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ABSTRACT

Steganography is collection of methods to hide secret information (“payload”)
within non-secret information (“container”). Its counterpart, Steganalysis, is the
practice of determining if a message contains a hidden payload, and recovering it
if possible. Presence of hidden payloads is typically detected by a binary classifier.
In the present study, we propose a new model for generating image-like containers
based on Deep Convolutional Generative Adversarial Networks (DCGAN). This
approach allows to generate more setganalysis-secure message embedding using
standard steganography algorithms. Experiment results demonstrate that the new
model successfully deceives the steganography analyzer, and for this reason, can
be used in steganographic applications.

1 INTRODUCTION

Recently developed Generative Adversarial Networks (GAN, see Goodfellow et al. (2014)) are
powerful generative models, the main idea of which is to train a generator and a discriminator
network through playing a minimax game. In the image domain, for a dataset generated by some
density pdata(x) a generator G attempts to approximate the image generating distribution and to
synthesize as realistic image as possible, while a discriminator D strives to distinguish real images
from fake ones.

There are several modifications of GAN that can generate realistic images:

• Deep Convolutional Generative Adversarial Networks (DCGAN, see Radford et al. (2015))
— this model is a modification of a GAN, specialized for generation of images;

• Conditional GAN — it allows generating objects from a specified class, see Mirza &
Osindero (2014);

• Generation of images from textual description, see Reed et al. (2016).

In the present study we apply the DCGAN model to the problem of secure steganography. We
construct a special container-image generator, synthetic output of which is less susceptible to suc-
cessful steganalysis compared to containers, directly derived from original images. In particular, we
investigate whether this methodology allows to deceive a given steganography analyzer, represented
by a binary classifier detecting presence of hidden messages in an image.

2 STEGANOGRAPHY

Steganography is the practice of concealing a secret message, e.g. a document, an image, or a video,
within another non-secret message in the most inconspicuous manner possible. In this paper we
consider a text-to-image embedding, with the text given by bit string. More formally, for a message T

and an image I , a steganography algorithm is a map S : T × I → Î , where Î is an image, containing

the message T , such that Î can not be visually distinguished from I .
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The most popular and easy-to-implement algorithm of embedding is the Least Significant Bit (LSB)
algorithm. The main idea of LSB is to store the secret message in the least significant bits (last
bits) of some color channel of each pixel in the given image container. Since pixels are adjusted
independently of each other, the LSB algorithm alters the distribution of the least significant bits,
thereby simplifying detection of the payload. A modification of this method, which does not
substantially alter the distribution of the least significant bits, is a so-called ±1-embedding (Ker,
2005). This approach randomly adds or subtracts 1 from some color channel pixel so that the last bits
would match the ones needed. In this paper we basically consider the ±1-embedding algorithm.

There are more sophisticated algorithms for information embedding to raster images: WOW (Holub
& Fridrich, 2012), HUGO (Pevny et al., 2010), S-UNIWARD (Holub et al., 2014), and others. They
are derived from key ideas of the LSB algorithm, but utilize a more strategic pixel manipulation

technique: for the raw image X and its final version with a secret message X̂ the pixels are picked in
such a way as to minimize the distortion function

D(X, X̂) =

n1
∑

i=1

n2
∑

j=1

ρ(Xij , X̂ij)|Xij − X̂ij | ,

where ρ(Xij , X̂ij) is the cost of changing pixel of X , specific for each particular steganography
algorithm.

For detecting presence of hidden information in the container Steganalysis is usually used. The stage
which distinguishes images with some hidden message from empty is usually performed by binary
classification. The basic approach to steganalysis is based on feature extractors (such as SPAM (Pevnỳ
et al., 2010), SRM (Fridrich & Kodovskỳ, 2012), etc.) combined with traditional machine learning
classifiers, such as SVM, decision trees, ensembles etc. With the recent overwhelming success of
deep neural networks, newer neural network based approaches to steganalysis are gaining popularity,
Qian et al. (2015b). For example, in Pibre et al. (2015) authors propose to use deep convolution
neural networks (CNN) for steganalysis and show that classification accuracy can be significantly
increased while using CNN instead of usual classifiers.

3 ADVERSARIAL NETWORKS

Generative Adversarial Networks (GAN) is a recent approach to deep unsupervised learning, proposed
in 2014 in Goodfellow et al. (2014), which is capable of dynamically representing a sampler from
input data distribution and generate new data samples.

The main idea of such approach to learning is that two neural networks are trained simultaneously:

• a generative model (G) that receives noise from the prior distribution pnoise(z) on input and
transforms it into a data sample from the distribution pg(x) that approximates pdata(x);

• a discriminative model (D) which tries to detect if an object is real or generated by G.

The learning process can be described as a minimax game: the discriminator D maximizes the
expected log-likelihood of correctly distinguishing real samples from fake ones, while the generator
G maximizes the expected error of the discriminator by trying to synthesize better images. Therefore
during the training GAN solve the following optimization problem:

L(D,G) = Ex∼pdata(x) [ logD(x) ] + Ez∼pnoise(z) [ log(1−D(G(z))) ]→ min
G

max
D

, (1)

where D(x) represents the probability that x is a real image rather then synthetic, and G(z) is a
synthetic image for input noise z.

Coupled optimization problem (1) is solved by alternating the maximization and minimization steps:
on each iteration of the mini-batch stochastic gradient optimization we first make a gradient ascent
step on D and then a gradient descent step on G. If by θM we denote the parameters of the neural
network M , then the update rules are:

• Keeping the G fixed, update the model D by θD ← θD + γD∇DL with

∇DL =
∂

∂θD

{

Ex∼pdata(x) [ logD(x, θD) ]+Ez∼pnoise(z) [ log(1−D(G(z, θG), θD)) ]
}

,

(2)
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• Keeping D fixed, update G by θG ← θG − γG∇GL where

∇GL =
∂

∂θG
Ez∼pnoise(z) [ log(1−D(G(z, θG), θD)) ] . (3)

In Radford et al. (2015) the GAN idea was extended to deep convolutional networks (DCGAN), which
are specialized for image generation. The paper discusses the advantages of adversarial training in
image recognition and generation, and give recommendations on constructing and training DCGANs.
In fig. 1 we depict a sample of synthetic images of a freshly trained DCGAN on the Celebrities
dataset (Ziwei Liu & Tang, 2015). The images indeed look realistic, albeit with occasional artifacts.

Figure 1: Sample synthetic images generated by DCGAN

4 STEGANOGRAPHIC GENERATIVE ADVERSARIAL NETWORKS

In order to apply GAN methodology to steganographic applications, we introduce Steganographic
Generative Adversarial Networks model (SGAN), which consists of

• a generator network G, which produces realistic looking images from noise;

• a discriminator network D, which classifies whether an image is synthetic or real;

• a discriminator network S, the steganalyser, which determines if an image contains a
concealed secret message.

By Stego(x) we denote the result of embedding some hidden message in the container x.

Since we want the generator to produce realistic images that could serve as containers for secure
message embedding, we force G to compete against the models D and S simultaneously. If we
denote by S(x) the probability that x has some hidden information, then we arrive at the following
game:

L = α
(

Ex∼pdata(x) [ logD(x) ] + Ez∼pnoise(z) [ log(1−D(G(z))) ]
)

+

+(1− α)Ez∼pnoise(z) [ logS(Stego(G(z))) + log(1− S(G(z))) ]→ min
G

max
D

max
S

.
(4)

We use a convex combination of errors of D and S with parameter α ∈ [0, 1], which controls the
trade-off between the importance of realism of generated images and their quality as containers
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against the steganalysis. Analysis of preliminary experimental results showed that for α ≤ 0.7 the
generated images are unrealistic and resemble noise.

The full scheme of SGAN is presented in fig. 2. Each arrows represent output- input data flows.

Figure 2: SGAN information flow diagram

Stochastic mini-batch Gradient descent update rules for components of SGAN are listed below:

• for D the rule is θD ← θD + γD∇GL with

∇GL =
∂

∂θD

{

Ex∼pdata(x) [ logD(x, θD) ]+Ez∼pnoise(z) [ log(1−D(G(z, θG), θD)) ]
}

;

• for S (it is updated similarly to D): θS ← θS + γS∇SL where

∇SL =
∂

∂θS
Ez∼pnoise(z) [ logS(Stego(G(z, θG)), θS) + log(1− S(G(z, θG), θS)) ] ;

• for the generator G: θG ← θG − γG∇GL with ∇GL given by

∇GL =
∂

∂θG
αEz∼pnoise(z) [ log(1−D(G(z, θG), θD)) ]

+
∂

∂θG
(1− α)Ez∼pnoise(z) [ log(S(Stego(G(z, θG), θS))) ]

+
∂

∂θG
(1− α)Ez∼pnoise(z) [ log(1− S(G(z, θG), θS)) ] .

The main distinction from the GAN model is that we update G in order to maximize not only the
error of D, but to maximize the error of the linear combination of the classifiers D and S.

5 EXPERIMENTS

5.1 DATA DESCRIPTION

In our experiments 1 we use the Celebrities dataset (Ziwei Liu & Tang, 2015) that contains 200 000
images. All images were cropped to 64× 64 pixels.

For steganalysis purposes we consider 10% of data as a test set. We denote the train set by A, the test
set by B and steganography algorithms used for hiding information by Stego(x). After embedding
some secret information we get the train set A+ Stego(A) and the test set B + Stego(B), We end
up with 380 000 images for steganalysis training and 20 000 for testing. For training the SGAN
model we used all 200 000 cropped images. After 8 epochs of training our SGAN produces images
displayed in fig. 3.

For information embedding we use the ±1-embedding algorithm with a payload size equal to 0.4
bits per pixel for only one channel out of three. As a text for embedding we use randomly selected
excerpts from some article from The New York Times.

1Code is available at https://github.com/dvolkhonskiy/adversarial-steganography
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Figure 3: Examples of images, generated by SGAN after training for 8 epochs on the Celebrities
dataset

5.2 EXPERIMENTAL SETUP

In this section we describe the SGAN model structure. By C2D-BN-LR we denote the following
structural block of a convolutional neural network: Conv2d→ Batch Normalization→ Leaky ReLU.

The Steganalyser network S and the Image Discriminator network have similar structure: four
C2D-BN-LR layers, then a fully connected layer (1 neuron)→ Sigmoid function is used to compute
an output. The Image generator network G is (in order) a fully-connected layer (8192 neurons), four
C2D-BN-LR with Fractional-Strided convolution, then the Hyperbolic tangent function layer is used
to compute normalised output.

The SGAN model is trained to solve (4) using the Adam optimization algorithm (Kingma & Ba, 2014)
with the learning rate 2−4 and update parameters β1 = 0.5 and β2 = 0.999. For each mini-batch of
images we update weights of D and S once, then we update weights of G twice.

In the following experiments, in addition to the steganalyser S we use an independent steganalyser

S∗. We define a filter F (0) that is special for steganalysis applications (see Pibre et al. (2015), Qian
et al. (2015a), Tan & Li (2014)), as follows

F (0) =
1

12
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.

The structure of the individual steganalyser S∗ has the form: 2D convolution with F (0) filter →
Conv2D→ Conv2D→Max Pooling→ Conv2D→ Conv2D→Max Pooling→ Fully connected
layer (1024 neurons) → Fully connected layer (1 neuron) → Sigmoid function for output. This

structure provides state-of-the-art steganalysis accuracy, Pibre et al. (2015), and the filter F (0) allows
to increase convergence speed of the steganalyser S∗ training.

For training of this steganalyser we use the Adam optimization algorithm on the loss (4) with the
learning rate equal to 5−6, β1 = 0.9, β2 = 0.999. As a loss function we use a binary cross-entropy.

The setup of experiments can be described as follows:
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• We train and use the SGAN and/or DCGAN model to generate images to be used as
containers;

• We train the independent steganalyser S∗ using either real images (sec. 5.3) or generated
images (sec. 5.4);

• We measure the accuracy of the steganalyser S∗.

5.3 TRAINING/TESTING ON REAL IMAGES

In this set of experiments we train the independent steganalyser S∗ on real images. Results are
provided in tab. 1. From the results we conclude that even the usual DCGAN generate synthetic

Table 1: Accuracy of the steganalyser S∗ trained on real images

Type of a test set \ Image generator SGANs DCGANs

Real images 0.962

Generated images 0.501 0.522

container images, that can easily deceive a steganalyser. Although containers generated by on the
SGAN model, which is specially designed to deceive the steganalyser, improve on the result of
DCGAN, the improvement is not significant. These results also suggest that S∗ may have been overfit
to the data distribution of the real images, and failed to generalize to the GAN approximation of the
data distribution in the synthetic image domain.

Another interesting result follows from an experiment with HUGO steganography algorithm and
SGAN generated containers:

• We use the ±1-embedding algorithm for training the SGAN model;

• We test the HUGO steganography analyzer on real images and on images, generated by the
SGAN model.

Containers generated by the SGAN model decrease HUGO steganalysis accuracy from 0.624 to
0.499, which demonstrates that the Steganographic Generative Adversarial Networks can potentially
be used as a universal tool for generating Steganography containers tuned to deceive any specific
steganalysis algorithm.

5.4 TRAINING/TESTING ON GENERATED IMAGES

In this set of experiments we train the steganalyser S∗ on images, generated using the DCGAN model
from the prior noise distribution pnoise(z) for some fixed seed value. In all experiments the size of
the train set is fixed at ≈ 160 000. After training we test the analyser S∗ on images generated with
the DCGAN model according to the following experimental setups:

C1. We use the same seed value;

C2. We use some randomly selected seed value;

C3. We use the same seed value, as in C2, and we additionally tune the DCGAN model for
several epochs.

Table 2: Training/testing on generated images according to experimental conditions C1-C3

Experimental Conditions Accuracy

C1 0.982

C2 0.517

C3 0.499

The experiment results in tab. 2 indicate that using different seed values when generating containers
most likely affects the distribution of pixel value bits in such a way as make it easier to deceive
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the steganalyser, fitted to another distribution in the train sample. Additional tuning of the image
generator G make this effect even more pronounced.

In the next set of experiments we train and test the steganalyser S∗ on images, generated according
to the following experimental conditions:

C4. We generate a train set for the steganalyser S∗ using several different randomly selected
seed values, and when generating the test set we use another fixed seed value;

C5. We generate the train set and the test set using a number of different randomly selected seed
values;

C6. We use the same train and test sets, as in C5, and we additionally train the DCGAN model
for several epochs.

Table 3: Training/testing on generated images according to experimental conditions C4-C6

Experimental Conditions Accuracy

C4 0.649

C5 0.630

C6 0.581

According to tab. 3 the accuracy in case C5 is lower than in the C4 case, which can be explained
by the test set of C5 having more variability, being generated with different randomly selected seed
values. Similarly, the accuracy in the C4 case is higher than in C2, since in C4 the train set was
generated with several different randomly selected seed values, and thus is more representative. These
observations confirm out initial conclusions, drawn from tab. 2.

We also conduct an experiment with classification of generated images without steganographic
embeddings. For this purposes we train a DCGAN conditional model on the MNIST dataset, and
train a separate classifier for the MNIST classification task. The trained classifier achieved almost
perfect accuracy both on the held-out real MNIST dataset, and on synthetic images produced by the
DCGAN. This provides evidence that it is possible to train an image classifier that shows acceptable
accuracy both on real and synthetic images. However it is the artificial generation of image containers
that breaks the usual approaches to steganalysis.

6 CONCLUSIONS AND FUTURE WORK

In this work

1. We open a new field for applications of Generative Adversarial Networks, namely, container
generation for steganography applications;

2. We consider the ±1-embedding algorithm and test novel approaches to more steganalysis-
secure information embedding:

a) we demonstrate that both SGAN and DCGAN models are capable of decreasing the
detection accuracy of a steganalysis method almost to that of a random classifier;

b) if we initialize a generator of containers with different random seed values, we can
even further decrease the steganography detection accuracy.

In future, We plan to test our approach on more advanced steganographic algorithms, e.g. WOW
(Holub & Fridrich, 2012), HUGO (Pevny et al., 2010) and S-UNIWARD (Holub et al., 2014).
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