in Appendix A.

While this actuator enables investigation of pressure and force field distribu-

tions, and works as a proof of the concept, the feasibility for general applications

is questionable because resonance frequencies depend on the length of the fluid

column. Since this a highly varying parameter from experiment to experiment and

even during the experiment due to factors such as evaporation, the characterization

of the actuator is not straightforward. In addition, considering possible integra-

tion with other microfluidic sytems, unknown boundary conditions limit the use

of the actuator. In this regard, the PZT-glass capillary coupled actuator, which

310



was presented in earlier chapters, eliminates this problem. Since the frequencies

of the flexural modes defined by the length of the capillary, characterization of the

device, and integrability with other microfluidic systems are more straightforward.
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APPENDIX A

CORRECTION FOR THE SPEED OF SOUND WAVES IN A

THICK HOLLOW CYLINDER

In this section, the derivation of the speed of sound waves in a thick cylindrical tube

is shown. We followed a similar pattern that was mentioned in [46]. Information

about the theory of elasticity can be found in many books such as [18, 21, 118].

We will skip the details and start with the equation of motion. In tensor notation,

(λ+ µ)sij,j + µsi,jj + ρfi = ρs̈i (A.1)

and in vector notation

(λ+ µ)~∇ · ~∇ · s + µ∇2s + ~∇f = ρs̈ (A.2)

where s is the displacement and λ and µ are known as Lamé constants, which

define elastic properties of materials.

In cylindrical coordinates, divergence operator (~∇) is given as

~∇ · A =
1

r

∂(rAr)

∂r
+

1

r

∂Aθ

∂θ
+
∂Az

∂z
(A.3)

where A is a random vector in 3D.

Hooke’s general formula relating strain to stress is given as

τij = λǫkkσij + 2µǫij (A.4)

where strain elements are given by the general formula,

ǫij =
1

2
(si,j + sj,i) . (A.5)

It is possible to write displacement vector s in Equation A.2 in terms of scalar

and vector potentials, Φ and H such that

s = ~∇Φ + ~∇× H (A.6)
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satisfying wave equation

∇2Φ =
1

c21

∂2Φ

∂t2
and ∇2H =

1

c22

∂2H

∂t2
. (A.7)

Assuming a fluid cylinder, the general solution of the equation for the scalar field

is given as

Φ(r, θ, z, t) = AJn(αr) cosnθei(ξz−ωt) (A.8)

From Equation A.7 we find

sr =
∂Φ

∂r
(A.9)

giving

sr = AαJn+1(αr) cosnθ . (A.10)

At low frequencies, such as in our case for n = 0,

J1(αr) =
αr

2
(A.11)

then

sr(r) = Aαr (A.12)

which can be written in terms of its boundary value at r1 as

sr(r) =
sr(r1)

r1
r . (A.13)

In fluids, the relationship between pressure and displacement was derived in

section 3.1.1 as

p = λ1
δρ

ρ0

= λ1
∆V

V
= λ~∇ · s (A.14)

where λ1 is the Lame constant for the fluid and equal to the bulk modulus given

in section 3.1.1 as ß. Assuming no angular (θ) dependence for the low frequency

regime (long wavelengths compared to the cylindrical radius), we have

p(r, z) = λ1

(∂sz

∂z
+
∂sr

∂r
+
sr

r

)

(A.15)

p(r1, z) = λ1

(∂sz

∂z
+ 2

sr(r1)

r1

)

at r = r1 . (A.16)

313



To further proceed for the wave equation, we need to know more about the sr(r1)

term in Equation A.16. We expect to have pressure dependence in this value; as

the pressure increases, displacement of the capillary fluid boundary will increase.

In this case we need to look to the capillary body.

Assuming only r dependence in the solid structure, we have ~∇ × s = 0, and

using vector identity

∇× A = ∇(∇ · A) −∇2A (A.17)

Equation A.2 becomes

(λ2 + 2µ2)∇2s = 0 (A.18)

(λ2 + 2µ2)

(

1

r

∂

∂r

(

r
∂sr

∂r

)

+
sr

r2

)

= 0 (A.19)

where λ2 and µ2 are the Lame constants for the solid cylinder. The solution of

Equation A.19 gives the radial displacement sr for the solid cylinder,

sr(r) = Ar +
B

r
(A.20)

where A and B are constants to be found from boundary conditions. At interfaces,

pressure and displacement in r direction have to be continuous for equilibrium;

having pressure p at (r = r1) and 0 at (r = r2) we have

τrr(r1) = −p (A.21)

τrr(r2) = 0 (A.22)

sr(r1)fluid = sr(r1)solid . (A.23)

From Equation A.4 we have

τrr(r) = λ2
~∇s + 2µǫrr (A.24)

where ǫrr can be found from Equation A.5 as

ǫrr(r) = A− B

r2
. (A.25)
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Inserting Equations A.20 and A.25 in Equation A.24, and solving for boundary

conditions given in Equation A.21, we find constants A and B as

A =
r2
1

2(λ2 + µ2)(r2
2 − r2

1)
p (A.26)

B =
r2
1r

2
2

2µ2(r2
2 − r2

1)
p . (A.27)

As expected we find the radial displacement (sr) as a function of internal pressure

(p). For the solid cylinder at the fluid-solid boundary we can write

sr(r1)

r1
=

(

r2
1

2(λ2 + µ2)(r2
2 − r2

1)
+

r2
2

2µ2(r2
2 − r2

1)
︸ ︷︷ ︸

M

)

p (A.28)

where we use M for the phrase in parenthesis. Using the boundary condition given

in Equation A.23, we can insert Equation A.28 into Equation A.16. Then at the

interface we find

p = −λ1

(∂sz

∂z
+ 2Mp

)

(A.29)

Solving the above equation for pressure, p, taking partial derivative with respect

to z we have

p = −λ1

(∂sz

∂z
+ 2Mp

)

(A.30)

∂p

∂z
= −

( λ1

2Mλ1 + 1

)∂2sz

∂z2
. (A.31)

From the conservation of momentum for a fluid element given in Equation 3.8, we

know that

∂(ρu)

∂t
= −~∇p (A.32)

since the velocity (u) is the time derivative of displacement (s) we have

ρ
∂2(s)

∂t2
= −~∇p . (A.33)

We are expecting variation in pressure to be mostly in z direction. For z direction

we have

ρ
∂2sz

∂t2
= −∂p

∂z
. (A.34)
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Using the identity above in A.31 we find

∂2sz

∂t2
= −

( λ1

ρ(2Mλ1 + 1)

)∂2sz

∂z2
(A.35)

which is the wave equation

∂2sz

∂t2
= c2p

∂2sz

∂z2
(A.36)

where

cp =

√

λ1

ρ

1

(1 + 2Mλ1)
(A.37)

or

cp = c
1√

1 + 2Mλ1

(A.38)

where c =
√

λ1/ρ is the speed of sound in bulk fluid and M is given by

M =
r2
1

2(λ2 + µ2)(r2
2 − r2

1)
+

r2
2

2µ2(r2
2 − r2

1)
. (A.39)

What Equation A.38 tells us is that the speed of a propagating wave in a thick

cylindrical tube (in low frequency regime) is reduced related to a parameter which

depends on the radius and thickness of the tube and elastic properties of the fluid

and the tube.
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