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Computer vision is one of the hottest research fields in deep learning. -e emergence of generative adversarial networks (GANs)
provides a new method and model for computer vision. -e idea of GANs using the game training method is superior to
traditional machine learning algorithms in terms of feature learning and image generation. GANs are widely used not only in
image generation and style transfer but also in the text, voice, video processing, and other fields. However, there are still some
problems with GANs, such as model collapse and uncontrollable training.-is paper deeply reviews the theoretical basis of GANs
and surveys some recently developed GAN models, in comparison with traditional GAN models. -e applications of GANs in
computer vision include data enhancement, domain transfer, high-quality sample generation, and image restoration. -e latest
research progress of GANs in artificial intelligence (AI) based security attack and defense is introduced.-e future development of
GANs in computer vision is also discussed at the end of the paper with possible applications of AI in computer vision.

1. Introduction

Computer vision (CV) is a science that studies how to make
a machine “see.” In 1963, Larry Roberts fromMITpublished
the first doctoral dissertation in this field, “Machine Per-
ception of -ree-Dimensional Solids”, marking the begin-
ning of CV research as a new direction of artificial
intelligence. -e background of this field was initially in-
spired by the human visual system, which is divided into two
parts: the brain and eye. -ey cooperate so that the human
visual system can easily explain any scene. For example, it
can distinguish among tens of thousands of categories of
objects through learning in the process of people’s growth
and can find specific goals in a very short time in a particular
scene. It is easy to switch between several types of recog-
nition processes with flexibility and rapidity. However, its
complexity and dynamics have not been well understood
and explained at present [1]. -is field is to create a system
with the same perception ability as the human visual system.
And this system has been very diverse and complex after
decades of development.

Computer vision is one of the most popular research
directions in the field of deep learning at present. It is a
cross-disciplinary subject, including computer science and
technology (e.g., theory, systems, graphics, algorithms, and
architecture), advanced mathematics (e.g., information re-
trieval, machine learning, probability, and statistics), in-
formation engineering (e.g., robotics, speech, natural
language processing, and image processing), physics (e.g.,
optics), biology (e.g., neuroscience), and psychology (e.g.,
cognitive science). Many directions overlap with computer
vision, which mainly involves image processing and ma-
chine vision. Other fields include pattern recognition,
computer graphics, AI medicine, automatic driving,
anomaly detection, AI-based attack, and defense. So far,
there are many definitions of computer vision; several rig-
orous ones are summarized as follows from the relevant
literature:

(1) Computer vision is an explicit and meaningful de-
scription of the construction of objective objects in
images
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(2) Computer vision calculates the characteristics of the
three-dimensional world from one or more digital
images

(3) Computer vision is based on perceptual images to
make useful decisions for objective objects and
scenes

Computer vision is most widely used in image pro-
cessing. It includes many aspects, such as image classi-
fication, image recognition, image detection, image super-
resolution, and domain transfer [2–6]. With the rapid
development of deep learning schemes, image restoration
technology for missing information [7, 8] has also
achieved great success in recent years. Due to the in-
sufficient storage of image databases in some fields, such
as medical image and underwater image, the general-
ization ability of models trained with a small amount of
data is poor. So in recent years, data enhancement
technology [9, 10] has succeeded by generative models
such as GANs. -e increase of data volume makes the
training effect of neural networks better and the gener-
alization ability and robustness of models stronger,
achieving higher accuracy in image recognition.

Visual recognition is a key component of computer
vision, consisting of three processes: classification, recog-
nition, and detection. -e rapid development of neural
networks and deep learning has greatly promoted the de-
velopment of these most advanced visual recognition sys-
tems. With the continuous progress of computer memory
and computing speed as well as the support of huge in-
formation data, a large number of fast-growing and practical
applications have emerged in this field. For example, with
the rapid development of 5G networks, a computer vision
system can collect real-time traffic signs, lights, pedestrians,
and vehicles on the road and transmit them to the host
computer for real-time control of vehicles to achieve au-
tomatic driving [11]. In the field of biometric recognition,
computer vision provides many feasible schemes, which
make face recognition, face matching, and fingerprint rec-
ognition technologies to penetrate all aspects of our lives.
For example, the newly operating Beijing Da Xing National
Airport has fully realized the inbound and outbound facial
recognition. In public security supervision, surveillance
cameras used to monitor suspicious behavior are widely
distributed in public places. Real-time personnel monitoring
is realized through target detection [12, 13] and faces rec-
ognition technologies [14–18], which provides effective help
for hunting suspicious persons. Microsoft Kinect has suc-
cessfully developed related game applications using stereo
vision technologies in-game and control. Netease Fuxi
Laboratory established virtual game characters through
GANs [19]. Among the major search websites, Google
Images has successfully used content-based query technol-
ogies to search related pictures, using algorithms to analyze
the content of the query image, returning the results
according to the best matching content. In recent years,
computer vision has been greatly promoted by the devel-
opment of deep learning schemes, which have made great
progress in the field of data processing [20, 21], accordingly

promoting the rapid development and application of
computer vision in many fields.

Computer vision is closely related to AI. -e mature
technologies of computer vision can be applied to AI.
Computer vision has a large number of basic applications of
quantum AI. Many scientists believe that computer vision
has opened the way for the development of AI. However,
there are also essential differences between them. AI em-
phasizes reasoning and decision-making, while computer
vision is still mainly for image information expression and
object recognition. “Object recognition and scene under-
standing” also involve image feature reasoning and decision-
making. However, it is still different from AI reasoning and
decision-making [22]. For example, Alpha Go and Alpha
Zero are not considered as computer vision but typical AI
contents instead.

In this survey paper, the research progress of GANs is
elaborated in detail with the following organization. In the
second section, the theoretical basis of GANs is introduced.
-e challenges and technical advantages of GANs compared
are discussed in comparison with traditional machine
learning schemes. In the third section, we introduce some
new derivative models on loss function and model structure
in comparison with the traditional GAN models, along with
analyzing the hidden space of GANs. In the fourth section,
the latest applications of GANs in computer vision are in-
troduced, including data enhancement, high-quality sample
generation, domain transfer, image restoration, and AI se-
curity. -is paper is concluded in the fifth section by
summarizing the development process of GANs and the
future development direction of GANs in computer vision.

2. Basic Theory of GANs

GANs are generative models proposed by Goodfellow et al.
in 2014 [23]. Since the introduction of GANs, many in-
teresting applications in image generation and other fields
have arisen, the model has been applied to various tasks of
computer vision. Generally speaking, generative models are
classified into two categories. -e first is the traditional
generation algorithm based on machine learning, which
consists of Restricted Boltzmann Machine (RBM) [24],
Näıve Bayes Model (NBM) [25], and Hidden Markov Model
(HMM) [26].-e other is deep learning models consisting of
the automatic encoder (VAE) [27], GANs, and its derivative
models. GAN is a generative model that generates target data
by latent variables. Specifically, game training is conducted
between generator and discriminator in the model, and
target variables with real data distribution are generated by
random variables (usually obeying Gauss distribution).
Compared with the traditional machine learning algorithm,
the model is simpler and more functional and has more
application scenarios. And it has better performance than
traditional algorithms on large data sets, such as ImageNet
[28] and CIFAR-100.

-e development process of GANs can be roughly
summarized into three stages. -e development process of
each stage is shown in Table 1. DCGAN and WGAN are the
milestones of each stage. DCGAN represents a significant
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generative model. Compared with previous GANs, this
model becomes more easily controlled and the model is not
easy to collapse. -e shortcomings and technical advantages
of GANs will be described in Sections 2.2 and 2.3. -e
emergence of WCGAN has brought the GAN models to a
new height. -is model can generate higher quality samples
[29]. According to the requirements of different tasks and
different scenarios, different GAN models have been pro-
posed one after another and have been widely used in the
field of computer vision. Moreover, it also has a good
performance in cross-domain fields, such as medical, art,
and security encryption fields. BigGAN [30] first generated
images with high fidelity and low variety gap, the accuracy
has been improved by leaps and bounds, and it is an im-
portant milestone in the development history of GAN.
StyleGAN [31] is another breakthrough in the field of GAN
research. StyleGAN has created a new record in facial
generation tasks. -e core of the algorithm is style transfer
technology or style mixing. In addition to generating faces, it
can also generate high-quality images of cars, bedrooms, etc.
In the use cases of face aging and other industries, Age-
cGAN [32] is very useful in cross-age face recognition,
finding missing children, and entertainment.

Not only that, with the further research of GANs, they
not only develop rapidly in image processing and video
processing but also can be used in speech processing, text
processing, and signal processing fields such as speech su-
per-resolution, text-synthesized images, ECG, and EEG
signal recognition. Recent research results show that GANs
can be combined with the field of signal communication to
achieve combinatorial optimization design [7]. -erefore,
GANs and its derivative models have strong vitality, and its
research and application are in the ascendant stage, which
has a broad application prospect in future development.

2.1. GAN Network Structure. GAN is popular because of its
unique network model architecture. GAN consists of two
parts: generator and discriminator. Generator and dis-
criminator are usually implemented by neural networks
[33]. -e inspiration for the GAN model comes from the
minimax two-player game. Generators generate samples
with approximate real data distribution through random
data. Discriminators need to discriminate between true
samples and false samples. Game training is used to optimize
model weight parameters between the two networks to
improve the generalization ability of the model. Finally, the
data distribution of false samples generated by the generator
is more in line with the data distribution of true samples,
while the discriminator has half the probability to

distinguish the true samples and half the probability to
distinguish the false samples. -e ideal state of the model is
that the discriminator cannot distinguish the false samples
from the true samples eventually to achieve an indivisible
equilibrium state [34]. Figure 1 shows the network archi-
tecture of GAN. Implicit variable Z generates false samples G
(z) by the generator. -e discriminator determines the
authenticity of two kinds of input data (true samples and
false samples), outputs their discrimination probability
through objective function, and optimizes the two network
structures.

-e loss function of GAN is based on the minimax game
of two gamers, which includes two neural networks com-
peting with each other in the framework of a zero-sum game
[35]. -e discriminator needs to distinguish the input data
from the true one and optimize the weights of the network
model by the backpropagation algorithm. -e input pa-
rameters of the discriminator are X and θ(D). -e loss
function of the discriminator is

V D, θ(D)( ) � −Ex∼pr(x)[logD(x)] − Ez∼pg(z)[log(1 −D(G(z)))].
(1)

Among them, Pr represents the data distribution of true
samples and pg represents the data distribution of false
samples generated by the generator. -e input parameters of
the generator are Z and θ(G), and the loss function is as
follows:

V G, θ(G)( ) � Ez∼pg[−log(D(G(z)))]. (2)

-e discriminator and the generator optimize the
weights θ(D) and θ(G) of each model through loss function,
respectively. -e generator and the discriminator do not
change the model parameters of each other when they are
trained. GAN will not stop training until the two network
structures reach the Nash equilibrium [36]. In the GAN
model, two kinds of network structures are trained with the
adversarial model. -e final objective function of GAN
model is as follows:

min
G

max
D
V(G,D) � min

G
max
D
Ex∼pr(x)[logD(x)]

+ Ez∼pg(z)[log(1 −D(G(z)))].
(3)

In GAN training, generators and discriminators are
trained alternately. First, discriminator D is trained, and
then generator G is trained. When one of the network
structures is trained, the other structure is fixed, so alter-
nating training two networks one by one. In theory, to get
the optimal solution for V (D, G), discriminator should be
trained K times firstly and then the generator should be

Table 1: Development of GANs.

Stages Stage 1 Stage 2 Stage 3

Time 2014.06–2015.11 2015.11–2017.01 2017.1-today
GAN models GAN->DCGAN DCGAN->WGAN WGAN-> today

Improvements
GAN is the beginning of
generating the adversarial

model

DCGAN uses many new methods to make the
model more stable such as batchnorm, ReLU, and

leaky ReLU

WGAN uses weight clipping solving
the problem of gradient

disappearance
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trained once. But in practice, that K is equal to 1 is found to
be more suitable.

V (G, D) is a common cross-entropy loss problem in
binary classification. From the formula, it is a binary clas-
sification problem for discriminator D. To ensure that the V
(G, D) can achieve the maximum value, the followingD∗(x)
can be obtained after derivation of V (G, D):

D∗(x) �
pr(x)

pr(x) + pg(x)
. (4)

-e KL divergence of Pr(x) and pg(x) can be obtained
by introducing the above formula into the objective func-
tion, which can better explain the training of the model. -e
specific explanation can be found in Section 2.3. For gen-
erator D, since there is no logD(x) item in the model, so the
generator’s objective function can be simplified as follows:

min
G
V(G,D) � min

G
Ez∼pg(z)[log(1 −D(G(z)))]. (5)

For the whole GAN network, the central idea is at-
tributed to the Nash equilibrium of game theory [37]. -e
model needs to train discriminators to improve the dis-
criminant rate between true samples and false samples. At
the same time, generators need to constantly minimize log
(1−D (G (z)) to generate more realistic samples to confuse
the discriminator. GAN network trains the model by al-
ternating optimization method, when and only when
pr �pg, and GAN reaches the global optimal solution.

2.2. Challenges of GANs. Although GANs have achieved
good results in many fields, GANs also face some challenges,
such as the gradient disappearance in training, the phe-
nomenon of model collapse in unstable training, the poor
diversity of GAN generators, and uncontrollable training.

-e main problem of GAN is to minimize and measure
the distance between the two distributions pr and pg. When
the generator is fixed, the training of discriminator is also a
process of minimizing the cross-entropy.

In the GAN network structure introduced in Section 2.1,
from (4) and (3), we can obtain the following formula:

V D, θ(G)( ) � KL pr
pr + pg

2
( ) + KL Pg

pr + pg
2

( ) − 2 log 2.

(6)

KL represents KL divergence; KL is an asymmetric
measure of similarity between two distributions. Its defi-
nition is shown in

KL pr
pg( ) � Ex∼pr log

pr(x)

pg(x)
[ ]. (7)

Equation (8) is another JS divergence that defines
distance:

JSD pr
pg( ) � 1

2
KL Pr

pr + pg
2

( ) + 1

2
KL Pg

pr + pg
2

( ).
(8)

-rough (7) and (8), (6) can be changed as follows:

V D, θ(G)( ) � 2JSD pr
pg( ) − 2 log 2. (9)

-erefore, for optimizing the objective function of GAN,
the ultimate goal is to optimize the JS divergence of generator
and discriminator, making the distribution of pg and pr more
similar. When the two distributions do not intersect, their JS
divergence is a constant−2 log2. At this time, the gradient of the
generator and discriminator is 0, which makes model training
more difficult. Because the parameter of generator input data is
low dimension and the parameter dimension of the real sample
is generally high, so the overlap area of pg and pr is too less to
calculate, which leads to the gradient disappearance.

-e original GAN generator has two loss functions, one
loss function shown in (2) and the other loss function as
follows:

V(G) � Ex∼pg[−logD(x)]. (10)

We can transform the KL divergence into the formwithD∗:

KL pg

pr( ) � Ex∼pg log
pg(x)

pr(x)
[ ]

� Ex∼pg log
pg(x)/ pr(x) + pg(x)( )
pr(x)/ pr(x) + pg(x)( ) 

� Ex∼pg log
1 −D∗(x)

D∗(x)
[ ]

� Ex∼pglog 1 −D∗(x)[ ] − Ex∼pglogD∗(x).
(11)

True or false?

Generator

Discriminator

Random

noise z

True

sample x

False

sample

G (z)

Figure 1: GAN network architecture.
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From (9)‒(11), we can get the equivalent deformation of
the minimum target:

Ex∼pg −logD
∗
(x)[ ] � KL pg

pr( ) − Ex∼pglog 1 −D∗(x)[ ]
� KL pg

pr( ) − 2JS pr
pg( ) + 2log2 + Ex∼pr logD∗(x)[ ].

(12)
-e last two terms of the above formula do not depend

on G. -e minimization (10) is equivalent to minimization:

KL pg

pr( ) − 2JS pr
pg( ). (13)

-ere are two problems in (13). Firstly, the KL diver-
gence of generated distribution and real distribution should
be minimized, while the JS divergence of both should be
maximized. Secondly, because KL divergence is asymmet-
rical, KL(pg‖pr) is different from KL(pr‖pg).

When

pg(x)⟶ 0, pr(x)⟶ 1: pg(x)log
pg(x)

pr(x)
⟶ 0,KL pg

pr( )⟶ 0,

(14)
the model lacks diversity; when

pg(x)⟶ 1pr(x)⟶ 0: pg(x)log
pg(x)

pr(x)
⟶∞,KL pg

pr( )⟶∞,
(15)

the model lacks accuracy and the generator cannot find a
balance between them, so it is easy to cause model collapse.

In the original loss function (2), we face the problems of
gradient disappearance and training difficulties. When (10)
became the loss function of the generator, it will face the
problems of optimization objective uncertainty, gradient
instability, and model collapse [38]. So, the main problem of
GAN is to choose the right distance function at present. We
need to find a distance function that is better than JS di-
vergence or KL divergence to make the model optimization
more reasonable, facilitate themodel convergence, andmake
the distribution pg more similar to pr [7].

2.3. Advantages of GANs. Compared with other generative
models, GANs have two characteristics. First, GANs do not
rely on any prior assumptions. Many traditional methods
assume that the data obey a certain distribution and then use
maximum likelihood to estimate the data distribution. GAN
training is simpler and more diverse. Secondly, the way to
generate real-like samples is very simple. GAN generates
real-like samples by forward propagation of generator to
generate deceptive data, while the traditional sampling
method is very complex. -e emergence of GAN overturns
the traditional artificial intelligence algorithm which re-
stricts people’s thinking. It provides a powerful method for
unsupervised deep learning models. GAN uses machines to
interact with machines through continuous adversarial
training. After sufficient data training, it can learn the in-
herent laws in the real world.

3. Evolution of GANs

With the continuous exploration of the GAN field, more and
more GAN derivative models emerge in an endless stream.
To deal with different problems, different GAN derivative
models play a great role in their respective fields. Aiming at
the problems and challenges faced by GAN described in
Section 2, the problems in GAN models can be roughly
divided into two categories: one is to improve the loss
function in dealing with gradient disappearance and model
collapse in the derivative models of GAN; the other is to
improve the model structure of GAN for the problems of
poor sample richness. In the next two sections, this paper
will elaborate on the latest development and exploration of
the GAN model evolution in the different domains.

3.1. Loss Function. -e selection of loss function is the most
important problem for the GAN model. -e loss function
has a direct influence on the gradient disappearance and the
model collapse. For generators, the input data are usually
low-dimensional random vectors, and the dimension of real
samples is generally high. Generators usually generate high-
dimensional false samples through U-net and other neural
networks. Because of the difference in dimension space, it
may lead to the overlap area of the distribution of true
samples and false samples to be 0. -e JS divergence
measures the distance between the true sample distribution
and the false sample distribution will be constant. -e
gradient disappearance will happen and the training of the
model will become very difficult. To achieve the stability of
training and reduce the phenomenon of gradient disap-
pearance, different kinds of GAN derivative models based on
loss function improvement emerge endlessly. Table 2 lists
the derivative models improved by loss function in recent
years while Table 3 shows some comparisons on four main
models. For each improved model, the discriminator loss
function and generator loss function are given, respectively.
StackGAN is a two-stage generative model. -e discrimi-
nator loss function and generator loss function of the
StackGAN++ model improved by the StackGAN model are
given in Table 2. -e table only lists the improved GAN
model based on loss function, which is tabular in recent
years. It can be seen that the change of loss function is a
popular trend for the improvement of the GAN model.

WGAN uses Wasserstein distance instead of JS diver-
gence to solve gradient disappearance and unstable model
training in vanilla GAN. -e Wasserstein distance is

W pr, pg( ) � inf

c∼∏ pr ,pg( )E(x,y)[‖x − y‖]. (16)

∏(pr, pg) is a set of all possible joint distributions combined
by Pr and Pg. For each possible joint distribution c, we can
get a real sample x and a generated sample y from the sample
(x, y) ∼ c and calculate the distance ‖x − y‖ of the pair of
samples. In all possible joint distributions, the lower bound
of the expected value is defined as Wasserstein distance.

-e advantage of Wasserstein distance compared with
KL divergence and JS divergence is that even if the two
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distributions do not overlap, Wasserstein distance can still
reflect their distance. Because of its superior smoothing
characteristics compared with KL divergence and JS di-
vergence, it can theoretically solve the problem of gradient
disappearance.-en, theWasserstein distance is written as a
solvable form by mathematical transformation, and the
Wasserstein distance can be approximated by maximizing
this form by using a discriminator neural network with a
limited parameter value range. Under this approximate
optimal discriminator, the distance of Wasserstein is re-
duced by optimizing the generator, which can effectively
narrow the generated distribution and the real distribution.
WGAN not only solves the problem of unstable training but
also provides a reliable index of the training process, which is
highly related to the quality of generated samples.

PAN [40] is a perceptual adversarial network improved
by the loss function. In the training of the model, the dif-
ference between the true sample and the false sample is
constantly found by discriminator and the weight param-
eters of the network are updated by calculating the value of
the loss function to improve the accuracy of sample rec-
ognition. -e generator also updates the parameters of the
network by calculating the value of the loss function to
generate more realistic false samples. PAN adds a loss
function called the perceptual adversarial loss to the tra-
ditional GAN loss function. -e loss function calculates the
difference between the eigenvalues of true samples and false
samples extracted from different layers of the discriminator
network when discriminating between true samples and
false samples in cyclic training.-e difference is added to the
loss function of the traditional generator and discriminator.
-e respective objective functions are shown in Table 2, and
the calculation of the difference between the true samples
and the false samples in distinguishing the high-level fea-
tures of the discriminator network is shown in (11). PAN
network is superior to traditional GAN network in image-
to-image conversions, such as image dewatering and image
restoration. Its network structure is shown in Figure 2:

ℓD,jpercep �
1

n
∑n
i�1

dj yi( ) − dj G xi( )( ) . (17)

Building footprint information is an important part of
the three-dimensional reconstruction of the urban model.

-e automatic generation of building footprint images from
satellite images is a considerable challenge. To improve the
quality of building footprint image generation, Shi et al. [44]
proposed CWGAN based on CGAN and WGAN. -ere are
some problems with the original GAN model. To solve the
problems of uncontrollable GAN training and gradient
disappearance, Mirza et al. proposed a GAN derivative
model with conditional constraints-CGANs. -e objective
function is shown as follows:

LCGAN � Epx[logD(x |y)] + Epz[log(1 −D(G(z |y)))].

(18)
To solve the problem that the original GANmay collapse

during training, Arjovsky et al. proposed an alternative loss
function based on Wasserstein distance [39]. -e loss
function will provide more useful gradient information to
the generative network, which will greatly reduce the phe-
nomenon of gradient disappearance and improve the sta-
bility of the training model. A new GAN derivative model is
thus created-WGAN. CWGAN is based on these two ad-
vantages networks. Its objective function is as follows:

LCWGAN � Epx[D(x |y)] − Epz[D(G(z |y))]. (19)

-e experimental results show that the proposed method
can significantly improve the performance of the system.
Compared with conditional generative adversarial networks,
U-net, and other networks, the quality of building footprint
generation is improved. Other networks that improve the
model collapse by improving the objective function, such as
UnrolledGAN [48], have improved the optimizationmethod
of generator parameters to solve the problem of the unstable
and easy collapse of model training. By expanding and
optimizing the discriminator, the generator’s objective
function is updated dynamically; the diversity and coverage
of data are increased.

3.2. Model Structure. -e improvement of GAN model
structure has a good effect on reducing model collapse,
improving the stability of model training, and the quality of
sample generation, for example, a series of GAN derivative
models such as MRGAN, MAD-GAN [49], CGAN, Info-
GAN, ACGAN, AdaBalGAN, stackGAN [50], and

Table 3: Comparisons of GAN models on the loss function.

GAN models Improvements Shortages Applications

CGAN [8]
-rough adding a conditional variable c to
guide data generation and make the model

faster to converge

-e model is limited by data set
and data set needs both tags and

markeds

-e model through semisupervised
learning to generate a specified target

PAN [40]
-e loss function was composed by the
perceptual adversarial loss to train models

-e model is a supervised model
also needs the data set with both

tags and markeds

-e model can be applied to many image-
to-image conversions

CWGAN [44]
-e model is based on Wasserstein’s
condition which has a lower cost than

traditional GANs

Model collapses and has a lack of
diversity

-e model can be applied to short data
set’s training

FittingGAN
[46]

-e model is based on the CGAN loss
function but adds an L1 regularization

-e model accuracy is not very
high and has a lack of diversity

Be better than the image-to-image task, it
can generate images different from the

input image guide
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stackGAN++. -is is improved on the structure of the
traditional GAN models, which make the quality and di-
versity of generated samples better than the traditional GAN
model. Table 4 shows comparisons on some main GAN
models on the structure.

MAD-GAN (Multiagent diverse GAN model) uses
multiple generators and a discriminator to solve the problem
of poor sample diversity generated by one generator. -e
model structure is shown in Figure 3. Compared with the
traditional GAN, two generators are added, so a regular term
is added to the loss function design, which uses cosine
distance to punish the consistency of the samples generated
by the three generators. MRGAN improves the stability of
the model by adding another discriminator, which is used to
punish the samples generated when the model training
approaches collapse. -e model has three loss functions
during training. Each function is used to guide the gener-
ation of false samples, and the additional discriminator can
also judge whether the generated samples are diverse, thus
avoiding the phenomenon of model collapse happen.

-e traditional GAN model is trained alternately by a
generator and a discriminator to achieve a Nash equilibrium
state. Zhang Han et al. proposed stackGAN and stack-
GAN++ models, which broke the traditional one-stage
training mode and introduced a two-stage training mode.
StackGAN is a GAN-derived model for text-generated
images. -e first stage of this model is to give a text de-
scription, such as “-is bird has a gray chest and a very short
beak.” -rough this text description, the shape and color of
the original image are outlined from the first stage of the
generation model; therefore the low-resolution image is
obtained.-e second stage generates high-resolution images
with real details through the results and text description of
the first stage. Recently, the StackGAN++ model has been
improved on its original basis, which can execute sample

generation under conditional or unconditional generation
requirements. -e improved model is similar to the span-
ning tree structure, which contains multiple generators and
discriminators. Different branches of the spanning tree can
generate different sizes of images in the same scene.
Moreover, stackGAN++ has a more stable model structure
than stackGAN, and the generated samples are more au-
thentic. -e results of the two models are compared as
shown in Figure 4. StackGAN and stackGAN++ use this
hierarchical structure to solve the problem of the poor effect
of GAN in high-resolution image generation. Similar GAN
models include GoGAN [51] use a one-stage GAN model,
and Progressive GAN [52] generates samples through
multiple stages.

3.3. Hidden Space Decomposition. In the traditional GAN
model structure, implicit variable Z (usually random noise
with Gauss distribution and text description in text-gen-
erated images, etc.) generates false samples through gen-
erators. So far, however, it has not been well explained what
attributes are controlled by each digit in the implicit variable.
Taking the text-generated image as an example, the text
description t is compiled into a text embedding vector φt by
the compiler. In the original text-generated image [53, 54],
the text is embedded into the nonlinear transformation, and
the conditional implicit variable is generated as the input of
the generator. Hidden space is generally high-dimensional,
but the input is usually low-dimensional; a small amount of
data will lead to the discontinuity of implicit variables; for
generators, it is not an ideal state. -e stackGAN mentioned
above generates more conditional variables through con-
ditional extension technology. Specifically, implicit variables
are obtained from independent Gauss distribution
N(μ(φt), E(φt)), and μ(φt) representing the mean of text

True/fake

Input images x

Ground truth y

Image transformation network T

Transformed T(x)

Discriminative network D
ℓpercep

D,1

ℓpercep
D,2 ℓpercep

D,3 ℓpercep
D,4

n64s1

n64s2 n64s2

n128s2

n128s2 n128s2

n128s1
n256s2

n256s2

n256s1
n512s1

n512s2
n512s2

n512s2
n512s2

n512s2
n256s2

n512s2
n8s2

n512s2

Skip connections

Figure 2: PAN network structure [40].
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embedding vectors and E(φt) representing the covariance
diagonal matrix of text embedding. -rough conditional
expansion technology, the diversity and continuity of im-
plicit variables are improved, so more training data will be

generated with fewer texts, which makes the model training
more stable, and the generalization ability of the model will
be greatly improved.

In other derivative models, to improve the stability of
model training, implicit variables can be decomposed into a
conditional variable C and a standard input implicit variable
Z. -e training process can be divided into supervised and
unsupervised methods. -e supervised methods are mainly
composed of CGAN and ACGAN [4], etc. In the supervised
training process, implicit variables Z and category label C are
used as input of the generator. In CGAN, the discriminator
uses real samples, false samples, and category labels as input
to learning the correlation between labels and samples. -e
discrimination process in ACGAN is the same as traditional
GAN, but it will regress the class labels of the samples to
learn the correlation between the labels and the samples.-e
typical unsupervised model is InfoGAN. In the training
process, implicit variable Z and conditional variable C
sampled in uniform distribution are used as input of the
generator. Mutual information I(c;G(z, c)) [55] indicates
the amount of information about G (z, c) in C. -e purpose
of the discriminator is to enhance the correlation between C
and the generated results andmaximize mutual information.
SS-InfoGAN uses a semisupervised approach, dividing the
conditional variable C into two parts, c � css∩cus: css is
similar to CGAN learning, and cus is similar to InfoGAN
learning [20].

Table 4: Comparisons of GAN models on the structure.

GANmodels Improvements Shortages Applications

MAD-GAN
[49]

-e model uses many generators and a
discriminator to generate samples

Hard to convergence and lack of
diversity

-e model is applied to multivariate time
series anomaly detection

InfoGAN
[41]

-e model’s input is composed of c and
z’, through adding a classifier to predict
code c that generates x

Complex and with a large number
of params

-e model is unsupervised and learns
interpretable and disentangled

representations on challenging datasets

ACGAN [4]
-e model combines the advantages of
CGAN and SGAN to generate samples

Semisupervised and the model is
hard to converge in the small

amount of data

Can generate high-quality samples and
have diversity

StackGAN
[50]

-e model through two-stage training
generating more realistic samples

Complicated and need more
training time

-e model can be applied according to text
to generate images

True or false?

Generator

Discriminator

Random

noise z

True

sample x

False sample

G (z)

Generator

Generator

Random

noise z

Random

noise z

Figure 3: MAD-GAN model structure.

The bird is
short and

stubby with
yellow on its

body

This bird is red
and brown in
color, with a
stubby beak

Text
description

256 × 256
StackGAN-v1

256 × 256
StackGAN-v2

Figure 4: Comparison of stackGAN with its improved version [50]
(StackGAN-v1 is original stackGAN while StackGAN-v2 is the
stackGAN++ model; the latter can generate more realistic and
details samples).
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4. Application of GANs in Computer Vision

GAN is one of the most important research directions in the
field of computer vision. In particular, in image generation,
the image generated by GAN simulation almost reaches the
same level as the real picture. Moreover, by changing the
network structure of GANs, the generation model can be
applied to other fields, such as generative models to generate
game characters or game checkpoints, directly generating
virtual portraits in the game through portraits. GANs can
not only generate images but also play a great role in the text,
voice, signal processing, AI security, medical fields, etc.

4.1. Data Enhancement. In some areas, the data set reserves
are very small, such as the medical image field [56], the
artistic and cultural image field [57], and the biological signal
field [58]. -is will lead to the inadequate training of small
data sets, which will lead to the poor generalization ability of
the model when using deep learning algorithms. Traditional
computer vision image data enhancement technologies
include translation, rotation, flip, and scaling, but the di-
versity and richness of the data obtained by this method are
poor. With the continuous development of GANs in
computer vision’s field, using GAN models to enhance data
sets has been applied in many fields.

In the field of medical image, the biggest problem when
using a supervised learning machine model to classify im-
ages is small data sets and a small number of label samples.
-e small data sets will lead to inadequate training models.
In the past, in the process of collecting medical image data,
accurate labeling of images requires a lot of manpower and
time. In some data sets exposed in the field of medical
images, the data is only the certain specific fields’ images, for
example, the EEG and ECG.-erefore, too small a data set is
the biggest problem in training. NVIDIA researchers used
GAN networks to increase the data sets of brain medical CT
images with different diseases and showed that the classi-
fication performance using only classical data was 78.6%
sensitivity and 88.4% specificity. Using data sets enhanced by
adding synthetic data, the model could increase to 85.7%
sensitivity and 92.4% specificity. Figure 5 shows an image of
the hemangioma synthesized by the above researchers
through CGAN.

Biological signals, such as EEG or ECG, can effectively
reflect the health status of the human body. -e abnormality
of biological signals will reflect some symptoms of human
diseases. -rough the classification of biological signals, we
can understand the specific types of diseases reflected. With
the development of deep learning models, neural networks
perform better than traditional classification models in
classification. However, due to the lack of data sets, the
accuracy of the classification model is not very high. Haradal
Shota et al. [59] proposed a synthesis method of time series
data based on GAN and applied GAN models to biological
signals synthesis. Specifically, the generator generates syn-
thetic data, the discriminator judges whether the synthetic
data is real data, and the generating network and the dis-
criminating network are based on the long short-term

memory network (LSTM). -e LSTM network is beneficial
to generate biological signal time series. In the experiment
process, the real data is based on the biological signals: ECG
and EEG, and the original dataset is extended by the gen-
erative adversarial model.-e expansion of original data sets
will make the classification model trained more effectively
and improve the accuracy of classification. -e expansion of
data sets thus will help doctors improve the accuracy of
diagnosis and determine the direction of treatment.

Besides, Wen et al. applied a neural network to edge
calculation and established a data enhancement calculation
model. -e background of this data model is with the
vigorous development of art design, but the application of
national cultural elements in researchers is still limited to a
few samples and characteristics, and the current artistic
design ideas of cultural elements are unclear, have lack of
innovation, and have low practical value, which is not
conducive to the development of national element art de-
sign. To combine national elements with an artistic design
closely and promote the healthy development of artistic
design, it is necessary to provide sufficient data samples for
researchers. Given the above background, Wen and others
generated a large number of samples with artistic elements
through the GAN model. -e data enhancement model
solves the problems of low resolution, single feature, and too
little data quantity. Moreover, GAN is used to generate
innovative images, enrich the elements of national culture,
and provide more samples of artistic elements for re-
searchers on national culture study.

-e ultimate goal of data enhancement is to increase the
data set and improve the training effect of the model.
Whether the data generated by GAN can achieve the same
training effect as the real data, it is necessary to evaluate the
generated data. -e first method is to train the model only
with false data and test the accuracy of model classification
with real data. -e second method is the model trained with
real data to test whether the generated data is reasonable.
-rough the above methods, the data set can be expanded

Figure 5: Image of hemangioma generated by CGAN [56].
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with the generated data to improve the model generalization
ability.

4.2. High-Quality Sample Generation. In the field of com-
puter vision, GANs are widely used as generating models.
-e ability to learn the distribution of real samples through
GANs can not only generate higher resolution images
[15, 60] but also play an increasingly important role in the
fields of video super-resolution [61], speech super-resolution
[14], image enhancement [62], etc. GANworks in an end-to-
end manner; it learns the feature distribution and mapping
relationship of real samples better than traditional machine
learning algorithms. With the wide application of GANs,
more and more derivative models are applied to the gen-
eration of high-quality samples, such as DCGAN [63],
LAPGAN [64], and SAGAN [65]. Compared with the tra-
ditional generation models, these derivative models generate
more diversity of samples and more real samples; these
models are stable and are with faster convergence speed.
Table 5 shows four comparisons of GAN models in high-
quality examples generation.

As early as 2014, the convolution neural network [66] has
been used in the field of image super-resolution, but at that
time, the convolution layer number was relatively small and
the quality of the generated samples was poor. With the
rapid development of deep learning algorithms. ResNet [67],
DenseNet [68], and other multilayer neural network models
have been applied to solve the problem of image super-
resolution and achieved good results, but there are still some
factors such as the difficulty of model convergence and the
instability of model training. With the emergence of GANs,
researchers have devoted themselves to developing new
models to solve the problem of image super-resolution.
DCGAN,WGAN, and LAPGAN have better performance in
generating high-resolution images. Han Zhang et al. pro-
posed the SAGAN model, which realized the task of image
generation under attention mechanism and long-distance
dependence. Compared with other GAN networks, SAGAN
can generate high-resolution detail features by using spatial
local points in low-resolution images. SAGAN can generate
detailed information by using hints from all feature loca-
tions, and SAGAN adds spectral regularization to generation
networks, which achieves better results than previous GAN-
derived models in generating high-resolution images.

Video super-resolution (VSR) is a difficult problem in
video processing. -e main super-resolution algorithms
based on deep learning are SRCNN, ESPCN, VESPCN,
SRGAN, etc. -ese algorithms surpass traditional machine
learning algorithms in dealing with image and video super-
resolution problems. Alice Lucas et al. proposed a generation
model based on the generative adversarial idea of the
VSRResNet network model, combining with discriminator
to guide the generator to generate new samples. Using
traditional GAN models in video super-resolution will
produce artifacts, so the original objective function needs to
be regularized. Compared with the L2 regularization, the
author uses the Charbonnier distance function to regularize
feature space and pixel space. -e function is as follows:

c(x, y) �∑
i

∑
j

��������������
xi,j − yi,j( )2 + ε2

√
, (20)

where i and j represent pixel coordinates and ε represents a
very small constant. Using this function to provide regu-
larization in the pixel space ensures that the super-resolution
frame does not deviate greatly from the content of the
corresponding real sample high-resolution frame. In the
feature space, the deep feature is learned by discriminator to
compare the reconstructed frames from the real sample. -e
feature space is composed of the features extracted from the
third and fourth layers of the VGG network. -e objective
function is as follows:

minθmaxϕLtotal(θ, ϕ) � α ∑
(x,Y∈T)

c VGG(x),VGG Gθ(Y)( )( )
+ β Ex logDϕ(x)[ ][
+ EY log 1 −Dϕ Gθ(Y)( )( )[ ]]
+(1 − α − β) ∑

(x,Y∈T)
c x, Gθ(Y)( ).

(21)
A new model for video super-resolution, VSRResFeat-

GAN, is obtained. By using the PercepDist metric compared
with the current video resolution model, the model has great
advantages in quantitative and qualitative analysis.

4.3. Domain Transfer. Domain transfer is to transfer from
one image domain to another, such as image style transfer
and type conversion [69, 70]. Compared with traditional
image translation methods, GANs are free from formal
constraints and flexible to use. It can solve many different
tasks at the same time. It provides a unified framework for
different tasks through adversarial training. Several domain
transfer models include Pix2pixGAN [71], CycleGAN [72],
DiscoGAN [73], PAN, StarGAN [74], DTN [75], and Sim-
GAN [76]. Table 6 shows five comparisons of GAN models
in domain transfer tasks. Pix2pixGAN is an image style
transfer model proposed by Isola et al. in 2017. Taking the
satellite map generated by a plane map as an example, the
generator uses a U-net structure. -e input of the generator
is a grid-like plane map, and the output is a false sample
similar to the satellite map. -e discriminator uses Patch-
GAN network architecture, which can effectively reduce the
parameters of the discriminator and improve the training
speed and efficiency. -e discriminator inputs two pictures:
one is the false sample image generated by the generator and
the other is the real sample image of the satellite map. -e
discriminator determines which one is a true sample and
which one is a false sample. In the adversarial training, the
generated sample of the generator becomes more and more
real; at the same time, the discriminator will not be able to
distinguish which is the true sample. Finally, the network
can generate images with a real sample style based on
contour images. Pix2pixGAN is a supervised learning
method relying on the CGAN model. It needs a one-to-one

Computational Intelligence and Neuroscience 11



data set in training. -e sample generated by Pix2pixGAN is
more authentic with faster training speed.

Compared with Pix2pixGAN, CycleGAN is an unsu-
pervised generation model, which has attracted much at-
tention since it was proposed. -e main idea is to add a new
loss function: cyclic uniform loss function. To the traditional
GAN objective function, the formula of the loss function is
as follows:

Lcyc(G, F) � Epdata(x) ‖F(G(x)) − x‖1[ ]
+ Epdata(y)[log(‖G(F(y)) − y‖)].

(22)

CycleGAN is trained in two steps. In the first step, it is
the same as the Pix2pixGAN process. Y is the true sample set
and X is the false sample set. After the first round of training,
X under Y type will be generated. In the second step, the
training process data set is just the opposite data set in the
first step. X and Y will be exchanged in the training process.
After the second round of training, X under Y type will be
produced. In the two rounds of training, X and Y are not
required to be the same object, as long as their potential
models are the same. In error analysis, the model considers
two training processes and uses reconstruction error to
model. Specifically, the false sample Y generated in the first
round is used as the input of the second generator to
generate false sample X. -e error distance between X and
the false sample X needs to reduce. It is the same for Y; the

weight parameters of two pairs of GAN network models can
be optimized after error backpropagation. After such
training, the purpose to transfer Y style to X can be achieved,
where X and Y do not have the same limitations as Pix2pix
GAN data sets.-e objective function of the final CycleGAN
model is as follows:

L G, F,DX, DY( ) � LGAN G,DY, X, Y( ) + LGAN G,DX, X, Y( )
+ λLcyc(G, F).

(23)
Although CycleGAN does not require a one-to-one data

set, so the quality of the image generated by this model is not
as good as Pix2pixGAN, but its application scenarios are rich
and flexible.

DiscoGAN is a generative model that can discover cross-
domain relations. It generates cross-domain images through
DTN, but its data set still requires a set of one-to-one images.
PAN network has been introduced in Section 3.1. -is
network mainly adds perceptual adversarial loss to the
traditional GANmodel. -e difference of the loss function is
the diversity between the high-level features of true samples
and false samples extracted from the discriminator. PAN can
be used in more abundant scenes, which can carry out image
dewatering and snow removal, label image generates street
scene, satellite map generates a plane map, and contour map
generates real images and image restoration, etc. StarGAN is

Table 5: Comparisons of GAN models in high-quality examples generation.

GAN models Improvements Shortages Applications

DCGAN [63]
-e methods fraction-strided convolution,

batchnorm, and ReLU make the model more stable
and easy to converge

Model collapses and needs to
adjust parameters in different

conditions

Highest usage models in most
scenarios

LAPGAN [64]
Laplacian and Gaussian pyramids in the up and
down samples which make the model easy to

approach and learn residuals
Supervision model

High-resolution images
generation

SAGAN [65]
Using self-attention mechanism and two-timescale
update rule, the model can generate realistic images

-e attention mechanism is
limited

Large-scale classification of
conditional image generation

tasks
VSRResFeat
GAN [61]

Using GAN loss and Charbonnier distance in feature
and pixel space

-e noise in the estimated
frames is redundant

Video super-resolution

Table 6: Comparisons of GAN models in domains transfer.

GAN models Improvements Shortages Applications

Pix2pix [71]
Using U-NET network and PatchGAN architecture
which make the model easy to converge and images

are realistic

-e model is a supervised model and
also needs the data with both tags and

markeds

Style transfer and other
applications

CycleGAN
[72]

Cycle loss, self-constraint, and two-step
transformation. -e model training does not need a

large data set

-e quality of generated images is
lower than pix2pix

Most of the style
conversion scenes

DiscoGAN
[73]

Using two GAN models to discover cross-domain
relationships reducing model collapse and improve

image quality

Data sets must be one-to-one paired
images

Most scenes in domain
transfer

StarGAN
[74]

Adding control information of a domain to
understand the image which domain does it belongs

to

Needs a large number of different data
sets

Multidomain transfer

DTN [75]
Using several complex loss functions, generating

appealing emoji. From a facial image
-e generated images with low quality

Using real photos to
generate cartoon images
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a multidomain style transfer model. -e network is based on
CycleGAN, and a classifier is added to discriminator to
classify domains. -e image generated by the network is
shown in Figure 6. SemGAN is a semantically consistent
GAN model using a semantic segmentation algorithm. -is
model combines the loss function of traditional GAN with
cyclic restriction loss function, which enhances semantic
continuity and authenticity of generated results. As one of
the most important applications of GAN, domain transfer
has broad application prospects in the field of image style
transfer and image translation. -e future development
mainly depends on semantic control to achieve image
generation and also has great application in cross-domain
and multidomain fields.

4.4. Image Restoration. Image restoration is a process of
image reconstruction, which mainly includes restoring
damaged images to the original image or generating a
complete image from the local image. Dong et al. [77]
proposed a remote sensing image restoration technology
using the DCGAN network. -is technology is different
from the traditional method of restoring the surrounding
information of a single image but restores the cloud-covered
remote sensing image from a large number of historical
image records. -e experimental results show that using
DCGAN to restore remote sensing image is better than
traditional image restoration technology in quantitative and
qualitative analysis. Image recognition in the underwater
area has always been a difficult problem in the image rec-
ognition field. Due to the influence of turbulence, under-
water images will be deformed, and the refraction of light
will also cause geometric distortion. To improve the success
rate of underwater image recognition, He et al. [78] pro-
posed a method of underwater image distortion sequence
restoration using a deep learning model. -e author ana-
lyzed the advantages and disadvantages of traditional GANs.
After that, DeblurGAN [79] is used as the network structure
of image restoration. Firstly, the initial blurred image is
obtained by using the time series of a distorted image, and
the image is inputted into the generator. -e generated false
samples and real samples are distinguished by the dis-
criminator. -e discriminator uses Wasserstein distance to
measure the distance between the true and false samples and
uses it as the basis for optimizing the weighting parameters
of the networks. DeblurGAN network structure is charac-
terized by the use of residual blocks and jumps connection.
Residual network [68] is easier to optimize the network
structure. -e use of jump connections improves the speed
and efficiency of network training. DeblurGAN-v2 [80] is
more efficient than DeblurGAN in deblurring. It is an end-
to-end GAN for the dynamic deblurring of a single image.
-e GANmodel based on relative condition constraints and
the dual-mode discriminator is used, combining the pyra-
mid feature network structure. It has faster deblurring than
other networks.

In the field of face recognition, because of the pose or
camera angle problem, it is impossible to obtain all facial
features, so how to use local features to obtain the overall

information is an urgent problem to be solved. Huang et al.
[81] proposed a TP-GAN network model that combines
global structural features and local details to generate
complete images. It can synthesize frontal images from the
image with different viewpoints, different illumination
conditions, and different shooting positions. When one side
of the face appears in the lens, the network model can also
accurately recognize it.

Literature [82] proposes a new semantic image resto-
ration technique, which uses existing image data to search
for the nearest encoding of the damaged image in the hidden
imagemanifold through context and prior loss and then puts
the encoding into the generative model to infer the missing
data part and generate the data information. -e technology
can predict the lost information with high accuracy and
achieve the fidelity of pixel level in the case of less infor-
mation loss, but in the case of more information loss, the
accuracy of prediction results will be relatively low and
cannot reach the high-quality image restoration level. In
semantic image restoration, Pathak et al. [83], proposed an
unsupervised feature learning algorithm, which generates
the content of the missing area around the image according
to the context encoding information. By using the com-
prehensive loss function composed of pixel reconstruction
loss and perceptual adversarial loss to train model, the
generated image is of higher quality than the supervised
learning model. In the restoration of high-pixel missing
images, PGGAN [84] combines the network structure
G-GAN and pathGAN. By discriminator network to obtain
global and local image information, PGGAN divides the
discriminator network into two structures; one is to dis-
criminate the authenticity of the samples, and the other is to
evaluate the generated local details, combining the two
structures’ information and using reconstruction loss,
generative adversarial loss, and connection loss as an ob-
jective function to optimize the model structure. -e image

Input Angry Happy Fearful

Figure 6: StarGAN generation image [71].
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generated by this model is superior to other generative
models in visual effect and quality evaluation.

4.5. Application in AI Security. In addition to the above
areas, GAN models also play a very important role in the
field of security [85–87]. How to share data secretly in
communication now has different encryption schemes, such
as dynamic encryption. But they also have known short-
comings and insecurity problems. In 2016, Martin Abadi
et al. [88] proposed a scheme of encryption and decryption
in communication through GAN. Specifically, when the two
sides communicate, they do not specify the specific cryp-
tographic algorithm but implement the encryption and
decryption process through end-to-end adversarial training.
In the communication process shown in Figure 7, P rep-
resents plaintext, K represents a key, in the communication
system of Alice and Bob, GAN ensures that Bob’s loss in
decryption process is reduced and Eve’s loss in decryption
process is increased, and Eve cannot decrypt the text through
a neural network, thus ensuring the security of communi-
cation between Alice and Bob. -is communication system
realizes the confidentiality of a multiagent system through
adversarial training.

Anomaly detection is one of the most important
problems in a series of other fields, including medical
imaging, manufacturing, and network security. -e
method of anomaly detection needs to model high-di-
mensional and complex data. -e method of anomaly
detection based on the GAN model proposed by Zenati
[89] is effective. It learns the real data distribution through
GAN, modeling the practical high-dimensional and
complex data. When false data occurs, the discriminator
in the GAN network can effectively detect anomalies.
Using the GAN model to detect anomalies has more
advantages than previous algorithms.

With the popularization and extension of AI tech-
nology in more and more fields, how to prevent the system
from invading or attacking through AI is a serious
problem at present. Feng Ji, the Executive Director of
Nanjing International Institute of Artificial Intelligence
[90], proposed a DeepConfuse technology, which adds a
bounded perturbation to the training sample using a well-
trained noise coder through hijacking the training process
of neural networks. Adding a bounded perturbation
makes the learning model acquired by training the per-
turbed samples have poor generalization ability of the test
data; therefore, it realizes the function of “data poison-
ing”. In real scenarios, this technology will interfere with
the normal learning of AI machines, which may not only
make the AI model’s generalization ability very poor but
also make the purpose of the AI model fundamentally
changed. For example, in automatic driving, AI recog-
nizes obstacles as pathways or marks dangerous scenes as
safety scenes. -e purpose of DeepConfuse is to reveal the
threat of AI intrusion or attack technology to system
security, provide a feasible scheme for preventing related
AI intrusion effectively, and play a guiding role in the
research of AI security attack and defense.

5. Discussion and Conclusion

In this paper, we first review the latest research progress of
computer vision, summarize the theoretical basis of GANs in
detail, and elaborate on the challenges of GANs and themain
advantages of GANs compared with traditional algorithms
by combining its theoretical basis and practical use. -e
generative adversarial model has greatly promoted the rapid
development of image processing field, with the continuous
exploration of GAN models; they play an increasingly im-
portant role in other fields such as medicine, art, and se-
curity. For different fields and problems, more and more
derivative models of GAN have come into people’s vision.
-is paper lists some new derivative models and describes
some recent research progress in computer vision, including
data enhancement, high-quality sample generation, domain
transfer, image restoration, and AI security.

To apply GANmodels to different fields more rationally,
we need to fully understand the advantages and disadvan-
tages of GANs. In theory, GANs are trained based on the
idea of minimax game, but they are difficult to achieve Nash
equilibrium states in actual use and prone to gradient dis-
appearance and model collapse. It is necessary to find more
suitable objective functions or improve the traditional GAN
network structures so that the models can guarantee the
stability, convergence, and efficiency of the models in dif-
ferent fields to show the unique advantages of GANs. When
combining other machine learning algorithms, GANs have
broader application prospects, such as the following: (1)
GANs combined with unsupervised learning algorithm have
broad application prospects in forecasting problems; (2)
GANs are used for target detection, through 3Dmodeling to
understand the hidden law of things; (3) in AI medicine,
GANs in the medical field can help doctors to carry out
surgical treatment or disease detection; (4) GAN models are
used to model large data, which provides new schemes for
anomaly detection of data; (5) domain transfer has always
been the most widely used area of GAN models, which will
add a new color to the field of computer vision; (6) in AI
security attack and defense, the generative model can replace
human beings to carry out some intelligent operations. -e
security of autopilot, smart home, AI investment, and other
high-risk areas needs to be considered. -erefore, GANs
need to achieve a breakthrough in theory, solve some
drawbacks of GAN models, and establish reasonable and
accurate generative models through scientific and effective
evaluation methods, taking into account the security and
robustness when combined with different fields. In the fu-
ture development of computer vision, the GANs will play
more and more unique advantages.

P

K

Eve

CAlice

PEve

Bob PBob

Figure 7: Encrypted communication system.
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