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Abstract

This paper presents a model-based method for colour-based recognition of
objects from a large database. The algorithm is based on the assumption
that surface reflectances of objects in the model database follow the extended
dichromatic model proposed by Shafer [Sha84]. Adoption of the dichromatic
model allows recovery of body colour - the component, of sensor responses
(RGB-values) that is independent of scene geometry and illumination in-
tensity. Both theoretical studies [Hea89b] and experiments [LB90][KSK88]
confirm that Shafer's model gives a suitable approximation for reflectances
of a wide range of materials.

Instead of using traditional techniques (eg. clustering, split-and-merge)
to obtain regions of 'similarly' coloured pixels followed by classification a
novel approach is argued for. First, for each pixel a list of models with
nonzero aposteriori probabilities P(modeU\body colotir) is computed using
Bayes formula. Next, regions are formed by grouping pixels with identi-
cal most probable hypothesis. Probabilities P(modeli\region) are obtained
trough a standard group decision rule [FT80].

We show that the proposed scheme can be used for a number of vi-
sual tasks - localization of objects, generation and verification of object hy-
potheses. Experiments on images of complex indoor scenes confirm that the
proposed method can provide reliable information about the surrounding
environment.

1 Introduction

This system is based on the philosophy that there normally exist
easy ways of finding objects. T.D. Garvey, SRI, 1976

Today, with almost twenty more years of experience, vision researchers may
or may not share Garvey's optimism [Gar76]. In this paper we attempt to show
that colour can provide, in many complex natural scenes, an efficient if not 'easy'
way of localising objects. The proposed model-based algorithm can be outlined as
follows. Assuming that surface reflectance follows the dichromatic reflection model
[Sha84], information that is invariant to geometry and illumination intensity can
be extracted from sensor responses at every pixel location. This information, the
body colour, is then compared with body colour of prestored models and object
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hypotheses are generated for every pixel. Finally, pixels with identical most likely
hypotheses are grouped to form regions.

The reversal of the classical segmentation paradigm of group-and-classify
[Hea89a], [Fat92] offers a number of advantages. A pixel with body colour not
matching any model will be immediately discarded from further processing. Re-
gions formed from pixels indexing a single model are output directly after grouping.
Multiple hypothesis are kept at regions containing pixels with ambiguous colour;
wider context (neighbouring regions), or possibly a different visual cue (eg. shape,
texture), can be used to resolve the ambiguity. A single object can be represented
by a number of colour models; therefore the proposed approach , unlike the re-
cently published colour-based indexing methods [SB90], [Wix90], can successfully
locate objects with surfaces with single and multiple colours.

The Bayesian approach employed for hypothesis generation can be easily primed
with apriori information. It is therefore possible to use the proposed framework in
goal-directed, verification mode by setting all but one a priori model probabilities
to 0 ('Where is X?') or in a data-driven, invocation mode with apriori probabilities
equal ('What is in the image?').

The rest, of the paper is organised as follows. Section 2 discusses the advantages
and limitations of the dichromatic reflection model. The details of the colour-
based matching scheme are presented in Section 3 . Section A reports the results
of experiments carried out to assess the proposed approach,
draws some conclusions about the advocated method.

Finally Section 5

2 Analysis of Surface Reflection

Figure 1: Reflection of light from a surface patch. In the dichromatic reflection
model, the dependence of surface reflection L on scene geometry is defined in terms
of three angles. The incidence angle i between the surface normal TV and the light,
source direction, the emit.tance angle e between the surface normal and the viewing
direction and the phase angle y between the light source and viewing directions.
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If sensor response is assumed to be additive over wavelength then the output qk

of the ik-th sensor (eg. red, green, blue) ran be expressed as

qk= Pk(X)L{i,e,g,X)dX, k=l,--,n (1)
J

where pk(X) is the spectral responsibility of the Jb-t.li sensor and L(i, e,g,X)
denotes surface radiance in viewpoint direction which is defined in terms of stan-
dard photometric angles /', e and g (fig. 1). The standard symbol A refers to the
wavelength of light, n denotes the number of sensors.

In Shafer's dichromatic model of surface reflection [Sha84], total radiance L of
reflected light is defined as the sum of two independent parts: the radiance L,- of
the light reflected at the interface (surface reflectance) and the radiance Lb of the
body (sub-surface reflectance).

L(i,e,ij,X) = Li\t,e,g,X) + Lh(i,e,<j,X) (2)

Furthermore, the dichromatic model states that each of the radiance compo-
nents can be expressed as a product:

Li(X,i,e,g) = m,(/, <?,<7)c;(A), Lb{X,i,e,g) = mb(i, e, g)cb(X) (3)

where cj(A), resp. c,(A) depends solely on the relative spectral power dis-
tribution of the light source and spectral characteristic of surface and m .(»', e,g)
represent the influence of scene geometry on radiance L .

Substituting (2) and (3) into (1) we obtain after a simple manipulation

/•+CO

<H- = / pk{X)(mi(i,e,g)ci(X) + mb{i,e,g)cb(X))dX
Jo

r+oo r+oo

= mi(i,€,g) Pk(X)a(X)(IX + mb(i,e,g) pk(X)cb(X)dX

Jo Jo

= im(i, e, g)ql + mb(i, e, g)q
b
k (4)

where sensor responses q'k, q\ due to interface reflection, and body reflection re-
spectively are defined as

/• + CV3 r

4 = / pt(X)ci(X)dX, q
b

k = /
Jo Jo

4 = / pt(X)ci(X)dX, q
b

k = / Pk(X)cb(X)dX (5)
Jo Jo

The usefulness of the dichromatic model ensues from the fact that the n-
dimensional vectors </*, </' contain valuable information about the viewed object;

it is apparent from equation (4) that </' is geometry-independent and proportional
to illumination intensity. The dichromatic model is widely applicable: a number of
experiments [KSK88], [KSK87], [GJT87] as well as physical analysis of refraction-
reflection phenomena [LB90], [IIB87] suggest the surface reflectance approximation
expressed by equations (2) and (3) is accurate for a wide range of materials. On
the other hand we found the assumption of a single light source unrealistic for
experiments carried out in daylight. To cater for effects of the diffuse component
of daylight we introduced constant, term to equation (5). As a final modification of
the original dichromatic model we decided to drop the term corresponding to (spec-
ular) interface reflection. Firstly, specularities are very bright and the intensity
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of image irradiance saturates colour channels. Secondly, specularities cover only a
small proportion of surfaces; in our opinion giving up on correct classification of
these patches is worth the simplification and increased efficiency of processing of
colour. The reflection model thus becomes:

..ambient
(6)

Colour
interface

Colour
body

^Colour
ambient

a)
Red

b)
Red

Figure 2: Clusters of RGB values corresponding to surface patches of identical
material (body colour) as predicted by Shafcr's dichromatic model (a) and the model
adopted in the paper (b) .

The difference between the original dichromatic model and the model defined
by equation (6) used for colour matching is depicted in figure 2.

It can be seen from equation (5) that sensor response q depends through c.
on the spectral power distribution (SPD) of light, incident on the imaged surface.
One possible approach to eliminate the dependence, estimation of illuminant colour
and recovery of illuminant-independent colour description (the colour-constancy
problem) [For88], [MB86] has been avoided because of its complexity. Instead we
adopted the approach of [KSK88] and [LB90] and assumed that all surfaces in the
scene are lit by light of the same SPD (and that body colour models were acquired
under the same illumination).

3 From Pixels to Object Hypotheses

Equation (6) predicts that RGB values corresponding to surface patches of the
same body colour will lie on a broken line L\,c depicted in fig. 2b. Assuming
additive nature of the noise in the acquisition chain, the probability of an RGB-
value being a noisy measurement of body colour can be expressed as

P(RGB\Ml) = fn(\\Lie,RGB\\) (7)

where ||.|| denotes Euclidean distance of the RGB triplet from line Lj,c and fn

represents properties of noise. Combining conditional probabilities of equation (7)
with apriori model probabilities using Bayes formula gives

P(M'bc\RGB) =
P(RGB\M'hc)P(M'bc)

, P{RGB\M>bc)P(Mlc) + P(RGB\bg) * P(bg)
(8)
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where P(bg) refers to the apriori probability that a pixel does not correspond
to any model and P(RGB\bg) denotes the colour distribution of non-model (back-
ground) pixels.

The object hypotheses are generated by straightforward application of equa-
tion (8):

1. At every pixel location, generate a list of models with aposteriori probabilities
P(M'bc\RGB) greater then 0 (or a small threshold)

2. Form regions by grouping pixels with identical i, such that P(Mb
l
c\RGB) =

maxj P(M
3
bc\RGB). Apply the standard group decision rule [FT80] to com-

pute P(Mlc\region) (index p iterates over all pixels of the region):

P(ML\\/,,RGBP) =
 Ulp K " bc

.'
 V bc

. (9)

' P
 Z{nP(RGB\Ml)}P(Ml)

Complexity of our implementation of the algorithm is proportional to the num-
ber of pixels multiplied by the number of models. However, a more sophisticated
implementation could use techniques akin to Delaunay triangulation to preselect
candidate models to keep complexity almost independent of the number of models.
Most properties of the algorithm can be deduced from equation (8), eg.:

• Discernibility grows with brightness. All lines L\e meet at (0,0,0) in the
RGB space and, consequently, P(Mbc\RGB) are similar for dark patches.

• The influence of P(bg) on classification results is weak because of the small
value of P(RGB\bg) (it integrates to 1 over the whole RGB space)

• If a model has a highly conspicuous colour (with respect to other models) it
will be recognised even if the body colour is strongly influenced by noise.

• The method can be easily modified to accept non-stationary P(Af'), ie. a
function of pixel location, allowing incorporation of additional knowledge
(from previous processing or different visual modules).

4 Experiments

The algorithm described in section 3 was tested on a sequence of images (approx.
70) taken in a large office. Thirty-five test objects (fig. 5, table 1) were arranged
randomly in the room. During acquisition of the sequence the viewpoint and
zoom of the hand-held camera were changed and objects moved. Some of the non-
rigid objects (doll mc301, puppet mc291, bag mc321) changed their shape. The
acquisition chain was linearized by a method of varying aperture [AM92] (linear
camera was tacitly assumed in the development of surface reflection models in
section 2).

The potential of the proposed method is demonstrated on three experiments.
In the first experiment, localization of model mcO71 (Minsky and Papert: Per-
ceptrons) is attempted in the cluttered bookshelf scene depicted in the top-left
corner of fig. 4. Except for mcO71, all model apriori probabilities were set to 0.
The aposteriori probability P(mcO7l\RG'B) for every pixel location is plotted in
the bottom-left corner of fig. 4. Pixels with P(meQ7l\RGB) above 0.5 are shown
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Figure 3: Generating hypotheses about books, (a) Original image, (b) Exemplary
regions (white contour) and their convex hull (black).

in the middle-left image. The most likely pixels indeed correspond to the sought,
book. Because of interreflection, shadows and blurring (mixing of colours) not all
parts of the book were assigned high P(mcO71\RGB). But does it matter?

The second experiment is documented in the right hand column of fig. 4. The
set up was identical to the first experiment with mc321 (ochre plastic bag) replacing
Minsky's book. P(mc321\RGB) is high for pixels corresponding to the bag. The
brownish colour matches comparatively well the colour of the table (especially in
shadows) as well as the colour of puppet mc291 in the foreground; the background
'noise' is therefore much stronger.

In the third experiment (fig. 3) the system generated hypotheses about all
books. In this case, the output of the colour-based algorithm is voluminous; the
two books in the foreground were selected for presentation of the results. The
region to the right, corresponding to model mcO81 (Arbib's book) was classified
in the following way:

Prob.
0.812
0.114

model
mcO81
mc201

description
red book (Arbib)

red plastic pot

Prob.
0.051
0.019

model
mcl51
mc231

description
red wooden block

orange block

Pixels corresponding to Minsky's book were split into two regions (the split
was caused by blurring of the title). The hypotheses generated for the two regions
were almost identical :

P(left region)
0.977
0.023

P(right region)
0.979
0.020

model
mcO71
mcl81

description
(Minsky's book)

(light green plastic pot)

5 Conclusions
We have presented a new algorithm for generating, verifying and localising of
object hypotheses that is based on two sound building blocks: modified Shafer's
dichromatic reflection model and Bayesian decision theory. Introduction of colour
models greatly simplifies the problem of grouping pixels into regions corresponding
to a single object. The algorithm can be easily primed with additional information
(coming from previous experience or other visual modules) which makes it useful
in the context of complex cooperative or continuously operating vision system as a
tool for determining focus of attention, object disambiguation and object tracking.
The speed of the algorithm, especially in the single object localisation mode, make
it a very attractive component for top down scene interpretation strategies. Our
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r2037 r2316

pt2037 pt2316

prob(2037) prob(2316)

Figure 4: Localization of objects: top - original images; center - pixels with
aposteriori probability P(ModeLofJntcrest\RGB) greater than 0.5; bottom -
P(MoilcLofJnterest\RCB) for all image points
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mc301 mc311 mc321 mc331 mc341

Figure 5: Thirty-five objects used in experiments of section 4.
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experiment, shows that the method is viable on its own and can provide valuable
information about object at various scales even in complex scene.
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| Model
mcOOl
mcOll
mcO21
mcO31
mcO41
mcO51
mcO61
mcOTl
mcO81
mcO91
mclOl
mc l l l
mcl21
mcl31
mcl41
mcl51
mcl61
mclTl
mcl81
mclfil
mc201
mc211
mc221
mc231
mc241
mc251
mc261
mc271
mc281
mc291
mc301
mc311
mc321
mc331
mc341
mc351

Red

0.235
0.421
0.654
0.673
0.929
0.964
0.884
0 264
0.999
0.164
0.434
0.587
0.775
0.985
0.805
0.992
0.430
0.678
0.387
0.692
0.994
0.962
0.094
0.990
0.135
0.333
0.461
0.955
0.593
0.940
0.515
0.891
0.970
0.806
0.806
0.653

Green
0.075
0.613
0 394
0.333
0.223
0.260
0 464
0.959
0.044
0.059
0.086
0.570
0.569
0.138
0.588
0.104
0.877
0.733
0.908
0.720
0.087
0.076
0.415
0.137
0.162
0.174
0.877
0.265
0.527
0.290
0.461
0.454
0.245
0.592
0.547
0.535

Blue
0.969
0.669
0.646
0.661
0.296
0.063
0.061
0.107
0.000
0.985
0.897
0.575
0.273
0.107
0.076
0.066
0.213
0.049
0.161
0.038
0.065
0.261
0.905
0.043
0.978
0.927
0.138
0.136
0.609
0.182
0.722
0.014
0.003
0.011
0.025
0.535

Object Description \\
Xlib Reference Man. 1 (blue)
Xlib Prog. Man. 2 (light blue)
Xlib Prog. Man. 1 (purple)
Xlib Reference Man. 2 (lilac)
X Windows System User's Guide 3 (pink)
X Toolkit Intrinsics Prog. Man. 4 (orange)
X Toolkit Intrinsics Reference Man. 5 (ocher)
Minsky and Papert. Perceptrons (green)
Arbib ed.: Vision, ... (carmin)
Wang: An Introduction to Berkeley Unix (dark blue)
Mastering Turbo Pascal 5.5 (violet)
Andel: Matematicka statistika (light blue)
Rektorys: Prehled Uzite Matematiky (light brown)
VSSP technical report (dark red)
yellow wooden block (approx. 2x2x4cm)
flat red wooden block ( approx. Ix2x6cm)
green wooden block (aprox. 2x2x6 cm)
light green Penn tennis balls (well in use)
light green plastic pot
yellow plastic pot.
red plastic pot
pink plastic pot
Lucozade 6-pack paper cover
orange block with cross cross-section
blue cylinder
purple clock with a star-of-David cross-section
green block with triangular cross section
brown cup-like flower pot
grey stuffed donkey
brown monkey puppet
red and light blue doll ('Clown')
red, blue and yellow rubber ball
long american grain rice bag (orange)
yellow pages (Guildford 89), well in use
UoS telephone directory, December 1992
white xerox paper

Table 1: Description of objects used for experiments.
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