
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 8, 11 35-1 149 (1988)

GENERATION OF THREE-DIMENSIONAL
UNSTRUCTURED GRIDS BY THE ADVANCING-FRONT

METHOD

RAINALD LdHNER
Berkeley Research Associates, Springfield, VA 22150, U.S.A.

and
Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC 20375, U.S.A.

AND

PARESH PARIKH
Vigyan Research Associates, Hampton, VA 23666, U.S.A.

SUMMARY
The generation of three-dimensional unstructured grids using the advancing-front technique is described.
This technique has been shown to be effective for the generation of unstructured grids in two dimensions.'.
However, its extension to three-dimensional regions required algorithms to define the surface and suitable
data structures that avoid excessive CPU-time overheads for the search operations involved. After obtaining
an initial triangulation of the surfaces, tetrahedra are generated by successively deleting faces from the
generation front. Details of the grid generation algorithm are given, together with examples and timings.

KEY WORDS Three-dimensional unstructured grids Advancing-front technique Grid generation

1. INTRODUCTION

In recent years a wide variety of algorithms has been devised for the generation of unstructured
grids around complex geometrical shapes. Among the different techniques are Watson's algorithm
for Voronoi tesselation^,^ - ' the modified octree method' and different advancing-front
techniques.'. *, ' O - " Baker's implementation and optimization of the Voronoi algorithm* has
shown that fast and reliable grid generators for tetrahedral meshes can be produced. We currently
believe that the version of the advancing-front technique put forward by Peraire and Morgan' is
the best approach, because it can be used for grid regeneration with directional refinement.2 The
incorporation of directional refinement in the Voronoi algorithm appears difficult unless the
reconnection of points based on the purely geometrical Delauney criterion' is substituted by some
other criterion that incorporates directionality into the triangulation. This, however, would
destroy the uniqueness of the triangulation. Directional refinement is an essential ingredient in
any optimal 3D algorithm for compressible flows.

2. ALGORITHMIC STEPS OF ADVANCING-FRONT GENERATORS

The advancing-front grid generation technique', ', ' consists of the following steps:

0271--2091/88/101135-15$07.50
0 1988 by John Wiley & Sons, Ltd.

Received 2 November 1987

1136 R . LOHNER A N D P. P A R I K H

F I Set up a background grid to define the spatial variation of the size, the stretching and the
Stretching direction of the elements to be generated. The background grid consists of
tetrahedrons. At the nodes we define the desired element size, element stretching and
stretching direction. This background grid must completely cover the computational
domain.

F2 Define the boundaries (surfaces) of the domain to be gridded.
F3 Using the information stored on the background grid, s;et up faces on all these boundaries.

This yields the initial front of triangular faces. At the same time, find the generation
parameters (element size, element stretching and stretching direction) for these faces from
the background grid.

F4 Select the next face to be deleted from the front. In order to avoid large elements crossing
over regions of small elements, the face forming the smallest new element is selected as the
next face to be deleted from the list of faces.

F5 For the face to be deleted:
F5.1 Select a ‘best point’ position for the introduction of a new point IPNEW.
F5.2 Determine whether a point exists in the already generated grid that should be used in

lieu of the new point. If there is such a point, set this point to IPNEW and continue
searching (go to F5.2).

F5.3 Determine whether the element formed with the selected point IPNEW does not cross
any given faces. If it does, select a new point as IPNEW and try again (go to F5.3).

F6 Add the new element, point and faces to their respective lists.
F7 Find the generation parameters for the new faces from the background grid.
F8 Delete the known faces from the list of faces.
F9 If there are any faces left in the front, go to F4.

3. BACKGROUND GRID

The background grid consists of tetrahedra and is used to define the desired spatial variation of
element size, element stretching and stretching direction. The background grid typically consists
of only a few (10-20) elements, so that manual interactive input with a mouse on a workstation
presents no significant burden. To construct a uniform mesh, the background grid consists of only
one element that covers the domain. If a rapid and significant change of element size is desired, the
grid generator itself may be used first to generate a background grid. A t the nodes of this generated
grid we then define the desired element size, element stretching and stretching direction, and
proceed to generate the final mesh. Within an adaptive refinement process, the current grid and
flow solver solution are used as the background grid to generate a new, better grid for the flow
problem under consideration.

4. DEFINITION O F SURFACES

The advancing-front algorithm requires an initial front in order to start the tetrahedrization of the
domain. This in turn means that the surfaces defining the domain to be gridded need to be defined.
Two approaches are possible here:13

(a) Boolean operations on solids. In this approach the domain to be gridded is constructed from
primitives (box, sphere, cylinder, etc.). The user combines these primitives through Boolean
operations (union, intersection, exclusion, etc.) to represent the domain to be gridded. The
surface is then obtained in a post-processing operation.

THREE-DIMENSIONAL UNSTRUCTURED GRIDS 1137

(b) Bootean operutions on surjuces. Here only the surface of the domain to be gridded is defined
in terms of independent surface patches. The surface patches are then combined using
Boolean operations (union, intersection, etc.) to yield the final surface of the domain to be
gridded.

Both approaches have their advantages. The first approach is more compatible with many
current CAD-CAM systems in use, thus allowing transfer of the object data directly from design
to analysis. The second approach requires less manual input. Moreover, because the desired
surface of the domain is obtained immediately, and not in a post-processing step, the software
involved is less complex. We chose the second approach because of the convenience of its use in
external aerodynamics problems. In order to minimize the manual effort involved in defining a
surface, a hierarchical data structure was adopted. Three levels of data are allowed: points, lines
and surfaces. Lines are obtained by joining points, and surfaces by joining lines.

The line types implemented are:

(1) straight line segment (defined by two points);
(2) parabolic line segment (defined by three points);
(3) cubic spline segment (defined by four or more points).

The surface types implemented are:

(1) planar segment (assumes all line segments lie in one plane);
(2) triangular isoparametric parabolic surfaceL4 (defined by three parabolic line segments);
(3) rectangular isoparametric serendipity surface14 (defined by four parabolic line segments);
(4) triangular Barnhill-Gregory-Nielson patch (defined by three arbitrary line segments);
(5) bilinear transfinite Coon's patchL5 (defined by four arbitrary line segments).

In this paper we focus the attention on grid generation. Therefore we only mention these line
segments and surface types. A description of the mapping functions used for the surface elements
may be found in the Appendix.

5. GENERATION OF THE INITIAL FRONT

The generation of the initial front or surface triangulation is carried out in two main steps:

(a) the line segments are divided into straight line segments, called sides;
b) the surface segments are triangulated, starting from the sides of the corresponding line

segments.

5.1. Generation of sides

Each line segment that connects surface patches is subdivided into straight line segments, called
sides. The length of each side is determined by interpolation from the background grid and can
vary arbitrarily along the line. The addition of a further side along a line segment is carried out
iteratively. We proceed as follows:

S1 Given the current location xo, determine from the background grid and the tangential
vector of the line the vector dx, defining the next side.

S2 Add the new side tentatively. Determine from the background grid and the tangential vector
of the line the corrected vector dx, at the midpoint x1 =x,+O.5 dx, of the newly created
side.

1138 R. LOHNER AND P. P A R I K H

S3 If dx,xdx,, set dxo=0~5(dxo+dx,) and go back to S2.
S4 Add the new side, determine the new location xo and go back to S l .

This procedure is applied in turn to all line segments connecting surface patches.

5.2. Triangulation of surface segments

Each surface segment is triangulated independently using a 2D version of the advancing-front
grid generator. The substeps are the same as outlined above (see Section 2). The initial front
consists of the sides corresponding to the lines that connect the current surface segment to other
neighbouring surface segments. The triangle size and stretching are computed from the 3D
background grid by interpolation. As the triangulator resides in a 2D world, we need to reproduce
as faithfully as possible the 3D surface in a 2D domain. To that end, mappings between the 2D and
3D worlds are used that maintain approximately the shape and size of the 3D surface triangles in
2D and vice versa. The mappings used are:

(1) 3D surface segment to unit 2D triangle or square (x, J), z-5, q);
(2) stretching and shearing of unit 2D triangle or square to approximate 3D surface segment in

This mapping process is illustrated in Figure 1. The equations needed for the individual surface
segments are compiled in the Appendix. When computing the element size during the triangu-
lation, at each stage we proceed as follows:

T1 Transform the current 2D position to the 3D surface segment via the unit triangle or square

T2 Determine from the background grid the desired element size and shape.
T3 Transform back the desired element size and shape to the 2D domain.

a 2D domain (t, V-+(” , q”).

((”3 V ” 4 7 V + X ? Y , 4.

Transformation T1 is also used to transform back the new points that have been added due to the
triangulation of the surface segment.

6. CHECKING THE INTERSECTION O F FACES

The most important ingredient of the advancing-front generator is a reliable and fast algorithm for
checking whether two faces intersect each other. We have found that even slight changes in this
portion of the generator greatly influence the final mesh. As with so many other problems in
computational geometry, checking whether two faces intersect each other seems trivial for the eye,
but is complicated to code. The problem is shown in Figure 2. We base our checking algorithm on
the following observation: two triangular faces do not intersect if no side of either face intersects

D ? t
?’ t

3-D 2-D [0,1] x [O,l] 2-D k“a”

Figure I . Mapping of surface patch to unit square with subsequent stretching and shearing

THREE-DIMENSIONAL UNSTRUCTURED GRIDS 1139

FACE
\

E X

Figure 2. Crossing of two faces Figure 3. Face-side combination

the other face. The idea then is to build all possible side-face combinations between any two faces
and check them in turn. If no intersection is found, then the faces do not cross. With the notation
defined in Figure 3, the intersection point is found as

Xf + a1 g, +a2 g, = x, + a3 g,, (1)

where we have used the g,-vectors as a covariant basis. Using the contravariant basis g' defined by

g'.g . = hi.

'XI =(x,-x,)*gl,
ci2 = (x, - x,).g,,
a3 = (Xf - XJ.83.

J J'

where Sj denotes the Kronecker delta, we obtain the cii as

(3)

Because we are only interested in a triangular surface for the g,, g,-plane, we define another
quantity similar to the third shape function for a linear triangle:

a4= 1 - a 1 - a 2 . (4)

Using the ai, two faces can be considered as 'crossed' if they only come close together. Then, in
order for the side not to cross the face, at least one of the ai has to satisfy

t>max(-ai, ai- l), i= 1,4, (5)

where t is a predefined tolerance. By projecting the gi onto their respective unit contravariant
vectors, we can obtain the actual distance between a face and a side. The criterion given by
equation (5) would then be replaced by (see Figure 4):

(6)

The first form (equation (5)) produces acceptable grids. If the face and the side have points in
common, then the ai will all be either 1 or 0. As both equation (5) and equation (6) will not be
satisfied, we need to make special provision for these cases. For each two faces, six side-face
combinations are possible. Considering that on average about 40 close faces need to be checked,
this way of checking the crossing of faces is very CPU-intensive. When it was first implemented,
this portion of the grid generation code took more than 80% of the CPU time required. In order to

1140 R. LOHNER AND P. PARIKH

SIDE

Figure 4. Distance between face and side

reduce the work load, a three-layered approach was subsequently adopted:

Minlmax search. The idea here is to disregard all face-face combinations where the distance
between faces exceeds some prescribed minimum distance. This can be accomplished by
checking the maximum and minimum value for the co-ordinates of each face. Faces cannot
possibly cross each other if at least for one of the dimensions i = 1,2,3 they satisfy one of the
following inequalities:

maxface,(xi, xk, x:) < minface2(xA:, x,, x i) - d ,
minface, (xi, xi, xk) > maxface2(x6, xk, x i) + d,

(74
(7b)

where A, B, C denote the corner points of each face.
Local element co-ordinates. The purpose of checking for face crossings is to determine
whether the newly formed tetrahedron breaks already given faces. The idea is to extend
the previous min/max criterion with shape functions of the new tetrahedron. If all the
points of a given face have shape function values N' that have the same sign and lie out-
side the [- t , 1 + t] interval, then the tetrahedron cannot possibly cross the face. We
therefore disregard this face.
In-depth analysis of' side-face combinations. All the faces remaining after the filtering process
of steps (a) and (b) are analysed using side-face combinations as explained above.

Each of these three filters requires about an order of magnitude more CPU time than the
preceding one. When implemented in this way, the face-crossing check required only 25% of the
total grid generation time. When operating on a vector machine, we perform loops over all the
possible combinations, building the g;, g', tl', etc. in vector mode. Although the vector lengths are
rather short, the chaining that results from the lengthy mathematical operations involved results
in acceptable megaflop rates on the CRAY-XMP.

6. DATA STRUCTURES TO MINIMIZE SEARCH OVERHEADS

The operations that could potentially reduce the efficiency of the algorithm to O (N ' . 5) or even
O(N 2) are (see Section 2).

(a) finding the next face to be deleted (step F4);
(b) finding the closest given points to a new point (step F5.2);
(c) finding the faces adjacent to a given point (step F5.3);
(d) finding for any given location the values ofgeneration parameters from the background grid

(steps F3 and F7)--this is an interpolation problem on unstructured grids.

THREE-DIMENSIONAL UNSTRUCTURED GRIDS 1141

The verb ‘find’ appears in all of these operations. The main task is to design the best data structures
for performing the search operations (a)gd) as efficiently as possible. The data structures used are:

(1) heap lists16,17 to find the next face to be deleted from the front;
(2) quadtrees (2D) and octrees (3D)’, ’* to locate points that are close to any given location;
(3) linked lists to determine which faces are adjacent to a point.

Combining these data structures, we can also derive an optimal interpolation algorithm for
unstructured grids.I3 The detailed explanation of these data structures may be found in
Reference 12.

7. SOME EXAMPLES AND TIMINGS

7.1. Engine intuke

Figure 5 shows an engine intake with a centrebody. The intake cross-section varies from a
square at the inlet to a circle at the outlet. The centrebody is assumed to start somewhere in the
intake. Figure 5(a) shows the points and line segments defining the surfaces. Because of the
symmetry, only half of the surfaces need to be defined. In Figure 5(b) the background grid is
superimposed to this surface information. Figure 5(c) shows the surface triangulation obtained. In
Figures 5(d) and 5(e) sections of tetrahedra along the main axis of symmetry are shown. The
generated grid contains 4381 points and 22743 tetrahedra. The element volume in this case
varied by more than a factor of lo4, and the smallest element is located at the nose of the
cent repiece.

7.2. Missile launcher

Figure 6 shows the model of a generic missile launcher. Figure 6(a) shows the points and line
segments defining the surtaces. In Figure 6(b) the background grid is superimposed to this surface
information. Figure 6(c) shows the surface triangulation obtained. In Figures 6(d) and 6(e) sections
of tetrahedra along the main axis of symmetry are shown. The generated grid contains 3465 points
and 17572 tetrahedra.

The time needed to generate a new element depends strongly on the number of faces checked for
possible crossing (see above, Section 6). We find that for larger grids the number of faces checked
decreases on average as the distance between ‘colliding fronts’ is larger. For the grids shown, the
rate at which new tetrahedra were generated varied between 480 and 490 tetrahedra per
second on the CRAY-XMP-24 at NRL (using one processor).

8. CONCLUSIONS

This paper describes a mesh generation proGedure for three-dimensional regions. Input require-
ments to define objects or surfaces were minimized by adopting a hierarchical structure consisting
of points, lines and surfaces. In order to reduce CPU requirements, several optimal search
algorithms were adapted into the present context. Having demonstrated the validity of the
approach, further enhancements can be envisioned. These are:

(1) easier interactive input of surface-defining information;
(2) enhancement of the surface patch library to achieve C’ and C2 continuity between surface

(3) coupling of the grid generator with flow solvers;
(4) adaptive remeshing in 3D.

patches;

1142 R. LOHNER AND P. PARIKH

Figure 5. (ax)

THREE-DIMENSIONAL UNSTRUCTURED GRIDS 1143

Figure 5. Engine intake: (a) Surface definition; (b) background grid; (c) surface triangulation; (d), (e) sections of tetrahedra
along the main axis of symmetry

1144 R. LOHNER AND P. PARIKH

- \

Figure 6. (a x)

THREE-DIMENSIONAL UNSTRUCTURED GRIDS 1145

Figure 6. Generic missile launcher: (a) surface definition; (b) background grid; (c) surface triangulation; (d), (e) sections of
tetrahedra along the main axis of symmetry

1146 R. LOHNER AND P. PARIKH

ACKNOWLEDGEMENTS

This work was partially funded by the Office Of Naval Research through the Naval Research
Laboratory, Dr. C. P. Li of NASA Johnson Space Center and under SBIR-Grant No. NAS1-
18419.

APPENDIX: MAPPING FUNCTIONS USED FOR THE SURFACE SEGMENTS

Mapping of 3 0 surface segment to 20 unit square (x, y, z+<, q)

Planar surface segment. In the case of planar segments, stretching and shearing do not have to
be applied, as we can transform directly. With the notation defined in Figure 7, we select two
arbitrary vectors a, b that lie in the plane. The normal to the plane is then given by n=a x b, and a
vector normal to both a and n can be computed as c = n x a. Defining the covariant basis vectors of
the plane x t , x2 as

x1 =a/lal, x2 = c/IcI, (8)
any vector lying in the plane can be written as

x = XO + ("XI + V" xz,

where t", q" values are given by

t" = x t.(x - xo), t/''=x2*(x-xxg).

X

Figure 7. Covariant basis xl, x2 for planar surface patch

0

T

Figure 8. Triangular isoparametric parabolic surface

THREE-DIMENSIONAL UNSTRUCTURED GRIDS 1147

Triangular isoparametric parabolic suvface segment. The triangular isoparametric parabolic
surface segment is most easily described in terms of the six points defining it. The situation is
shown in Figure 8. Any vector lying on the surface may be written as

6

X = C Nixi ,
i = 1

where the shape functions N' are given byI4

Rectangular isoparametric serendipity surface segment. The surface segment is again most easily
described in terms of the eight points defining it. The situation is shown in Figure 9. Any vector
lying on the surface may be written as

8

i = 1
X = 1 Nixi ,

where the shape functions N' are given by14

Triangular Barnhill-Gregory-Nielson patch." This surface segment is described in terms of the
three line functions along its edges. The situation is shown in Figure 10. Any vector lying on the

-
4

Figure 9. Rectangular isoparametric serendipity surface

1 I48

X

R. LOHNER AND P. PARIKH

Figure 10. Triangular BarnhillLGregory-Nielson patch

surface may be written as

x = 5 F,(r)+yFz(l -~)+F, (5)+F, (t -~)-~CFl(t)+F3(5)1
-5CF,(1 -9)+F3(1 -V)l--U -5-V)F1(0). (14)

We observe that not all the sides are treated equally by this formula. The F, line plays a different
role than the other two lines defining the patch. This means that some care has to be taken when
using this surface segment.

Rectangulur bilinear Coon’s patch.15 This surface segment is described in terms of the four line
functions along its edges. The situation is shown in Figure 11. Any vector lying on the surface may
be written as

x =(-q)Fl (5) + tF2(y) q F 3 (5) + (l - 4) F 4 (V)

- c(1 - o (1 - ~ l) F,(o) + a1 -?I F,(o) + t r F, (1) + ut(1 - r) M ~ H . (15)

Stretching and shearing 20 unit square (5, y-+[“, y”)

In order to obtain a reasonable triangulation of the curved surfaces, the unit square is stretched
and sheared so as to approximate in 2D the 3D surface segment. The easiest way to accomplish
this for a rectangular surface segment is to use a bilinear isoparametric mapping between the unit
square and the 2D surface approximation. This case is shown in Figure 1. However, it is not
straightforward to transform back and forth with the bilinear isoparametric mapping. We
therefore set the y” value of points D and C to be the same. The mapping is then given by

t”= X S 5 + X D V + (-xR + x c - x x ,) t ~ , v”= YDV, (16)
or

s 0 - 1
F,

Figure I I . Bilinear transfinite Coon’s. patch

THREE-DIMENSIONAL UNSTRUCTURED GRIDS 1149

The distances A-B, A-D and D-C are obtained from the line information given, and the angle at
the origin (point A) is approximated from the 3D surface segment. For triangular surface segments
point C is omitted.

REFERENCES

1. J. Peraire and K. Morgan, ‘A general triangular mesh generator’, In!. j. numer. methods. m y . (1987).
2. J. Peraire, M. Vahdati, K. Morgan and 0. C. Zienkiewicz, ‘Adaptive remeshing for compressible flow computations’,

3. D. F. Watson, Computing the N-dimensional Delaunay tesselation with application to Voronoi polytopes’, Comput. J .

4. A. Bowyer, ‘Computing Dirichlet tesselations’, Comput. J . 24 (2), 162-167 (1981).
5. S. W. Sloan and G. T. Houlsby, ‘An implementation of Watson’s algorithm for computing 2-dimensional Delaunay

6. A. Jameson, T. J. Baker and N. P. Weatherhill, ‘Calculation of inviscid transonic flow over a complete aircraft’, AIAA-

7. A. Jameson and T. J . Baker, ‘Improvements to the aircraft Euler method’, AIAA-87-0452, 1987.
8. T. J. Baker, ‘Three dimensional mesh generation by triangulation of arbitrary point sets’, AlAA-87-1124-CP. 1987.
9. M. A. Yerry and M . S. Shepard, ‘Automatic three-dimensional mesh generation by the modified-octree technique’, Int.

10. N. van Phai, ‘Automatic mesh generation with tetrahedron elements’, Int. j . numer. methods. eng. 18, 237-289 (1982).
11. S. H. Lo, ‘A new mesh generation scheme for arbitrary planar domains’, Int. j. numer. methods eng. 21, 1403-1426

12. R. Lohner, ‘Some useful data structures for the generation of unstructured grids’, Commun. Appl. Numer. Methods

13. J. Woodwark, Computing Shape, Butterworths, 1986.
14. 0 . C. Zienkiewicz and K. Morgan, Finite Elements and Approximation, Wiley, 1983.
15. R. E. Barnhill, ‘Representation and approximation of surfaces’, in J. R. Rice (ed.), Mathematicul Software I / / , Academic

16. D. N. Knuth, The Art r,f’Computer Programming, Vol. 3, Addison-Wesley, 1973.
17. R. Sedgewick, Algorithms, Addison-Wesley, 1983.
18. H. Samet, ‘The quadtree and related hierarchical data structures’, Compul. Surueys, 16(2), 187-285 (1984).

J . Comput. Phys. 72, 449466 (1987).

24 (2), 167-172 (1981).

triangulations’, Adu. Eng. Software 6(4), 192-197 (1984).

86-0103, 1986.

j. numer. methods eng. 20, 1965-1990 (1 984).

(1985).

4, 123-135 (1988).

Press, 1987, pp. 69-120.

