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Generative adversarial networks (GAN) based efficient

sampling of chemical composition space for inverse

design of inorganic materials
Yabo Dan1, Yong Zhao 2, Xiang Li1, Shaobo Li1,3, Ming Hu4 and Jianjun Hu 1,2✉

A major challenge in materials design is how to efficiently search the vast chemical design space to find the materials with desired
properties. One effective strategy is to develop sampling algorithms that can exploit both explicit chemical knowledge and implicit
composition rules embodied in the large materials database. Here, we propose a generative machine learning model (MatGAN)
based on a generative adversarial network (GAN) for efficient generation of new hypothetical inorganic materials. Trained with
materials from the ICSD database, our GAN model can generate hypothetical materials not existing in the training dataset, reaching
a novelty of 92.53% when generating 2 million samples. The percentage of chemically valid (charge-neutral and electronegativity-
balanced) samples out of all generated ones reaches 84.5% when generated by our GAN trained with such samples screened from
ICSD, even though no such chemical rules are explicitly enforced in our GAN model, indicating its capability to learn implicit
chemical composition rules to form compounds. Our algorithm is expected to be used to greatly expand the range of the design
space for inverse design and large-scale computational screening of inorganic materials.
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INTRODUCTION

Discovering new inorganic materials such as solid electrolytes for
lithium-ion batteries is fundamental to many industrial applica-
tions. While recent years have observed tremendous efforts on
rational materials design, progress has been limited due to the
challenge to find new materials that meet diverse technical and
economic constraints. From the computational perspective, brute-
force molecular simulations or first-principles methods are
computationally too expensive for large-scale screening of the
vast chemical space. A recent effort1 to quantify the magnitude of
the compositional space for multi-component inorganic materials
showed that even after the application of chemical filters such as
charge neutrality or electronegativity balance, the space for four-
component/element materials exceeds 1010 combinations and the
five-component/element space exceeds 1013 combinations.
Indeed, a machine learning (ML) based model has been applied
to screen billions of hypothetical materials to identify promising
high ion-conductors2. Considering the huge space of doped
materials with different mixing ratios of elements and many
applications such as high-temperature superconductors, where six
to seven component materials are common, the number of
potential materials is immense. Such combinatorial explosion calls
for the need for more effective sampling approaches to search the
chemical design space that employ existing explicit chemical and
physical knowledge and also implicit elemental composition
knowledge embodied within known synthesized materials. To
gain more efficient search, a variety of explicit chemical rules for
assessing the feasibility of a given stoichiometry and the
likelihood of particular crystal arrangements have been used in
computational screening such as the Pauling’s rules (charge
neutrality), electronegativity balance, the radius ratio rules3,
Pettifor maps4 and etc. However, such approaches still fail to

capture enough implicit chemical rules to achieve efficient
chemical design space sampling.
Recently, generative machine learning models such as auto-

encoders (AE) and its variants (VAE, AAE), RNNs, generative
adversarial networks (GANs) have been successfully applied to
inverse design of organic materials5–8. These algorithms mainly
exploit the sequential or graph representations of organic
materials to learn the composition rules of the building blocks
for generating valid and novel hypothetical materials. Given a
large set of samples, a GAN is capable of learning complicated
hidden rules that generate the training data, and then applies
these learned rules to create new samples with target properties.
When applied to inverse design, GANs have demonstrated their
power in efficient sampling of design space5,9, more efficient than
other sampling approaches such as random sampling10, Monte
Carlo sampling, and other heuristic sampling (such as genetic
algorithms11). However, due to the radical difference in building
blocks and their composition rules, such generative machine
learning models have not been applied to the generation of
inorganic materials so far to the best of our knowledge. Recently,
variational autoencoders11,12 have been proposed to generate
hypothetical crystal structures of inorganic materials. However,
these methods are either limited to generate new structures of a
given material system such as the V–O system11 or tend to mostly
generate crystal materials that are not physically stable12. A GAN
model for discovering new crystal structures have also been
recently proposed13. However, their study is limited to very
restricted binary systems and lacks composition diversity for
generated structures. Another related work14 proposes to use
conditional GAN and VAE models for composition generation.
However, they use real-valued one-hot encoding of materials, fully
connected neural network architecture, and mixed Wasserstein
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losses and least square loss of properties, which makes their
models tend to generate invalid compositions with very low
composition diversity.
In this paper, we propose the first generative adversarial

network model for efficient sampling of inorganic materials design
space by generating hypothetical inorganic materials. Trained
with materials from inorganic materials databases such as
OQMD15, Materials Project16, and ICSD, our GAN models are able
to learn the implicit chemical compositional rules from the known
materials to generate hypothetical but chemically sound com-
pounds. Without explicitly specifying the chemical rules, our GANs
trained with all charge-neutral and electronegativity-balanced
samples of the ICSD subset can generate hypothetical materials
with 84.5% reproducing the charge neutrality and balanced
electronegativity. The analysis shows that our generative GAN can
achieve much higher efficiency in sampling the chemical
composition space of inorganic materials than the exhaustive
enumeration approach.

RESULTS

Representation of inorganic materials

Through simple statistical calculation of the materials in the
OQMD dataset17, 85 elements are found, and each element
usually has <8 atoms in any specific compound/formula. We then
represent each material as a sparse matrix T 2
Rd ´ s d ¼ 8; s ¼ 85ð Þ with 0/1 integer values. Each column
represents one of the 85 elements while the column vector is a
one-hot encoding of the number of atoms of that specific element
(see Supplementary Fig. 5). The binary one-hot encoding is chosen
as two of the major chemical rules for valid chemical compositions
including the charge neutrality and electronegativity balance are
checked by the discrete atom numbers of composing elements
and our binary encoding allows us to take advantage of the strong
binary pattern learning capability of convolutional neural net-
works used in our GAN models. Here the columns (elements) are
sorted by their atomic number and rows are sorted from 0 to 7.

The GAN generation model

Generative models can be built on several machine learning
algorithms such as variational autoencoder (VAE), generative
adversarial networks (GAN), reinforcement learning (RL), recurrent
neural networks (RNN), and their hybrids5. Different from other
generative models18,19, GANs do not directly use the discrepancy
of the data and an assumed model distribution (as VAE) to train
the generator. Instead, it uses an adversarial training approach: it
first trains a discriminator to differentiate real samples from faked
samples, which then guides the training of the generator to
reduce this difference. These two training processes are alter-
natively repeated. Their arm race will lead to high performance of
both the generator and the discriminator.
Our generative ML model for inorganic materials (MatGAN) is

based on the GAN scheme as shown in Fig. 1.
We choose the 8 × 85 matrix representation of materials

samples to build the GAN model. We found the integer
representation of materials greatly facilities the GAN training. In
our GAN model, both the discriminator (D) and the generator (G)
are modeled as a deep neural network. The generator is
composed of one fully connected layer and seven deconvolution
layers. The discriminator is composed of seven convolution layers
followed by a fully connected layer. Each of the convolution and
deconvolution layer comes with a batch normalization layer. The
output layer of the generator uses the Sigmoid function as the
activation function while all other batch normalization layers use
the ReLu as the activation function. The detailed network
configuration is shown in Supplementary Table 2. In order to
avoid the gradient vanishing issue of standard GANs, we adopt

the Wasserstein GAN20, which replaces the JS divergence distance
with the Wasserstein distance. The GAN model will be trained
using the Wasserstein GAN approach by minimizing both the
generator loss and discriminator loss, which are defined as

LossG ¼ �Ex:Pg fwðxÞ½ � (1)

LossD ¼ Ex:Pg fwðxÞ½ � � Ex:pr fwðxÞ½ � (2)

where, Pg and Pr are the distributions of generated samples and
real samples; fwðxÞ is the discriminant network. Equations (1) and
(2) are used to guide the training process. The smaller the LossD,
the smaller the Wasserstein distance between the generated
samples and the real samples and the better the GAN is trained.

Variational autoencoder for evaluating GAN performance

During our GAN generation experiments for OQMD dataset, we
found that it sometimes has difficulty to generate a specific
category of materials. This may be caused by the limited samples
to learn the required composition rules to generate those samples.
To investigate this issue, we built an autoencoder (AE)21 model as
shown in Fig. 2. The autoencoder is composed of an encoder with
seven convolutional layers followed by a fully connected layer and
a decoder composed of a fully connected layer followed by seven
deconvolution layers. After each of the convolution and deconvo-
lution layer, there is a batch normalization layer used to speed up

Real 

samples

Generated fake 

samples

Generator(G)

Discriminator(D)

z

Latent space

Is D

Correct

Fine-tuning

Fig. 1 Architecture of MatGAN for inorganic materials. It is
composed of a generator, which maps random vectors into
generated samples and a discriminator, which tries to differentiate
real materials and generated ones. Detailed configuration para-
meters are listed in Supplementary Table 1 and Supplementary Fig. 1.

Encoder Decoder

Conv DeConv
Composition

Encoding

Composition

Encoding
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Fig. 2 Architecture of autoencoder. Detail configuration para-
meters are shown in Supplementary Table 2 and Supplementary
Fig. 2.
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training and reduce the influence of initial network weights22. The
ReLu is used as the activation function for all the batch
normalization layers. The Sigmoid function is used as the
activation function for the decoder’s output layer. The detailed
configuration parameters are listed in Supplementary Table 2. The
autoencoder are trained with 291,840 inorganic materials selected
from the OQMD database. In order to ensure the overlap between
the original input matrix T and the matrix reconstructed by the
decoder as much as possible, we adopt the negative dice
coefficient23 commonly used in medical image semantic segmen-
tation as the loss function of AE. The AE model is then trained
using the back-propagation algorithm. The loss function is shown
in the following equation:

LossAE ¼ �Dice ¼ �
2 A \ Bj j

Aj j þ Bj j
� �

2 ´A � B

SumðAÞ þ SumðBÞ
(3)

where A \ B denotes the common elements of A and B, |g|
represents the number of elements in a matrix, � denotes dot
product, Sum(g) is the sum of all matrix elements. Dice coefficient
essentially measures the overlap of two matrix samples, with
values ranging from 0 to 1 with 1 indicating perfect overlap24.
The decoder module of the AE model shares the same

architecture of the generator in our MatGAN model. Our
hypothesis is that if the trained AE model cannot decode a
specific material, it is unlikely our GAN model can generate it. By
screening out the non-decodable materials out of the OQMD
database using the AE, we may obtain a deeper understanding of
the limitations of our GAN models.

The model performance of GANs

Efficient sampling of the inorganic chemical space by the GANs. We
trained our GANs according to the procedures as detailed in the
“Methods” section. For all these GANs, including GAN-OQMD,
GAN-MP, and GAN-ICSD, we then generated 2 million hypothetical
materials using each of these generators and evaluate their
validity, uniqueness, and novelty.

Mapping inorganic materials design space

Out of the 2 million samples generated by the GAN-ICSD, we filter
out all samples that do not satisfy charge neutrality and balanced
electronegativity leading to 1.69 million generated samples. To
visualize how the generated ones are distributed compared to the
training datasets from ICSD, we applied T-sne dimension
reduction technique25 to reduce the dimension of the matrix
representations of the samples from the generated set, the
training set, and the leave-out validation set. The distribution of
the generated samples versus the training and validation set are
shown in Fig. 3. It is observed that the training samples from ICSD

occupy only a very small portion of the whole space. The GAN-
ICSD, however, has been able to generate potentially interesting
hypothetical materials that fill the design space, which may
significantly expand the range of the ICSD database.

Validity check. Charge neutrality and electronegativity balance
are two fundamental chemical rules of crystals. It is thus
interesting to check how the generated samples from our GAN
models satisfy these rules without explicit enforcement of such
rules during model training. To do this, we adopt the charge-
neutrality and electronegativity check procedure as proposed in
ref. 1 to calculate the percentages of samples that obey these rules
within the training and generated sets of all four databases. The
results are shown in Fig. 4. First, we found that the percentages of
the validly generated samples are very close to those of the
training set. For OQMD, when the training set has 55.8% charge-
neutral samples, the generated set has 56.1%. For MP and ICSD,
the percentage of generated charge-neutral samples (84.8 and
80.3%) are also close to those of the training sets (83.5% and
84.4%). Similar observations are found for electronegativity check.
It is impressive that when we ensure all training samples in the
ICSD_filter are charge-neutral and electronegativity-balanced, up
to 92.1% and 84.5% of the generated samples satisfy the two
chemical rules, respectively, despite that no such rules are
explicitly modeled or enforced in our GAN training models. To
demonstrate the significance of this high percentage of chemi-
cally valid candidates, we compare our results to the exhaustive
enumeration approach in ref. 1, Table 1. The percentage of all
binary/ternary/quaternary samples that satisfy both charge
neutrality and electronegativity is 0.78% with exhaustive enu-
meration compared with our 62.24%, which corresponds to 77
times of enrichment in terms of sampling efficiency. This strongly
indicates that our GAN models have successfully learned implicit
chemical rules for generating chemically valid hypothetical
materials.

Formation energy distribution of generated materials

another way to evaluate the quality of generated hypothetical
materials is to check their stability, which can be measured by
their formation energy26. To do this, first, GAN-OQMD, GAN-ICSD,
and GAN-MP were used to generate 2 million materials candidates
each. Then, we selected all the materials with lithium element and
then filter out all those materials that do not satisfy charge
neutrality and balanced electronegativity. Finally, we obtained
15,591, 137,948, and 281,320 lithium-containing compounds,
respectively, from GAN-OQMD, GAN-ICSD, and GAN-MP. We then
downloaded the formation energy prediction machine learning
model (ElemNet) developed by Jha et al.26 and then used it to

Fig. 3 Inorganic materials space composed of existing ICSD materials and hypothetical materials generated by GAN-ICSD. The two axes
correspond to the two dimensions after t-sne-based dimension reduction. The ICSD materials only occupies a tiny portion of the chemical
space of inorganic materials. a Training samples (green dots) and leave-out validation samples (red dots) from ICSD; b 50,000 generated
samples (blue dots) together with training and leave-out samples; c 200,000 generated samples together with training and leave-out samples.
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predict the formation energies of all these hypothetical materials.
Figure 4b shows that the formation energy of these generated
materials is mostly <0, especially for those generated by GAN-ICSD
and GAN-MP, which are trained with more chemically valid
samples. Also, much higher percentage of generated samples by
the GAN-OQMD are found to have higher formation energy scores
in the figure, which is due to the fact that 68.48% training samples
of OQMD have formation energies larger than 0.

Uniqueness check. To check the uniqueness of the generated
samples, we calculate the percentages of the number of unique
samples out of the number of all generated samples (n) as n goes
from 1 to 340,000 for all three GANs trained on the OQMD, MP,
and ICSD datasets, respectively (Fig. 5a). First, it can be found that
with the generation of more and more samples, the percentage of
unique samples goes down, showing that it is more difficult to
generate new hypothetical materials. However, even after
generating 340,000 samples, our GANs still maintain a 68.09%,
85.90%, and 73.06% uniqueness for GAN-OQMD, GAN-MP, and
GAN-ICSD, respectively. While all three curves decay with
increasing number of generated samples, the GAN-MP maintains
higher percentage of unique samples. Actually, the uniqueness
curve of GAN-MP dominates the one of GAN-ICSD, which further
dominates the one of GAN-OQMD. After close examination of the
distributions of training and generated samples in terms of their
element numbers, we found that this is mainly due to the
distribution bias of the training sets of the three GANs (see
Supplementary Fig. 3). For GAN-OQMD, the training set is
dominated by ternary compounds (84.4%) and it tends to
generate ternary samples while the total number of chemically
valid materials as estimated by SMACT1 (Semiconducting Materials
from Analogy and Chemical Theory) to be around 200,000. So, it
tends to generate many duplicate ternary samples. For GAN-ICSD,
the ratio of binary/ternary/quaternary is about 2:3:1, which allows

it to generate more diverse samples, leading to higher uniqueness
curve. For GAN-MP, the ratio of binary/ternary/quaternary is about
0.8:2:1, which is much more balanced than those of GAN-OQMD
and GAN-ICSD and it also has much more quaternary and quinary
training samples (see Supplementary Table 3). This allows it to
generate most diverse samples.

Novelty check. To check the capability of our GANs to generate
novel materials, we use the hold-out validation approach. We first
leave out 10% samples from each of the three datasets OQMD,
MP, and ICSD. Then we train the GANs and use them to generate a
certain number of samples. We then examine what percentage of
training samples and hold-out validation samples have been
recovered/re-discovered and how many new samples have been
generated. The results are shown in Table 1. First, we found that
when the GANs recover/generate a certain percentage of training
samples, the approximate corresponding percentages of valida-
tion (hold-out novel) samples are also recovered. For example,
when the GAN-MP recovered 47.36% of its training set, about
48.82% of the hold-out samples have also been simultaneously
generated. This demonstrates that our GANs can be used to
discover new materials that do not exist in the training set. To
further understand the generation performance, we calculated the
recovery percentages of the training set and the leave-out
validation set along with the percentages of new samples for
binary, ternary, and quaternary samples (Fig. 5b). First, by
generating 2 million samples, GAN-ICSD has generated 78.1%
training binary samples while also generating/rediscovering 82.7%
leave-out validation binary materials. The recovery rates drop to
30.4% and 31.2%, respectively, or ternary training and validation
samples as the number of possible ternary samples are larger than
binary ones, which also explains the recovery rates dropping to 3.3
and 5.2% for quaternary training and validation sets. In addition,
out of all the generated binary/ternary/quaternary samples,
83.15%/98.68%/99.98% of them are novel hypothetical materials,
which strongly shows the capability of our GAN model to generate
new materials candidates as a majority of these new candidates
satisfy the basic chemical rules as shown in Fig. 4.

Conditional generation of hypothetical materials by GAN. In
addition to generating valid inorganic materials, it is interesting
to check if our GAN models can generate new materials with
desired properties by sampling from the generative distribution
estimated by the model27. To verify this, we collected 30,186
inorganic materials from Materials Project whose bandgap values
are larger than 0. We then use these high-bandgap materials set
to train a GAN-bandgap model aiming to generate hypothetical

Table 1. Novelty check of generated samples by GANs.

GAN-OQMD GAN-MP GAN-ICSD

Training sample # 251,368 57,530 25,323

Leave-out sample # 27,929 6392 2813

Generated sample # 2,000,000 2,000,000 2,000,000

Recovery % of training samples 60.26% 47.36% 59.54%

Recovery % of leave-out sample 60.43% 48.82% 60.13%

New samples 1,831,648 1,969,633 1,983,231

55.8%

84.4% 83.5%

100.0%

56.1%

80.3%
84.8%

92.1%
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Fig. 4 Evaluation of the validity of generated materials. a The percentages of charge-neutral (CN) and electronegativity-balanced (EN)
samples of the generated samples are very close to those of the training sets for all four datasets. Train/gen CN: percentage of training/
generated samples that satisfy charge neutrality; Train/gen EN: percentage of samples that satisfy balanced electronegativity. b Formation
energy distribution of the Li-containing compounds generated by three GANs. Both GAN-ICSD and GAN-MP can generate a large percentage
of hypothetical materials with low (<0) formation energy.
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high-bandgap materials. To verify the bandgap values of
generated samples, we trained a bandgap prediction model using
the Gradient-Boosted Decision Tree (GBDT) machine learning
algorithm with Magpie features28 (see the Methods section for its
training details). We also use this model to predict the bandgap
values of the exhaustively enumerated materials set. Figure 6
shows the distribution of the band gaps of the generated
materials set versus those of the training set and the exhaustively
enumerated set. The bandgap distribution of generated samples is
much similar to that of the training set, which demonstrates the
capability of our GAN-bandgap can generate hypothetic high-
bandgap materials efficiently.

Discovery of potential new materials. To evaluate how likely our
GAN models can generate confirmed new materials, we take a
cross-validation evaluation approach. Essentially, for all the new
hypothetical materials generated by each of our GAN models, we
check how many of them are confirmed/included by the other
two datasets. Table 2 lists the cross-validation confirmation results.
It is found that out of the 2 million generated materials by GAN-
ICSD, 13,126 materials are confirmed by and included in the MP
dataset and 2349 new materials are confirmed by the OQMD
dataset. GAN-MP also has 6880 and 3601 generated samples
confirmed by ICSD and OQMD, respectively. Another validation of
the predictive power of our GAN models come from a recent
study on discovering four new materials of aluminum and sulfide
using DFT-based crystal structure prediction software CALYPSO29.
Two of the four materials are in our candidate list: AlS2, AlS, which

are confirmed by their study and we have predicted an additional
undiscovered AlS3.

Limitation of MatGAN examined by autoencoder. Here we aim to
check the relation of AE non-decodable materials and the
difficulty of our GANs to generate them. To train the AE model,
we randomly split the OQMD_L dataset with 90% samples for AE
training and 10% samples as testing. The learning rate is set as
10−3, batch size 1024, and Adam optimizer is used. The final AE
model is picked as the model with the best performance over the
test set within 1000 epochs of training. We found that our AE
model can decode 96.31% and 95.50% of the samples from the
training set and the test set. These samples seem to share some
common chemical composition rules.
To show the difference between the decodable samples and

non-decodable ones, we applied T-sne dimension reduction
technique25 to reduce the dimension of the matrix representa-
tions of all OQMD_L dataset to 2 and then visualize 20% of the
samples on the 2D plot (Fig. 7), in which the red dots represent
non-decodable samples while blue ones represent decodable
ones. The apparent different distributions show that these two
categories of samples have different composition rules. Our
hypothesis is that the decodable samples share well-established
chemical composition rules, which allows our GAN generators for
efficient sampling of the corresponding chemical space. On the
other hand, the non-decodable samples will be difficult to
generate by our GAN model. To verify this, we calculated the
percentage of non-decodable samples that have been generated
by the trained GAN-OQMD. It is observed that almost 95% of the
non-decodable materials are out of the scope of the generated
samples even after generating 2 million of samples while 60.26%
of the decodable training samples have been re-discovered.
This shows that our GANs have limitation in generating non-

decodable materials type. It also means that non-decodable
materials have special composition rules that either need more
data or more powerful generator models to learn. Indeed,
comparison on the enriched element distribution analysis
(Supplementary Fig. 4) shows that the decodable and non-
decodable materials have distinct element distributions.

Fig. 6 Comparison of bandgap distributions of the generated
materials by GAN-bandgap, the training set, and the enumerated
set. The GAN-generated samples show much more similar bandgap
distribution than the enumerated compositions.

Table 2. Cross-validation confirmation of generated new materials by

our GANs.

ICSD dataset MP dataset OQMD dataset

GAN-ICSD N/A 13,126 2349

GAN-MP 6880 N/A 3601

GAN-OQMD 3428 58,603 N/A

(a) (b)

78.1%

30.4%

3.3%

82.7%

31.2%

5.2%

83.15%

98.68% 99.98%

0%

20%

40%

60%

80%

100%

Binary Ternary Quaternary

Train recover% Leave out recover% New rate%

60%

70%

80%

90%

100%

0 10 20 30 40

P
er

ce
n

ta
g
e 

o
f 

u
n

iq
u

e 
m

at
er

ia
s

Number of generated materials(1E4)

OQMD

ICSD

MP

Fig. 5 Uniqueness and novelty check of the generated materials. a Comparison of uniqueness curves of the hypothetical materials
generated by three GANs. GAN-MP achieves the dominating curve due to its more balanced distribution of binary/ternary/quaternary training
samples. b Distribution of recovery rates of training and validation samples, and also percentages of new generated hypothetical materials.
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DISCUSSION

The configurational phase space for new inorganic materials is
immense. Forming four-component compounds from the first 103
elements of the periodic table results in more than 1012

combinations. Such a vast materials design space is intractable
to high-throughput experiments or first-principle computations.
On the other hand, current inorganic materials databases such as
ICSD and Materials Projects all consist of only a tiny portion of the
whole inorganic chemical space, which needs expansion for
computational screening of new materials.
Here we proposed a GAN-based generative model for efficient

sampling of the vast chemical design space of inorganic materials.
Systematic experiments and validations show that our GAN
models can achieve high uniqueness, validity, and diversity in
terms of its generation capability. Our generative models can be
used to explore the uncharted inorganic materials design space by
expanding ICDS, material projects (MP), and OQMD databases. The
derived expanded databases can then be used for high-
throughput computational screening with higher efficiency than
exhaustively screening billions of candidates2. While principles of
charge neutrality and electronegativity balance1 have been
applied to filter out chemically implausible compositions for more
effective search of new materials, such explicit composition rules
are still too loose to ensure efficient sampling in the vast chemical
design space for new materials search. Indeed, while the
hypothetical materials with <5 elements can be enumerated (32
billion for 4-element materials with charge neutrality and
balanced electronegativity), the design space of more elements
can be challenging for which our GAN models can help a lot.
One limitation of our composition-based GAN model is due to

the issue of possible polymorphism for a given composition: one
composition may correspond to multiple structure phases and
then multiple materials properties such as the bandgap. In this
case, structural prediction and exploration is needed for our
prediction compositions to search those phases to ensure a
comprehensive inverse design process.
Our work can be extended in multiple ways. First, we found that

MatGAN can learn chemical composition rules implicitly even
though we did not explicitly enforce those rules into our GAN
model. However, it is sometimes desirable to implement chemical
rule filters to remove chemically invalid candidates, which can be
easily implemented based on our matrix representation of
materials. Another limitation in our current study is that we only
considered the integer ratios of elements in compounds in our
material representation while doped materials with fractional
ratios are very common in functional materials such as lithium-ion
battery material LiZn0.01Fe0.99PO4, which is a doped cathode

material. Our study can be extended by allowing real numbers on
the representation matrix. However, considering the infinite
possibility of doping ratios, our GAN method may need to work
together with other sampling techniques such as genetic
algorithms30,31, genetic programming32, and active machine
learning for mixed parameter search33,34 or the Bayesian
optimization approach33. In addition, our current GAN models
do not tell the crystal structures (lattice constants, space group,
atomic coordinates, etc.) of the hypothesized materials. However,
with sufficient computational resources, it is possible to exploit
DFT-based computational software packages such as USPEX35 or
CALYPSO36 to determine the crystal structure given a material
composition and its stoichiometry. Our GAN models can also be
used to work together with material structure generators11.

METHODS

Datasets
We use a subset of inorganic materials deposited in the OQMD15,17

database to train our AE and GAN models. OQMD is a widely used DFT
database with crystal structures either calculated from high-throughput
DFT or obtained from the ICSD37 database. Currently it has 606,115
compounds. We use a similar screening criteria by Jha et al.38 to choose
the OQMD subset for GAN training: for a formula with multiple reported
formation energies, we keep the lowest one to select the most stable
compound. Single-element compounds are all removed along with
materials whose formation energy is out of the range of {u−5σ, u+5σ},
where u and σ are the average and standard deviation of the formation
energies of all samples in OQMD. Our final dataset, OQMD_L, has 291,884
compounds.
As comparison, we also train two GANs for the MP and ICSD databases,

respectively. Both the MP and ICSD datasets here are prepared by
removing all the single-atom compounds, the compounds which has any
element with more than 8 atoms in their unit cell, and compounds
containing Kr and He elements. The final MP dataset used here has 63,922
compounds. The final ICSD dataset used here has 28,137 compounds.

GAN neural networks training
We have optimized the hyper-parameters for training the GANs by setting
the learning rate from 0.1 to 10−6 (each time decrease by 10-fold) and
batch normalization size from 32 to 1024, and using different optimizers.
We train our GANs using the screened samples from the OQMD, MP, and
ICSD, and ICSD_filter database, which is an ICSD subset with all charge-
neutral and electronegativity-balanced materials. These Wasserstein GANs
are trained for 1000 epochs with the Adam optimizer with learning rate of
0.001 for the generator training and 0.01 for the discriminator training. The
batch size for GAN training on OQMD is set to 512 while the batch sizes are
set as 32 for GAN training on all other datasets. The AE is trained with the
Adam optimization algorithm with a learning rate of 10−3 and batch size
of 1024.

Training of bandgap prediction model
We choose 30,186 inorganic materials whose band gaps are >0 out of the
63,922 compounds in the selected MP dataset as the training samples to
train the bandgap prediction model. Gradient-boosted decision tree
(GBDT) machine learning model is then trained with the Magpie features.
The learning rate is set as 0.06. The maximum tree depth is set as 20. The
subsample is set to 0.4. The number of estimator is set to 100.
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