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Abstract

A dynamic optimizer is a runtime software system that
groups a program’s instruction sequences into traces, opti-
mizes those traces, stores the optimized traces in a software-
based code cache, and then executes the optimized code in
the code cache. To maximize performance, the vast ma-
jority of the program’s execution should occur in the code
cache and not in the different aspects of the dynamic op-
timization system. In the past, designers of dynamic op-
timizers have used the SPEC2000 benchmark suite to jus-
tify their use of simple code cache management schemes.
In this paper, we show that the problem and importance of
code cache management changes dramatically as we move
from SPEC2000, with its relatively small number of dynam-
ically generated code traces, to large interactive Windows
applications. We also propose and evaluate a new cache
management algorithm based on generational code caches
that results in an average miss rate reduction of 18% over a
unified cache, which translates into 19% fewer instructions
spent in the dynamic optimizer. The algorithm categorizes
code traces based on their expected lifetimes and groups
traces with similar lifetimes together in separate storage ar-
eas. Using this algorithm, short-lived code traces can eas-
ily be removed from a code cache without introducing frag-
mentation and without suffering the performance penalties
associated with evicting long-lived code traces.

1. Introduction

Dynamic optimization systems [3, 5, 10, 16] apply code
optimizations to existing binaries at runtime. A typical dy-
namic optimizer performs four major tasks. First, it ob-
serves execution and generates a series ofcode tracesthat
represent the common dynamic sequencing of instructions.
Second, it applies optimizations and/or transformations to
the generated code traces. Third, it stores the code traces in

a software-basedcode cache. Finally, it intercepts execu-
tion and directs it to the code cache for all future executions
of the optimized code traces until program termination.

The benefits of dynamic optimization range from lever-
aging runtime information for optimization to optimizing
mobile code. Speedups are often achieved as a result
of increased instruction locality and code specialization.
Implementations of dynamic optimizations systems have
achieved speedups averaging 7% over optimized code [3].
Unlike static optimization passes, the major tradeoff of dy-
namic optimization is that the time required to observe run-
time behavior, perform optimizations, and update program
code directly impacts runtime performance. By focusing
efforts on frequently-executed regions of a program and by
maximizing the amount of program execution that occurs
directly inside the dynamic optimizer’s code cache, the run-
time overhead of dynamic optimization can be minimized.

Code cache management aims to maximize the amount
of execution time spent in the code cache, while imposing
only minimal runtime overhead. In the past, code cache
designers have used simple management techniques, such
as flushing the cache upon detection of a program phase
shift [2] or creating an unbounded code cache [5]. The de-
signers evaluated each of these cache management schemes
using the SPEC2000 benchmark suite.

In this paper, we show that the problem and impor-
tance of code cache management changes dramatically as
we move away from the SPEC2000 benchmarks and look at
today’s large interactive Windows applications, such as Mi-
crosoft Word and Adobe Acrobat. Not only does the num-
ber of code traces generated at runtime increase dramati-
cally, but the rate at which they are generated also increases
dramatically. We argue that while a typical code expansion
of 500% can be tolerated for the SPEC2000 benchmarks,
this code expansion is unacceptable for applications with
code footprints on the order of 10’s to 100’s of megabytes,
thereby making unbounded code caches undesirable.

Furthermore, our observations of the typical lifetime of
code traces show that the majority of traces generated of-
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ten fall into one of two categories: (1) those that live for
less than 20% of the execution, and (2) those that live for
more than 80% of the execution. This observation moti-
vates our algorithm for employinggenerational code caches
that allow us to easily evict short-lived code traces from
the code cache without introducing unnecessary fragmenta-
tion or suffering the performance penalties associated with
evicting and regenerating long-lived traces.

Our generational code cache management algorithm
yields multiple code caches, each of which must be inde-
pendently maintained. Therefore we discuss thelocal poli-
cies that drive the individual code caches, as well as the
globalpolicy of interaction between the multiple caches.

The contributions of this paper are as follows:

• A characterization of the different code caching needs
of SPEC2000 and large interactive applications.

• Implementation details of code cache management
techniques, and solutions for the problems of un-
deletable traces and unloaded DLLs.

• A proposal for and evaluation of generational code
cache management.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a historical review of code cache manage-
ment, including solutions implemented in early dynamic
optimization infrastructures. Section 3 discusses the dif-
ferent code caching needs of interactive and non-interactive
applications, and explains why solutions for one of these
kinds may not be effective for the other. Section 4 discusses
issues that complicate code cache management and intro-
duces a pseudo-circular local code cache management pol-
icy that minimizes fragmentation, eliminating the need for
expensive defragmentation operations. Section 5 introduces
a global technique for leveraging generational information
about code traces to provide for separate code caches for
short- and long-lived code traces, thereby reducing the num-
ber of conflict misses in the code cache. Section 6 evaluates
generational cache management in terms of code cache miss
rates and resulting overheads. Finally, Section 7 concludes.

2. Background

Several dynamic optimization infrastructures have been
developed. Dynamo [3] is a system developed at Hewlett-
Packard Laboratories that provides a software-based mech-
anism for selecting and optimizing traces of HP-UX in-
structions. Dynamo employed a preemptive flushing mech-
anism [2] for cache management, which detected program
phase changes and flushed the code cache at those points.
Several successors to Dynamo have since surfaced, includ-
ing DELI and DynamoRIO.

DELI [10] is a VLIW version of Dynamo geared to-
ward embedded-processor applications that was developed
by Hewlett-Packard Laboratories in conjunction with ST
Microelectronics. While DELI’s code cache management
mechanism is not discussed in their latest publication, they
do mention facilities for controlling the timing of code
cache flushes. It is not known whether DELI is equipped
to perform more fine-grained cache management.

DynamoRIO [5] is a dynamic optimization research in-
frastructure collaboratively developed by Hewlett-Packard
and MIT. DynamoRIO executes on the IA-32 architecture
in Windows or Linux. The cache management mechanism
in the publicly available version of DynamoRIO defaults to
an unbounded code cache. However, a user may impose a
maximum code cache limit via an environment variable, and
in this case, DynamoRIO employs a circular buffer mecha-
nism similar to that proposed in our prior work [12].

Other dynamic optimizers have been discussed, such
as Wiggins/Redstone [9] developed at Compaq and Mi-
crosoft’s Mojo [8] for Windows applications; however the
code cache management schemes employed in these sys-
tems have not been publicly disclosed.

In our prior work [12], we investigated several code
cache management schemes and found that exploiting tem-
poral locality of code is important, but that attention must
be paid to minimizing overhead and fragmentation. We ex-
tend our prior work by discussing important implementa-
tion details of code cache management, introducing a novel
cache management algorithm, and evaluating the design us-
ing both SPEC2000 and interactive Windows applications.

3. SPEC2000 vs. Interactive Applications

As we discussed in Section 1, previous efforts in code
cache management were driven by performance results on
the SPEC2000 benchmarks. The limited number of code
traces generated while executing the SPEC2000 bench-
marks implied that code cache management was not an im-
portant issue. This situation changes dramatically as we
look at large interactive applications, where every mouse
movement or screen refresh translates into massive amounts
of code. While other researchers have discussed salient fea-
tures of interactive applications and their impact on research
in other contexts [7, 14], we point out the specific features
of these large applications that make them so challenging
for a code cache management scheme. We also show that
certain existing solutions, such as unbounded code caches,
are impractical for such large applications.

We use DynamoRIO for our investigations, as it is pub-
licly available on Windows and Linux. Our Windows plat-
form is Windows 2000 server, and our Linux platform is
Red Hat Linux 7.2. The benchmarks selected for this inves-
tigation include the SPEC2000 suite executed to completion
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Name Seconds Description
access 202 Database App
acroread 376 PDF Viewer
defrag 46 System Util
excel 208 Spreadsheet App
iexplore 247 Web Browser
mpeg 257 Media Player
outlook 196 E-Mail App
pinball 372 3D Game Demo
powerpoint 173 Presentation
solitaire 335 Game
winzip 92 Compression
word 212 Word Processor

Table 1. Interactive Windows benchmarks used in
our evaluation.

on Linux using the reference inputs, and several common
Windows applications described in Table 1. The inputs to
the Windows applications were manual user interaction per-
forming everyday tasks for the duration of time listed in Ta-
ble 1, and the verbose logs generated during execution were
reused for all of our simulations.

3.1. Maximum Code Cache Size

Our first study looked at the amount of memory required
in order to support unbounded code caches. Figure 1 shows
the maximum code cache size reached when we allowed
DynamoRIO to execute with an unbounded cache. On aver-
age, the SPEC2000 benchmarks resulted in a 736 KB code
cache (in addition to the size of original executable and
the DynamoRIO executable). The largest of the SPEC2000
benchmarks,gcc , required a 4.3 MB cache, followed by
vortex which required a 1.6 MB cache. If we were to
focus only on the SPEC2000 benchmarks (Figure 1a), we
might conclude thatgcc is an outlier, and that most appli-
cations will fit in less than a 1 MB cache. However, as we
move to our interactive benchmarks, we see a twenty-fold
increase in the required code cache size. On these bench-
marks, our code cache averaged 16.1 MB, with theword
benchmark requiring a 34.2 MB code cache to avoid code
cache management. While most users today have much
more than 34 MB available, they also tend to run more than
one application at a time.

3.2. Code Expansion

Code caches experience a large amount of code expan-
sion when compared to the original executable size be-
cause code caches store superblocks of original code. Su-

perblocks are single-entry multiple-exit regions. This fea-
ture simplifies optimization, but potentially causes duplica-
tion in many traces in the code cache.

Our second study therefore looks at the size of the un-
bounded code cache as a multiple of the original code foot-
print. The application code footprint is defined as the size
of the static code executed by DynamoRIO, including sys-
tem libraries. We calculated the code size expansion using
the following equation:

codeExpansion =
finalCacheSize

applicationFootprint
(1)

A code expansion of 100%, for example, means that we’ve
doubled the size of the original application (original appli-
cation code + cached code).

As we see in Figure 2, the code expansion factor is
roughly 500% for both SPEC2000 and our interactive
benchmarks. Therefore, this indicates that the main fac-
tor contributing to the final code cache size is the original
application size, which is dramatically larger for the interac-
tive applications. The expansion factor is fairly steady, with
only a 59% and 111% standard deviation for the interactive
and SPEC2000 benchmarks, respectively. This implies that
as the sizes of new software releases grow, unbounded code
cache sizes will grow proportionately.

3.3. Trace Generation Frequency

Next, we studied the rate at which code traces were in-
serted into the code cache. This metric allows us to evalu-
ate the strain that will be placed on the cache management
system when cache-size limitations are imposed. Figure 3
compares the trace insertion rate, measured in KB/sec, of
SPEC2000 and interactive applications. This figure shows
that most of the SPEC benchmarks generate less than 5 KB
of code traces each second—with exceptions includinggcc
which generated 232 KB/s andperlbmk which generated
89 KB/s. On the other hand, only one of the interactive ap-
plications —solitaire — generated less than 5 KB/s.
These results lead us to believe that larger applications typ-
ically result in a higher frequency (as well as number) of
traces generated at runtime.

3.4. Unmapped Memory

Finally, we looked into a matter that was unique to the
Windows applications in our suite of benchmark applica-
tions. Anytime a region of memory containing program
code is unmapped, the corresponding code traces must be
deleted from the code cache. This is because other code
could be loaded into the same address space, resulting in a
stale code-cache entry. This phenomenon occurs frequently
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(a) SPEC2000 Benchmarks
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(b) Interactive Windows Benchmarks

Figure 1. Maximum cache size required to avoid cache management plotted on a logarithmic scale. Note that
the maximum cache size of our interactive benchmarks averaged over 20 times larger than SPEC2000.
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(b) Interactive Windows Benchmarks

Figure 2. Code expansion with an unlimited code cache.
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(b) Interactive Windows Benchmarks

Figure 3. Amount (in KB) of code generated in the code cache each second. Note that the y-axis of the Windows
benchmarks is ten times larger than the corresponding axis in the SPEC2000 graph.
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Figure 4. Percentage of code traces that must be
removed from the code cache due to unmapped
memory.

in Windows applications that load and unload dynamically-
linked libraries. In fact, Figure 4 shows that an average of
15% of the interactive benchmark’s code must be deleted
from the dynamic optimizer’s code cache due to unmapped
memory. This trait of Windows applications can result in
inefficient code caches, because fragmentedholesappear in
the code cache due to the deleted code traces. Therefore, an
effective code cache management mechanism must support
trace deletion, while minimizing fragmentation.

4. Local Management Policies

Now that we have shown code cache management to
be an important problem with several unique challenges,
we move on to our discussion of code cache management
mechanisms designed to overcome these challenges.

There are two granularities at which we must consider
code cache management policies.Local code cache man-
agementrefers to replacement policies implemented within
a single code cache. Examples of local policies include
least-recently used (LRU), circular buffer, and preemptive
flushing. Global code cache managementrefers to the hi-
erarchy and policy of interaction between multiple code
caches. While our main focus in this paper is global code
cache management policies, it is important to also discuss
effective local policies that may be implemented, as the two
are often complementary.

4.1. Trace Selection

All local code cache policies must begin with trace selec-
tion. During trace selection, the decision ofwhenandhow
to generate and cache a code trace is made. Rather than in-
terpreting code, DynamoRIO begins by copying every basic
block (a single-entry single-exit sequence of instructions)
into abasic block cacheprior to executing the block. Cer-

tain basic blocks are marked astrace headsbecause they
are either (a) the target of a backward branch (signaling a
loop) or (b) an exit from an existing trace. Counters are as-
sociated with each trace head, and each execution of a trace
head block will increment the counter. When the trace head
counter exceeds thetrace creation threshold, currently set at
50 executions, DynamoRIO enterstrace generation mode.

Trace generation involves grouping basic blocks together
to form a superblock of code, and copying the superblock
into a separatetrace cache. Superblocks are used because
they are well suited for applying low-overhead compiler
optimizations. Decisions on which basic blocks to group
together to form a superblock are made by following the
Next-Executed Tailpolicy described by Duesterwald and
Bala [11], which simply follows the path of execution rather
than employing complex path profiling techniques. Trace
generation continues until either (a) a backward branch is
encountered, or (b) the start of an existing trace is encoun-
tered.

4.2. Replacement Challenges

The driving forces behind any local code cache manage-
ment policy must include all of the following attributes:
low overhead, emphasis on temporal locality, and min-
imized fragmentation. The first motivating factor—low
overhead—is important because the overhead of code cache
management directly impacts the application’s runtime per-
formance. Therefore, management policies that require a
walk of the entire code cache or a complex calculation are
not feasible. The second factor—temporal locality—has
been shown to be very important to the performance of code
cache management policies [12]. Finally, the third factor—
minimized fragmentation—is important for two reasons.
First, we are inserting and deleting code traces that vary in
size, therefore fragmentation can occur. Second, in appli-
cations that unmap memory, deletions must occur immedi-
ately. Therefore, a policy must either include a defragmen-
tation step, or make efforts to minimize the fragmentation
that occurs.

The problem of caching elements of varying sizes also
appears in the area of web caching [4, 6, 13]; however, web
cache maintenance can occur during periods of reduced in-
ternet activity. Code cache maintenance, on the other hand,
directly impacts application performance.

Each of these factors was considered in the design of
the circular buffer (FIFO) policy proposed in our prior
work [12], where we found superior performance over LRU
with no fragmentation. However, several issues complicate
the design, making a pure circular buffer unachievable in a
real dynamic optimizer. These issues includeundeletable
tracesandprogram-forced evictions, and they are handled
by the scheme we describe in Section 4.3.
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Undeletable Traces Several situations may arise that re-
quire a dynamic optimizer to mark a code trace undeletable
from the code cache. For instance, during an exception that
occurs in a trace inside the code cache, execution of that
trace must be suspended while the exception is handled.
Yet, because control may later return to the trace, it is vi-
tal that the trace is not deleted in the meantime.

Program-Forced Evictions In Figure 4, we showed that
code cache management is not the only reason for evictions
from the code cache, and that any unmapped code region
requires deletions of corresponding traces from the code
cache. Such evictions will introduce fragmentation in all
code cache mechanisms, including the circular buffer.

4.3. Pseudo-Circular Management

These complications warranted the design of a variant of
the circular buffer scheme, which we call apseudo-circular
local management policy. From a distance, this policy be-
haves as a circular buffer. A simple cache pointer is main-
tained to keep track of the next element up for eviction. In-
sertion of a new trace into the cache will evict zero or more
existing traces in the cache depending on the free cache
space and the size of the trace to be inserted. However,
our scheme deviates from normal circular eviction when an
undeletable trace is detected in the list of potential eviction
candidates. At this point, the circular buffer mechanism re-
sets its eviction pointer to begin evicting directly after the
undeletable fragment, and the eviction process begins again.

Our circular management policy does not change its be-
havior in response to program-forced evictions, which in-
herently violate the circular eviction policy. While it would
be possible to maintain a list of holes in the code cache,
and to try inserting into those before evicting traces located
at the eviction pointer, this approach complicates the cache
management design, and may reduce the benefits of tempo-
ral locality.

5. Generational Code Caches

We now move on to our proposal for global cache man-
agement based on trace generations. Section 5.1 motivates
our use of generational code caches by showing that there
is a clear tendency in our benchmark suites toward traces
living either for a short time (short-lived) or for most of the
program’s execution (long-lived). We have borrowed where
appropriate from the literature on generational garbage col-
lection, as we will discuss in Section 5.2, and based our
architecture on a simple partitioning of the existing trace
cache into two distinct and separately managed regions: a
nursery code cachethat stores all newly generated traces;
and apersistent code cachethat stores the long-lived traces.
Figure 5 illustrates this basic architecture.

Nursery

C
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ar

 B
uf

fe
r

FiFo
Eviction

If (Live) 
PROMOTE

If (Dead) 
DELETE

Persistent
Cache

C
irc

ul
ar

 B
uf

fe
rNew

Trace

Figure 5. Conceptual view of the generational code
cache architecture.

We assume that each code cache in our generational ar-
chitecture adheres to the local pseudo-circular management
policy described in Section 4. One could, of course, choose
to implement a different local management policy; we leave
this as a question for future studies.

As in generational garbage collection, the nursery is
where traces stay until they have reached an appropriate
age for promotion to the persistent cache. In our design,
an eviction from the nursery cache indicates that a trace has
“come of age.” Section 5.3 describes the technique we use
to know if we should promote the evicted trace, or delete it
altogether. The decision is non-trivial because, as discussed
in Sections 5.2 and 5.3, we do not have sufficient informa-
tion to determine whether the trace evicted from the nursery
will ever be referenced again. In other words, borrowing
from the concept of liveness in compilers, we must ask if
the evicted trace is live or dead.

Before continuing, we note that DynamoRIO already
supports multiple code caches per thread. The separa-
tion of the basic block and trace caches (described in Sec-
tion 4.1) can be considered a form of generational code
cache management, where the execution count determines
which cache stores the dynamically generated code seg-
ments. We extend this philosophy to identify storage for
traces based on their expected lifetime. Because the trace
cache contains the frequently-executed code (i.e. the hot
code), we apply our generational approach only to it, and
thus propose to move the design of dynamic optimization
systems from a single unified trace cache to multiple dis-
tinct trace caches per thread.

5.1. Trace Lifetimes

To justify the need for generational code caches, we in-
vestigated thelifetimesof traces generated during bench-
mark execution. A trace lifetime is defined by Equation 2.

lifetimei =
lastExecutioni − firstExecutioni

totalApplicationExecutionT ime
(2)
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Figure 6. Lifetimes of traces as a percentage of total execution time. The y-axis shows the unweighted (static)
percentage of traces that fall into each lifetime category.

Figure 6 shows the typical lifetimes of hot traces in the
code cache calculated using Equation 2. The main obser-
vation from this figure is that the majority of frequently-
executed code traces fall into one of two categories: short-
lived (shown as less than 20% of execution time) and long-
lived (shown as greater than 80% of execution time) with
a relatively small percentage of traces falling in the middle.
The fact that so many of the code traces fall into the extreme
categories indicates that it may be advantageous for us to
treat these code traces differently. Furthermore, the fact that
the lifetimes in Figure 6 exhibit a U-shaped curve implies
that two separate but equally-sized caches may work well.

5.2. Parallels in Garbage Collection

The problem of managing varying-sized elements with
varying lifetimes already exists in other domains. Code
cache management is in many ways similar to the prob-
lem of garbage collection. One technique in garbage collec-
tion is to take a generational approach to collecting unused
memory [1, 17]. Generational garbage collection makes use
of thegenerational hypothesis, which states that young ob-
jects are much more likely to die than old objects, therefore
young objects are typically grouped and collected together.

We have leveraged some of the advances in the area
of garbage collection in our approach to the code cache
management problem, but our domain differs in several re-
spects. First, a code cache management system has the
added constraint that it must immediately evict certain el-
ements from the cache, as in the case of unmapped mem-
ory, while garbage collectors can take a passive approach to
memory management. Second, garbage collectors know for
certain that an object is dead when it is no longer reachable
from a root node. There is no such parallel in code cache
management. A code object is dead when it will no longer

be executed, and this is generally not known before program
termination.

Our code cache management design takes into account
these features and constraints to form an effective genera-
tional code cache management system. Our approach to the
problem of deciding whether to promote a trace to the per-
sistent cache involves the use of an intermediateprobation
cachebetween the nursery and persistent caches, as shown
in Figure 7.

5.3. The Probation Cache

The probation cache is similar to avictim cachein mi-
croarchitecture, which is used to detect and recover from
untimely evictions from the instruction or data caches. The
main distinction is that traces in the probation cache will
never be reinserted into the nursery. Instead, the trace will
either be promoted to the persistent cache or deleted, as de-
scribed in the algorithm in Figure 8.

The advantage of a probation cache, from an implemen-
tation perspective, is that it eliminates the need for profiling
counters and comparisons in the larger nursery cache. Fur-
thermore, it is possible to eliminate access counters in the
probation cache as well by allowing each hit in the proba-
tion cache to trigger an upgrade to the persistent cache. The
actual number of hits that should trigger this upgrade is ex-
perimentally determined in Section 6.1.

5.4. Code Relocation

In order to support the promotion of traces to a persistent
cache, the dynamic optimizer must contain the functional-
ity to move instructions from one address to another and
provide the necessary fix-up for any address-relative jump
instructions contained in the instructions. Fortunately, this
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Figure 7. Generational code cache architecture using a probation cache.

Generational Eviction

insertNewTrace {
if (nursery_fifo points to valid trace) {

if (probation_fifo points to valid trace) {
if (probation_trace.accessCount > threshold) {

if (persistent_fifo points to valid trace) {
evict persistent trace

}
promote probation trace to persistent cache

}
else {

evict probation trace
}

}
promote nursery trace to probation cache

}
insert new trace in nursery

}

Figure 8. An algorithm for generational code
cache management with a probation cache. The
insertNewTrace routine is called when a new
trace is inserted into the nursery. The * fifo
variables point to the next insertion point in each
circular buffer.

is a basic functionality of any dynamic optimizer. By the
time a trace resides inside a trace cache, it has already been
moved from the original program location into the basic-
block cache, and once again from the basic-block to the
trace cache.

6. Evaluation

We evaluate our design using DynamoRIO and a gener-
ational cache simulator. DynamoRIO executed our bench-
marks using an unbounded code cache, and we used the
verbose log of cache accesses to drive our cache simula-
tor. Our baseline for comparison for each benchmark is
a single pseudo-circular cache sized at(maxCache ∗ 0.5)
wheremaxCache is the size required to avoid cache man-
agement for that benchmark. We compare the miss rate of

this single pseudo-circular cache to that of multiple gener-
ational pseudo-circular caches sized such that the total size
of all generational caches combined (including the proba-
tion cache) equals the size of the unified cache.

We swept the space of generational code cache sizes to
determine the cache proportions that result in the lowest
miss rates for each application. While the best proportions
varied by benchmark, we made two general observations.
First, there was no clear advantage to an unbalanced sizing
of nursery and persistent caches that held across all bench-
marks. Second, we noted an undeniable link between the
size of the probation cache and the promotion threshold. As
we decreased the size of the probation cache, we needed to
lower the promotion threshold. If the threshold was set too
high, long-lived traces did not reach the promotion thresh-
old before eviction from the probation cache.

6.1. Code Cache Miss Rates

Figure 9 compares the miss rates of three instances of
generational cache layouts to that of a single unified code
cache. While the best cache configuration varied by bench-
mark, a generational cache configuration with a 45%–10%–
45% size ratio between the nursery, probation, and per-
sistent cache, respectively, performs best overall. Further-
more, this cache configuration performed best when we ap-
plied the policy where a single hit in the probation cache
triggered a promotion. This phenomenon is particularly in-
teresting because it simplifies the implementation and obvi-
ates the need for complex analysis to determine whether to
promote a trace to the persistent cache.

An outlier in Figure 9 wasart , which is also the small-
est benchmark in terms of bytes of traces produced at run-
time. Since we purposely sized our caches so as not to fit
the entire code footprint, this will have a greater impact on
small programs that are characterized by execution within a
small loop body. Interestingly, it is these very benchmarks
for which cache management is least critical, because there
is less of a need to apply cache management to them.
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Figure 9. Cache miss rate reduction of generational code caches over a unified cache. The three different bars
are the proportions allocated to the generational caches. For example, on the left are results for a generational
caching scheme where 33% of the cache real estate is allotted to the nursery, 33% is allotted to the probation
cache, 33% to the persistent cache, and evicted traces with a minimum of 10 executions are promoted from the
probation to persistent caches. Average values are the unweighted arithmetic mean across all benchmarks.
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Figure 10. Total number of cache misses eliminated using generational code caches, as compared to a single
unified cache. Note the logarithmic y-axis.
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Figure 11. Instruction overhead ratio of generational code caches to a unified cache. Values below 100%
represent a reduction in overhead, therefore smaller is better. The generational caches have 45%–10%–45%
proportions between the nursery, probation, and persistent caches.

Finally, to provide perspective to the resulting miss rates,
we present the actualnumberof eliminated misses in Fig-
ure 10. From this figure, we see that the miss rate reduc-
tions were often the result of eliminating many thousand
code cache misses in the benchmarks.

6.2. Resulting Performance

The importance of minimizing code cache miss rates can
only be appreciated when we contemplate the cost of a sin-
gle code cache miss. Implementors of effective dynamic
optimizers have gone to great lengths to keep execution in
the code cache. All of this is done to avoid the high over-
head of instruction interpretation, code generation and trace
optimization. Conflict misses in the code cache require us
to repeat these expensive steps unnecessarily.

We used the Pentium-4 performance monitors to get a re-
alistic sense of the overhead of trace generation, evictions,
promotions, and context switches within the DynamoRIO
framework. Using the PAPI [15] interface and the Pen-
tium instruction counters, we read the instruction counts be-
fore and after key events. We plotted these measurements
against trace sizes where applicable, and generated the best-
fit formulas listed in Table 2 using Microsoft Excel. For a
242-byte trace (the median across all benchmarks), the es-
timated overhead of trace generation is 69,834 instructions,
eviction is 3,316 instructions, and promotion is 13,354 in-
structions.

A single conflict miss in the trace cache results in two
DynamoRIO context switches, one trace regeneration, and
one copy if the trace is executed enough to be upgraded
from the basic block to the trace cache (which is the same
cost as a promotion). For an average trace, this amounts

Description Overhead (instructions)
Trace Generation 865 ∗ (traceSizeBytes)(0.8)

DR Context Switch 25
Evictions 2.75 ∗ traceSizeBytes + 2650
Promotions 22 ∗ traceSizeBytes + 8030

Table 2. Overheads used in our evaluation.

to approximately 85,000 instructions. Therefore, while the
generational cache management scheme includes the addi-
tional overhead of promoting traces to the probation and
persistent caches, this carries far less overhead than prema-
ture eviction and trace regeneration.

We compared the overhead of trace generation, context
switches, evictions and promotions in a unified code cache
to that of our generational code cache. In Figure 11 we
show the overhead ratio between generational caches and a
unified cache, calculated using Equation 3.

overheadRatio =
generationalCacheOverhead

unifiedCacheOverhead
(3)

Figure 11 shows that the average (geometric mean) over-
head ratio is 80.7%, which represents a 19.3% reduction
of instructions needed to service code cache misses. Spe-
cific benchmarks varied from a 51.1% ratio forgzip to a
106.2% forapplu . Three of the benchmarks—eon , vpr ,
andapplu —resulted in increases in overhead because the
code cache miss rate reductions were not large enough to
offset the overhead of promotion between the generational
caches. These three benchmarks performed better with a
larger probation cache, as shown in Figure 9a. This result
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shows that further exploration of the configuration space
may improve overall performance of the benchmarks. Fi-
nally, we were encouraged by the fact that overhead reduc-
tions were seen in all of the large Windows benchmarks in
Figure 11.

To provide a perspective on our overhead reductions, we
calculated the impact on final execution performance and
found that it was highly dependent on the actual number of
mispredictions eliminated (which was shown in Figure 10).
For gzip where where generational cache management
eliminated 2,288 misses, this resulted in an estimated 0.07%
reduction in overall execution cycles. Forcrafty where
292,486 misses were eliminated, an 8.09% reduction in ex-
ecution cycles is expected.

7. Conclusions

This paper showed that large, interactive applications im-
pose limiting constraints on a code cache management sys-
tem. The salient features of such applications complicate
management heuristics and strain the system due to the fre-
quency and number of code traces generated at runtime.

We explored generational code caches as a means for
solving the problem of code cache management in dynamic
optimizers. Our motivation was based on an analysis of the
lifetime of code traces residing in the code cache for var-
ious applications, and the observation that the majority of
code traces were either very short- or very long-lived. We
found that, by replacing a single cache with multiple gener-
ational caches, we can decrease the miss rates and resulting
overhead of nearly all benchmarks, large or small, often sig-
nificantly.
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