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G e n e r a t i o n  R e s u l t s  f o r  B - b o u n d e d  S e m i g r o u p s  (*). 

J. BANASIAK 

Abstract. - In [3] A. BeUini-Morante defined and analysed a new one-parameter family of 

bounded operators which he called a B-bounded semigroup. The definition was motivated by 

an example from the transport theory where the evolution generated by an operator A was in 

a certain sense controlled by another operator B. In this paper we show that a given pair 

(A, B) generates a B-bounded semigroup i f  and only i f  in a certain extrapolation space re- 

lated to the operator B, the closure of A generates a semigroup and we also address some re- 

lated topics. 

1. - Introduction and motivation. 

It  is well known (see e.g. [6]) that if (exp (tA))t>~o is a semigroup generated in a Ba- 
nach space X by an operator A, then there are constants M > 0 and oJ such that 

IlexptAll <. t O . 

In such a case we write A e ~(M, w, X). If  the existence of the semigroup generated by 

A is proved directly by the Hille-Yoshida estimates, then the constants M and oJ appear 

directly in the process. However, a number of techniques have been developed recently 

which give the existence of a semigroup in a non-constructive way, in particular when 

the positivity properties are employed, see e.g. [1]. Then it is of interest to derive other 

inequalities involving (exp(tA))t>~0. In [10,3] the authors proved the existence of a 
semigroup solving certain problem from transport theory using Arendt's method for 

resolvent positive operators (Theorem 2.5 of [1]). In such a case the constant M is diffi- 
cult to determine but the authors noticed that there exists another operator, say B with 

norm not larger than 1, such that the solution u of the original problem satisfies 
]]Bu(t) 11 <<-I]B~ ]], for all t 1> 0, where ~ is the initial value for the problem. This example 
shows that it may be advantageous to consider evolution families of operators which be- 
have well i f  looked at through the "lens" of another operator. The first definition of 
such a family appeared in [3]. The final version reads as follows. 

(*) Entrata in Redazione il 16 luglio 1997. 
Indirizzo delrA.: Department of Mathematics and Applied Mathematics, University of Natal, 

Private Bag X10, Dalbridge 4014, Durban, South Africa. 
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DEFINITION 1.1. - Let (A, D(A) ) and (B, D(B) ) be two linear operators in a Ba- 

nach space X such that D(A) cD(B)  and for some o9 ~ R the resolvent set of A satisfies 
q(A) D]o~, ~[. 

A one-parameter family of operators (Y(t))t>~o, which satisfies 

1) D(Y(t)) =: tg~D(B),  and for any t >>- 0 and f e D ( B )  

IIY(t) f[I < Mexp (a,t)llBfl[, 

2) The function t--) Y(t) f ~  C([0, oo [, X) for any f ~  [2. 

3) For any fE  n0:  = { feD(A);  A f e  n }  cD(A) cD(B)  

t 

Y(t) f =  Bf  + f Y(s) A fds ,  

0 

t>~O, 

is called a B-quasi bounded semigroup generated by A and B. 

Note that if B is bounded, then the definition of (Y(t))t>~o is much simpler as it is 

then a family of bounded operators defined on the whole space (/2 =X) ,  and 
[2 o = D(A ). 

REMARK 1.1. - The definition of B-quasi bounded semigroup admits another 
straightforward generalization which will be useful in the sequel. Namely, we can as- 

sume that B :X---~Z, where Z is another Banach space; then also Y(t):X--)Z.  The re- 

sults quoted below will remain valid without any changes (except for replacing X by Z 

as the target space). �9 

We note that despite the fact that the constructions and final formulas for B-bound- 

ed semigroups are similar to those appearing in the theory of C-semigroups and inter- 
polation of semigroups (comapre [4, 5, 2]), these two families are different. Indeed, from 

the definition of C-semigroup it follows that C must commute with the C-semigroup, 

whereas for B-bounded semigroups no commutativity is assumed or needed. Moreover, 
we treat B which may be neither invertible, nor bounded. Thus, in some sense B-bound- 
ed semigroups prove to be a generalization of the C-semigroups, though the starting 
points of both definitions were different. On the other hand, the lack of commutativity 

makes many applications of C-semigroups unavailable for B-bounded semigroups. In 
fact, there are rather indications that B-bounded semigToups are related to B-evolu- 
tions and the empathy theory introduced and developed in [7, 8, 9], and may be used in 

the theory of Sobolev equations. This area is a subject of present research and the re- 
sults will be published later. 

We provide, for a quick reference, the main results proved in [3]. It follows that for 
any f e / 2 ,  ~ > (9 and n e N 

(1.1) 
o o  

B(M - A ) - n f =  f t ~ - l e x p ( - , ~ t )  Y(t) f d t ,  

0 
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and, if f e  D(B), then 

M n (1.2) [ [B(s  ~< ~ ( 2  [[Bf[[. 

These relations are used to prove that a given pair (A, B) of operators generate at most 

one family satisfying conditions 1-3, hence the definition is correct. For such a pair we 
use the notation A e B  - G(M, w, X) (or A e B  - ~(M, w, X, Z) in the case described 

in Remark 1.1). 
For bounded operator B the author proved in [3] the following counterpart of the 

exponential formula for semigroups ([6], pp. 33-34.) 

THEOREM 1.1. - I f  the space X is weakly complete, D(A) is dense in X and (A, B) 

generate a B-quasi bounded semigroup (Y(t))t>~o, then for each f e X there exists a 

subsequence of (B(I - (t/n) A ) -~ f )~N  which is weakly convergent to Y(t) f for any 

t>~O. 

The main aim of this paper is to give a full characterization of generators of B-quasi 

bounded semigroups. We prove that the necessary and sufficient condition for A to be- 

long to B - ~(M, w, X, Z) is that AX~ e ~(M, co, XB) where XB is the completion of X 

with respect to the (semi)norm I1" lib = lIB" IIz and ~xB is the closure of a suitably under- 
stood extension of A to XB, provided B[D(A)] is dense in X (if X is reflexive, then the 

latter condition can be dropped). This result yields as an easy corollary an improve- 

ment of Theorem 1.1, that the sequence (B(I - (t/n) A)-~f)~EN converges in norm to 

Y(t) uniformly in t on finite intervals. 

In Section 5 we discuss the adjoint problem under assumptions that B is bounded, 
and X and Z are reflexive spaces. The main result of this section is that A e B -  

- ~(M, w, X, Z) is equivalent to A * e ~(M, w, R(B *)) where R(B * ) is the range of B * 
equipped with the graph norm. The importance of this result lies in the fact that XB is 

very often a complicated abstract space (formally a space of equivalence classes of 

Cauchy sequences), whereas R(B *) is a subspace of X*. This is a significant simplifica- 

tion in particular when X is a Hilbert space and A, B are self-adjoint operators. 

2. - C o n s t r u c t i o n  o f  t h e  e x t r a p o l a t i o n  s p a c e  XB. 

In this section we introduce the space XB. Most results here belong to mathematical 

folklore, so we focus rather on explaining the necessary notation but provide some 
proofs where, in our opinion, the results are not quite standard. 

Throughout this section we assume that (B, D(B)) is a possibly unbounded opera- 
tor with D(B) c X  and R(B) cZ ,  where X and Z are Banach spaces. If B is bounded, 
then we understand that D(B) = X. 

In general, if we have any equivalence relation N, then by [x] we denote the equiva- 
lence class generated by x. Since sometimes we will be working with several equiva- 
lence relations, we shall later introduce special notation, but [-] will serve as a universal 
symbol. 
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DEFINITION 2.1. - Let us consider the set 2C of sequences (Xn)ne N such that x~ e D(B) 

for n ~ N and (Bx~)~N is a Catchy sequence. We define XB to be the space of  all class- 

es of  equivalence of sequences ( x ~ ) ~ N e X  with respect to the following relation: 

(2.1) (X~)~N -- (Y~)~N i f  and only i f  Yam IIBxn - By~ I[z = O. 

The space XB is a normed space with the norm 

(2.2) JJ[(X~)n~NlJfx~ = J@~ [IBx~[lz. 

This follows as in the standard proof of the theorem on completion of a normed space 

(see e.g., [12], pp. 95-97) the only difference being that the functional Ps( ')  = IlB-IIz is in 
general a seminorm and not a norm. This is taken care, however, by incorporating the 

null-space of B into the class of elements equivalent to the zero sequence. 

To make the presentation more clear, and also having in mind applications, it is ad- 

vantageous to distinguish two cases: with invertible B and with (not necessarily) in- 

vertible B. We emphasise, however, that the discussion of these two cases is rather par- 

allel; the results for B invertible can be obtained as a particular case of the general 

ones. 

2.1. The case of invertible operator B. 

If B is an invertible operator, then XB coincides with the completion of D(B) in the 

norm [[" lIB = lIB" I[z. By construction, (D(B), ]1" lIB ) is  isometric to a dense subspace of Xs, 
denoted by D(--B). The class [(x, x, x ...)] e D(-B) is denoted by 2 and the canonical 

isometry by j: 

(2.3) j :D(B) --) D(B) , j2  = x . 

Equation (2.2) shows that on D~B) we have 11~211x,= IlBxllz. The operator B o je  

2(D(-B), Z) is an isometry since ~[I(B j ) ~?llz = IIBx][z = II llx , and has a unique extension 
by continuity to an operator 53 e ~e(XB, Z). The following result is standard. 

LEMMA 2.1. - The operator ;3 is an isometric isomorphism of XB onto ZB = R(B)Z: 

for any 0 E XB we have 

(2.4) 1153 tlz = IIq [[x,. 

It is worthwhile to note that if [[Bfllz >I cllfllx for some constant c, then XB can be 
identified with a subspace of X (compare with the construction of the Friedrichs exten- 
sion); in fact, it is D(B). Indeed, B is a closeable operator and each class [(Xn)~N] can 
be identified with x = B - 1 y where y = l i m  B x  n is independent of the choice of the se- 

quence (ggn)ne N in the class by Definition 2.1. Conversely, each element of D(B) deter- 
mines a unique class consisting of all sequences (xn)~N converging to x such that 

(BXn)n~N is convergent in Z. 
Clearly, if B e ~e(X, Z) (the set of all bounded linear operators) is such that B - l e  

2(Z,  X), then X and XB are isometrically isomorphic. 
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2.2. The case of non-invertible B. 

Let us assume now that N ( B ) ~  {0}. We consider the quotient space D(B)= 

= D(B)/N(B) and define x = [x] where u ~ Ix] if and only if y - x ~ N(B). The canonical 
quotient operator z:  D(B)--*D(B) is given by zx = _x, and we define 

(2.5) B x  = Bx . 

This reduces the problem to that  discussed in the previous subsection with B replaced 
by B and D(B) replaced by D(B). In fact, II'II_B = tlB']tz is a norm on D(B), therefore the 
completion, denoted by X__B, is a Banach space and the corresponding extension by con- 
tinulty of B, denoted by _~, is an isometric isomorphism of ~ onto ZB = R(B) z = ~(B)  Z. 

Keeping the rules of notation as in the previous subsection, we have in particular that  
the subspace D-(-B), consisting of classes generated by constant sequences of elements 
of D(B), is a dense subspace of X~ isometrically isomorphic to the space (D(B)., I1" liB); 

by j we denote the canonical embedding j :  D-(-B)-->D(B) defined for _~= [(x, _x, .-.)] 
by 

(2.6) j_~ = _x. 

The following proposition relates this construction to the space XB. The proof consists 
in a careful manipulation of equivalence classes and therefore it is omitted. 

PROPOSITION 2.1. - The space ~ is isometrically isomorphic to X8 and the isomor- 

phisms ~ : X__.B_---> XB is defined as foUows: let (X~)n~i e q~, where X~ e D(B) for n = 1, 2, . 
�9 .., then 

(2.7) 3q~ = [(X~)~N], 

where [(Xn).~N] is the class in XB determined by an arbitrary sequence (X~)~N such 

that x~ e X_n. Thus, in particular, XB is a Banach space. 

The space (D(B), I1"11~_) is isometrically isomorphic to a dense subspace Of XB and 
the isomorphism is given by 

(2.8) J_x= [(x, x, ...)] 

where x is an arbitrary element of x. 

Moreover, the operator p: D(B)---~XB defined by 

(2.9) ~ x  = ] z x  = [(x, x, . . .)], 

maps continuously D(B) onto a dense subspace of XB, denoted by D(--B) and 
D(--B) = J(D(B) ). 

Using this proposition and Lemma 2.1 we obtain that  the operator t~ defined for ~b 
e XB by 

(2.10) 53q~ = ~ -1 q~ 

is an isometric isomorphism of XB onto ZB. Proposition 2.1 allows to give the  intrinsic 
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characterization of ~. We have 

(2.11) ~ = ~ 2  = B x  , 

if q~ = [(x, x, ...)] = ~ e  p(D(B)), and 

(2.12) ~ = l i m / ~  = lim Bx~ 
~t ---> Cr 

if q~ = [(X~)n~]. Indeed, both definitions (2.10) and (2.12) coincide on p(D(B))  

equality on XB follows by density. 

and 

3.  - O p e r a t o r s  o n  XB. 

In this section we shall discuss extensions of operators A and Y(t)  to X~. As in the 
previous section it is advantageous to consider cases of invertible and non-invertible B 
separately. 

From condition 3) of Definition 1.1 it follows that it is necessary to restrict the oper- 
ator A to a smaller domain and the requirement of the definition seems to be insuffi- 
cient. It turns advantageous to start from the part of A in D(B),  that is (A,  De (A) ) ,  

where DB(A)  = { x e D ( A ) ;  A x e D ( B ) } .  

If B is invertible, then the definition of the shift of A to XB is straightforward. We 

define 

{ DB(A) = j -1DB(A) ,  

(3.1) -42 =j-1AN'x - ~  [(Ax, A x ,  . . . )] ,  

where we preserved the notation of Subsection 2.1. Note that in this case ~ = j -1 .  
To define a counterpart of A in XB for a non-invertible B we first prove the following 

lemma. 

LEMMA 3.1. - I f  A �9 B - ~(M, w, X, Z), then the following relations hold: 

(i) For  any  x �9 N ( B )  and t >i 0 

(3.2) Y(t) x = O . 

(ii) For  any  x �9 X and any  t >I 0 

(3.3) Y(t)  x ~ R ( B ) .  

(iii) For any  ~ > ~ the space N ( B )  reduces (hi  - A )  -1. In  other words 

(3.4) (,~I - A ) - I N ( B )  = D(A)  n N ( B )  = DB(A) A N ( B ) .  

PROOF. - Item (i) follows from the condition 1) of Definition 1.1, as for x e N ( B )  we 
have 

]lY(t) Xltz <~ M exp (~t)IIBxHz = O . 
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To prove (ii) we use eq. (1.1) with n = 1. Le t  Y(to) x ~ 0 for some x ~ X  and to I> O. Then 

there is f � 9  Z*  satisfying f(Y(to) x) ~ 0 and f(R--(-B~) = 0. Using the continuity of f we 

have for all h > r 

0 =f(B(hI  - A) - ix )  = 

q-co 

f exp ( - h )  f (Y(t)  x) dt ,  

0 

which, by the continuity of Y, yields f ( Y ( t ) x ) =  0 for all t >I 0. 

To prove (iii) we use eq. (1.2) with n = 1, which shows that  if x ~ N(B), then B(M - 

- A ) - l x  --- 0, hence (hi - A ) - I N ( B )  cN(B) .  On the other hand, l e t f � 9  A D(A) = 

= N ( B )  n R ( ( ~ I - A ) - I ) ;  then for some x s X  and all h > w we have: 

0 = B f=  B(hI - A ) - l x  = 

J r ~  

f e-Zty(t) x d t ,  

0 

hence Y( t )x  = 0 for all t I> 0 by condition 2) of Definition 1.1. But Y(0)x = Bx = 0, 

hence x � 9  and f � 9  (hi - A ) - I N ( B ) .  " 

Hence, we have natural definitions of operators in D(B) = D(B)/N(B) (see Subsec- 

tion 2.2) 

Y(t):D(B)-->ZB, t > O ,  

where, for any x e x ,  

(3.5) 

A~: D(B) ----> D(B),  

Y( t )  x = Y ( t )  x ,  

(3.6) A~x = ( h i - A ) - l x .  

The fact that  the range of A~ is in D(B) follows from D(A) r D(B) (conditions of Defini- 

tion 1.1). We have the following lemma. 

LEMMA 3.2 . -  The operator A: D B ( A ) ~  D(B), where DB(A) = {x �9 x_ N De(A) 

~} and for x_ �9  

A x  = Ax 

for arbitrary x e x n DB(A ), is well-defined. Moreover, (r + ~ ) � 9  and 

(3.7) A~ x = (;tI - A) -1 x .  

PROOF. - Let  y �9 N(B), then by Lemma 3.1 we obtain that  for each )~ > (o 
there is x~ ~ N(B) such that  y = ( ) U -  A) -1 x~, which gives Ay = hy - x ~  �9 N(B), hence 

A(DB(A) A N ( B ) ) r  Clearly, the definition then makes sense, as if we have 

Xl, x2 �9 DB(A) such that  x 1 - x2 e N(B) (that is, x 1 �9 x2), then A(Xl - x2) �9 N(B) and con- 
sequently Axl = Ax2. 



314 J. BAN~IAK: Generation results for  B-bounded semigroups 

To prove eq. (3.7) we note that by the surjectMty of ~I - A  and by the definition of 

A, the operator )U - A is also surjective and therefore for a given x �9 D(B) there is f � 9  

eDB(A) such that (,~I - A )  f =  x_. Let us take g = A~_x. Hence, there i s ~  eDB(A) st~ch 

that ( ~ I - A )  fl = x + b for some b EN(B). On the other hand, since g = ( ~ I - A ) - l x ,  
there exists g~ �9 DB(A) such that (2I - A) gl = x. This shows that fl = g~ + (;tI - A) -1 b, 

and, since b �9 N(B), Lemma 3.1 yields ()J  - A) -1 b e N(B), and consequently f = f l  = 
= g~ = g .  �9 

This lemma allows to use directly the definition (3.1) to shift A to ~ ;  in this way we 
obtain 

(3.8) 
f DB(~) = j -1DB(A) ,  

A ~2 = j -1_~2 = [ (Ax, Ax, ...)], 

where ~ = j  - l z x  e D(-B). 

Our main interest is to define the extension of A to XB. Using Lemma 3.2 we can de- 
fine the shift of A to D(B) in the following way: 

(3.9) 
{ DB(fi*) = PDB(A) ,  

A~ = pAx = [ (Ax, Ax ,  ...)], 

where X�9  and 2 =  px. From Proposition 2.1 we obtain the following identi- 
ties: 

(3.10) DB (rid = JDB (A) = 3DB (A), 

(3.11) A ~  -- J._AJ - 1 ~  _ ,~.~.,.~-12 . 

We shall need the following result. 

PROPOSITION 3.1.-  The operator (A, De (A)) is closable in XB i f  and only i f  the oper- 

ator (A, D~(fi~)) is closable in X__B_. I f  we denote 

(3.12) ~ = ~x. ,  

then we have 

(3.13) ~ -19A 3 = fi,~. 

Moreover, i f  ~b ~ D(gA ), then there is ( X n )n E N �9 q) such that x~ �9 De (A ) for  n �9 N and the 
sequences (Bxn)n~ N and (BAx~),~N are fundamental  in Z. Conversely, i f  (X~)n~N is a 
sequence of  elements Of DB(A) such that the sequences (BXn)n~N and (BAx~)~N are 
fundamental  in Z,  then r 1 4 9  Then, putting l i m  B x ~ = y  and 
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l im BAx~ = z, we obtain 

(3.14) q~ = ~ - l y ,  and 91 ~ = 53-1z, 

where ~ is the extension of B defined by eq. (2.11). 

PROOF. - Equation (3.13) is a straigtforward consequence of Proposition 2.1. To 
prove the other part of the proposition we note that ~ e D(91 ) if and only if 

lim q~ ~ = q~ and lim 91 ~b ~ = ~ = 9/ 
$b - ->  ~ ' Tb-'-> O~ 

in XB, where ~ , e D B ( A )  =J(Ds(A)) .  This means that q~,= [(x,, xn, ...)] for some 

xn e x n f']DB(A). Then also (Bx~)n~N is fundamental in Z, and similarly, the sequence 

(BAxn)~N is fundamental in Z. Hence both sequences determine classes of equiva- 
lence in XB. It follows now that ~ = [(xl, x2, ...)]. The proof of this statement is analog- 
ous to the standard proof that the completion of a normed space is a Banach space. Sim- 

ilarly we obtain that 91 q~ = [(AXl, Ax2, ...)]. 
Consider now a sequence (Xn)~N such that xneDB(A) for n =  1, 2, ... and such 

that (Bx,),~N and (BAx~),~N are fundamental in Z. Then ~ = [(X~)n~N] and F = 

= [(Ax,)n~N] are well-defined. 
Consider now the sequence of classes ~b, = [(x,, x, . . . )] .  As before, for each n, ~ n e 

eDB(A) and lim q ~ =  ~b. Moreover, 91 q~,= [(Axn, Axe.. .)] and 
n - - - )  ~ 

IIV2 - -4r = ~ m  nBAxm - BAx~IIz, 

hence lira 91 r n = ~f and the proof is complete. �9 
Tt--O O0 

4. - T h e  m a i n  g e n e r a t i o n  t h e o r e m .  

In this section we shall prove the main theorem of this paper. 

THEOREM 4.1. - I f  A e B - ~(M, o9, X,  Z) and B[DB(A)] is dense in ZB, then the op- 

erator 91, defined as in Proposition 3.1, satisfies 91 e G(M, co, XB). Conversely, i f  

there is an extension r of A such that a e ~ ( M ,  w, XB), then ~ =  91 and A e B -  

- G(M, w ,  X ,  Z).  

The B-quasi bounded semigroup (Y(t) )t>~o is given for x ~D(B) by 

(4.1) Y(t) x = exp (t~91 ~-1)  Bx = t~ exp (t91) ~x,  

where t~ is defined as in eq. (2.10). 

The proof of the theorem is lengthy and will be split into several steps. The first 
step, stated as an independent lemma, is a variation of Kate's results on pseudoresol- 
vents (see e.g. [6]), specified for our particular situation. 

LEMMA 4.1. - Assume that the operator (K, D(K) ) with D(K) = X has the following 
properties: 

1) for 2 > to the operators 2I - K are invertible, 
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2) for each 2 > oJ, the range R ( ~ I -  K) = R is indepdnent of 2 and dense in X, 

3) for each y ~ R 

(4.2) sup  I[2(~.I - K ) - l y [ [  ~< M[[yH < + 

Then (K, D(K)) is closable, ]w, ~ [ c 0 ( K )  and ( 2 I - K )  -1 is the unique extension by 

continuity of (21 - K)-1. 

PROOF. - By [6], pp. 36-38, (4.2) implies that the extension by continuity of 
( 2 I -  K) -~, denoted by H~, is the resolvent of adensely defined closed operator, 

say K. Since ( ( 2 / -  h : ) - l ) - l x  = ( ( M - K ) - l ) - l x  for x eD(K) and 

: 2 I - -  ( ( 2 I - g ) - l ) - 1 ,  

we obtain that K is an extension of K, and since it is closed, K is closable and K c  K. Let 

now x~D(K);  then x =  ( 2 I - K ) - l y  for some y ~ X .  This means that 

x = lira (21 - K)-1 y~ 
n - - ~  or 

for y~ ~ R and y~ ~ y. In other words, x~ = (2I - K)- 1Yn ~ D(K) converges to x. Solving 
this equation we get K x , = 2 x , - y ~  and (Kx,)~EN converges, hence xED(K) and 

~ x = 2 x - y = ) ~ x - ( ( 2 I - K ) - l ) - l x = f f . "  .. 

PROOF OF THEOREM 4.1. - Step 1. (Case of invertible B and R(B) dense in Z). 

Note that in this case ~ = j - t ,  where j is defined by eq. (2.3). We define the 

operator 

(4.3) -4x = BAB - 1 x 

for x ~ D(A) = B[DB(A)], hence D(_A) is dense in Z by assumption. We have (M - . 4 )  = 

= B ( 2 I - A ) B  -1 and thanks to the assumption (ii) of Definition 1.1 we have for 

(4.4) ( 2 I  -- ~ ) - l g  ~_ B(2 I  - A ) - I  B - l  g 

for geR(B)~B[DB(A)] and the latter set is dense in Z. From eq. (1.2) we obtain for 

any g c R(B) and 2 > w: 

M[[BB -lg[[z M[[g[[z 
(4.5) [1(2I-A)-agllz = ] [B(2I -A) - IB  -lgllz <~ 

We see now that the assumptions of Lemma 4.1 are satisfied. Hence, (M _ ~ ) - 1  has a 
A 

unique extension to the resolvent of the closure of A in Z, A . Using again the proper- 

ties of B-bounded semigroups we obtain further: 

(4.6) ][(2/- -4)-~g[]z = lIB(2/-  A)-~B -lg[[z <~ MllgIIz 
(2 - co) ~ 

Hence, for each n the operator ( 2 / -  A)-n has a unique extension onto Z and by unique- 
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ness, this extension must  b e e q u a l  to ( M -  A) -~. We conclude that  A = BAB 

crates  a semigroup (exp(tA))t>~o on Z.  As a consequence, we obtain 

gen- 

for any f e  D(A), or 

t 

exp (tA) f = f + I exp (s.4) .4fds 
0 

t 

exp(t~) f = f + ~ exp(s~).4fds , 

0 

if feD(A)=B[DB(A)] .  Then, for arbi t rary  xeD~(A)  there  

and 

is f =  Bx eB[DB(A)] 

t 

exp ( t~)  Bx = Bx + ~ exp (s~)  Bx ds . 

0 

Since Y(t) exists and is uniquely defined we conclude that  

(4.7) Y(t) x = exp (tA) Bx . 

The equation (4.5) can be in terpre ted  in another  way. Le t  f =  B - l g  for g ~ R(B): 

(4.8) 11(2-1 - j . ) - i  fllz = lIB(2.1 - A )-~fllg I1(~I - A )-~fll~ < , , z  _ ~.~,,.,,~ 
2 . - m  2 . - m '  

where  11"118 was defined in Section 2.1. By Lemma 4.1 we conclude from this inequality 

that  the operator  .~, defined on DB(A) =j-1D~(A), is closeable in XB. Denoting ~I = 

= ~xB, its resolvent (;tI - ~l )-1 is a unique extension by  continuity in X~ of (2.I - ~ ) - 1  = 

= j - 1 ( 2 . I - A ) - l j ,  defined originally on D(-B). As before we obtain for any ~ eX~:  

11(2./- ) - " , 1 1 , ,  �9 

L e t  us take r eXB; then there  is y e Z  such that  y = t~r and, since B[D~(A)] is dense 

in Z, y = l i m  Bx~ for some sequence (x~)~ ~ N of elements of D B (A). By continuity of ~-1  

we obtain 

r = lim 03-1 B x  n =__ lim ~ -  1 t~j - 1 x~ = lim j - 1 x~ 

and since j - l x ~ e j - I D B ( A ) c D ( ~ ) ,  D(~)  is dense in XB and consequently ~l 

~(M, w, XB). 
~ . Z  I . Z  

Now we clarify the relation between ~l and A = (BAB - ) . Consider ~?l  ~-1  de- 

fined on t~[D(9/)]. Le t  xeB[DB(A)]. Then, in particular, xeR(B)  and ~ - l x =  
= j - 1B - ~ x by  the construction of ~, and hence 03 - 1 X E j  - 1D(A). Therefore  ?I ~ -  1 x = 

= j - 1AB - 1 X. This shows that  9/5~ - 1 x e .~ and therefore  t~j - 1 = ~ j  - 1 ~ B and we obtain 

~ I  t~ - lx  = B A B - i X ,  thus ~ ~-1  is an extension of BAB-1,  A c  8~?I g8 -1. By ~ ( M -  
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- 91 )-1 ~ - L =  ()I/--~91 t~-l) -1, we see that ~91 ~-1 is a closed operator, therefore we 
must have .4 r ~891 iS- 1 and since both operators have resolvents for ;t > w, they must 
coincide: 

(4.9) ~ [  t~ -1  -~- ( B A N  - l i Z .  

Let ~I be any extension of fi~ which generates a semigroup on Xs. Firstly, we show that 
it must be the closure of J~. Clearly, we have ( h i - J D - I r  (~.I-~I) -1 and hence 

(4.10) 11(41 -.~)-1 ~llx~ < 
Mll,plbc~ 

~-~o  

Since R ( ( ~ I -  ~)-1 = D-(-B) by the ass u.mption (ii). of Definition 1.1, we can use Lemma 
--7..3r B -':'..2~ B 

4.1 to obtain that the resolvent of A , ( ~ I - A  _)-~, is well-defined and satisfies in- 

equality (4.10). Since 91 is closed, we must have .4x~c 9.1 and as above we see that we 

have the equality. 
Next, let us define for x eD(B) (remember that now j - 1 =  p) 

Y(t) x = ~ exp (t91) j -~x.  

We have by Lemma 2.1 

I]Y(t) IIz = I1~ exp (t91) j - 1  XlIZ = i]ex p (t91) j -~ Xllx8 
MIIj -1 X]lx~ MHBxlIz 

Moreover, for q0 e D(91 ) we have 

t 

exp (t91) q~ = q~ + Iexp (s91) 91 ~ d s .  

0 

If ~ = j - l x  where xeDB(A)  we obtain 91~=fi~(j-lx),  and t ~ j - l x = B j - l x = B x ,  
hence operating on both sides with ~ we get 

t 

~Sexp(tgA ) j - i x  = Bx + ] tBexp(s91 ) j - l A x d s  

0 

where the operator :8 can be moved inside the integral due to its continuity. This is the 

B-bounded semigroup identity: 

t 

Y(t) x = Bx + I Y(t) Ax  ds , 
0 
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and, since Y(t) x is continuous, we see that Y(t) is a B-bounded semigroup generated 

by A. 

Step 2. (Case of non-invertible B). 

We can apply Step i to the quotient space D(B) with Z replaced by ZB using defini- 
tions (3.5), (3.6) and Lemma 3.2. Firstly, the family (Y(t))t~0 is a B-quasi bounded semi- 
group acting from D(B) into Z8 and A is its B-generator. Indeed, for any x e_X, where 
x e D(B) we have 

(4.11) IIY(t) X_Hz~ = LY(t) XHz = IIY(t) Xllz <~ M exp(eot)]lBxllz = M exp (oJt)llB_x]]z~ 

for the same M and w as in the definition of (Y(t))t~o. Clearly, the continuity condi- 
tion 2 of Definition 1.1 is satisfied. Finally, for _zeD(A) we chose x~eDB(A) and 
obtain 

t t 

Y(t) x = Y(t) xl = Bxl + l Y(s) Axl  ds = B_~x + IY(s )  A_xx ds 

o o 

since we have Y(s) Axl  = Y(s) Axl  = Y(s) A_xx. 

We note that if B[DB(A)] is dense in ZB = R(B), then also B[DB(A)] is dense in 
R(B). Indeed, let R ( B ) ~ y =  lira BAx~ for some sequence (x~)~N of elements of 

n - - ~  oo 

DB(A). But BAx~ = BAx~ = BAx~ and the statement is proved. 
Defining now-- 

(4.12) Y(t) z = Y(t) x_ = exp ( t B A B  ~ z )  Bx = 83 exp (t~) j -ix_ 

we see that A e B - ~(M, m, X, Z) if and only if there is an extension a offi~ such that 

_a e ~(M, m, X__8). Moreover, we must have _~ = ~x~_ and the B-quasi bounded semi- 

group is given then by 

- - Z  " ~  

(4.13) Y(t) x = e x p ( t B A B  -1 ) Bx = t8 exp (tA_) j - Ix  

for x e D(B), where ~ is defined as in Lemma 2.1. 
T h e  theorem follo-ws now from Propositions 2.1 and 3.1. By eq. (3.13), ~-1~1 3 = 

= .4~, and the exponential formula for semigroups ([6], pp. 33-35) gives 3-1 exp ( t ~ )  3 = 
= exp(t(A_-)), hence eq. (2.10) yields 

~ exp (t(A_-))j-l_x = t ~ - ~  exp ( t ~ )  ~_x = t~ exp (t~l) ~x. 

The other equality can be proved in the same way. �9 

It follows from this theorem that if B[DB(A)] is dense in ZB, then D(~ ) is dense in 
XB, since ~l generates a strongly continuous semigroup. The converse is also true: if 
D(~  ) is dense in XB, then B[DB(A)] is dense in ZB. Indeed, in this case also D(A) is 
dense in XB since by Proposition 3.1, DB(A) = P(DB(A)) is a core for D(~I ). Let now 
z e ZB; then z = ~@ for some q~ eXB by eq. (2.10). If (x~)~N, xn e DB(A), is an approxi- 
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mating sequence for q~, then by eq. (2.11) we have 

as n--> ~ ,  and the statement is proved. 
This observation allows to discard the assumption that B[DB(A)] is dense in ZB if Z 

(and consequently Z~) is a reflexive Banach space. We have the following corol- 

lary. 

COROLLARY 4.1. - I f  Z is a reflexive space, then the thesis of Theorem 4.1 is valid 

without the assumptions that B[DB(A)] is dense in ZB. 

A stronger version of the exponential formula given in Theorem 1.1 follows as a 

corollary from Theorem 4.1. Namely, we have the following result. 

THEOREM 4.2. - I r A  e B  - ~(M, co, X, Z), then for any xcD(B)  

(4.14) lira B I -  A x = Y ( t )  x .  
n - - ~  

PROOF. - Firstly, we prove that for x ~ D(B) 

(4.15) B I -  A x = ~  I -  t g ~x 
n 

L e t g  ~- ( I -  ( t /n)A)- lx .  Then the layer pg = [(g, g, ...)] e D ( ~  ) and by eqs. (3.9) and 

(2.9) ~ pg = pAg = [(Ag, Ag, ...)]. This shows that 

x) ( ) p g = p  I -  A = I - - - ~  px.  
n 

and the theorem follows from the 

33-35. �9 

ii( i = I - - - t  ~ p x - e x p ( t ~ ) p x  
n x~ 

exponential formula for semigroups [6], pp. 

Similarly we get a characterization of B-geneators in terms of operators A 

and B. 

Iterating, we obtain 

and eq. (2.11) gives eq. (4.15). This yields 
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THEOREM 4.3. - Let operators A and B satisfy the conditions (i) and (ii) of Defini- 

tion 1.1. Then A �9 B - ~(M, co, X,  Z)  i f  and only i f  the following conditions hold: 

1) B[DB(A)] is dense in ZB, 

2) A(N(B)  n D ( A ) ) c N ( B ) ,  

3) there exists M > 0 and co �9 R such that for any x �9 D(B) and n �9 N: 

M 
(4.17) I I B ( I  - ~ i ) - n x l l z  < ( 4 -  co)~ IIBxllz. 

PROOF. - We prove only the sufficient condition, as the necessary one follows from 

Theorem 4.1. From (4.17) we have 

(hi - A )-I  N(B)  c N(B)  n D(A) .  

Assumption 2) yields that for x e D ( A ) N  N(B)  we have ~ x - A x  e N(B), hence (StI- 

- A ) - I  N(B)  cD(A)  N N(B). Thus N(B)  N D(A) = N(B)  n DB(A) and we can follow the 

prof of Lemma 3.2 to see that A can be shifted to A acting on ODB(A). 

Then arguments as in Theorem 4.2 show that eq. (4.17) can be rewritten as 

(2 - co) n 

valid on a dense subset D(B) ofXB. Lemma 4.1 implies that this equation is valid for the 
closure of ,4, 9/,  on the whole XB. 

Now, assumption 1) implies that D(B) is dense in XB and since it is a core for 9A, 

D(?I ) is also dense in X8 and the Hille-Yoshida theorem gives the assertion of the 

theorem. �9 

5. - Adjoint  semigroups .  

The space XB introduced in Section 2 is very often difficult to handle as it is in some 
sense an enlargement of the original space. In this section we give a counterpart of the 
previous results in terms of adjoint operators. Roughly speaking, we show that the ad- 

joint space to XB can be identified with the range of the adjoint operator of B. There- 

fore, if e.g., X =  Z = L2, then the range of B* lies again in L2 and we can work in a sub- 

space of the original space rather than in some abstract, larger space. 
Throughout this section we assume that the operators A and B satisfy the condi- 

tions (i)-(ii) of Definition 1.1. Moreover, we assume that B is a bounded operator and 

the Banach spaces X and Definition 1.1. Moreover, we assume that B is a bounded oper- 
ator and the Banach spaces X and Z are reflexive. Some of the results of this section 

can be obtained without these assumptions (e.g. for unbounded but closeable B one can 
replace X b y  D(B) with the graph norm as only the part of A in D(B) is used) but in our 

opinion the adopted conditions allow to present the theory in a closed and elegant 
form. 
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The space Z is reflexive, hence by Corollary 4.1 the assumption of the density of 

B[D(A)] = B[DB(A)] of Theorem 4.1 can be dropped. 

5.1. The case of B invertible with dense range. 

In this subsection we assume that: 

(B) B e ~(X, Z) is an injective operator satisfying R(B) = Z. 

Let X* be the adjoint space to X and (., ">z* • denote the corresponding duality 
pairing. The same convention will be applied to other spaces. 

Since X is reflexive, from [12], pp. 98 and 265 we obtain the following result: the op- 

erator ( j - 1 ) . ,  where j is defined by eq. (2.3), is a canonical embedding of (XB)* onto a 

dense subspace of X*; moreover, ff x e X  and x * =  ( j - 1 ) * ~ *  e ( j - 1 )*X~ ,  then 

(5.1) (x*, X>x,• = (}*, 2>x~• 

where, as in Subsection 2.1, } = j - i x  is the class in X~ determined by (x, x, ...). 
Let  B *e  2(Z*,  X*)  be the adjoint of B. By the assumption (B), the operator B-1  

exists, is densely defined and closed, hence its adjoint is also a densely defined and 
lcosed operator satisfying (B * ) - 1 x * = (B - 1 ), x *, for all x * �9 R(B * ) = D((B * )- 1 ). 

By XB, we denote the range of B * equipped with the graph norm 

(5.2) rfx* frx . = II(B , ) - 1  x * tlz . 

Since (B*)  -1 is injective and closed, XB* is a Banach space densely and continuously 

embedded in X*. The following lemma is crucial. 

LEMMA 5.1. 

(5.3) XB* = ( j - 1 ) * X ~  

and ( j - 1 ) ,  is an isometric isomorphism. 

PROOF. - Recall that t~ �9 2(X~, Z) is an isometric isomorphism such that ~ j - i x  = 

= Bx for x �9 X. Therefore ~* �9 s  X~) is also an isometric isomorphism. Let y * �9 Z* 

and x �9 X; then 

( ( j -1 )*  gS*y*, x )x . •  = (5]*y*,j-lx>x~• (y*,  53j-~x>z.• ( B ' y * ,  X}x*• 

hence for any y* e Z *  we have ( j - 1 ) .  ~ . y .  = B ' y *  and the surjectivity of ~ yields 

XB. = R(B *) = ( j  -1)*X~.  Furthermore, for x * � 9  we obtain 

II(j-1)*x*llx, .= sup [ ( ( B * ) - l ( j - i ) * x * , y ) z . •  = sup [<(~J~-i)*x*, Y}z*• = 
IlYllz = 1 Ilyllz = 1 

= s u p  =ll *llx  
IlYlIz = 1 

as ~ is an isometric isomorphism of XB onto Z. 
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Since X~ is a reflexive Banach space as the dual of the reflexive space XB, then also 
XB. is reflexive by eq. (5.3). We have the following theorem. 

THEOREM 5.1. - Assume that B satisfies the assumption (B) and in addition D(A ) 
is dense in X. Then A �9 B - G(M, oJ, X, Z) if  and only if  (=4 *, D(A*) A XB* ) �9 

�9 G(M, w, XB*). 

. .~X B 

PROOF. - By Theorem 4.1, A � 9  - ~(M, w, X, Z) if and only if ~l = A generates a 

semigroup in X~. Thanks to the reflexivity of XB, by [6], p. 41, we obtain that this is 
equivalent to the condition that ?l * generaties a semigroup (of the same type) in X~ 
and by isometry this is equivalent to the fact that j * ?I * ( j - 1 ) .  generates a semigroup 

in XB*. However, for any x* � 9  satisfying j ' x *  �9 *) cX~ and x � 9  

(x*, Ax}x.• = (x*, jgl j - l x }x . •  = ((j -1)*nj*x*, X)X*xX , 

and since ( j - 1 ) * 2 * j * x * � 9  we see that x*eD(A*) ,  in other words, that 
( j - l ) ,  ? / * j ' c A * .  On the other hand, let x* �9  then x* �9  and for 

any x �9 D(A) we obtain 

<j*A*x*, j - ix}x~•  = < j ' x * ,  ~j-lx>x.•  X, 

which shows that there is w * = j * A * x * �9 X~ such that (w *, q~ >x~ • xB = (?  *, 9~ @ }x* • x 
for any r 1 4 9  where ~ f * = j * x * � 9  Since 9~ is the closure of 
(j -1Aj, j -1D(A)), this equality holds for any q~ �9 ) and yJ �9  Consequently, 
x* �9 ~I * j* ) .  Thus ((j-~)* 9~ *j*,(j-1)*n(~[ *)) = (A *, XB. N D(A*)) and 

the theorem is proved. �9 

5.2. Non-invertible B. 

Let us turn our attention to the case when N(B) ~ { 0 } and/or R(B) ~ Z. As in Sub- 
section 2.2, we introduce the factor space X = X/N(B) and the space ZB = R(B) z. If X 
and Z are reflexive, then so are _X and Z~ (see e.g. [11], pp. 220-221). Clearly, the opera- 
tor B: X-+Z~ defined by eq. (2.5) satisfies the .assumption (B). 

The domain D(A) of the operator A, defined in Lemma 3.2, is dense in X, provided 

D(A) is dense in X. Indeed, let x E X; take any representative x �9 x and the sequence 
(X~)~N of elements of D(A) such that lim Xn = x. Then lira x~ = x as follows from 

~ - - - >  ~ n .--) oo _ _  

IIx~ -x_llx <-IIx - XnlIX. Hence we can apply considerations of Step 2 of the proof of Theo' 
re-m 4.1 to the effect that A �9 B - ~(M, ~ ,  X, Z) if and only if (A *, D(A * A R(B *)) �9 

, , 1 �9 ~(M, w, X_2.), where X_z. = R(B ) equipped with the graph norm II(B )- �9 IIz*- This re- 
sult is, howe:~er, of limited prac-tical value as the operators and spaces inv"olved are 
quite complicated. In what follows we obtain a simpler formulation. 

It is known, [11], pp. 220-221, that the space X* = (X/N(B))* is isometrically iso- 
morphic with N(B) • (the annihilator of N(B)) and the isomorphism ~: N(B)•  
-o (X/N(B))* is given by 

(5.4) X_)x.• (x*, x>x,• 

We note the following lemma. 
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LEMMA 5.2 The operator (A *, D(A *) N N(B)  • ) is an extension 

( j -1A*~,  2-1D(A * ) ). In  fact, i f  we define 

(5.5) 

then 

(5.6) 

D * =  {x* e D ( A  * ) N N ( B ) ; ,  A * x* e N ( B ) ~  } , 

(A*, D*)  = (~-IA*2,  ~-ID(AA*)) . 

Moreover, i f  D(A) N N ( B )  is dense in N(B), then D* = D ( A * )  N N ( B )  • and 

(5.7) A *  ]D(A*)NN(B)• = ~ - I A  * ~ . 

of 

PROOF. - Let x * c ~ - l D ( A  *) and x e D ( A ) ;  then we have by eq. (5.4) 

(x*,  d x ) x , •  = (~x*, A x)z , •  = (~-lA*~x*, X}X*xX. 

This shows that x * e D(A *) and consequently the first part of the theorem is proved. 

Let now x * e D * ,  then A * x * e N ( B )  • and by eq. (5.4) we obtain for any x e D ( A )  

( A ' x * ,  x)x, • = (J-l  ~A * x*,  x)x,•  = (~A*x*,  X_)x*• 

On the other hand 

( A ' x * ,  X)x*• = (x*,  Ax}x, x z  = (~x*, A Ax)x ,  • 

for arbitrary x_ e D(A). This shows that 5x * e D(A *) and we have the equality (5.6). Let 

D(A) n N(B)  = N(B).  For x* e D ( A  *) n N(B)  • and x e D ( A )  N N(B)  we obtain 

( A ' x * ,  X)x,• = (x*,  Ax)x ,  • = O, 

and by density we obtain that A * (D(A *) N N(B)  • ) c N(B)  • hence D(A * ) N N(B)  • = 

= D* and eq. (5.7) holds. " 

Let XB* be the space defined by 2C8, = R ( B * ) c X *  with the norm given by 

IIx* = inf Ily* IIz,. 
x* =B 'y*  

Note that if ( R ( B ) ) - Z ,  then B* is injective and the norm simplifies to ]]x*]lx~. = 
= I](B*)-lx*]]z ,. We need the following result. 

LEMMA 5.3.- The operator 2: :~B*--->X_22_ *, defined by eq. (5.4) is an isometric 

isomorphism. 

PROOF. - We know that Z~ is isometrically isomorphic to Z */(R----(~ • ) and this iso- 
morphism is given by the following formula: ty~* = [y * ], where y * is an arbitrary ex- 
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tension of y~ to a functional from Z * via Hahn-Banach theorem. Let  y~ �9 Z~ and x e X. 

Then 

<~-i(B)*y~,  X>x.xx = <(B)*y~, X>x. • = 

= <y~, Bx}z~ • z, = <Y *, Bx>z. • z = (B *y *, X)x* • x 

which shows that  (B_B_)* = ~B* and consequently R ( B * ) =  R(~-i (B)  * ). For  the norms 

we have 

HJx* ll~. = inf {Ily* [Iz.; y*  �9 [y* ], ~x*= B * [ y *  ]} = 

= inf { I[y * IIz*; y * �9 [y * ], x * = ~-i  B * [y * ] } = inf { IlY * I[z*; x * = B * y * } = IIx * I[x~., 

where in the last equality we used (B)* = ~B *. " 

With these two results we can write the following generalization of Theorem 

5.1. 

THEOREM 5.2 Assume that B �9 2(X, Z) and D(A) is dense in X. Then A �9 B - 

- ~(M, m,  X,  Z)  i f  and only i f  (A*,  D*)  �9 6(M, ~ ,  2CB.), where D* was defined in 

eq. (5.5). If, moreover, D ( A ) M N ( B ) = N ( B ) ,  then (A*,  D*)  can be replaced by 

A*  ID(A,)MN(B)J-. 
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