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The convolutional neural network has achieved good results in the superresolution reconstruction of single-frame images.
However, due to the shortcomings of infrared images such as lack of details, poor contrast, and blurred edges, superresolution
reconstruction of infrared images that preserves the edge structure and better visual quality is still challenging. Aiming at the
problems of low resolution and unclear edges of infrared images, this work proposes a two-stage generative adversarial network
model to reconstruct realistic superresolution images from four times downsampled infrared images. In the first stage of the
generative adversarial network, it focuses on recovering the overall contour information of the image to obtain clear image
edges; the second stage of the generative adversarial network focuses on recovering the detailed feature information of the image
and has a stronger ability to express details. The infrared image superresolution reconstruction method proposed in this work
has highly realistic visual effects and good objective quality evaluation results.

1. Introduction

Infrared imaging technology used for passive noncontact
detection and identification has the advantages of good con-
cealment, strong transmission ability, no interference from
electromagnetic waves, and good low-light and night-vision
capabilities [1]. In addition to the main military applications,
this technology can also be widely used in civilian fields, such
as industry, agriculture, medicine, and public security recon-
naissance. However, infrared images have many disadvan-
tages, such as low resolution, low contrast, and blurred
edges. Although it is possible to improve the hardware perfor-
mance of the infrared imaging system by improving the
manufacturing process of the infrared detector, it requires tre-
mendous human and financial resources and is difficult to
achieve in the short term. Therefore, digital signal processing
is an economical and effective way to improve the quality of
infrared images [2–4]. Superresolution reconstruction refers
to the reconstruction of a high-resolution image or a sequence
on single-frame or multiframe low-resolution images and
includes three main types, i.e., interpolation-based methods,
reconstruction-based methods, and instance-based learning

methods. Instance-based learning methods are flexible in
algorithm structure, can providemore details under highmag-
nification, and thus have become a research hotspot of super-
resolution reconstruction in recent years. Chao et al. [5]
proposed the use of a convolutional neural network (CNN)
to achieve the superresolution reconstruction of visible light
images and to learn the mapping relationship between low-
resolution image and high-resolution image by training with
a large dataset. Other researchers [6] used the perceptual loss
to replace the minimum mean square error and the learned
upsampling to replace bicubic interpolation, achieving better
results. Subsequently, network structures with more layers,
such as the deeply recursive convolutional network (DRCN)
[7] and the efficient subpixel convolutional neural network
(ESPCN) [8], were proposed to achieve better outcomes. In
the field of machine learning, generative models have always
been a difficult problem. The proposal of a generative adver-
sarial network (GAN) [9] meets the demands of generative
models for research and application in many fields. GAN only
uses back propagation and thus avoids the complex Markov
chain. At the same time, GAN uses unsupervised learning
methods, enabling the production of more clear and true
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samples. In recent research, GAN has been widely used [10–
12]. Among them, the SaliencyGAN model proposed by
Wang et al. [10] is a semisupervised salient object detection
method for the Internet of Things. Yang et al. [12] proposed
a new model based on conditional generative adversarial
network (DAGAN) to reconstruct Compressed Sensing
Magnetic Resonance Imaging (CS-MRI). Literature [11] pro-
posed a novel fast CS-MRI deep learning architecture based
on a conditional generative confrontation network. SRGAN
[13] is a GAN for image superresolution (SR) and can
recover a photorealistic natural image from four instances
of downsampling. However, the amplified details of the

image generated through this method usually show unsightly
artifacts. To further improve the visual quality, researchers
[14] have proposed a residual-in-residual dense block
(RRDB) network unit and made improvements in the per-
ception domain loss. Researchers [15] have also proposed a
novel generative adversarial frame to improve the edge
structure and texture information in the compressed image.
ESRGAN+ [16] designed a network architecture with novel
basic blocks to replace the basic structure used by the origi-
nal ESRGAN. In the field of infrared imaging, SR recon-
struction has been mostly achieved using sparse coding
methods [17–21].

Figure 1: Original image (left) and the image recovered from 4x downsampled images using the proposed method.
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Figure 2: Model architecture of the proposed method.
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In this study, we propose a new GAN framework to
improve the perceived quality of infrared images. Then, we
design a multiconstraint loss function by combining image
fidelity loss, adversarial loss, feature fidelity loss, and edge
fidelity loss. By continuously updating and iterating the min-
imization of loss functions, we obtain the reconstructed
image with high resolution and sharp edges using the pro-
posed method (Figure 1).

The main contributions of this paper are as follows:

(i) We propose a GAN-based SR reconstruction frame-
work for edge preservation of infrared images that
can enhance the GAN to better restore the edge

structure of the infrared image while maintaining
the detailed information

(ii) To preserve the characteristics and the edge
information in the image, we propose a multiple con-
straints loss function applicable for SR reconstruction

(iii) We validate the proposed method using images from
publicly available datasets and compare the perfor-
mance of the proposed method with that from other
mainstream methods. The results confirm that com-
pared with other methods, the proposed method
obtains more realistic reconstructed infrared SR
images with sharper edges
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Figure 3: Network structure of the generator G0.
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Figure 4: Network structure of the discriminator D0.
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Figure 5: Network structure of the generator G1.
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We describe the proposed network framework and loss
function in Section 2 and their quantitative evaluations using
the public datasets in Section 3, followed by recommended
future study on the proposed method and the conclusion.

2. Method

To generate a high-resolution image with photograph-
grade realistic details and inspired by the literature [22,
23], we propose a simple and effective two-layer GAN, in

Ground-truth
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SRGAN

ESRGAN

ESRGAN+ 

Ours

Figure 6: Comparison of the reconstructed results of images from the FLIR_ ADAS_1_3 validation set. The images in the first row are
original images, those in the second row are the reconstruction results using the SRCNN method, those in the third row are the
reconstruction results using the ESPCN method, those in the fourth row are the reconstruction results using the SRGAN method, those in
the fifth row are the reconstruction results using the ESRGAN method, those in the sixth row are the reconstruction results using the
ESRGAN+ method, and those in the last row are the reconstruction results using our proposed method.

4 International Journal of Digital Multimedia Broadcasting



which the image generation process is divided into two
stages (Figure 2).

2.1. Stage 1 GAN. In Stage 1, we use the 128 × 128 low-
resolution image I

LR0 as input and export it to the Stage 1

generator G0 to generate a false 256 × 256 image (ISR0),
which, together with a real 256 × 256 image (IHR0), is
imported to the Stage 1 discriminator D0 to identify the
image. The core of the network structure of the generator
G0 in the proposed method is shown in Figure 3. We adopt

Ground-truth
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SRGAN

ESRGAN

ESRGAN+

Ours 

Figure 7: Comparison of the reconstructed results of images from the Itir_v1_0 validation set. The images in the first row are original images,
those in the second row are the reconstruction results using the SRCNNmethod, those in the third row are the reconstruction results using the
ESPCNmethod, those in the fourth row are the reconstruction results using the SRGANmethod, those in the fifth row are the reconstruction
results using the ESRGANmethod, those in the sixth row are the reconstruction results using the ESRGAN+method, and those in the last row
are the reconstruction results using our proposed method.
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the network design of Ledig et al. [10] and introduce the skip
connection, which has been proven effective in training deep
neural networks. We adopt the residual block proposed in
the literature [24] to construct a neural network with six
residual blocks used as a stack to extract features from the
image. Recent work on single-image superresolution [25–
28] pointed out that with the deepening of the network and
the training and testing phases under the GAN framework,
hallucination artifacts often appear. In order to solve this
problem, we are following the method in [29] and adding a
batch normalization layer (BN) to the network. Each residual
block contains two convolutional layers with a kernel size of
3 × 3 and 64 feature maps, two BN layers, and one parametric
rectified linear unit (PReLU) layer [30]. The specific settings
of each layer of the generative model are as follows:

C PR, 64ð Þ⟶ C 64ð ÞBN PRð ÞC 64ð ÞBN PRð ÞSC⟶ :::6⋯

⟶ C 64ð ÞBN PRð ÞSC⟶ C PR, 256ð Þ⟶ C t, 3ð Þ:

ð1Þ

Here, C(PR,64) denotes a set of convolutional layers with
64 feature maps and activation function PReLU;
C(64)BN(PR)C(64)BN(PR)SC represents a residual block;
BN(PR) is a batch normalization layer with activation func-
tion PReLU, and SC denotes a skip connection. There are
in total 6 residual blocks. C(t,3) represents a convolutional
layer with 3 feature maps and activation function tanh.

To distinguish the generated SR samples from real high-
resolution (HR) samples, we train the discriminator network
D0, whose overall framework is shown in Figure 4 and which
is adopted from the architectural framework summarized by
Radford et al. [31], in which LeakyReLU [32] activation is
used to avoid maximum pooling of the entire network. The
discriminator network includes ten convolutional blocks.
All blocks except for the first block contain a convolutional
layer, a BN layer, and a LeakyReLU layer. The number of ker-
nels within the filter increases continually, from 64 in the
Visual Geometry Group (VGG) network [33] to 1024; then,
each time the number of kernels increases, segmented convo-
lution is used to lower the image resolution. After that, a spe-
cial residual block, containing two convolution layers and a
LeakyReLU layer, is connected. The output of the last convo-
lution unit is sent to a dense layer with an S-type activation
function to get a true and false result. The structure and
parameters of each layer of the discriminator D0 network
are as follows:

C LR, 64ð Þ⟶ C 64ð ÞBN LRð Þ⟶ C 128ð ÞBN LRð Þ

⟶ C 256ð ÞBN LRð Þ⟶ C 512ð ÞBN LRð Þ

⟶ C 1024ð ÞBN LRð Þ⟶ C LR, 1024ð Þ⟶D:

ð2Þ

Here, LR denotes the activation function LeakyReLU; C
ðLR, 64Þ denotes a set of convolutional layers with 64 feature
maps and activation function LeakyReLU; Cð64ÞBNðLRÞ
denotes a set of convolutional layers with 64 feature maps
followed by batch-normalization with activation function

LeakyReLU, and D is the dense layer for outputting. The fea-
ture maps were increased from 64 to 1024.

L1 = λ1Ladv + λ2Lmse + λ3Ledge, ð3Þ

Stage 1. Reconstruction Loss Function. The loss function
contains three parts: adversarial loss, image fidelity loss,
and edge fidelity loss (Eq. (3)). These parts each capture dif-
ferent perceptual characteristics of the reconstructed image
to obtain a more visually satisfactory reconstructed image.

where the weight fλ
i
g is a trade-off parameter that is

used to balance multiple loss components. The first part is
the adversarial loss between the generator G0 and the dis-
criminator D0 of GAN. This part encourages the generator
to trick the discriminator network to produce a more realistic
HR image as follows:

Ladv = 〠
N

n=1

− log Dθ
D

Gθ
G

I
LR0

� �� �

, ð4Þ

whereDθ
D

ðGθ
G

ðILR0ÞÞ is the estimated probability of the recon-

structed image Gθ
G

ðILR0Þ to be a true HR image. To obtain a

better gradient, we use the minimization −log Dθ
D

ðGθ
G

ðILR0ÞÞ

to replace the minimizationlog ½1 −Dθ
D

ðGθ
G

ðILR0ÞÞ�.

Table 1: Method comparison: quantitative results of the SRCNN,
ESPCN, SRGAN, ESRGAN, and ESRGAN+ methods and the
proposed method on the FLIR_ ADAS_1_3 validation dataset.

CC
PSNR
(dB)

SSIM VIF UIQI TIME (s)

SRCNN 0.8160 18.3963 0.8655 0.7942 0.8770 2.7112

ESPCN 0.8627 27.7171 0.9349 0.8269 0.9398 1.0206

SRGAN 0.8463 28.0445 0.9497 0.8120 0.8503 0.9202

ESRGAN 0.9547 28.5453 0.9506 0.7918 0.9382 0.1093

ESRGAN+ 0.9806 33.7018 0.9855 0.9119 0.9864 0.2713

Ours 0.9964 37.9865 0.9980 0.9083 0.9965 0.1145

Table 2: Method comparison: quantitative results of the SRCNN,
ESPCN, SRGAN, ESRGAN, and ESRGAN+ methods and the
proposed method on the Itir_v1_0 dataset.

CC
PSNR
(dB)

SSIM VIF UIQI TIME (s)

SRCNN 0.7937 20.2460 0.8966 0.7079 0.8746 2.5706

ESPCN 0.8464 22.1708 0.9185 0.8194 0.9877 1.0020

SRGAN 0.8152 22.6732 0.9154 0.7944 0.8610 0.6642

ESRGAN 0.9146 30.3205 0.9608 0.7752 0.9166 0.0937

ESRGAN+ 0.9547 34.1024 0.9844 0.8497 0.9541 0.2558

Ours 0.9962 35.2865 0.9943 0.9064 0.9936 0.1059
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The second term of Eq. (3), Lmse, ensures the fidelity of
the restored image using the pixel-level mean square error
(MSE) loss as follows:

Lmse = 1

WHC I
HR0

− I
SR0

�

�

�

�

2

2
,

ð5Þ

whereW,H, and C are the height, the width, and the number
of channels, respectively, of the image.

The third term of Eq. (3), Ledge, the edge fidelity loss, is

purported to reproduce sharp edge information as follows:

Ledge = 1

WH I∧
E
− I

E
�

�

�

�

2

2
,

ð6Þ

whereW and H are the width and the height, respectively, of

the image. The labeled edge map I
E is extracted by a specific

edge filter on the real 256 × 256 image I
HR0 , while I∧

E is
extracted by a specific edge filter on the 256 × 256 image

I
SR0 generated by the generator G0. In our experiments, we
chose the Canny edge detection operator. By minimizing
the edge fidelity loss, the network continuously guides edge
recovery.

2.2. Stage 2 GAN. In the second stage, we use the generated

256 × 256 low-resolution image I
SR0 as input and export it

to the Stage 2 generator G1 to generate a 512 × 512 image

I
SR1, which, together with a real 512 × 512 image I

HR1, is
exported to the Stage 2 discriminator D1 to identify if it is
false or real. We adopt the network design described in the
literature [15], in which a generator model G1 (Figure 5)

SRCNN

ESPCN

SRGAN

ESRGAN

ESRGAN+

Ours

Figure 8: Comparison of edge detection results of superresolution reconstruction results.
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containing 16 residual blocks is constructed. The output for-
mat and parameters of each layer of the generator G1 are as
follows:

C R, 64ð Þ⟶ C 64ð ÞBN Rð ÞC 64ð ÞBN Rð ÞSC⟶ :::16⋯

⟶ C R, 64ð ÞSC⟶ C 256ð Þ⟶ C t, 3ð Þ,

ð7Þ

where C(R,64) denotes a set of convolutional layers with
64 feature maps and activation function ReLU;
C(64)BN(R)C(64)BN(R)SC represents a residual block.

The network structure of the discriminator networkD1 in
the second stage adopts a network structure similar to that of
the discriminator D0. Each layer structure and network
parameters of D1 are as follows:

C LR, 64ð Þ⟶ C 64ð ÞBN LRð Þ⟶ C 128ð ÞBN LRð Þ

⟶ C 256ð ÞBN LRð Þ⟶ C 512ð ÞBN LRð Þ

⟶ C 1024ð ÞBN LRð Þ⟶ C LR, 1024ð Þ⟶D:

ð8Þ

L2 = λ1′Ladv1 + λ2′Lmse1 + λ3′L feature, ð9Þ

where the weight fλ
i
′g is a trade-off parameter that is used to

balance multiple loss components. The first term, Ladv1, is
the adversarial loss between the generator G1 and the dis-
criminator D1 of GAN. The second term,Lmse1, is the image
fidelity loss. The third term, L feature, is the feature fidelity

loss, which is defined based on the feature space distance
defined in the literature [34], to facilitate the preservation
of feature representation in the reconstructed image similar
to that of the original image as follows:

L feature = 1

WHC ϕ I
HR0

− I
SR0

� ��

�

�

�

2

2
,

ð10Þ

whereW,H, and C are the height, the width, and the number
of channels, respectively, of the image and ϕð⋅Þ represents the
feature space function, which is a pretrained VGG-19 [33]
network that maps images to feature space. The fourth pool-
ing layer is used to calculate the feature-activated L2 distance
to be used as the feature fidelity loss function.

Stage 2. Reconstruction Loss Function. The loss function
contains three parts: adversarial loss, image fidelity loss,
and feature fidelity loss (Eq. (9)).

3. Experiments

3.1. Experimental Details. All experiments are performed on
a desktop computer with 2.20GHz ×40 Intel Xeon (R) Silver
4114 CPU, GeForce GTX 1080Ti, and 64GB of memory. We
use the PyTorch deep learning framework to implement the
method proposed in this article and all comparison methods.
All methods are trained with the FLIR training data set. Dur-
ing the training process, we choose 8,862 images from the
FLIR_ADAS_1_3 thermal sensor training dataset released

(a) SRCNN super-resolution reconstruction image matching results (b) ESPCN super-resolution reconstruction image matching results

(c) SRGAN super-resolution reconstruction image matching results (d) ESRGAN super-resolution reconstruction image matching results

(e) ESRGAN+ super-resolution reconstruction image matching results (f) Our method super-resolution reconstruction image matching results

Figure 9: Superresolution reconstruction image matching results (the left image is the original high-resolution image).
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by FLIR Systems Inc., a sensor system developer, in 2018.
First, we perform the 4x factor downsampling on all experi-
mental data to obtain low-resolution (LR) images by lower-
ing the resolution of the HR images. We set the batch size
to 4 and used the Adam [35] with a momentum term of β
= 0:9 as the optimization procedure. To enable the loss func-
tion in the same order of magnitude to better balance loss

components, we set λ1,λ2′, and λ3′ of Eq. (9) to 10-3, 1, and
10-6, respectively. When training the Stage 1 GAN, we set

the learning rate to 10-4, which is lowered to 10-5 when train-
ing the Stage 2 GAN.

3.2. Experimental Evaluation. To verify the effectiveness of the
proposed method, we conduct the validation on two public
data sets: the FLIR_ ADAS_1_3 (1366 images) validation set
and the Itir_v1_0 dataset (11262 images). We compared the
proposed method with the most advanced methods, including
superresolution using deep convolutional networks (SRCNN)

LR

SRCNN

ESPCN

SRGAN

ESRGAN

ESRGAN+

Our method

Figure 10: Target detection result of superresolution reconstructed image.

9International Journal of Digital Multimedia Broadcasting



[5], ESPCN [8], SRGAN [10], ESRGAN [15], and ESRGAN+
[16] methods. Three images are selected from the verification
set of FLIR_ADAS_1_3 and the data set of Itir_v1_0, and the
subjective results of several methods are shown in Figures 6
and 7. From the reconstruction results, it is not difficult to
see that the reconstruction results of our proposed method
produce finer texture and edge details.

To facilitate a fair quantitative comparison, we used the
correlation coefficient (CC) [36], the peak-signal-to-noise
ratio (PSNR) [37], the Structural Similarity Index Measure
(SSIM) [38], the visual information fidelity (VIF) [39], the
Universal Image Quality Index (UIQI), and the time con-
sumption, six objective indicators, to evaluate the quality of
the reconstructed images and the SR methods. The quantita-
tive results of the comparison of different reconstruction
methods are shown in Table 1, which shows that our method
is superior to the SRCNN [5], ESPCN [8], SRGAN [13], ESR-
GAN [15], and ESRGAN+ [16] methods in the indicators of
CC, PSNR, SSIM, and UIQI on the FLIR data set. The VIF
index is slightly lower than the ESRGAN+ method, and the
time consumption is greater than the ESRGAN method.

The quantitative results of comparison of different recon-
struction methods on the Itir_v1_0 dataset are shown in
Table 2, indicating that the proposed method is superior to
the SRCNN [5], ESPCN [8], SRGAN [13], ESRGAN [15],
and ESRGAN+ [16] methods on the Itir_v1_0 dataset. Only
the time consumption is slightly greater than the ESRGAN
method.

In order to more intuitively illustrate the effectiveness of
the superresolution method proposed in this work for
improving the edge features of infrared images, we show in
Figure 8 the comparison of the edge detection results of the
superresolution reconstruction results of various methods.
It can be seen from the figure that the image reconstructed
by our method has more and clearer edge information, which
is meaningful for the application of infrared images.

3.3. Use Advanced Vision Tasks to Compare Superresolution
Results. Basic vision tasks including image superresolution
reconstruction are all for advanced vision tasks. Infrared
images are widely used in target detection and target match-
ing tasks, but the shortcomings of low resolution and unclear
edges of infrared images affect the accuracy of the above
tasks. Therefore, whether the result of infrared image super-
resolution reconstruction can improve the accuracy of the
above tasks has become an evaluation index of the result of
superresolution reconstruction. In order to further verify
our method, we match the superresolution images generated
by several methods with real high-resolution images. Scale

Invariant Feature Transform (SIFT) is a representation of
the statistical results of Gaussian image gradients in the field
of feature points and is a commonly used image local feature
extraction algorithm. In the matching result, the number of
matching points can be used as a criterion for matching qual-
ity, and the corresponding matching points can also deter-
mine the similarity of the local features of the two images.
Figure 9 shows the result of matching the superresolution
reconstructed image with the original high-resolution image
through the SIFT algorithm. It can be seen from the quantity
that the reconstructed image produced by our proposed
method obtains more correct matching pairs than other
methods.

In this experiment, we use the classic YOLO [40] method
for image target detection (Figure 10). It can be seen that the
superresolution reconstructed image generated by our pro-
posed method has better detection results and can detect
more targets.

4. Discussion and Future Work

Through experiments, we demonstrate that compared with
other methods, the proposed method has a better perceptual
performance. However, during the experiment, we also
found that for some images, the reconstruction results are
not satisfactory, as shown in Figure 11. By analyzing these
images, we found that they have common characteristics,
i.e., when the imaging device and the imaging object are mov-
ing at high relative speeds, the captured image may contain
motion blur. For such images, ordinary SR reconstruction
methods cannot achieve effective edge recovery. Therefore,
in future studies, we will address these problems.

5. Conclusion

In this study, we propose a two-stage GAN framework that is
able to reconstruct SR image by recovering edge structure
information and retaining feature information. In the first
stage, the image fidelity loss, the adversarial loss, and the edge
fidelity loss are combined to preserve the edges of the image.
In the second stage, the image adversarial loss, the image
fidelity loss, and the feature fidelity loss are combined to mine
image visual features. By iteratively updating the generative
network and the discriminator network, the SR reconstruc-
tion of infrared image with preserved edges is achieved.
Experimental verification results show that the proposed
method outperforms several other image reconstruction
methods in reconstructing SR infrared images.

Figure 11: Images with motion blur cannot obtain clear edge information using the ordinary SR reconstruction methods.
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