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Generation of three-dimensional retinal tissue with
functional photoreceptors from human iPSCs
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Many forms of blindness result from the dysfunction or loss of retinal photoreceptors.

Induced pluripotent stem cells (iPSCs) hold great potential for the modelling of these

diseases or as potential therapeutic agents. However, to fulfill this promise, a remaining

challenge is to induce human iPSC to recreate in vitro key structural and functional features of

the native retina, in particular the presence of photoreceptors with outer-segment discs and

light sensitivity. Here we report that hiPSC can, in a highly autonomous manner, recapitulate

spatiotemporally each of the main steps of retinal development observed in vivo and form

three-dimensional retinal cups that contain all major retinal cell types arranged in their proper

layers. Moreover, the photoreceptors in our hiPSC-derived retinal tissue achieve advanced

maturation, showing the beginning of outer-segment disc formation and photosensitivity. This

success brings us one step closer to the anticipated use of hiPSC for disease modelling and

open possibilities for future therapies.
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M
any retinal degenerative diseases are characterized
by the dysfunction and death of photoreceptor
cells, leading to vision loss and eventually total

blindness1–3. Despite decades of research, there is currently no
cure for these diseases. The establishment of human induced
pluripotent stem cell (hiPSC) technology generated considerable
excitement due to its potential for developing in vitro
biological models and, eventually, therapeutic treatments for
such diseases4–9. However, it is still unclear to what extent hiPSC
may be capable of recapitulating in vitro the cellular and
molecular features of the native retina, especially regarding
photoreceptor differentiation and functional maturation.

Several studies have shown that under specifically defined
culture conditions, embryonic stem (ES) and induced pluripotent
stem (iPS) cells can be induced to differentiate along a retinal
lineage, including differentiation into photoreceptors10–19.
Moreover, it has recently been shown that mouse and human
ES cells can develop into a three-dimentional (3D) optic cup in
culture that remarkably resembles the embryonic vertebrate
eye20,21. Notwithstanding, the structural and molecular
characteristics of advanced photoreceptor differentiation,
including the formation of outer-segment discs—an essential
structural feature for photoreceptor function—have yet to occur
in vitro6–9. Perhaps as a consequence, no photoreceptor–light
response has been observed in such cultures either. Finally, it
remains to be determined whether iPSC can recreate the 3D
histo-architecture of the neural retina (NR) in vitro beyond a
rudimentary stratification22.

Retinal cell differentiation in vivo takes place through
sequential cell-fate specification steps, within a very dynamic
and complex microenvironment involving highly coordinated
cell–cell interactions through direct contact or diffusible
signals23,24. Accordingly, in most published studies, differen-
tiation of ES or iPS cells into retinal cells in vitro required an
elaborate regime of exogenous factors10–13,15,16,18,20,21,25–27.
Some studies, however, suggest that human ES and iPS cells
have a certain propensity to differentiate into a retinal
lineage14,19,22,28,29.

Here we have succeeded in inducing human iPSC to
recapitulate the main steps of retinal development and to form
fully laminated 3D retinal tissue by exploiting the intrinsic cues
of the system to guide differentiation (Supplementary Fig. 1).
Moreover, the photoreceptors in our preparations begin to
develop outer-segment discs and reach the stage of photo-
sensitivity. This highly autonomous system provides a powerful
platform for developmental, functional and translational studies.

Results
Self-organized eye field domains. Eye development in the
embryo’s neural plate begins with the formation of the eye field
(EF), a centrally organized domain consisting of a subpopulation
of anterior neuroepithelial cells that have become further speci-
fied into retinal progenitors23,30 (Supplementary Fig. 1a). The EF
is characterized by the expression of a group of transcription
factors that includes PAX6, RX, LHX2, SIX3 and SIX6, while
the surrounding anterior neuroepithelial cells express PAX6 and
SOX1 (refs 30–33). In parallel to the native events, our hiPSC-
derived aggregates, after 8 days of differentiation (D8) in a
chemically defined neural differentiation medium14,22,29 and
attached on Matrigel-coated culture dishes (see Methods for
details), acquired an anterior neuroepithelial fate expressing
PAX6 and SOX1 (Fig. 1a–c). Soon after, retinal progenitor cells
expressing LHX2 appeared in the central region of the
differentiating aggregates, concomitantly with a downregulation
of SOX1 expression (Fig. 1d). By D12, EF-like domains with their

characteristic flat, tightly packed appearance could be observed,
surrounded by anterior neuroepithelial cells (Fig. 1e,f). Retinal
progenitor cells within the EF domains lacked expression of
SOX1 (Fig. 1f) and co-expressed the EF transcription factors
PAX6, LHX2 and RX (Fig. 1g,h). The surrounding anterior
neuroepithelial cells expressed SOX1 and PAX6 but were negative
for LHX2 or RX, and typically formed rosettes (Supplementary
Fig. 2i–l), which, although not found in the native situation, are
characteristic of these cells in culture14,34.

The reverse transcription–PCR analyses in Fig. 1s summarize
the temporal sequence of events in our system, showing the
gradual loss of pluripotency (downregulation of OCT4), the
acquisition of neural fate (sustained SOX2 expression and
appearance of PAX6) and the progressive differentiation into
retinal progenitors. Interestingly, the chronology of expression of
the EF transcription factors mimicked the in vivo situation, with
initial expression of PAX6 and SIX3, followed by LHX2 and RX,
and eventually SIX6 (refs 30,31). Thus, without the need of a
regime of exogenous factors, hiPSC were able to differentiate into
retinal progenitors that self-organized into EF-like domains
surrounded by anterior neuroepithelial-like cells, presenting a
cellular organization closely resembling the embryonic anterior
neural plate where the EF forms in vivo.

Self-driven differentiation into NR and RPE. The EF in vivo
gives rise to the left and right optic vesicles, with their respective
retinal progenitors eventually forming the future NR and retinal
pigment epithelium (RPE) (Supplementary Fig. 1a). Cell-fate
specification into either NR or RPE is regulated critically by two
transcription factors, VSX2 and MITF, which initially are co-
expressed in the bipotent progenitor cells but subsequently
become restricted to the NR and RPE, respectively23,35,36. Again,
as in the native situation, the cells within the EF-like domains in
our cultures followed the same differentiation sequence; namely,
these cells initially expressed both VSX2 and MITF (Fig. 1i), but
subsequently segregated into a central NR-like domain expressing
PAX6, LHX2, RX and VSX2 (Fig. 1j–l and Supplementary
Fig. 2a–d), and a peripheral RPE-like domain expressing MITF
and PAX6 (Fig. 1l and Supplementary Fig. 1e). Between D17 and
D25 in culture, these NR and RPE domains transitioned to an
optic-cup-like structure, with the NR progressively acquiring a
horseshoe-dome shape reminiscent of the inner wall of the optic
cup, surrounded by the RPE (Fig. 1m–q and Supplementary
Figs 1f and 2e–h).

Similar results were obtained from three different hiPSC lines
(IMR90-4 (ref. 37), CB-iPSC6.2 (ref. 38), KA.1 (ref. 39);
Supplementary Table 1) with the efficiency of NR domain
formation in D20 being 85.0±3.0%, 88.3±3.5% and 62.3±4.6%,
respectively (Fig. 1r). Thus, in our cultures, retinal progenitors in
the EF domains underwent spontaneous differentiation into NR
and RPE efficiently and reproducibly, closely mimicking their
in vivo topological organization.

Formation of 3D retinal cups and self-lamination. The
optic-cup-like shape of the NR domains in our cultures made
them easily identifiable and amenable to individual mechanical
detachment and collection for further culture in suspension
(Fig. 2a, Supplementary Fig. 3 and Methods for details). The NR
domains, collected on D21–D28, had a high enrichment of NR
progenitors (71.0±7.3% VSX2-positive cells versus 19.0±7.2%
MITF-positive cells, mean±s.d.; Fig. 2b) and, when cultured in
suspension, formed 3D retinal cups (RCs) with an efficiency
ranging from 50 to 70% (3 independent experiments with over
100 NR domains/experiment). The RC consisted of a thick,
transparent NR that was continuous with the adjacent RPE,
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Figure 1 | hiPSC-derived retinal progenitors self-organized into EF-like domains and subsequently differentiated into NR and RPE. hiPSC-derived,

free-floating aggregates (a) seeded in Matrigel-coated dishes acquired an anterior neuroepithelial (AN) fate characterized by SOX1/PAX6 expression (b,c);

subsequently, retinal progenitors (LHX2-positive) first appeared in the centre of the aggregates (d). By D12, well-defined EF domains (e,f) expressing

PAX6, LHX2 and RX (g,h) could be observed surrounded by AN cells (f). As differentiation progressed, cells within the EF domains co-expressed VSX2 and

MITF (i), and afterwards differentiated into a central VSX2/LHX2/PAX6-positive NR domain (j–l) and a peripheral RPE domain expressing MITF but not

VSX2 (l). (m–q) The NR domain progressively acquired an optic-cup-like shape. (r) Efficiency of NR domain formation among three hiPSC lines

(mean±s.d., three experiments/time point/cell line). (s) Reverse transcription–PCR analysis showing progressive acquisition of retinal fate. Scale bars,

100mm (a and m–p); 50mm (b–l and q).
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which appeared bundled at the tip of the RC and became gra-
dually pigmented (Fig. 2c,d). From the time of NR domain col-
lection to D35 (Week 5, or W5), the NR presented molecular and
histological features resembling the actual features of the human
embryonic retina at the same age40, including a polarized,
pseudostratified epithelium with proliferating cells undergoing

interkinetic nuclear migration and expressing the appropriate
transcription factors (Fig. 2e–k and Supplementary Movie 1).
During W5–W7, the NR cells spontaneously began to
differentiate, following the characteristic centre-to-periphery
wave of neurogenesis and migrating to their corresponding
retinal layers (Fig. 3).
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Figure 2 | Formation of 3D RCs. (a) One NR domain (top panel) is being detached with a tungsten needle (arrowhead in bottom panel).

(b) Fluorescence-activated cell sorting analysis of collected NR domains showed enrichment in NR progenitors (VSX2-positive) compared with RPE

progenitors (MITF-positive). (c) Detached NR domains cultured in suspension formed 3D RCs, composed of an NR epithelium and RPE (arrow).

(d) Higher magnification of a typical 3D RC with an NR epithelium continuous with the adjacent RPE bundled at the tip (arrowheads).

(e,f) The pseudostratified neural epithelium within the RC showed the typical polarity, with mitosis (Phospho-Histone H3 (PH3)-positive) occurring at the

apical side and postmitotic neuronal precursors (HU C/D-positive) accumulating at the basal side. (g–i) NR cells proliferated actively (EdU-positive, g)

and co-expressed transcription factors characteristic of neural retina progenitor cells (h,i). (j–k) Retinal progenitors within the NR epithelium

underwent interkinetic nuclear migration. (j) Time-lapse imaging of retinal progenitors expressing nuclear green fluorescent protein (GFP).

(k) Three-dimensional volume rendering of the cells shown in (j); red dot: cell undergoing mitosis; yellow dot: cell nucleus migrating from the apical

to the basal side of the neuroepithelium; blue dots: cells undergoing apoptosis. Scale bars, 100mm (a and c); 50mm (d–i).
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Recapitulation of in vivo NR differentiation. To promote cell
survival beyond W7, the culture medium was supplemented with
fetal bovine serum, taurine and retinoic acid (RA) until W17, at
which time further slight modifications (less RA and replacement
of the neurobasal supplement B27 by N2) were made to induce
photoreceptor maturation (see Methods for details). These con-
ditions allowed the RCs to maintain their shape and steady
growth (with the longest axis increasing from 0.4±0.1mm on
D45 to 0.7±0.1mm on D90, mean±s.d.) (Fig. 4a–e) and to
develop distinguishable layers containing all major retinal cell
types, including Müller cells (Fig. 4f–j). Ganglion cells first
appeared in W5 (Fig. 3d) and over time increased in number and
migrated towards the emerging ganglion cell layer (Fig. 5a–c,
e–g), which became well established by W12–W13 (Fig. 5d),
sometimes including a developing nerve-fibre-like layer (Fig. 5h).
Photoreceptors (expressing OTX2) appeared during W7 and,
over the subsequent weeks, populated the developing outer
nuclear layer (ONL; where photoreceptor cell bodies are situated
in the mature retina) and expressed recoverin, a well-known
phototransduction protein (Fig. 5a–c,e–g). Amacrine cells
(expressing AP2a) and horizontal cells (expressing PROX1) also
appeared during W7 (Fig. 5i). As time progressed, amacrine and
horizontal cells became numerous and began to segregate to their
corresponding layers (Fig. 5j–l). By W21, the RCs presented a
well-organized outer nuclear layer, adjoining a developing outer
plexiform layer expressing the synaptic vesicle protein, SV2
(Fig. 5m,n). Rod opsin was also detectable in the distal part of
photoreceptor cells (Fig. 5o). Finally, a developing bipolar cell
layer containing postmitotic, VSX2-expressing bipolar cells
appeared after W22 (Fig. 5p). This spatiotemporal pattern of
differentiation closely mimics that of the vertebrate retina41,42

and was observed in all of the RCs examined (B 60) derived from

the three different hiPSC lines used (Fig. 5q and Supplementary
Fig. 4).

Rod-dominant ONL with highly differentiated rods and cones.
Although photoreceptors expressed detectable levels of rod opsin
in the culture conditions described above, further developmental
maturation, including the formation of outer-segment discs, did
not appear to progress. In addition, expression of L/M- and
S-cone opsins was not apparent. As RA has been shown to
influence photoreceptor differentiation in a time- and con-
centration-dependent manner43, we reasoned that prolonged
exposure to a relatively high retinoic acid concentration (1 mM
RA in W7–W17) might hamper photoreceptor maturation.
Accordingly, we tested two shorter time windows of retinoic
acid exposure (W7–W14 and W10–W14, both with 1 mM RA) in
CB-iPSC6.2-derived RCs (Fig. 6). The W10–W14 condition
induced, already at W17, the appearance of dispersed cells
showing high rod-opsin expression not only in the distal part of
the immature photoreceptors but also in their cell bodies, as seen
in native development44 (observed in B33% of the RCs, n¼ 12;
Figs 6a and 7a–c). Moreover, we also began to observe S-opsin
expression in some photoreceptors not expressing rod opsin
(Fig. 7d). By W21, 90% of the hiPSC-derived RCs (n¼ 20)
showed a significant increase in the number of photoreceptors
expressing rod opsin, organized in patches throughout the outer
nuclear layer or even encompassing the full extent of this layer
(Fig. 7e). Photoreceptors expressing L/M- or S-opsins were also
observed (Fig. 7f–i). The morphologies of the rods and cones and
the localization of their cell bodies, with cones at the outer edge
and rods toward the inner edge of the outer nuclear layer,
resembled remarkably the native situation44 (Fig. 7g–i and
Supplementary Movie 2). The photoreceptors showed bud-like
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Figure 3 | Retinal progenitors within hiPSC-derived RCs underwent spontaneous differentiation. Retinal progenitors differentiated following the

typical central-to-peripheral pattern (a–c) and acquired early-born cell fates, beginning with generation of ganglion cells (BRN3-positive/EdU-negative,

d–f), followed by photoreceptors (OTX2-positive, f), amacrine cells (AP2a-positive, g) and horizontal cells (AP2a/PROX1-positive, arrows in g).

Scale bars, 50mm.
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structures at their distal tip reminiscent of the short nascent outer
segments at comparable developmental stages in the human
retina44–46 (Fig. 7g–i and Supplementary Movie 2). Rarely,
elongated structures resembling more advanced native outer
segments were seen in W25 (arrow in Fig. 7j). A similar pattern of
photo-pigments expression was observed in RCs derived from the
three cell lines tested upon W10–W14 RA treatment (Fig. 6b–g),
albeit with different efficiencies as evaluated for rod opsin
expression at W21 (90, 47 and 38% of cups from CB.iPS6.2
(n¼ 20), IMR90-4 (n¼ 22) and KA.1 (n¼ 8), respectively).

Acquisition of functional photoreceptors. Possibly one of the
most challenging and still unresolved issues is whether photo-
receptors derived from ES and/or iPS cells in vitro are capable of
achieving functional maturation, that is, forming outer segments
and responding to light6–9. We thus set out to evaluate these
events in our system. During W27–W28, several ultrastructural
features characteristics of advanced differentiation were revealed
by electron microscopy, including an outer limiting membrane,

inner segments with numerous mitochondria and basal bodies
with connecting cilia having a photoreceptor-specific microtubule
arrangement (Fig. 7k–m). Although at low frequency, some
photoreceptors also showed intracellular membrane discs
reminiscent of the outer-segment discs in native photoreceptors
(Fig. 7n and Supplementary Fig. 1j; average of developing outer-
segment disc stacks observed: 2 per 150 mm of ONL length; n¼ 4
ultra-thin sections). All of these features were very similar to
those observed in the developing human retina47,48. Perhaps
more importantly, several key proteins involved in rod
phototransduction were expressed in the photoreceptors of
W25 hiPSC-derived RCs, including the a-subunit of rod
transducin (GT1a), the a- and b-subunits of the rod cGMP-
phosphodiesterase (PDE6ab), the rod cyclic-nucleotide-gated
channel a-subunit and b-subunit, and retinal guanylate cyclase
1 (Fig. 8a–i). These proteins increased in expression over time in
parallel to rod opsin, as in native human retina44 (Supplementary
Fig. 5a–i).

To determine whether the photoreceptors in our RCs had the
ability to respond to light, we conducted perforated-patch
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recordings in the voltage-clamp mode from the putative rod cells
in W25–W27 hiPSC-derived RCs. We found 2 out of 13
randomly chosen cells to respond to a light flash (Fig. 8j; an
unresponsive cell is shown in Fig. 8k). Considering that in these
samples the outer segments were just beginning to appear (as
inferred from the ultrastructural features described above), the
infrequent encounter of light responsiveness is not too surprising.
The light response consisted of an outward current (equivalent to
the reduction of a steady inward current in darkness, similar to
the situation in native rods) and the speed of the response’s rising
phase also resembled that of the native response. The photo-
sensitivities of the two responsive cells were much lower than
those observed in adult-primate photoreceptors49, likely to be
because the rod opsin level was still low and the downstream
phototransduction steps were still maturing50–52. Repeated
flashes failed to elicit further responses, perhaps because
of functional depletion of the nascent phototransduction
components. In darkness, a steady inward current was observed
in practically all 13 cells recorded, and the 2 photoresponsive cells

happened to have large inward currents (Fig. 8l) (see also ref. 30
for a cGMP-induced current in their preparations). The
implication of the typically larger inward current of the
photoresponsive cells is at present unclear because the current
at this stage may have more than one component.

Compared with the progressive maturation of photoreceptors,
most ganglion cells and amacrine cells, on the other hand,
gradually disappeared from the advanced cultures, presumably
because they needed additional factors for their long-term
survival.

Discussion
We have established a simple and efficient strategy for inducing
hiPSC to differentiate almost autonomously into 3D retinal tissue
in vitro, with spatial and temporal features that replicate the
development of the human retina in vivo. Furthermore, the
photoreceptors in our system are able to reach an advanced stage
of maturation, up to at least the beginning of outer-segment
formation and of photosensitivity. To our knowledge, this is the
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first demonstration that such a developmental step can be
achieved in vitro.

Differentiation of ES and iPS cells into retinal cells in vitro
most commonly requires the use of extrinsic chemical factors to
modulate specific signalling pathways, and to mimic the in vivo
microenvironment where retinal cell specification normally
occurs. In such protocols, the induction of retinal progenitor
fate is achieved by adding combinations of bone morphogenetic
protein, Wnt, Nodal and Notch pathway inhibitors (such as
Noggin, Dkk1, LeftyA and DAPT), several growth factors
(including insulin-like growth factor 1, basic fibroblast growth
factor (FGF), activin, sonic hedgehog (SHH) and T3) and
serum10–13,15,16,26,27. Further differentiation into photoreceptors
has additionally required exposure to native retinal cells in co-

culture systems or to several exogenous factors, including Noggin,
Dkk1, DAPT, insulin-like growth factor 1, acidic FGF, basic FGF,
T3, SHH, RA and taurine10–13,15,16,26,27. Similarly, the recent
derivation of optic-cup-like structures from human ES cells
required an elaborate differentiation strategy involving initial
dissociation followed by re-aggregation of human ES cells and a
rigorous regime of exogenous factors and long-term culture
under high-oxygen conditions21. Conversely, Meyer et al.14

reported the ability of select human ES and iPS cell lines to
differentiate into retinal progenitor cells without the need of
exogenous factors. These cells in turn were capable of forming
optic vesicle-like structures with rudimentary lamination22,29.
Building on these observations, here we succeeded in establishing
a system in which without requiring extrinsic signalling
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Figure 7 | hiPSC-derived rod and cone photoreceptors achieved an advanced level of differentiation including outer-segment disc formation.

(a) During normal development photoreceptor precursors (PRPs) differentiate into rods, L/M- and S-cones (in green, red and blue colour, respectively).

(b) A W22 CB-iPSC6.2-derived RC that has been exposed to 1-mM RA in W10–W14. (c–j) Under this condition, photoreceptors expressing high levels of

rod opsin in the entire cell body were first observed by W17 (c), significantly increasing in number and forming large patches by W21 (e,f). S-opsin

expression could be observed in some rod opsin-negative photoreceptors (d,f). High-magnification images of W21 RCs showing rods (g), S- (h) and

L/M- (i) cones with a morphology and a topological organization similar to those of the in vivo retina44, including structures reminiscent of short, nascent

outer segments (arrowheads). By W25, elongated structures resembling more developed outer segments were rarely observed (j, arrow). (k–n),

Transmission electron microscopic analysis revealed the presence of an outer limiting membrane (*), inner segments (arrows), basal bodies (BB),

connecting cilia (CC) and stacks of outer-segment discs (demarcated by arrowheads). BB and CC presented the photoreceptor-specific microtubule

arrangement consisting of 9� 3þ0 and 9� 2þ0, respectively (inserts in m). C, centriole. Scale bars, 50mm (b,c,e); 10mm (d,f and g–j); 0.5mm (k–n);

0.05mm (m inserts).
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modulators, human iPSCs differentiate into retinal progenitors
and subsequently form 3D RCs capable of recreating the
full histo-architecture of the native retina. Serum, taurine and

RA are added at later times to promote cell survival,
allowing spontaneous differentiation to proceed in a prolonged
manner.
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Stem-cell-derived retinal progenitors in two-dimensional
conditions have been shown to generate only certain retinal cell
types, such as RPE, ganglion and photoreceptor cells, and they are
most often found within mixed cell populations lacking tissue
architectural features10–13,15,16,26. On the other hand, the human
stem-cell-derived 3D retinal tissues reported to date showed
relatively organized ganglion and outer nuclear layers with an
intermediate layer mostly containing retinal precursors21,22.
Sparse interneuron precursors representing horizontal and/or
amacrine cells were also seen, but bipolar and Müller cells were
lacking, as well as clearly defined amacrine, horizontal, bipolar
and plexiform layers21,22. In contrast, human iPSC-derived
retinal progenitors within our 3D RCs generated all major
retinal cell types, including neurons (ganglion, amacrine,
horizontal, bipolar, rod and the three types of cones) and
Müller glial cells, all arranged in their proper layers.

Taken together, our results suggest that under appropriate
conditions, hiPSC have the potential to re-create a ‘retina-
differentiation niche’ sufficient for inducing fully specified retinal
progenitor cells capable of originating the entire repertoire of
retinal cell types while recapitulating in time and space the
development of the human retina. We speculate that physical
microenvironmental cues (especially cell–cell and cell–
extracellular matrix interactions18,53,54) at the initial stages of
hiPSC differentiation are key to the establishment of this retina-
differentiation niche.

Further evidence of the potential of hiPSC to re-enact retinal
developmental processes in our system comes from the ability of
hiPSC-derived photoreceptors to form outer-segment discs and
elicit a light response, events that have not been achieved in vitro
until our present study. The onset of outer-segment disc
morphogenesis in the developing human retina occurs around
fetal week 23–25, resulting in a small number of photoreceptors
bearing bud-like outer-segment precursors45,46. The number of
outer-segment precursors in vivo slowly increases over the
following weeks and outer segment elongation does not start
until about fetal week 32 (ref. 55). This is in agreement with the
relatively infrequent observation of developing outer-segment
discs in our samples at W27–W28. Assuming that the
development of light-responsiveness parallels that of the outer
segment, as previous studies have shown50,51,56, our infrequent
observation of the light response is to be expected. There is no
published information regarding the appearance of the light
response in pre-term human fetus for comparison with our
functional observation; electroretinographic recordings have been
made only from human infants beginning at a few days
postbirth51,52. Nonetheless, the studies in infants show that
immature photoreceptors have a significantly lower sensitivity to
light compared with those in the adult, associated to their lower
concentrations of rhodopsin and other phototransduction
proteins, and their shorter outer segments51,52,57.

The advanced level of maturation of the hiPSC-derived
photoreceptors in our cultures might result from the combined
effects of the fairly autonomous 3D differentiation, the temporally
extended culture and the timing/period of exposure to RA.
A contribution from a cell-line-dependent effect, as observed in
other studies29,58, cannot be ruled out, considering the differences
in efficiency of rod opsin expression among the three cell lines
tested. The importance of the native microenvironment on
stem-cell-derived photoreceptor differentiation is supported
by previous work using co-culture systems or subretinal
transplantation10,11,15,17. In our system, the lack of extrinsic
factors at the early stages of differentiation (which, while
promoting a particular fate may also hinder other aspects
of the developmental potential of the cells) and the 3D
tissue organization achieved may contribute to creating a

microenvironment very similar to that found within the native
retina and to trigger the innate developmental programmes
leading to photoreceptor functional differentiation. This is further
supported by the time-dependent effect of RA on photoreceptor
differentiation observed in our cultures, which correlates with a
similar effect in the in vivo vertebrate retina43,59. Our culture
conditions also permitted growth of the 3D RCs for a significantly
longer time period compared with previous 3D systems21,22 while
preserving their histological features, thus allowing cells to reach a
developmental stage comparable to that at which functional
maturation of the photoreceptors begins in the human
retina45,46,55.

It is interesting that in our cultures a relatively advanced
photoreceptor differentiation was achieved without physical
contact with the RPE, as the RPE in our samples was bundled
at the tip of the RC far away from the photoreceptors containing
developing outer segments (we did not observe RPE, pigmented
or non-pigmented, lining the apical surface of the NR at any time
during differentiation, as evaluated by morphology, immuno-
histochemistry and transmission electron microscopy). Previous
studies have indicated that RPE–photoreceptor cell contact and
RPE-secreted factors are both important for photoreceptor
differentiation and maturation60–65. Although the presence of
diffusible RPE-derived factors in our cultures might have
contributed to recreating a native-like environment propitious
for photoreceptor differentiation, our observations suggest that
physical contact with the RPE may not be required at least up to
the beginning of their functional maturation.

Finally, our system provides an in vitro model of human retina
development where each of the main developmental stages can be
easily identified by their morphology and independently
manipulated. Furthermore, the success here with human iPSC
opens up many exciting possibilities in establishing in vitro
models for human eye diseases, including those associated with
different aspects of photoreceptor functionality, and hopefully
will also take potential therapeutic applications one step closer to
reality.

Methods
hiPSC culture. Three hiPSC lines, IMR90-4 (ref. 37) (WiCell), CB-iPSC6.2
(ref. 38) and KA.1 (refs 39,66), were used in this study (Supplementary Table 1).
All cell lines were obtained with verified normal karyotype and were contamination
free. hiPSCs were maintained on Matrigel (growth-factor-reduced; BD
Biosciences)-coated plates with mTeSR1 medium (Stemcell Technologies)
according to WiCell protocols. Cells were passaged every 5–7 days at B80%
confluence. Colonies containing clearly visible differentiated cells were marked and
mechanically removed before passaging. The use of hiPSCs in this study conforms
to The Johns Hopkins Institutional Stem Cell Research Oversight Committee.

Early stages of retinal differentiation. The procedure to induce early stages of
retinal differentiation was based on a previously described protocol with major
modifications14,22,29. Briefly, on day 0 (D0) of differentiation, hiPSCs were
enzymatically detached by dispase treatment, dissociated into small clumps and
cultured in suspension with mTeSR1 medium and 10 mM Blebbistatin (Sigma) to
induce aggregate formation. Aggregates were gradually transitioned into neural-
induction medium (NIM) containing DMEM/F12 (1:1), 1% N2 supplement
(Invitrogen), 1� minimum essential media-non essential amino acids (NEAAs),
2 mgml� 1 heparin (Sigma), by replacing the medium with a 3:1 ratio of mTeSR1/
NIM on D1, 1:1 on D2 and 100% NIM on D3. On D7, aggregates (average size of
0.22±0.05mm) were seeded onto Matrigel (growth-factor-reduced; BD
Biosciences)-coated dishes containing NIM at an approximate density of 20
aggregates per cm2 and switched to DMEM/F12 (3:1) supplemented with 2% B27
(without vitamin A, Invitrogen), 1� NEAA and 1% antibiotic–antimycotic
(Gibco) on D16. Thereafter, the medium was changed daily.

Formation of 3D RCs. On the fourth week of differentiation, horseshoe-shaped
NR domains were manually detached with a sharpened Tungsten needle under
inverted microscope, collected and cultured in suspension at 37 �C in a humidified
5% CO2 incubator in DMEM/F12 (3:1) supplemented with 2% B27, 1� NEAA,
and 1% antibiotic–antimycotic, where they gradually formed 3D RCs. Thereafter,
the medium was changed twice a week. For long-term suspension culture, the
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medium was supplemented with 10% fetal bovine serum (Gibco), 100 mM Taurine
(Sigma) and 2mM GlutaMAX (Invitrogen) beginning on D42, unless otherwise
noted.

RA treatment. To promote photoreceptor maturation, suspension cultures of RCs
were supplemented daily with 1 mM all-trans RA (Sigma) at various time windows:
W7–W17, W7–W14 or W10–W14; subsequently, RA concentration was decreased
to 0.5 mM.

Immunohistochemistry. Cells growing on adherent conditions were fixed in 4%
paraformaldehyde (PFA; Sigma) for 15min. RCs were fixed in 4% PFA for 30min.
A human eyeball from a 71-year-old person affected by age-related macular
degeneration (Old Dominion Eye Foundation) was fixed in 4% PFA for 4 h. Tissue
cryopreservation, sectioning and immunohistochemistry were performed as pre-
viously described67. Antibodies against the following proteins were used at the
indicated dilutions: LHX2 (goat, 1:200, Santa Cruz, sc-19344), RX (rabbit, 1:500,
Abcam, ab86210), SOX1 (goat, 1:1,000, R&D, AF3369), VSX2 (sheep, 1:500,
Millipore, AB9016), OTX2 (rabbit, 1:500, Millipore, AB9566), recoverin (REC,
rabbit, 1:500, Millipore, AB5585), Caspase 3 (rabbit, 1:500, Cell Signaling, asp175),
HU C/D (mouse, 1:200, Molecular Probes, MP21271), BRN3 (goat, 1:1,000, Santa
Cruz, sc-6026X), TUJ1(rabbit, 1:2,000, Covance, MRB-435P), MITF (mouse, 1:50,
NeoMarkers, MS-771-P1), PROX1 (rabbit, 1:2,000, Millipore, AB5475), CRALBP
(mouse, 1:500, Abcam, ab15051), rod opsin (mouse, 1:100, gift from Dr David
Hicks), L/M-opsin (rabbit, 1:50,000, gift from Dr Jeremy Nathans), S-opsin (rabbit,
1:50,000, gift from Dr Jeremy Nathans), phosphodiesterase 6- a (rabbit, 1:1,000,
Abcam, ab5659) and -b (rabbit, 1:2,000, Thermo Scientific, PA1-722), human
retinal guanylate cyclase 1 (rabbit, 1:4,000, gift from Dr Alexander M. Dizhoor),
GT1a (rabbit, 1: 2,000, Santa Cruz, sc-389), rod cyclic-nucleotide-gated channel
a-subunit (mouse,1:10, a gift from Dr Robert S. Molday) and b-subunit (mouse,
1:10, a gift from Dr Robert S. Molday). Antibodies from the Developmental Studies
Hybridoma Bank, developed under the auspices of the Eunice Kennedy Shriver
National Institute of Child Health and Human Development and maintained by
the Department of Biology, University of Iowa, were: PAX6 (mouse, 1:50), AP2a
(3B5a, mouse, 1:35) and SV2 (mouse, 1:1,000). Secondary antibodies used included
the corresponding species-specific Alexa Fluor-488-, -546- and -647-conjugated
antibodies (1:500, Molecular Probes). DAPI (40 ,6-diamidino-2-phenylindole) was
used for nuclear counterstaining (Molecular Probes). Fluorescence images were
acquired with an LSM 510 confocal microscope (Zeiss).

Detection of proliferating cells. Click-iT EdU imaging kit (Invitrogen, C10337)
was used according to the manufacturer’s protocol to visualize cells undergoing
S-phase during the time window under study. Three-dimensional RCs were
incubated with 50mg of EdU diluted in PBS for 1 or 20 h, then collected and
processed for microscopic imaging. An antibody against the DNA replication
licensing factor MCM2 (rabbit, 1:1,000, Abcam, ab4461) was used to identify
proliferating retinal progenitors, whereas an antibody against Phospho-Histone H3
(rabbit, 1: 250, Cell Signaling, #9701L) was used to identify cells in M-phase by
immunohistochemistry as described above.

Reverse transcription–PCR. Total RNA isolation was done in triplicate with
RNAeasy mini kit (Qiagen) and followed by DNase I treatment (Qiagen) to remove
potential DNA contamination. RNA quality was evaluated using a NanoDrop1000
spectrophotometer (Thermo Scientific). Reverse transcription was performed using
the SuperScript III reverse transcription–PCR kit (Invitrogen). Samples without
reverse transcriptase were used as negative controls. PCR was performed with Taq
DNA polymerase (Invitrogen) on a PTC-200 Thermal Cycler (Bio-Rad). Cycles
(30–40 depending on primer pair) were run at 95 �C denaturation for 20 s, at 60 �C
annealing for 20 s and at 72 �C extension for 30 s. Subsequent PCR products were
run on 2% agarose gels. Primers used were as follows: OCT4 forward 50-CGAGC
AATTTGCCAAGCTCCTGAA-30, reverse 50-TCGGGCACTGCAGGAACAAA
TTC-30; SOX2 forward 50-CCCCCGGCGGCAATAGCA-30 , reverse 50-TCGGCGC
CGGGGAGATACAT-30 ; PAX6 forward 50-CGGAGTGAATCA GCTCGGTG-30,
reverse 50-CCGCTTATACTGGGCTATTTTGC-30 ; SIX3 forward 50-CCGGAAGA
GTTGTCCATGTT-30 , reverse 50-CGACTCGTGTTTGTTGATGG-30 ; LHX2
forward 50-CAAGATCTCGGACCGCTACT-30 , reverse 50-CCGTGG TCAGCATC
TTGTTA-30 ; RX forward 50-GAATCTCGAAATCTCAGCCC-30 , reverse 50-CTT
CACTAATTTGCTCAGGAC-30 ; SIX6 forward 50-ATTTGGGACGGCGAACAG
AAGACA-30, reverse 50-ATCCTGGATGGGCAACTCAGA TGT-30 ; GAPDH
forward 50-ACCACAGTCCATGCCATCAC-30 , reverse 50-TCCACCACCCTGT
TGCTGTA-30 .

Flow cytometry. NR domains collected on D22 from two biological replicates
were dissociated into single cells with trypsin, fixed in 1% PFA for 15min, washed
with PBS containing 0.04% triton-X-100 and 2% donkey serum, and then incu-
bated for 1 h at room temperature in primary antibodies at a concentration of 1 mg
of antibody per one million cells in PBS with 0.25% triton-X-100 and 2% donkey
serum. Cells were then incubated with species-specific Alexa Fluor-488-conjugated
secondary antibodies for 30min, washed and analysed using a BD Accuri C6 Flow

Cytometer (BD Pharmingen). In all experiments, nonspecific, species-appropriate
isotype antibodies were used as controls. Data analysis was performed using BD
Accuri C6 software.

Ultrastructural analysis. hiPSC-derived RCs were fixed in a cold, phosphate-
buffered, 2.5% glutaraldehyde/2% PFA mixture, post fixed in 1% osmium tetroxide,
dehydrated and embedded in Epon 812. Semi-thin sections were cut for orientation
and ultra-thin sections (68 nm thickness) were cut and stained with uranyl acetate
and lead citrate, and examined using a transmission electron microscope (Hitachi
H7600). For quantification of developing outer-segment disc stacks, areas showing
the apical side of the ONL were imaged at low magnification (� 1,000) and the
length of the ONL was measured. Developing outer-segment discs stacks within
these areas were identified at higher magnification (� 20,000). Four serial
ultra-thin sections from a W27 CB-iPSC6.2-derived RC were analysed. Results are
expressed as the average number of developing outer-segment discs stacks per
150 mm of ONL length.

Live-cell imaging. hiPSC-derived RCs were placed in a 1-mm-gap electroporation
cuvette with a plasmid solution (2.3 mgml� 1 of pCIG plasmid expressing nuclear
green fluorescent protein68 in PBS) and four square pulses of 15V, 50-ms duration
and 950-ms interval were delivered using an ECM 830 electroporation apparatus
(BTX, Holliston, MA, USA). Immediately after electroporation, RCs were returned
to the cell-culture incubator for 36 h, at the end of which time-lapse microscopy
imaging was performed at 2-h intervals for 48 h using an LSM 710 confocal laser
scanning system (Zeiss) equipped with temperature and CO2 control.

Electrical recordings from photoreceptors in RCs. In room light, CB-iPSC6.2-
derived RCs (age W25–W27) were embedded in low-melting agarose gel and sliced
into 100-mm-thick slices with a vibratome (Leica VT1000S). Next, in darkness, the
eyecup slices were transferred to RC culture medium containing 100-mM 9-cis-
retinal (a commercially available analogue of 11-cis-retinal) and incubated for 1 h
in a light proof, 95% O2/5% CO2 cell-culture incubator at 37 �C. Afterwards, the
RC slices, still under light-proof conditions, were transferred and mounted laterally
in the recording chamber. All procedures afterwards were performed in infrared or
dim-red light. Perforated-patch recordings were performed at 35–37 �C on a Zeiss
upright microscope equipped with infrared differential interference contrast (DIC)
optics and imaging. The bath solution (Ames medium equilibrated with 95% O2/
5% CO2) was temperature controlled and ran at B5mlmin� 1 through the 1-ml
experimental chamber. All recordings were in the voltage-clamp mode with Vhold

at � 50mV, low-pass filtered at 20Hz (8-pole Bessel) and sampled at 500Hz. The
pipette solution contained (in mM): 110 KCl, 13 NaCl, 2 MgCl2, 1 CaCl2, 10
EGTA, 10 HEPES, 0.125 Amphotericin B, pH 7.2, titrated with KOH. The cells
situated at the outer 1–4 layers of cells in the RC slice were chosen for recording
because rod opsin-positive photoreceptors were concentrated in this region. The
recorded photoreceptor was stimulated with diffuse white flashes (40-ms duration)
from a mercury arc lamp, attenuated with neutral density filters, with intensity
calibrated with a radiometer.

Longitudinal analysis of hiPSC differentiation

Formation of NR domains. Aggregates seeded on D7 appeared as colonies under
adherent culture conditions. Most colonies had clear boundaries before D20. The
percentage of NR domains was evaluated by counting the number of VSX2-positive
colonies among DAPI-positive colonies on D12, D16 and D20. Colonies containing
45 VSX2-positive colonies were considered NR domains. Results represent the
average of three independent experiments, B100 colonies per time point per cell
line, per experiment. To trace the morphological progression of NR and RPE
domains, plated aggregates were individually outlined using a microscope objective
marker (Nikon) and imaged every other day from D17 to D25 under an inverted
microscope (Nikon).

Growth of RCs in long-term culture. RCs were imaged every 15 days from D45 until
D90 under inverted microscope with � 4 magnification. The length of the longest
axis of RCs was measured using ImageJ. Results represent the average of 15–20 RCs
per time point.

Birthdating of retinal cell types. To approximate the time of generation of the major
retinal neuronal cell types, a minimum of five RCs were collected each week from
W5 to W13, then every other week until W17, and once a month thereafter.
Cell-type-specific markers were used for immunohistochemical identification as
described above.

Evaluation of RA effect on rod opsin expression. RCs from the same culture batch
were randomly assigned to the different treatment conditions. Initial analysis was
carried out in CB-iPSC6.2-derived RCs by a semi-quantitative approach. Five RCs
(three serial sections each) per treatment per time window were processed for
immunohistochemical detection of rod opsin. Photoreceptor cells were considered
‘positive’ when rod opsin expression was clearly seen in the cell body (that is, cell
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membrane and/or cytoplasma). Results were expressed as: (� ) no positive cells
within RCs; (þ ) dispersed positive cells within RCs; (þþþ ) patches of
numerous positive cells within RCs. To compare the efficiency of generating
rod-opsin-positive photoreceptor cells among the three hiPSC lines used in this
study, W21 hiPSC-derived RCs subjected to W10–W14 RA treatment (8 to 22 RCs
per cell line) were processed for immunohistochemical staining and analysed as
described above. Results were expressed as the percentage of RCs showing positive
rod opsin photoreceptors.
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