
Generation Times in Wild Chimpanzees and 
Gorillas Suggest Earlier Divergence Times in Great 
Ape and Human Evolution

Citation
Langergraber, Kevin E., Kay Prufer, Carolyn Rowney, Christophe Boesch, Catherine Crockford, 
Katie Fawcett, Eiji Inoue, et al. 2012. Generation Times in Wild Chimpanzees and Gorillas 
Suggest Earlier Divergence Times in Great Ape and Human Evolution. Proceedings of the 
National Academy of Sciences 109, no. 39: 15716–15721.

Published Version
doi:10.1073/pnas.1211740109

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12748565

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:12748565
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Generation%20Times%20in%20Wild%20Chimpanzees%20and%20Gorillas%20Suggest%20Earlier%20Divergence%20Times%20in%20Great%20Ape%20and%20Human%20Evolution&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=ecc48fb87a2c8aee75dbccb7007c1e69&departmentHuman%20Evolutionary%20Biology
https://dash.harvard.edu/pages/accessibility


1 

 
Generation times in wild chimpanzees and gorillas suggest earlier divergence times 

in great ape and human evolution 

 

 
 
 
Kevin E. Langergrabera,b,1, Kay Prüferc,1, Carolyn Rowneyb, Christophe Boeschb, 
Catherine Crockfordd, Katie Fawcette, Eiji Inouef, Miho Inoue-Muruyamag, John C. 
Mitanih, Martin N. Mulleri, Martha M. Robbinsb, Grit Schubertb,2, Tara Stoinskie, Bence 
Violaj, David Wattsk, Roman M. Wittigb,d, Richard W. Wranghaml, Klaus Zuberbühlerd, 
Svante Pääboc, Linda Vigilantb,3 
 
 
a Department of Anthropology, Boston University, Boston, MA 02215, USA 
bPrimatology Department and 
cGenetics Department, Max Planck Institute for Evolutionary Anthropology, Leipzig,      
 04103, Germany 
dSchool of Psychology, University of St Andrews, St Andrews, 
 KY16 9JP, UK 
eDian Fossey Gorilla Fund International, 800 Cherokee Ave SE, Atlanta, GA 30315, 
 USA 
fGraduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, 
 Kyoto 606-8502, Japan 
gWildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo-ku, 
 Kyoto 606-820, Japan 
hDepartment of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA 
iDepartment of Anthropology, University of New Mexico, Albuquerque, New Mexico 
 87131, USA 
j Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 
 Leipzig, 04103, Germany 
kDepartment of Anthropology, Yale University, New Haven, CT 06511, USA 
lDepartment of Human Evolutionary Biology, Harvard University, Peabody Museum, 11 
 Divinity Avenue, Cambridge, MA 02138, USA 
 
 
 
Keywords: speciation, hominin, molecular dating, primate 
 
 
1K.E.L. and K.P. contributed equally to this work. 
2 Present address: Robert Koch Institute, Nordufer 20, Berlin 13353, Germany 
 
3 to whom correspondence should be addressed. E-mail: vigilant@eva.mpg.de 



2 

Abstract 
 
Fossils and molecular data are two independent sources of information that should in 
principle provide consistent inferences of when evolutionary lineages diverged. Here we 
employ a novel approach to genetic inference of species split times in recent human and 
ape evolution that is independent of the fossil record. We first use genetic parentage 
information on a large number of wild chimpanzees and mountain gorillas to directly 
infer their average generation times. We then compare these generation time estimates 
with those of humans and apply recent estimates of the human mutation rate per 
generation to derive estimates of split times of great apes and humans that are 
independent of fossil calibration. We date the human-chimpanzee split to at least 7 to 8 
million years and the population split between Neandertals and modern humans to 
400,000 to 800,000 years ago. This suggests that molecular divergence dates may not be 
in conflict with the attribution of 6 to 7 million-year-old fossils to the human lineage and 
400,000-year-old fossils to the Neandertal lineage.  
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\body 1 
Introduction 2 
 3 
Over 40 years ago, Sarich and Wilson used immunological data to propose that humans 4 
and African great apes diverged only about 5 million years ago, some three to four times 5 
more recently than had been assumed based on the fossil record (1). Although 6 
contentious at the time (e.g., (2)), this divergence has since been repeatedly estimated 7 
from DNA sequence data at 4 - 6 million years ago (Ma) (3-8). However, this estimate is 8 
incompatible with the attribution of fossils older than 6 Ma to the human lineage. 9 
Although the assignment of fossils such as the approximately 6 Ma Orrorin (9) and the 6 10 
- 7 Ma Sahelanthropus (10) to the human lineage remains controversial (11), it is also 11 
possible that the divergence dates inferred from DNA sequence data are too recent.   12 

The total amount of sequence differences observed today between two 13 
evolutionary lineages can be expressed as the sum of two values: the sequence 14 
differences that accumulated since gene flow ceased between the lineages (“split time”) 15 
and the sequence differences that correspond to the diversity in the common ancestor of 16 
both lineages. The extent of variation in the ancestral species may be estimated from the 17 
variance of DNA sequence differences observed across different parts of the genome 18 
between the species today, which will be larger the greater the level of variation in the 19 
ancestral population. By subtracting this value from the total amount of sequence 20 
differences, the sequence differences accumulated since the split can be estimated. The 21 
rate at which DNA sequence differences accumulate in the genome (“mutation rate”) is 22 
needed to then convert DNA sequence differences into split times. 23 

In prior research, mutation rates have been calculated using species split times 24 
estimated from the fossil record as calibration points. For calculating split times between 25 
present-day humans and great apes, calibration points which assume that DNA sequence 26 
differences between humans and orangutans have accumulated over 13 Ma (12) or 18 Ma 27 
(5, 8) or between chimpanzees and humans over 7 Ma (13, 14) have been used. Recently, 28 
researchers have commonly employed a mutation rate of 1 x 10-9 mutations per site per 29 
year (e.g., (4, 6, 8, 15) ) derived from the observed DNA sequence difference of around 30 
1.3% between the human and chimpanzee genomes (8, 15, 16) and an assumed DNA 31 
sequence divergence between these species at 7 Ma, as well as from an observed 32 
sequence difference of 6.46% between the human and macaque genomes (17) and an 33 
assumption of their DNA sequence divergence at 25 Ma. Although ubiquitous, this 34 
approach has an inherent circularity and is subject to possible error because it relies on 35 
the accuracy of the ages of fossils. While approaches to account for uncertainty in the 36 
fossil record have been proposed (18), a means to avoid the use of fossil calibration 37 
points would be useful.  38 

An alternative approach to determine mutation rates is to compare genome 39 
sequences from children and their parents (19-21). This has the advantage of not relying 40 
on the fossil record. However, direct observation of mutation rates per site per generation 41 
need to be converted to mutations rates per year in order to arrive at population split 42 
times. For this we need the relevant generation times, which are the average maternal and 43 
paternal age at reproduction in the lineages under consideration. Genetic studies of 44 
humans have commonly used a generation time of 20 or 25 years (e.g., references in (5, 45 
22)). However, genealogical data spanning the last two or three centuries from three 46 
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human populations suggest that the average generation time is 30-32 years (23-25). In 47 
agreement with this, a comprehensive review considering estimated maternal age at first 48 
and last childbirth and age differences between spouses in contemporary hunter-gatherers 49 
as well as in food-producing countries with varying levels of industrialization inferred an 50 
average human generation time of 29 years, with female- and male-specific values of 26 51 
and 32 years, respectively (22). Thus, both direct genealogical and indirect demographic 52 
studies conducted in a variety of societies, including those practicing a lifestyle thought 53 
to be representative of that of the human lineage for much of its evolutionary history (i.e., 54 
hunter-gatherer), are fairly consistent in suggesting  that the average present-day human 55 
generation time is approximately 29 years and that it differs substantially between the 56 
sexes. 57 

Previous estimates of split times have used a wide variety of generation times for 58 
great apes, including 25 years for chimpanzee, gorilla and orangutan (5), 20 years for 59 
chimpanzee  (13, 14) and orangutan, (6) or 15 years for chimpanzees (26), gorillas (27) 60 
and chimpanzee, gorilla and orangutan (3). These estimates appear to lack any explicit 61 
justification. A recent analysis used information from captive and wild populations 62 
regarding female age of first reproduction, interbirth interval, age of last reproduction and 63 
survivorship to estimate female generation times of 22 years for chimpanzees and 20 for 64 
gorillas (28). These findings hint that some of the generation times commonly assumed in 65 
studies of great apes are excessively short. Furthermore, it is possible that, as is the case 66 
in humans, generation times of female great apes may not be representative of those of 67 
males 68 

Here we derive female and male generation times for present-day chimpanzees 69 
and gorillas from genetic parentage data collected from large numbers of offspring born 70 
into several wild social groups. We consider whether our data are consistent with the 71 
suggestion of a positive correlation between body size and generation time in great apes 72 
and humans, and explore the implications of our results for dating population split times 73 
among these lineages.  74 

75 
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Results 76 
 77 

Chimpanzee generation times. Using parentage information for 226 offspring born in 78 
eight wild chimpanzee communities, we find that the average age of parents is 24.6 years 79 
(Table 1). Among communities, the generation times range from 22.5 to 28.9 years, but 80 
no consistent difference is observed between western and eastern chimpanzees, 81 
suggesting that the variation may arise due to demographic stochasticity rather than 82 
consistent ecological or genetic differences between western and eastern chimpanzees.  83 

Some of the chimpanzee communities are known to have experienced substantial 84 
mortality in the recent past due to epidemic disease. To check if this may have altered 85 
reproductive patterns, we compared the average generation intervals for groups known to 86 
have experienced high infection-induced mortality (Taï North and South communities, 87 
Mahale M community, Gombe Kasekela community) with those that have not (Budongo 88 
Sonso group, Kibale Kanyawara and Ngogo communities). The average generation time 89 
for the former groups was 24.9 while it was 24.3 for the latter. Thus, epidemic diseases 90 
are not likely to have drastically affected generation times in these chimpanzee 91 
communities. 92 

The age of chimpanzee fathers ranged from 9.3 to 50.4 years, while age of 93 
mothers ranged from 11.7 to 45.4 years (SI Figure 1). Thus, the potential reproductive 94 
span of males (41.1 years) is some seven years, or 22%, longer than that of females (33.7 95 
years). Nonetheless, because more than half (56.2%) of the offspring are produced by 96 
fathers between the ages of 15 and 25, while most offspring (77%) have mothers between 97 
the ages of 15 and 34, the average generation time for males and females is essentially 98 
the same (24.1 and 25.2 years, respectively).  99 
 100 
Gorilla generation times. Using information on the parentage of 105 mountain gorilla 101 
offspring from two research sites, the average female and male generation times were 102 
18.2 and 20.4 years, respectively, with an average of 19.3 years for both sexes (Table 1). 103 
Thus, generation times in gorillas are substantially shorter than in chimpanzees.  104 

The ages of gorilla fathers ranged from 10.8 to 30.9 years, while the ages of 105 
gorilla mothers ranged from 7.3 to 38.0 years, suggesting that female gorillas reproduce 106 
over substantially longer periods than do males. In fact, we found that more than 75% of 107 
offspring were sired by males between the ages of 15 and 24, while the distribution of 108 
gorilla maternal ages varied considerably more (SI Figure 1). Thus, in contrast to 109 
chimpanzees, the potential reproductive lifespan of gorilla females is longer than for 110 
gorilla males. 111 
 112 
Generation times and body mass. Several life history characteristics, such as age of 113 
weaning, female age at maturity, and female age at first breeding, exhibit a positive 114 
relationship with body mass across primates (29). To evaluate whether generation time 115 
also increases with body size in the great apes, we compared generation times and body 116 
mass estimates. Supplementing our data with a recent estimate of orangutan female 117 
generation time based on demographic information (28), we find that humans, 118 
chimpanzees, and female orangutans display similar masses and generation times, while 119 
male and female gorillas have more than twice as large body masses yet short generation 120 
times, resulting in an overall negative association between mass and generation times in 121 
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these taxa (females, generation time = -0.102mass + 33.5, R2 = 0.88; males, generation 122 
time = -0.059mass + 30.88, R2 = 0.48) (SI Table 1).  123 
 124 
Generation times and mutation rates. DNA sequencing of human families has recently 125 
yielded four direct estimates of mutation rates ranging from 0.97 x 10-8 to 1.36 x 10-126 
8/site/generation (19-21). When considering the average present-day human generation 127 
time of 29 years, this results in rates ranging from 0.33 to 0.47 x 10-9/site/year.  128 
 Unfortunately, estimates of mutation rates per generation do not yet exist for apes. 129 
However, if we assume that they are similar to those in humans, we can apply the rates of 130 
0.97 x 10-8 to 1.36 x 10-8/site/generation to the generation time of 19 years derived from 131 
the gorilla, which yields mutation rates of 0.51 to 0.72 x 10-9/site/year. Similarly, 132 
application of the human mutation rate per generation to the chimpanzee with a 133 
generation time of 25 years yields mutation rates of 0.39 to 0.54 x 10-9 /site/year. Because 134 
the gorilla has the shortest and the human the longest generation time among the great 135 
apes, this suggests that mutation rate for African apes and humans is between 0.33 x 10-136 
9and 0.72 x 10-9/site/year. 137 
 138 
Species split times. We can use the observed generation times in apes and humans as well 139 
as observed mutation rates in human families to recalibrate the previously published split 140 
times among the human and ape evolutionary lineages. We assume that the common 141 
ancestor at each branch point had a generation time and mutation rate within the range 142 
described by the most extreme values of the present-day descendant species (see 143 
Methods). Table 2 shows that the resulting estimates are all substantially older than those 144 
based on fossil calibrations of mutation rates. For example, we estimate the bonobo and 145 
chimpanzee split time at 1.5 to 2.6 million years, while previous estimates put it at less 146 
than 1 million years. We estimate the split time between the human and chimpanzee 147 
lineages at between 7 and 13 million years while previous estimates range from 4 to 6 148 
million years. We estimate the split between the gorilla lineage and the lineage leading to 149 
humans, chimpanzees and bonobos at 8 to 19 million years, while previous estimates 150 
range between 6 and 7 million years.  151 

 152 
 153 
Discussion 154 
 155 
By using direct observations of generation times in gorillas and chimpanzees and rates of 156 
mutation per generation from direct observation of mutations in human families, we 157 
estimate the species split times of humans and apes without relying on external fossil 158 
calibration points. At 7 to 13 Ma our estimate of the chimpanzee-human split time is 159 
earlier than those previously derived from molecular dating using fossil calibration points 160 
but similar to the range of 6.5 – 10 Ma suggested by the fossil record (30).  161 

While the earliest fossil universally accepted to belong to the lineage leading to 162 
present-day humans rather than to chimpanzees, Australopithecus anamensis, is 4.2 Ma 163 
(31) and thus reconcilable with a molecularly-inferred human-chimpanzee split time as 164 
recent as 5 Ma, the attribution of late Miocene (5 to 7 Ma) fossils to the hominin lineage 165 
has posed a problem. Our estimates make it possible to reconcile attribution of fossils 166 
such as Ardipithecus kaddaba (5.2-5.8 Ma) (32), Orrorin tugenensis (6 Ma) (9) and 167 
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Sahelanthropus tchadensis (6-7 Ma) (10) to the hominin lineage with speciation times 168 
inferred from genetic evidence (Figure 1). However, our estimates cannot address the 169 
controversy of whether specimens such as these truly belong to the lineage leading to 170 
present-day humans or to other, closely related lineages (11). 171 

For the deeper time period of 7 to 13 Ma, the fossil record is even more limited 172 
and difficult to interpret (31, 33). Fossils from between 8 and 11 Ma in Africa include 173 
mainly Gorilla-sized forms, such as Samburupithecus (34), Nakalipithecus (35) and 174 
Chororapithecus, the last of which is dated to 10 – 10.5 Ma and suggested to represent an 175 
early member of the gorilla clade (36). Our estimate of 8 – 19 Ma for the split of the 176 
gorilla lineage from the human-chimpanzee ancestor would be largely consistent with the 177 
attribution of such forms to the gorilla lineage. 178 

Even though not quantified here, our results also significantly push back the date 179 
of the split between orangutans and African apes. Palaeontological data (e.g. (37)) have 180 
been combined with genetic data (38) to suggest that this split occurred outside of Africa, 181 
with a later “Back to Africa” migration of the common ancestor of African apes. The 182 
purported “early great ape” Pierolapithecus catalaunicus from Spain, dating to about 183 
12.5 - 13 Ma (39), and the presence of numerous derived African ape traits in Late 184 
Middle Miocene fossils from Europe such as Rudapithecus and Hispanopithecus fit well 185 
with this hypothesis. A split between African apes and orangutans that predates 15 Ma 186 
would challenge this model, and would either put these fossils on the orangutan lineage, 187 
or place them as unrelated to present-day great apes.  188 

For more recent periods of hominin evolution the more recent dates provided here 189 
for the human-chimpanzee split resolve an apparent contradiction between genetic and 190 
paleontological data. Using a chimpanzee/human split of 5.6-8.3 Ma for calibration, 191 
analyses of the Neandertal genome indicated a population split between present-day 192 
humans and Neandertals at 270-440 Ka (40). This date appears to conflict with fossil 193 
evidence tracing the emergence of Neandertal morphological characters over the course 194 
of the Middle Pleistocene in Europe (41). The earliest evidence for Neandertal traits was 195 
proposed to date to 600 +∞/-66 ka at the Sima de Los Huesos (Atapuerca, Spain) (42), 196 
thus predating the genetically-estimated population divergence times, but this date has 197 
been disputed based both on the apparent conflict with the genetic data and on 198 
stratigraphic grounds (43). However, even if the early dates for Sima are disregarded, it is 199 
clear that fossils from Oxygen Isotope Stage 11 (around 400 ka), such as the 200 
Swanscombe cranium, already show clear Neanderthal traits (44). Using the new human-201 
chimpanzee split estimate and assuming generation times between 25 and 29 years would 202 
push back the human/Neandertal split to 423,000-781,000 years, resolving this apparent 203 
conflict.  204 

Recent attempts to model uncertainty in the fossil data used for molecular 205 
calibration also suggest earlier split times in the evolutionary history of apes with 206 
estimates of 6 – 10 Ma for the human-chimpanzee divergence and 7 – 12 Ma for the 207 
divergence of the gorilla (18). Our estimates of divergence dates have the advantage that 208 
they avoid fossil calibration points. However, it is possible that other aspects of our 209 
analysis may lead to unreliable split time inferences. First, because of the limited 210 
availability of data from the western gorilla species, we make the assumption that the 211 
average generation interval of mountain gorillas is applicable to both present-day species 212 
of the Gorilla genus. Although reliant primarily upon herbaceous vegetation, western 213 



8 

gorillas also eat fruit much of the year, while fruit is nearly absent from the mountain 214 
gorilla habitat (45). More folivorous anthropoid primates are known to mature more 215 
quickly than similarly-sized non-folivorous primates (46), and indeed limited data from 216 
western gorillas suggest that females and males attain adulthood 2 and 3 years later, 217 
respectively, than the more folivorous mountain gorilla (47). This implies that the 218 
generation time in western gorillas may be on the order of 21 years, in contrast to the 19 219 
years used here for gorilla generation time. However, because 19 is the shortest 220 
generation time observed among present-day mountain gorillas, chimpanzees, and 221 
humans, our use of this value is more conservative and simply contributes to a slightly 222 
broader range for the inferred split time for the divergence of the gorilla lineage from that 223 
leading to humans and chimpanzee, as well as to a broader range for the split time 224 
between the two gorilla species. As with western gorillas, parentage data for calculation 225 
of generation times in bonobos are lacking. However, neither extensive dietary 226 
differences between bonobos and chimpanzees nor substantial differences in 227 
developmental timing are apparent for these species and it is also relevant that we found 228 
no consistent differences in generation times between chimpanzees from western and 229 
eastern Africa. With regard to humans, highly similar estimates of generation time were 230 
obtained from demographic analysis of a large sample of less- and more-developed 231 
countries, a large sample of hunter-gatherer societies, and direct analysis of genealogies 232 
(22). In sum, except for the gorillas where marked ecological differences may contribute 233 
to a small degree of variation in generation time within the genus, the generation times 234 
used here seem reliable estimates for present-day great apes and humans. 235 

A further notable assumption of our work is that the generation times calculated 236 
for present-day humans and great apes are valid proxies for their ancestors. It was 237 
recently suggested that a slowdown in mutation rate concomitant with an increase in 238 
body sizes and generation times has occurred in these lineages (8). However, there is an 239 
extraordinarily diversity of ape body sizes in the fossil record since the Miocene (24 Ma 240 
to 5 Ma) and it is difficult to know which ones may represent ancestors of present-day 241 
apes and humans (32). Even if fossil evidence strongly suggested an increase in the size 242 
of the ancestors of present-day apes and humans in the past, it is not clear that body mass 243 
is a good correlate of life history parameters related to generation time (48). Although our 244 
number of data points is necessarily limited, we found no correlation between mass and 245 
generation time in present-day apes and humans, and the notably short generation time 246 
for the relatively large mountain gorilla is consistent with the expectation that highly 247 
folivorous (46) as well as more terrestrial (49) species are expected to reproduce earlier 248 
than more frugivorous, arboreal primates. In accordance with the importance of diet and 249 
habitat use in influencing life-history parameters it has been suggested that chimpanzees 250 
and orangutans represent the most appropriate living models for the potential life history 251 
variables of archaic hominins, and that the common ancestor of humans and chimpanzees 252 
exhibited a slow life history similar to that of present-day chimpanzees (50). Skeletal and 253 
dental analyses suggest that early hominins had growth patterns like those of present-day 254 
great apes, while Homo erectus and Neandertals evolved slower development, but not to 255 
the extent seen in present-day humans (51, 52). Given the information available at this 256 
time, we suggest that the use of the ranges of the observed generation times in the 257 
present-day species, including the extremes represented by gorillas (with their 258 
comparatively fast life history and consequently short generation time) and humans (with 259 
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their comparatively slow life history and consequently long generation time), results in 260 
conservatively broad estimates of hominid mutation rates and split times as shown (Table 261 
2, Figure 1).  Specifically, if we alternatively consider the human generation time of 29 262 
years to be a recent phenomenon, and consider the chimpanzee generation time of 25 263 
years to characterize the vast majority of evolution since the split between the gorilla and 264 
the chimpanzee/human lineages, we would infer the date of this split at 10.9 to 17.2 Ma, 265 
while the split between the lineages leading to chimpanzees and humans would be dated 266 
at 6.8 to 11.6 Ma. 267 

We also note that we explicitly assume that the mutation rates estimated by 268 
sequencing members of present-day human families are also applicable to our closest 269 
great ape relatives. This assumption, which is based on our close evolutionary 270 
relationship and lack of evidence for differences in rates of evolution among the human 271 
and African great ape lineages (7, 53), can be explicitly tested in the future by sequencing 272 
of great ape family trios. As an additional point for future consideration, we note that the 273 
original publications which provide the population split times that we recalibrate here use 274 
various approaches for filtering the data analyzed, for example exclusion of repetitive 275 
sequences or highly mutable sites. Refinements of our population split time estimates 276 
may involve reexamination of the data, including consideration of different parts of the 277 
genome, or different types of substitutions. For example, it will be interesting to compare 278 
inferences from substitutions at CpG sites, which may accumulate in a time-dependent 279 
fashion, with other classes of substitutions which may accumulate in a generation-280 
dependent fashion. However, studies which compared results for the human-chimpanzee 281 
split obtained with and without inclusion of CpG sites found this to have little impact (3, 282 
7). 283 

Finally, we note that the estimation of generation times in chimpanzees and 284 
gorillas derives from the long-term efforts of researchers who have invested years in 285 
habituating the animals to human observation in order to collect information on their 286 
natural behavior and life histories. This study illustrates the value of such approaches in 287 
aiding interpretation of genomic data, and suggests that continued behavioral study of 288 
wild apes, in addition to increased understanding of their behavior and cultures, is 289 
necessary to complement genomic studies for a fuller understanding of the evolutionary 290 
history of our closest living relatives as well as our own species. 291 
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Material and methods 
 
Details regarding the analyses can be found in SI Materials and Methods.  In brief, we 
compiled the ages of the genetically-confirmed mothers and fathers of offspring born into 
eight chimpanzee groups and six mountain gorilla groups habituated to human 
observation. We did not limit our sample to individuals whose ages are exactly known 
because this would lead to a downward bias in the estimation of the generation length, as 
older individuals are more likely to have been born before the start of long-term research 
on a particular group. Instead, we included in our study individuals whose ages were 
estimated using standard morphological, behavioral and life history criteria established 
from known-aged individuals and systematically incorporated estimation of ranges of 
minimum and maximum birthdates symmetrical about the assigned birthdate. 
 For the split time estimation, we first took the lowest and highest estimates of 
mutation rates in human families of 0.97 x 10-8 to 1.36 x 10-8/site/generation and applied 
the estimated generation times of 19, 25, and 29 years for gorillas, chimpanzees and 
humans to arrive at low and high estimates of yearly mutation rates given each of these 
generation times.  For example, the chimpanzee generation time of 25 years yields a rate 
of 0.39 to 0.54 x 10-9  mutations/site/year, while the human generation time of 29 years 
yields a rate of 0.33 to 0.46 x 10-9 mutations/site/year.  For each split we then chose lower 
and upper bounds for the yearly mutation rates based upon the extreme values inferred 
for the taxa under consideration. For example, we assumed that the generation time of the 
common ancestor of chimpanzees and humans was between 25 and 29 years, the values 
for present-day chimpanzees and humans, respectively, and thus used the mutation rates 
of 0.33 and 0.54 mutations/site/year (Table 2). Similarly, the common ancestor of 
gorillas, chimpanzees and humans is assumed to have a generation time between 19 and 
29 years and we thus used a correspondingly broader set of mutation rates. We adjusted 
previously published split times (Table 2) by multiplying with the factor µold/µnew, where 
µold corresponds to the previously used mutation rate per year and µnew to our upper and 
lower bounds based on the range of per generation mutation rates and generation intervals 
appropriate for the split under consideration.  
 No explicit mutation rate was assumed for the calculation of the split times of 
Neandertals and present-day humans in the original publication (41). However, the 
authors use a range of nuclear divergence times for orangutan-human to arrive at a 
human-chimpanzee divergence time of 5.6-8.3 million years. In order to recalibrate the 
Neandertal split time, we use the published nuclear divergence of ca. 1.3% between 
human and chimpanzee (8, 16) to convert these values to a mutation rate per year 
(corresponding to 1.1 – 0.7 x 10-9). 
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Figure legends 
 
 
Figure 1: A diagram illustrating the branching pattern and timing of the splits between 
humans, chimpanzees, bonobos, western gorillas and eastern gorillas.  The paler shading 
indicates the range of split times inferred in this study. Cartoon skulls indicate 
approximate age of the indicated fossil remains, but do not imply that these fossils were 
necessarily on those ancestral lineages, nor that entire crania actually exist for these 
forms.  



Table 1. Generation intervals for each chimpanzee and gorilla study community  
  

      

   
Mean Generation Interval in years 

   

Taxa Study site No. Offspring 
Femal
e CI Male CI 

Both 
sexes CI 

         
Western 
chimpanzees Taї-North 28 23.03 

22.19-
23.80 23.05 

22.31-
23.81 23.04 22.48-23.58 

         

 Taї-Middle 4 31.71 
28.34-
35.15 26.06 

23.90-
28.32 28.89 26.80-31.03 

         

 Taї-South 28 28.76 
27.54-
29.98 25.36 

24.46-
26.30 27.06 26.29-27.84 

         
Eastern 
chimpanzees 

Gombe-
Kasekela 31 24.62 

24.24-
25.00 21.84 

21.75-
21.93 23.23 23.03-23.43 

         

 Mahale-M 14 25.03 
23.95-
26.08 19.87 

19.62-
20.13 22.45 21.90-23.00 

         

 Kibale-Ngogo 72 24.5 
23.80-
25.22 23.57 

23.05-
24.13 24.04 23.60-24.48 

         

 
Kibale-
Kanyawara 15 23.34 

22.43-
24.25 28.42 

27.15-
29.75 25.88 25.04-26.68 

         

 
Budongo-
Sonso 34 26.08 

25.03-
27.08 26.66 

25.93-
27.34 26.37 25.72-26.95 

         

All chimpanzees  226 25.18 
24.86-
25.54 24.08 

23.83-
24.34 24.63 24.42-24.85 

         

Mountain gorillas Karisoke 97 18.18 
17.97-
18.37 20.27 

20.23-
20.30 19.22 19.12-19.32 

         

 Bwindi 8 18.26 
16.87-
19.64 21.67 

20.37-
22.93 19.97 18.96-20.88 

         

All gorillas  105 18.19 
18.00-
18.39 20.37 

20.27-
20.47 19.28 19.17-19.39 

         

Humans* 
Hunter-
gatherers 157 societies 25.6  31.5  28.6  

 Countries 360 societies 27.3  30.8  29.1  

      

      

*Fenner, 2005 (22)      

 
 



 
Table 2. Original and recalibrated population split times from several recent studies.  
 

Speciation 
event 

Original 
yearly 
mutation 
rate 

Original 
split 

estimate 
(Ma) 

Generation 
times 

New yearly 
mutation rate 

New split 
estimate (Ma) Publication 

lower upper lower upper lower upper 

HCG 1.0x10e-9 5.95 19 29 0.33 0.72 8.31 17.79 
Scally et al. 
2012 (8) 

HCG 1.0x10e-9 6.69 19 29 0.33 0.72 9.35 20.00 
Dutheil et al. 
2009 (4) 

HC 1.0x10e-9 3.69 25 29 0.33 0.54 6.78 11.03 
Scally et al. 
2012 (8) 

HC 1.0x10e-9 4.22 25 29 0.33 0.54 7.76 12.62 
Hobolth et al. 
2011 (6) 

HC 1.0x10e-9 4.5 25 29 0.33 0.54 8.27 13.45 
Prüfer et al. 
2012 (15) 

HC 1.0x10e-9 4.38 25 29 0.33 0.54 8.05 13.09 
Dutheil et al. 
2009 (4) 

BC 1.0x10e-9 0.99 25 25 0.39 0.54 1.82 2.55 
Prüfer et al. 
2012 (15) 

BC 1.0x10e-9 0.79-0.92 25 25 0.39 0.54 
1.45-
1.69 

2.04-
2.37 

Becquet and 
Przeworski 
2007 (13) 

wG-eG 0.96x10e-9 0.9-1.6 19 19 0.51 0.72 
1.20-
2.13 

1.69-
3.01 

Thalmann et al. 
2007 (27) 

wG-eG 1.33x10e-9 0.92 19 19 0.51 0.72 1.29 1.80 

Becquet and 
Przeworski 
2007 (13) 

 
HCG, human chimpanzee gorilla split; HC, human chimpanzee split; BC, bonobo chimpanzee 
split; wG-eG, western gorilla-eastern gorilla split. 
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