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Abstract
We propose a learning-based postfilter to reconstruct the

high-fidelity spectral texture in short-term Fourier transform

(STFT) spectrograms. In speech-processing systems, such as

speech synthesis, voice conversion, and speech enhancement,

the STFT spectrograms have been widely used as key acoustic

representations. In these tasks, we normally need to precisely

generate or predict the representations from inputs; however,

generated spectra typically lack the fine structures close to the

true data. To overcome these limitations and reconstruct spec-

tra having finer structures, we propose a generative adversar-

ial network (GAN)-based postfilter that is implicitly optimized

to match the true feature distribution in adversarial learning.

The challenge with this postfilter is that a GAN cannot be eas-

ily trained for very high-dimensional data such as the STFT.

Therefore, we introduce a divide-and-concatenate strategy. We

first divide the spectrograms into multiple frequency bands with

overlap, train the GAN-based postfilter for the individual bands,

and finally connect the bands with overlap. We applied our pro-

posed postfilter to a DNN-based speech-synthesis task. The re-

sults show that our proposed postfilter can be used to reduce the

gap between synthesized and target spectra, even in the high-

dimensional STFT domain.

Index Terms: postfilter, deep neural network, generative adver-

sarial network, statistical parametric speech synthesis

1. Introduction

The aim of many speech-processing systems, including speech

synthesis, conversion, enhancement, separation, and coding, is

to produce speech with quality indistinguishable from clean and

real speech. However, the quality of synthesized or processed

speech is usually not as good as that of real speech. In this pa-

per, we address the problem of restoring spectro-temporal fine

details of a synthetic speech signal to make it sound like real

speech.

Many methods for statistical parametric speech synthesis

and voice conversion tend to produce over-smoothed spectra,

which often result in muffled and buzzy synthesized speech.

This is caused by a side effect of assuming a particular form

of loss function (e.g., mean squared error) or distribution (e.g.,

Gaussian) for parameter training of the acoustic model. Con-

ventionally, postfiltering methods based on the global variance

[1, 2] or the modulation spectrum [3] have proved to be effective

in improving the intelligibility of synthesized speech.

Meanwhile, speech enhancement and separation are typi-

cally carried out using a Wiener filter or a time-frequency mask.

While a time-frequency mask allows aggressive suppression of

noise components, it can also over-suppress and damage speech

components. A Wiener filter provides a conservative way of

separating out a speech signal from a mixture signal so that

the sum of the separated signals is ensured to be equal to the

mixture; however, it often produces artifacts perceived as time-

varying tones known as musical noise. To reduce artifacts or

musical noise in processed speech, postprocessing methods us-

ing cepstral smoothing techniques have been proposed [4].

In both the fields, the limitations of many current postpro-

cessing methods are to rely on heuristics due to the difficulty of

modeling the exact probability density of the spectrograms of

real speech. This typically causes generated spectra to lack the

fine structures close to the true data. Recently, some studies pro-

posed learning-based postfilters [5, 6], but they designed them

with a particular form of loss function or distribution, which

still resulted in over-smoothing.

To overcome this limitation, in our previous study [7], we

proposed the use of a generative adversarial network (GAN) [8],

which makes it possible to generate random samples following

the underlying data distribution without the need for the explicit

form of its density, to construct a postfilter for acoustic-feature

sequences generated using a deep neural network (DNN)-based

text-to-speech (TTS) synthesizer. In the previous study, we

showed the effectiveness of our postfilter for a sequence of low-

dimensional vocoder features (typically around forty dimen-

sions), such as the mel-cepstral features, as the inputs and out-

puts, but its effectiveness for a sequence of high-dimensional

features, such as the short-time Fourier transform (STFT) spec-

tra, has not been clarified.

Motivated by this background, in this paper, we explore a

GAN postfilter that allows the handling of high-dimensional

features, such as the STFT spectra, so that our postfilter can

be applied to any speech-processing system (not limited to

speech synthesis) that produces the spectrograms of speech. To

the best of our knowledge, this is the first study to explore

such a postfilter. This is particularly useful and convenient

because once a magnitude spectrogram is obtained, we can

use phase-reconstruction algorithms [9] to reconstruct a time-

domain waveform signal.

In a previous study [10], we proposed a DNN-based TTS

system that directly produces a sequence of STFT spectra. In

the experiments, we applied our proposed postfilter to the STFT

spectrograms generated using our DNN-TTS system. The ex-

perimental results revealed that the use of the proposed postfil-

ter had a certain effect in reducing the gap between synthesized

and target spectra, even in the high-dimensional STFT domain.

This paper is organized as follows. In Section 2, we explain

the proposed GAN-based postfilter for the STFT spectrograms.

In Section 3, we explain how we used it in our DNN-based TTS

system. We present the experimental results in Section 4 and

summarize our findings in Section 5.
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Figure 1: System overview of proposed GAN-based postfilter for high-dimensional STFT spectrograms.

2. GAN-based postfilter

Our proposed postfilter is built upon the GAN-based postfilter

that we previously proposed [7]. In this section, we first briefly

review a GAN then explain the formulation for using a GAN

as a postfilter for vocoder parameters. Next, we introduce our

proposed postfilter that can be applied to the high-dimensional

STFT spectrograms.

2.1. GAN

A GAN [8] is a framework for estimating a generative model by

an adversarial process, and the goal is to learn a generator distri-

bution PG(x) that matches the true data distribution PData(x).
It is composed of two networks. One is a generator G that maps

noise variables z ∼ PNoise(z) to the data space x = G(z). The

other is a discriminator D that assigns probability p = D(x)
when x is sampled from the PData(x) and assigns probability

1− p when x is sampled from the PG(x). The D and G play a

two-player minmax game, and the GAN objective is written as

min
G

max
D

Ex∼PData(x)[logD(x)]

+ Ez∼PNoise(z)[log(1−D(G(z)))]. (1)

This encourages D to find the binary classifier that gives the

best possible discrimination between true and generated data

and simultaneously encourages G to fit the PData(x). Both G

and D can be trained using back-propagation.

2.2. GAN-based postfilter for vocoder parameters

By using the functionality of a GAN that is implicitly optimized

to match the true feature distribution in adversarial learning, we

previously proposed a GAN-based postfilter to reconstruct the

true spectral texture generated using a vocoder [7]. We made

three changes to the naive GAN architectures of conditional,

residual, and convolutional to use a GAN for postfiltering.

Conditional: Our goal is to reconstruct spectral texture x

from synthesized spectral texture y and random noise z. To

achieve this, we use a conditional GAN (CGAN) [11, 12],

which is an extension of a GAN, where G and D receive ad-

ditional data y as input:

min
G

max
D

Ex,y∼PData(x,y)[logD(x, y)]

+ Ez∼PNoise(z),y∼Py(y)[log(1−D(G(z, y), y))]. (2)

Here, z represents the stochastic fluctuation in reconstructing a

natural spectral texture from a synthesized one.

Residual: To shorten the entire process of generating the

spectral texture, we design G as follows

G(x, y) = y + T (x, y), (3)

where T represents residual texture [13].

Convolutional: Based on the observation that a spectral

texture is structured in both time and frequency directions, we

use convolutional architecture to determine the structure with

reasonably small number of parameters. In particular, we de-

sign G as a fully convolutional network (FCN) [14] that allows

input segments to take an arbitrary length.

2.3. GAN-based postfilter for STFT spectrograms

The STFT spectrogram is not only high dimensional but also

has a different structure depending on the frequency bands, e.g.,

a clear harmonic structure can be observed in the low-frequency

band, while randomness increases in the high-frequency band.

This makes it difficult to estimate the spectrogram distribution

with the naive GAN-based postfilter described in Section 2.2.

To mitigate this problem, we propose a method that converts

the spectrograms on a band-by-band basis. With this method,

we divide the spectrograms into multiple bands, train a single

GAN-based postfilter for each of the individual bands, which

is easier to model than the entire band, and finally concatenate

them. The system overview is summarized in Figure 1. We

describe the details of each step as follows.

Dividing: We first divide the spectrograms into N fre-

quency bands, each of which ranges from the fs
i -th to the fe

i -th

frequency, where N is the number of bands and i = {1, ..., N}.

During division, we make the bands overlap with vi bands,

where vi is the overlap length between the i-th band and (i+1)-
th bands, i.e., vi = fe

i −fs
i+1. We use the overlap representation

to smoothly concatenate the individual bands afterwards.

Postfiltering: For each band, we train the GAN-based post-

filter that we describe in Section 2.2. In the divided band, a

spectrogram is not only lower dimensional but also has a more

homogeneous structure than that in the entire band; therefore, it

is easier to model.

Concatenating: In order to connect the reconstructed spec-

trograms smoothly, we apply a window function (e.g., hanning,

hamming, or blackman) to both ends of each band before con-

nection, where the window width is 2vi and half of the window

function is applied to each end. This method works well, as

shown in the reconstructed spectrogram in Figure 1. In prelim-

inary experiments, we also tested a model in which the spec-

trograms are divided and connected without overlap. In this

model, the reconstructed spectrogram tends to have discontinu-

ity between the bands, causing a popping sound.

3. Application to speech synthesis

In this section, we describe how we used the proposed GAN-

based postfilter in a DNN-based speech synthesis system. The

improved components include direct STFT-spectra prediction



Figure 2: DNN-based acoustic model for STFT spectra. In this

model, logF0 and voiced/unvoiced values are used as input fea-

tures as well as linguistic features.

from text, postfiltering of the predicted STFT spectra, and wave-

form generation using enhanced STFT spectra and phase recov-

ery.

Direct STFT-spectra prediction from text: Figure 2

shows the acoustic model used in this study. This acoustic

model directly predicts STFT spectra based on a feed-forward

NN [10]. Also, in contrast to a conventional DNN-based acous-

tic model [15], we use F0 information as input features as well

as linguistic features to predict STFT spectra, which include

harmonics derived from F0. To use the benefit of directly us-

ing the STFT spectra, the Kullback-Leibler divergence (KLD)-

based criterion [16, 17] is used for training a DNN effectively.

According to our previous experiment [10], this DNN-based

TTS system leads to better quality of synthetic speech than that

generated from a system using a vocoder.

Postfiltering of predicted STFT spectrograms: The pre-

dicted STFT spectra from the acoustic model is enhanced by

a signal-processing-based postfilter first [18], followed by the

proposed GAN-based postfilter described in the previous sec-

tion. We apply the signal-processing-based postfilter for en-

hancing spectral peaks of predicted spectral amplitudes as fol-

lows. 1) The predicted STFT spectral amplitudes are converted

into linear-scale cepstrum vectors that have the same dimen-

sions as the STFT amplitudes, 2) the postfilter is applied to the

cepstrum vectors for peak enhancement, and 3) the cepstrum

vectors after postfiltering are converted back into the spectral

amplitudes. These modified STFT spectra are then used as in-

put features for the proposed GAN-based postfilter.

Waveform generation based on phase recovery: The

speech-waveform generated from postfiltered STFT spectral

amplitudes is based on a well-known phase-recovery algorithm

proposed by Griffin and Lim [9]. The algorithm consists of the

following iterative steps.

1. Generate initial speech waveforms using inverse STFT

of predicted STFT spectral amplitudes A with or without

a postfilter and random phase θ at each frame, followed

by overlap-add operations.

2. Window the speech waveforms and apply STFT at each

frame to obtain new spectral amplitudes Â and phase val-

ues θ̂.

3. Replace the STFT Â with the original A at each frame.

4. Generate a new speech waveforms using inverse STFT

of original STFT spectral A and updated θ̂ followed by

overlap-add operations.

5. Go back to step 2 until convergence.

This framework may be considered as another type of

DNN-based speech synthesis system without a vocoder to avoid

quality deterioration such as buzziness caused by using the

vocoder. In this framework, the quality of synthetic speech

Table 1: Network architectures for proposed GAN-based post-

filter.

Generator (Input: F × T spectrogram + F × T noise)

5× 5 128 conv., ReLU + input spectrogram

5× 5 256 conv., ReLU + input spectrogram

5× 5 128 conv., ReLU + input spectrogram

5× 5 1 conv.

Discriminator (Input: F × Tc spectrogram)

5× 5 64 conv. ↓, LReLU

5× 5 128 conv. ↓, BNorm, LReLU

5× 5 256 conv. ↓, BNorm, LReLU

5× 5 512 conv. ↓, BNorm, LReLU

1 fully connected, sigmoid

totally relies on the prediction accuracy of the STFT spectra.

We observed that refinement of the amplitudes using a signal-

processing-based postfilter improves the synthesized speech

quality [10], but the filter is designed to enhance the peak frame-

by-frame; hence, the characteristics of STFT spectra, i.e., time-

frequency dependency, are not appropriately considered. There-

fore, the proposed GAN-based postfilter for STFT spectra is ex-

pected to further improve the synthesized speech quality.

4. Experiments

4.1. Experimental conditions

The database that was provided for the Blizzard Challenge 2011

[19], which contains approximately 17 hours of speech data

composed of 12K utterances, was used for the experiment. All

data were down-sampled from 48 to 32 kHz. Two hundred sen-

tences not included in the database were used as a test set. The

speech data were windowed at a frame rate of 160 points to

extract their frequency spectra with 1025 STFT points. The lin-

guistic features for the DNN-based acoustic model were com-

posed of 396 dimensions. The logF0 and voiced/unvoiced val-

ues were also used as input features of the DNN-based acoustic

model. Five-hidden-layers feed-forward neural networks with

a sigmoid based activation function were used for the acoustic

model.

In the synthesis phase, we used logF0 and voiced/unvoiced

values predicted from a conventional vocoder-based system

[20] as input features. In this conventional system, 49-

dimensional bark-cepstral coefficients (plus the 0th coefficient)

obtained from WORLD spectra, logF0, 25-dimensional band

aperiodicity measures, their dynamic and acceleration coeffi-

cients, and voice/unvoiced values were modeled based on a

DNN. Phoneme durations were estimated by a HMM-based

speech synthesis system [21].

In the postfiltering phase, we divide the spectrogram into

four frequency bands. We set the parameters as (fs
1 , f

e
1 ) =

(1, 320), (fs
2 , f

e
2 ) = (257, 576), (fs

3 , f
e
3 ) = (513, 832), and

(fs
4 , f

e
4 ) = (769, 1024). We connected the bands with the

hamming-window function where the window width was 128.

Table 1 lists the network architectures for the GAN-based post-

filter. The symbol ↓ indicates down-sampling with stride 2.

The terms ReLU, LReLU, and BNorm indicate rectified linear

unit [22], leaky rectified linear unit [23, 24], and batch normal-

ization [25], respectively. As the input of the G, we used the

F × T spectrograms and the same-sized noise where F is the

frequency length and T is the frame length. The F was 320 for
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Figure 4: Results from subjective listening test

the first, second, third bands, and 256 for the fourth band. We

designed the G as an FCN, so we could take inputs of arbitrary

T . In the D, we used a fully connected architecture at the last

layer, so we fixed the input size as F × Tc with Tc = 64. Dur-

ing pre-processing, we normalized spectrograms to zero-mean

and unit-variance for each dimension using the training sets. We

trained our postfilter using an Adam optimizer [26] with a mini-

batch of size 16. The learning rate was set to 0.0002 for the D

and 0.001 for the G and the momentum term was set to 0.5.

4.2. Objective evaluation

Figure 3 shows the comparison of the synthesized, recon-

structed, and original STFT spectrograms. From (a) to (d),

we show the spectrograms in the individual frequency bands.

These results indicate that the proposed GAN-based postfilter

can not only emphasize the harmonic structure but also repro-

duce the detailed structures that are similar to those in the orig-

inal spectrograms from the over-smoothed synthesized spectro-

grams. Figure 3(e) shows all spectrograms. Our postfilter en-

ables the individual frequency bands to be connected smoothly.

4.3. Subjective evaluation

We conducted a listening test to compare a DNN-based TTS

system with the proposed GAN-based postfilter with another

1In synthesizing speech, the utterance length is predicted in our
acoustic model; therefore, it does not always match the original length.
This means the time length of the original spectrograms does not ex-
actly match those of the synthesized and reconstructed spectrograms.
We manually adjusted them for ease of viewing in the figure.

DNN-based TTS system without the filter. The listening test

that we used is a normal preferences test. The test was con-

ducted in acoustically isolated quiet booths, and 18 native

speakers of English have participated in the test. They were pre-

sented pairs of synthetic speech with or without the proposed

filter in random order, read out one of 8 sentences randomly

chosen from 200 test sentences, and were asked to choose a

sample that had better audio quality per pair.

The results of the preference test are shown in Figure 4.

The preference score of the DNN-based TTS system with the

proposed postfilter was better than that of the system without

the filter, and the difference was statistically significant accord-

ing to t-test (p<0.01). Hence, we can conclude that the pro-

posed GAN-based postfilter can improve the quality of syn-

thetic speech based on STFT representation.

5. Conclusions

We proposed a learning-based postfilter to reconstruct the high-

fidelity spectral texture in STFT spectrograms. To achieve this,

we first divide the spectrograms into multiple frequency bands

with overlap, train our proposed GAN-based postfilter for the

individual bands, and concatenate the bands using the window

functions. In the experiments, we applied our postfilter to a

DNN-based TTS system. Objective evaluation of the results

showed that the proposed postfilter can reproduce the fine struc-

tures close to the true data without discontinuity. Moreover,

subjective evaluation showed that our proposed postfilter sig-

nificantly improves speech quality. For future work, we plan to

apply our proposed postfilter to other tasks such as voice con-

version and speech enhancement.
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