
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 8, 11 35-1 149 (1988) 

GENERATION OF THREE-DIMENSIONAL 
UNSTRUCTURED GRIDS BY THE ADVANCING-FRONT 

METHOD 

RAINALD LdHNER 
Berkeley Research Associates, Springfield, VA 22150, U.S.A. 

and 
Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC 20375, U.S.A. 

AND 

PARESH PARIKH 
Vigyan Research Associates, Hampton, VA 23666, U.S.A. 

SUMMARY 
The generation of three-dimensional unstructured grids using the advancing-front technique is described. 
This technique has been shown to be effective for the generation of unstructured grids in two dimensions.'. 
However, its extension to three-dimensional regions required algorithms to define the surface and suitable 
data structures that avoid excessive CPU-time overheads for the search operations involved. After obtaining 
an initial triangulation of the surfaces, tetrahedra are generated by successively deleting faces from the 
generation front. Details of the grid generation algorithm are given, together with examples and timings. 
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1. INTRODUCTION 

In recent years a wide variety of algorithms has been devised for the generation of unstructured 
grids around complex geometrical shapes. Among the different techniques are Watson's algorithm 
for Voronoi  tesselation^,^ - ' the modified octree method' and different advancing-front 
techniques.'. *, ' O - "  Baker's implementation and optimization of the Voronoi algorithm* has 
shown that fast and reliable grid generators for tetrahedral meshes can be produced. We currently 
believe that the version of the advancing-front technique put forward by Peraire and Morgan' is 
the best approach, because it can be used for grid regeneration with directional refinement.2 The 
incorporation of directional refinement in the Voronoi algorithm appears difficult unless the 
reconnection of points based on the purely geometrical Delauney criterion' is substituted by some 
other criterion that incorporates directionality into the triangulation. This, however, would 
destroy the uniqueness of the triangulation. Directional refinement is an essential ingredient in 
any optimal 3D algorithm for compressible flows. 

2. ALGORITHMIC STEPS OF ADVANCING-FRONT GENERATORS 

The advancing-front grid generation technique', ', ' consists of the following steps: 
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F I Set up a background grid to define the spatial variation of the size, the stretching and the 
Stretching direction of the elements to be generated. The background grid consists of 
tetrahedrons. At the nodes we define the desired element size, element stretching and 
stretching direction. This background grid must completely cover the computational 
domain. 

F2 Define the boundaries (surfaces) of the domain to be gridded. 
F3 Using the information stored on the background grid, s;et up faces on all these boundaries. 

This yields the initial front of triangular faces. At the same time, find the generation 
parameters (element size, element stretching and stretching direction) for these faces from 
the background grid. 

F4 Select the next face to be deleted from the front. In order to avoid large elements crossing 
over regions of small elements, the face forming the smallest new element is selected as the 
next face to be deleted from the list of faces. 

F5 For the face to be deleted: 
F5.1 Select a ‘best point’ position for the introduction of a new point IPNEW. 
F5.2 Determine whether a point exists in the already generated grid that should be used in 

lieu of the new point. If there is such a point, set this point to IPNEW and continue 
searching (go to F5.2). 

F5.3 Determine whether the element formed with the selected point IPNEW does not cross 
any given faces. If it does, select a new point as IPNEW and try again (go to F5.3). 

F6 Add the new element, point and faces to their respective lists. 
F7 Find the generation parameters for the new faces from the background grid. 
F8 Delete the known faces from the list of faces. 
F9 If there are any faces left in the front, go to F4. 

3. BACKGROUND GRID 

The background grid consists of tetrahedra and is used to define the desired spatial variation of 
element size, element stretching and stretching direction. The background grid typically consists 
of only a few (10-20) elements, so that manual interactive input with a mouse on a workstation 
presents no significant burden. To construct a uniform mesh, the background grid consists of only 
one element that covers the domain. If a rapid and significant change of element size is desired, the 
grid generator itself may be used first to generate a background grid. A t  the nodes of this generated 
grid we then define the desired element size, element stretching and stretching direction, and 
proceed to generate the final mesh. Within an adaptive refinement process, the current grid and 
flow solver solution are used as the background grid to generate a new, better grid for the flow 
problem under consideration. 

4. DEFINITION O F  SURFACES 

The advancing-front algorithm requires an initial front in order to start the tetrahedrization of the 
domain. This in turn means that the surfaces defining the domain to be gridded need to be defined. 
Two approaches are possible here:13 

(a) Boolean operations on solids. In this approach the domain to be gridded is constructed from 
primitives (box, sphere, cylinder, etc.). The user combines these primitives through Boolean 
operations (union, intersection, exclusion, etc.) to represent the domain to be gridded. The 
surface is then obtained in a post-processing operation. 
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(b) Bootean operutions on surjuces. Here only the surface of the domain to be gridded is defined 
in terms of independent surface patches. The surface patches are then combined using 
Boolean operations (union, intersection, etc.) to yield the final surface of the domain to be 
gridded. 

Both approaches have their advantages. The first approach is more compatible with many 
current CAD-CAM systems in use, thus allowing transfer of the object data directly from design 
to analysis. The second approach requires less manual input. Moreover, because the desired 
surface of the domain is obtained immediately, and not in a post-processing step, the software 
involved is less complex. We chose the second approach because of the convenience of its use in 
external aerodynamics problems. In order to minimize the manual effort involved in defining a 
surface, a hierarchical data structure was adopted. Three levels of data are allowed: points, lines 
and surfaces. Lines are obtained by joining points, and surfaces by joining lines. 

The line types implemented are: 

(1) straight line segment (defined by two points); 
(2) parabolic line segment (defined by three points); 
(3) cubic spline segment (defined by four or more points). 

The surface types implemented are: 

(1) planar segment (assumes all line segments lie in one plane); 
(2) triangular isoparametric parabolic surfaceL4 (defined by three parabolic line segments); 
( 3 )  rectangular isoparametric serendipity surface14 (defined by four parabolic line segments); 
(4) triangular Barnhill-Gregory-Nielson patch (defined by three arbitrary line segments); 
(5) bilinear transfinite Coon's patchL5 (defined by four arbitrary line segments). 

In this paper we focus the attention on grid generation. Therefore we only mention these line 
segments and surface types. A description of the mapping functions used for the surface elements 
may be found in the Appendix. 

5. GENERATION OF THE INITIAL FRONT 

The generation of the initial front or surface triangulation is carried out in two main steps: 

(a) the line segments are divided into straight line segments, called sides; 
b) the surface segments are triangulated, starting from the sides of the corresponding line 

segments. 

5.1. Generation of sides 

Each line segment that connects surface patches is subdivided into straight line segments, called 
sides. The length of each side is determined by interpolation from the background grid and can 
vary arbitrarily along the line. The addition of a further side along a line segment is carried out 
iteratively. We proceed as follows: 

S1 Given the current location xo, determine from the background grid and the tangential 
vector of the line the vector dx, defining the next side. 

S2 Add the new side tentatively. Determine from the background grid and the tangential vector 
of the line the corrected vector dx, at the midpoint x1 =x,+O.5 dx, of the newly created 
side. 
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S3 If dx,xdx,,  set dxo=0~5(dxo+dx,)  and go back to S2. 
S4 Add the new side, determine the new location xo and go back to S l .  

This procedure is applied in turn to all line segments connecting surface patches. 

5.2. Triangulation of surface segments 

Each surface segment is triangulated independently using a 2D version of the advancing-front 
grid generator. The substeps are the same as outlined above (see Section 2). The initial front 
consists of the sides corresponding to the lines that connect the current surface segment to other 
neighbouring surface segments. The triangle size and stretching are computed from the 3D 
background grid by interpolation. As the triangulator resides in a 2D world, we need to reproduce 
as faithfully as possible the 3D surface in a 2D domain. To that end, mappings between the 2D and 
3D worlds are used that maintain approximately the shape and size of the 3D surface triangles in 
2D and vice versa. The mappings used are: 

(1) 3D surface segment to unit 2D triangle or square (x, J), z-5, q); 
(2) stretching and shearing of unit 2D triangle or square to approximate 3D surface segment in 

This mapping process is illustrated in Figure 1. The equations needed for the individual surface 
segments are compiled in the Appendix. When computing the element size during the triangu- 
lation, at each stage we proceed as follows: 

T1 Transform the current 2D position to the 3D surface segment via the unit triangle or square 

T2 Determine from the background grid the desired element size and shape. 
T3 Transform back the desired element size and shape to the 2D domain. 

a 2D domain (t, V-+(” ,  q”). 

((”3 V ” 4 7  V + X ?  Y ,  4. 

Transformation T1 is also used to transform back the new points that have been added due to the 
triangulation of the surface segment. 

6. CHECKING THE INTERSECTION O F  FACES 

The most important ingredient of the advancing-front generator is a reliable and fast algorithm for 
checking whether two faces intersect each other. We have found that even slight changes in this 
portion of the generator greatly influence the final mesh. As with so many other problems in 
computational geometry, checking whether two faces intersect each other seems trivial for the eye, 
but is complicated to code. The problem is shown in Figure 2. We base our checking algorithm on 
the following observation: two triangular faces do not intersect if no side of either face intersects 

D ? t  
?’ t 

3-D 2-D [0,1] x [O,l] 2-D k“a” 

Figure I .  Mapping of surface patch to unit square with subsequent stretching and shearing 
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E X 

Figure 2. Crossing of two faces Figure 3. Face-side combination 

the other face. The idea then is to build all possible side-face combinations between any two faces 
and check them in turn. If no intersection is found, then the faces do not cross. With the notation 
defined in Figure 3, the intersection point is found as 

Xf + a1 g, +a2  g, = x, + a3 g,, (1) 

where we have used the g,-vectors as a covariant basis. Using the contravariant basis g' defined by 

g'.g . = hi. 

'XI =(x,-x,)*gl, 
ci2 = (x, - x,).g,, 
a3 = (Xf - XJ.83. 

J J' 

where Sj denotes the Kronecker delta, we obtain the cii as 

(3) 

Because we are only interested in a triangular surface for the g,, g,-plane, we define another 
quantity similar to the third shape function for a linear triangle: 

a4=  1 - a 1 - a 2 .  (4) 

Using the ai, two faces can be considered as 'crossed' if they only come close together. Then, in 
order for the side not to cross the face, at least one of the ai has to satisfy 

t>max(-ai, ai- l), i=  1,4, ( 5 )  

where t is a predefined tolerance. By projecting the gi onto their respective unit contravariant 
vectors, we can obtain the actual distance between a face and a side. The criterion given by 
equation ( 5 )  would then be replaced by (see Figure 4): 

(6) 

The first form (equation (5)) produces acceptable grids. If the face and the side have points in 
common, then the ai will all be either 1 or 0. As both equation (5) and equation (6) will not be 
satisfied, we need to make special provision for these cases. For each two faces, six side-face 
combinations are possible. Considering that on average about 40 close faces need to be checked, 
this way of checking the crossing of faces is very CPU-intensive. When it was first implemented, 
this portion of the grid generation code took more than 80% of the CPU time required. In order to 
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SIDE 

Figure 4. Distance between face and side 

reduce the work load, a three-layered approach was subsequently adopted: 

Minlmax search. The idea here is to disregard all face-face combinations where the distance 
between faces exceeds some prescribed minimum distance. This can be accomplished by 
checking the maximum and minimum value for the co-ordinates of each face. Faces cannot 
possibly cross each other if at least for one of the dimensions i = 1,2,3 they satisfy one of the 
following inequalities: 

maxface,(xi, xk, x:) < minface2(xA:, x,, x i ) - d ,  
minface, (xi, xi, xk) > maxface2(x6, xk, x i )  + d, 

(74  
(7b) 

where A, B, C denote the corner points of each face. 
Local element co-ordinates. The purpose of checking for face crossings is to determine 
whether the newly formed tetrahedron breaks already given faces. The idea is to extend 
the previous min/max criterion with shape functions of the new tetrahedron. If all the 
points of a given face have shape function values N' that have the same sign and lie out- 
side the [ - t ,  1 + t ]  interval, then the tetrahedron cannot possibly cross the face. We 
therefore disregard this face. 
In-depth analysis of' side-face combinations. All the faces remaining after the filtering process 
of steps (a) and (b) are analysed using side-face combinations as explained above. 

Each of these three filters requires about an order of magnitude more CPU time than the 
preceding one. When implemented in this way, the face-crossing check required only 25% of the 
total grid generation time. When operating on a vector machine, we perform loops over all the 
possible combinations, building the g;, g', tl', etc. in vector mode. Although the vector lengths are 
rather short, the chaining that results from the lengthy mathematical operations involved results 
in acceptable megaflop rates on the CRAY-XMP. 

6. DATA STRUCTURES TO MINIMIZE SEARCH OVERHEADS 

The operations that could potentially reduce the efficiency of the algorithm to O (  N ' . 5 )  or even 
O( N 2 )  are (see Section 2). 

(a) finding the next face to be deleted (step F4); 
(b) finding the closest given points to a new point (step F5.2); 
(c) finding the faces adjacent to a given point (step F5.3); 
(d) finding for any given location the values ofgeneration parameters from the background grid 

(steps F3 and F7)--this is an interpolation problem on unstructured grids. 
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The verb ‘find’ appears in all of these operations. The main task is to design the best data structures 
for performing the search operations (a)gd) as efficiently as possible. The data structures used are: 

(1 )  heap lists16,17 to find the next face to be deleted from the front; 
(2) quadtrees (2D) and octrees (3D)’, ’* to locate points that are close to any given location; 
(3) linked lists to determine which faces are adjacent to a point. 

Combining these data structures, we can also derive an optimal interpolation algorithm for 
unstructured grids.I3 The detailed explanation of these data structures may be found in 
Reference 12. 

7. SOME EXAMPLES AND TIMINGS 

7.1. Engine intuke 

Figure 5 shows an engine intake with a centrebody. The intake cross-section varies from a 
square at the inlet to a circle at the outlet. The centrebody is assumed to start somewhere in the 
intake. Figure 5(a) shows the points and line segments defining the surfaces. Because of the 
symmetry, only half of the surfaces need to be defined. In Figure 5(b) the background grid is 
superimposed to this surface information. Figure 5(c) shows the surface triangulation obtained. In 
Figures 5(d) and 5(e) sections of tetrahedra along the main axis of symmetry are shown. The 
generated grid contains 4381 points and 22743 tetrahedra. The element volume in this case 
varied by more than a factor of lo4, and the smallest element is located at the nose of the 
cent repiece. 

7.2. Missile launcher 

Figure 6 shows the model of a generic missile launcher. Figure 6(a) shows the points and line 
segments defining the surtaces. In Figure 6(b) the background grid is superimposed to this surface 
information. Figure 6(c) shows the surface triangulation obtained. In Figures 6(d) and 6(e) sections 
of tetrahedra along the main axis of symmetry are shown. The generated grid contains 3465 points 
and 17572 tetrahedra. 

The time needed to generate a new element depends strongly on the number of faces checked for 
possible crossing (see above, Section 6). We find that for larger grids the number of faces checked 
decreases on average as the distance between ‘colliding fronts’ is larger. For the grids shown, the 
rate at which new tetrahedra were generated varied between 480 and 490 tetrahedra per 
second on the CRAY-XMP-24 at NRL (using one processor). 

8. CONCLUSIONS 

This paper describes a mesh generation proGedure for three-dimensional regions. Input require- 
ments to define objects or surfaces were minimized by adopting a hierarchical structure consisting 
of points, lines and surfaces. In order to reduce CPU requirements, several optimal search 
algorithms were adapted into the present context. Having demonstrated the validity of the 
approach, further enhancements can be envisioned. These are: 

(1) easier interactive input of surface-defining information; 
(2) enhancement of the surface patch library to achieve C’ and C2 continuity between surface 

(3) coupling of the grid generator with flow solvers; 
(4) adaptive remeshing in 3D. 

patches; 
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Figure 5. (ax )  



THREE-DIMENSIONAL UNSTRUCTURED GRIDS 1143 

Figure 5. Engine intake: (a) Surface definition; (b) background grid; (c) surface triangulation; (d), (e) sections of tetrahedra 
along the main axis of symmetry 
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- \ 

Figure 6. ( a x )  



THREE-DIMENSIONAL UNSTRUCTURED GRIDS 1145 

Figure 6. Generic missile launcher: (a) surface definition; (b) background grid; (c) surface triangulation; (d), (e) sections of 
tetrahedra along the main axis of symmetry 
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APPENDIX: MAPPING FUNCTIONS USED FOR THE SURFACE SEGMENTS 

Mapping of 3 0  surface segment to  20  unit square (x, y, z+<, q )  

Planar surface segment. In the case of planar segments, stretching and shearing do not have to 
be applied, as we can transform directly. With the notation defined in Figure 7, we select two 
arbitrary vectors a, b that lie in the plane. The normal to the plane is then given by n=a x b, and a 
vector normal to both a and n can be computed as c = n x a. Defining the covariant basis vectors of 
the plane x t ,  x2 as 

x1  =a/lal, x2 = c/IcI, (8) 
any vector lying in the plane can be written as 

x = XO + ("XI + V" xz, 

where t", q" values are given by 

t" = x t.(x - xo), t/''=x2*(x-xxg). 

X 

Figure 7. Covariant basis xl, x2 for planar surface patch 

0 

T 

Figure 8. Triangular isoparametric parabolic surface 
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Triangular isoparametric parabolic suvface segment. The triangular isoparametric parabolic 
surface segment is most easily described in terms of the six points defining it. The situation is 
shown in Figure 8. Any vector lying on the surface may be written as 

6 

X =  C Nixi ,  
i =  1 

where the shape functions N' are given byI4 

Rectangular isoparametric serendipity surface segment. The surface segment is again most easily 
described in terms of the eight points defining it. The situation is shown in Figure 9. Any vector 
lying on the surface may be written as 

8 

i =  1 
X =  1 Nixi ,  

where the shape functions N' are given by14 

Triangular Barnhill-Gregory-Nielson patch." This surface segment is described in terms of the 
three line functions along its edges. The situation is shown in Figure 10. Any vector lying on the 

- 
4 

Figure 9. Rectangular isoparametric serendipity surface 
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X 
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Figure 10. Triangular BarnhillLGregory-Nielson patch 

surface may be written as 

x = 5  F,(r)+yFz( l -~)+F, (5)+F, ( t  -~)-~CFl(t)+F3(5)1 
-5CF,(1 -9)+F3(1 -V)l--U -5-V)F1(0). (14) 

We observe that not all the sides are treated equally by this formula. The F, line plays a different 
role than the other two lines defining the patch. This means that some care has to be taken when 
using this surface segment. 

Rectangulur bilinear Coon’s patch.15 This surface segment is described in terms of the four line 
functions along its edges. The situation is shown in Figure 11. Any vector lying on the surface may 
be written as 

x =( -q)Fl (5) + tF2(y) q F 3 ( 5 )  + (l - 4 )  F 4 ( V )  

- c( 1 - o (1 - ~ l )  F,(o) + a1 -?I F,(o) + t r  F, (1) + ut( 1 - r )  M ~ H .  (15) 

Stretching and shearing 20 unit square (5, y-+[“, y”) 

In order to obtain a reasonable triangulation of the curved surfaces, the unit square is stretched 
and sheared so as to approximate in 2D the 3D surface segment. The easiest way to accomplish 
this for a rectangular surface segment is to use a bilinear isoparametric mapping between the unit 
square and the 2D surface approximation. This case is shown in Figure 1. However, it is not 
straightforward to transform back and forth with the bilinear isoparametric mapping. We 
therefore set the y” value of points D and C to be the same. The mapping is then given by 

t”= X S  5 + X D V  + ( -xR + x c - x x , ) t ~ ,  v”=  YDV, (16) 
or 

s 0 - 1  
F, 

Figure I I .  Bilinear transfinite Coon’s. patch 
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The distances A-B, A-D and D-C are obtained from the line information given, and the angle at 
the origin (point A) is approximated from the 3D surface segment. For triangular surface segments 
point C is omitted. 
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