
Generative Adversarial User Model for

Reinforcement Learning Based Recommendation System

Xinshi Chen 1 † Shuang Li 2 Hui Li 4 Shaohua Jiang 4 Yuan Qi 4 Le Song 3 4

Abstract

There are great interests as well as many chal-

lenges in applying reinforcement learning (RL)

to recommendation systems. In this setting, an

online user is the environment; neither the reward

function nor the environment dynamics are clearly

defined, making the application of RL challenging.

In this paper, we propose a novel model-based

reinforcement learning framework for recommen-

dation systems, where we develop a generative

adversarial network to imitate user behavior dy-

namics and learn her reward function. Using this

user model as the simulation environment, we de-

velop a novel Cascading DQN algorithm to obtain

a combinatorial recommendation policy which

can handle a large number of candidate items ef-

ficiently. In our experiments with real data, we

show this generative adversarial user model can

better explain user behavior than alternatives, and

the RL policy based on this model can lead to a

better long-term reward for the user and higher

click rate for the system.

1. Introduction

Recommendation systems have become a crucial part of

almost all online service platforms. A typical interaction

between the system and its users is — users are recom-

mended a page of items and they provide feedback, and then

the system recommends a new page of items. A common

way of building recommendation systems is to estimate a

model which minimizes the discrepancy between the model

prediction and the immediate user response according to

some loss function. In other words, these models do not

†Work done partially during an internship at Ant Financial.
1School of Mathematics, 2School of Industrial and Systems En-
gineering, 3School of Computational Science and Engineering,
Georgia Institute of Technology, Atlanta, Georgia, USA, 4Ant
Financial, Hangzhou, China. Correspondence to: Xinshi Chen
<xinshi.chen@gatech.edu>.

Proceedings of the 36
th International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

explicitly take into account the long-term user interest. How-

ever, user’s interest can evolve over time based on what she

observes, and the recommender’s action may significantly

influence such evolution. In some sense, the recommender

is guiding users’ interest by displaying particular items and

hiding the rest. Thus, it is more favorable to design a rec-

ommendation strategy, such as one based on reinforcement

learning (RL), which can take users’ long-term interest into

account. However, it is challenging to apply RL framework

to recommendation system setting since the environment

will correspond to the logged online user.

First, a user’s interest (reward function) driving her behavior

is typically unknown, yet it is critically important for the

use of RL algorithms. In existing RL algorithms for rec-

ommendation systems, the reward functions are manually

designed (e.g. ±1 for click/no-click) which may not reflect

a user’s preference over different items.

Second, model-free RL typically requires lots of interac-

tions with the environment in order to learn a good policy.

This is impractical in the recommendation system setting.

An online user will quickly abandon the service if the rec-

ommendation looks random and do not meet her interests.

Thus, to avoid the large sample complexity of the model-

free approach, a model-based RL approach is more prefer-

able. In a related but a different setting where one wants to

train a robot policy, recent works showed that model-based

RL is much more sample efficient (Nagabandi et al., 2017;

Deisenroth et al., 2015; Clavera et al., 2018). The advan-

tage of model-based approaches is that potentially large

amount of off-policy data can be pooled and used to learn a

good environment dynamics model, whereas model-free ap-

proaches can only use expensive on-policy data for learning.

However, previous model-based approaches are typically

designed based on physics or Gaussian processes, and not

tailored for complex sequences of user behaviors.

To address the above challenges, we propose a novel model-

based RL framework for recommendation systems, where

a user behavior model and the associated reward function

are learned in unified mini-max framework, and then RL

policies are learned using this model. Our main technical

contributions are:

1. We develop a generative adversarial learning (GAN) for-

Generative Adversarial User Model for RL Based Recommendation System

mulation to model user behavior dynamics and recover her

reward function. These two components are estimated si-

multaneously via a joint mini-max optimization algorithm.

The benefits of our formulation are: (i) a better predictive

user model can be obtained, and the reward function are

learned in a consistent way with the user model; (ii) the

learned reward allows later reinforcement learning to be

carried out in a more principled way, rather than relying

on manually designed reward; (ii) the learned user model

allows us to perform model-based RL and online adaptation

for new users to achieve better results.

2. Using this model as the simulation environment, we de-

velop a cascading DQN algorithm to obtain a combinatorial

recommendation policy. The cascading design of action-

value function allows us to find the best subset of items to

display from a large pool of candidates with time complexity

linear in number of candidates.

In our experiments with real data, we showed that this gen-

erative adversarial model is a better fit to user behavior in

terms of held-out likelihood and click prediction. Based

on the learned user model and reward, we show that the

estimated recommendation policy leads to better cumulative

long-term reward for the user. Furthermore, in the case of

model mismatch, our model-based policy can also quickly

adapt to the new dynamics with a much fewer number of

user interactions compared to model-free approaches.

2. Related Work

Commonly used recommendation algorithms use a simple

user model. For instance, Wide&Deep networks (Cheng

et al., 2016) and other methods such as XGBOOST (Chen

& Guestrin, 2016) and DFM (Guo et al., 2017) based on

logistic regression assume a user chooses each item inde-

pendently; Collaborative competitive filtering (Yang et al.,

2011) takes into account the context of user’s choice but as-

sumes that user’s choices in each page view are independent.

Session-based RNN (Hidasi et al., 2016) and session-based

KNN (Jannach & Ludewig, 2017) improve upon previous

approaches by modeling users’ history, but this model does

not recover a users’ reward function and can not be used

subsequently for reinforcement learning. Bandit based ap-

proaches, such as LinUCB (Li et al., 2010), can deal with

adversarial user behaviors, but the reward is updated in a

Bayesian framework and can not be directly in a reinforce-

ment learning framework.

Zhao et al. (2018b;a); Zheng et al. (2018) used model-free

RL for recommender systems, which may require many user

interactions and the reward function is manually designed.

Model-based reinforcement learning has been commonly

used in robotics applications and resulted in reduced sample

complexity to obtain a good policy (Deisenroth et al., 2015;

Nagabandi et al., 2017; Clavera et al., 2018). However, user

available articles

…

: user’s past choicesstate

user’s choice

display set

state updated

system user

reward

Figure 1. Illustration of the interaction between a user and the

recommendation system. Green arrows represent the recommender

information flow and orange represents user’s information flow.

behaviors are sequences of discrete choices under a complex

session context, very different from robotics models. Views

resonating our work also emerge from literature (Shi et al.,

2019) that user model estimation is essential for the success

of RL in recommendation systems.

3. Setting and RL Formulation

We focus on a simplistic yet typical setting where the rec-

ommendation system (RS) and its user interact as follows:

Setting: RS displays k items in one page to a

user. The user provides feedback by clicking on

one or none of these items, and then the system

recommends a new page of k items.

Our model can be easily extended to settings with more

complex page views and user interactions.

Since reinforcement learning can take into account long-

term reward, it holds the promise to improve users’ long-

term engagement with an online platform. In the RL

framework, a recommendation system aims to find a policy

π(s, I) to choose from a set I of items in user state s, such

that the cumulative expected reward is maximized,

π∗ = argmaxπ(st,It) E

[

∑∞
t=0 γ

tr(st, at)
]

, (1)

where s0 ∼ p0, At ∼ π(st, It), st+1 ∼ P (·|st,At),
at ∈ At. The overall RL framework for recommendation is

illustrated in Figure 1. Several key aspects are as follows:

(1) Environment: will correspond to a logged online user

who can click on one of the k items displayed by the recom-

mendation system in each page view (or interaction);

(2) State st ∈ S: will correspond to an ordered sequence

of a user’s historical clicks;

(3) Action At ∈
(

It

k

)

of the recommender: will corre-

spond to a subset of k items chosen by the recommender

from It to display to the user.
(

It

k

)

means the set of all

subsets of k items of It, where It ⊂ I are available items

to recommend at time t.
(4) State Transition P (·|st,At) : S ×

(

I
k

)

7→ P(S): will

Generative Adversarial User Model for RL Based Recommendation System

correspond to a user behavior model which returns the tran-

sition probability for st+1 given previous state st and the

set of items At displayed by the system. It is equivalent

to the distribution φ(st,At) over a user’s actions, which is

defined in our user model in section 4.1.

(5) Reward Function r (st,At, at) : S ×
(

I
k

)

× I 7→ R:

will correspond to a user’s utility or satisfaction after making

her choice at ∈ At in state st. Here we assume that the

reward to the recommendation system is the same as the

user’s utility. Thus, a recommendation algorithm which

optimizes its long-term reward is designed to satisfy the user

in a long run. One can also include the company’s benefit

to the reward, but we will focus on users’ satisfaction.

(6) Policy At ∼ π(st, It) : S × 2I 7→ P(
(

I
k

)

): will

correspond to a recommendation strategy which returns the

probability of displaying a subset At of It in user state st.

Remark. In the above mapping, Environment, State and

State Transition are associated with the user, Action and

Policy are associated with the recommendation system, and

Reward Function is associated with both of them. Here

we use the notation r(st,At, at) to emphasize the depen-

dency of the reward on the recommendation action, as the

user can only choose from the display set. However, the

value of the reward is determined by the user’s state and the

clicked item once the item occurs in the display set At. In

fact, r(st,At, at) = r(st, at) · 1(at ∈ At). Thus, in sec-

tion 4.1 where we discuss the user model, we simply denote

r(st, at) = r(st,At, at) and assume at ∈ At is true.

Since both the reward function and the state transition model

are unknown, we need to learn them from data. Once they

are learned, the optimal policy π∗ in Eq. (1) can be estimated

by repeated querying the model using algorithms such as

Q-learning (Watkins, 1989). In the next two sections, we

will explain our formulation for the user behavior model

and the reward function, and design an efficient algorithm

for learning the RL recommendation policy.

4. Generative Adversarial User Model

We propose a model to imitate users’ sequential choices and

discuss its parameterization and estimation. The formula-

tion is inspired by imitation learning, a powerful tool for

learning sequential decision-making policies from expert

demonstrations (Abbeel & Ng, 2004; Ho et al., 2016; Ho &

Ermon, 2016; Torabi et al., 2018). We formulate a unified

mini-max optimization to learn user behavior model and re-

ward function simultaneously based on sample trajectories.

4.1. User Behavior As Reward Maximization

We model user behavior based on two realistic assumptions.

(i) Users are not passive. Instead, given a set of k items, a

user will make a choice to maximize her own reward. The

reward r measures how much she will be satisfied with or

interested in an item. Alternatively, the user can choose not

to click on any items. Then she will receive the reward of not

wasting time on boring items. (ii) The reward depends not

only on the selected item but also on the user’s history. For

example, a user may not be interested in Taylor Swift’s song

at the beginning, but once she happens to listen to it, she

may like it and then becomes interested in her other songs.

Also, a user can get bored after listening to Taylor Swift’s

songs repeatedly. In other words, a user’s evaluation of the

items varies in accordance with her personal experience.

To formalize the model, we consider both the clicked item

and the state of the user as the inputs to the reward function

r(st, at), where the clicked item is the user’s action at and

the user’s history is captured in her state st (non-click is

treated as a special item/action). Suppose in session t, the

user is presented with k items At = {a1, · · · , ak} and their

associated features {f t
1, · · · ,f

t
k} by the system. She will

take an action at ∈ At according to a strategy φ∗ which

can maximize her expected reward. More specifically, this

strategy is a probability distribution over At, which is the

result of the optimization problem below

Generative User Model:

φ∗(st,At) = arg max
φ∈∆k−1

Eφ

[

r(st, at)
]

−R(φ)/η, (2)

where ∆k−1 is the probability simplex, and R(φ) is a con-

vex regularization function to encourage exploration, and η
controls the strength of the regularization.

Model interpretation. If we use the negative Shannon

entropy as the regularizer, we can obtain an interpreta-

tion of our user model from the perspective of exploration-

exploitation trade-off (See Appendix A for a proof).

Lemma 1. Let the regularization term in Eq. (2) be R(φ) =
∑k

i=1 φi log φi. Then the optimal solution φ∗ for the prob-

lem in Eq. (2) has a closed form

φ∗(st,At)i = exp(ηr(st, ai))/
∑

aj∈At exp(ηr(s
t, aj)).

Furthermore, in each session t, the user’s optimal policy φ∗

is equivalent to the following discrete choice model where

εt follows a Gumbel distribution.

at = argmaxa∈At η r(st, a) + εt. (3)

This lemma makes it clear that the user greedily picks an

item according to the reward function (exploitation), and yet

the Gumbel noise εt allows the user to explore other less re-

warding items. Similar models have appeared in economet-

ric choice models (Manski, 1975; McFadden, 1973). The

regularization parameter η is an exploration-exploitation

trade-off parameter. It can be easily seen that with a smaller

η, the user is more exploratory. Thus, η reveals a part of

users’ character. In practice, we simply set the value η = 1
in our experiments, since it is implicitly learned in the re-

Generative Adversarial User Model for RL Based Recommendation System

ward r, which is a function of various features of a user.

Remark. (i) Other regularization R(φ) can also be used in

our framework, which may induce different user behaviors.

In these cases, the relations between φ∗ and r are also dif-

ferent, and may not appear in the closed form. (ii) The case

where the user does not click any items can be regarded as a

special item which is always in the display set At. It can be

defined as an item with zero feature vector, or, alternatively,

its reward value can be defined as a constant to be learned.

4.2. Model Parameterization

We will represent the state st as an embedding of the histor-

ical sequence of items clicked by the user before session t,
and then we will define the reward function r(st, at) based

on the state and the embedding of the current action at.

First, we will define the state of the user as st :=
h(F 1:t−1

∗ := [f1
∗ , · · · ,f

t−1
∗]), where each f τ

∗ ∈ R
d is the

feature vector of the clicked item at session τ and h(·) is

an embedding function. One can also define a truncated

M -step sequence as F t−m:t−1
∗ := [f t−m

∗ , · · · ,f t−1
∗]. For

the state embedding function h(·), we propose a simple and

effective position weighting scheme. Let W ∈ R
m×n be a

matrix where the number of rows m corresponds to a fixed

number of historical steps, and each column corresponds

to one set of importance weights on positions. Then the

embedding function h ∈ R
dn×1 can be designed as

st = h(F t−m:t−1
∗) := vec[σ

(

F t−m:t−1
∗ W +B

)

], (4)

where B ∈ R
d×n is a bias matrix, and σ(·) is a nonlin-

ear activation such as ReLU and ELU, and vec[·] turns the

input matrix into a long vector by concatenating the ma-

trix columns. Alternatively, one can also use an LSTM

to capture the history. However, the advantage of the po-

sition weighting scheme is that the history embedding is

produced by a shallow network. It is more efficient for

forward-computation and gradient backpropagation.

Next, we define the reward function and the user behavior

model. A user’s choice at ∈ At will correspond to an item

with feature f t
at , which will be used to parameterize the

reward function and user behavior model as

r(st, at) := v⊤σ
(

V
[

(st)⊤, (f t
at)⊤

]⊤
+ b

)

and

φ(s,At) ∝ exp
(

v′⊤σ
(

V ′
[

(st)⊤, (f t
at)⊤

]⊤
+ b′

))

,

where V ,V ′ ∈ R
ℓ×(dn+d) are weight matrices, b, b′ ∈

R
1×(dn+d) are bias vectors , and v,v′ ∈ R

ℓ are the final

regression parameters. See Figure 2 for an illustration of the

overall parameterization. For simplicity of notation, we will

denote the set of all parameters in the reward function as

θ and the set of all parameters in the user model as α, and

hence the notation rθ and φα respectively.

4.3. Generative Adversarial Training

Both the reward function r(st, at) and the behavior model

φ(st,At) are unknown and need to be estimated from

the data. The behavior model φ tries to mimic the ac-

tion sequences provided by a real user who acts to max-

imize her reward function r. In analogy to generative ad-

versarial networks, (i) φ acts as a generator which gener-

ates the user’s next action based on her history, and (ii)

r acts as a discriminator which tries to differentiate the

user’s actual actions from those generated by the behavior

model φ. Thus, inspired by the GAN framework, we esti-

mate φ and r simultaneously via a mini-max formulation.

More precisely, given a trajectory of T observed actions

{a1true, a
2
true, . . . , a

T
true} of a user and the corresponding

clicked item features {f1
∗ ,f

2
∗ , . . . ,f

T
∗ }, we learn r and φ

jointly by solving the following mini-max optimization

Generative Adversarial Training:

min
θ

max
α

(

Eφα

[
∑T

t=1rθ(s
t
true, a

t)
]

−R(φα)/η
)

−
∑T

t=1rθ(s
t
true, a

t
true), (5)

where we use sttrue to emphasize that this is observed in

the data. From the above optimization, one can see that the

reward rθ will extract some statistics from both real user

actions and model user actions, and try to magnify their

difference (or make their negative gap larger). In contrast,

the user model φα will try to make the difference smaller,

and hence more similar to the real user behavior. Alterna-

tively, the mini-max optimization can also be interpreted

as a game between an adversary and a learner where the

adversary tries to minimize the reward of the learner by ad-

justing rθ, while the learner tries to maximize its reward by

adjusting φα to counteract the adversarial moves. This gives

the user behavior training process a large-margin training

flavor, where we want to learn the best model even for the

worst scenario.

For general regularization function R(φα), the optimal so-

lution in Eq. (5) does not have a closed form, and typically

needs to be solved by alternatively updating φα and rθ, e.g.

α← α+ γ1∇αEφα

[

∑T

t=1
rθ
]

− γ1∇αR(φα)/η;

θ ← θ − γ2Eφα

[

∑T

t=1
∇θrθ

]

+ γ2
∑T

t=1
∇θrθ.

(6)

The process may be unstable due to the non-convexity nature

of the problem. To stabilize the training process, we will

leverage a special regularization for initializing the training

process. More specifically, for entropy regularization, we

can obtain a closed form solution to the inner-maximization

for user behavior model, which makes the learning of reward

function easy (See lemma 2 below and Appendix A for a

proof). Once the reward function is learned for entropy

regularization, it can be used to initialize the learning in

the case of other regularization functions which may induce

Generative Adversarial User Model for RL Based Recommendation System

×
𝒇∗𝑡−1⋯𝒇∗𝑡−𝑚 weight matrix𝑤11 ⋯⋮𝑤𝑚1 ⋯ concat

𝑤1𝑛⋮ ⋮𝑤𝑚𝑛 = 𝑟𝑖𝑡ℎ𝑡−1
𝒇𝑖𝑡

𝐿𝑆𝑇𝑀𝒇∗𝑡−𝑚
𝒇∗𝑡−𝑚+1
𝒇∗𝑡−1

ℎ𝑡−𝑚
ℎ𝑡−𝑚+1ℎ𝑡−1 = 𝒔𝑡⋮ 𝒇𝑖𝑡

𝐿𝑆𝑇𝑀
𝐿𝑆𝑇𝑀 𝑟𝑖𝑡

Argmax

𝑎1∗ 𝑎2∗
…

𝑎𝑘∗
Argmax

𝑠𝑎1 𝑎2 𝑎𝑘…
Argmax

𝑄1(𝑠, 𝑎1; 𝜃1) 𝑄2(𝑠, 𝑎1∗, 𝑎2; 𝜃2) 𝑄𝑘(𝑠, 𝑎1:𝑘−1∗ , 𝑎𝑘; 𝜃𝑘）

(a) (b) (c)

Figure 2. Architecture of our models parameterized by either (a) position weight (PW) or (b) LSTM. (c) Cascading Q-networks.

different user behavior models and final rewards.

Lemma 2. When R(φ) =
∑k

i=1 φi log φi, the optimization

problem in Eq. (5) is equivalent to the following maximum

likelihood estimation

max
θ∈Θ

T
∏

t=1

exp(ηrθ(s
t
true, a

t
true))

∑

at∈At exp(ηrθ(sttrue, a
t))

.

5. Cascading RL Policy for Recommendation

Using the estimated user behavior model φ and the corre-

sponding reward function r as the simulation environment,

we can then use reinforcement learning to obtain a recom-

mendation policy. The recommendation policy needs to

choose from a combinatorial action space
(

I
k

)

, where each

action is a subset of k items chosen from a larger set I of

K candidates. Two challenges associated with this problem

include the potentially high computational complexity of the

combinatorial action space and the development of a frame-

work for estimating the long-term reward (the Q function)

from a combination of items. Our contribution is designing

a novel cascading Q-networks to handle the combinatorial

action space, and an algorithm to estimate the parameters

by interacting with the GAN user model.

5.1. Cascading Q-Networks

We will use the Q-learning framework where an optimal

action-value function Q∗(s,A) will be learned and satisfies

Q∗(st,At) = E
[

r(st,At, at)+γmaxA′⊂I Q∗(st+1,A′)
]

,

at ∈ At. Once the action-value function is learned, an

optimal policy for recommendation can be obtained as

π∗(st, It) = argmaxAt⊂It Q∗(st,At), (7)

where It ⊂ I is the set of items available at time t. The

action space contains
(

K
k

)

many choices, which can be very

large even for moderate K (e.g. 1,000) and k (e.g. 5).

Furthermore, an item put in different combinations can have

different probabilities of being clicked, which is indicated

by the user model and is in line with reality. For instance,

interesting items may compete with each other for a user’s

attention. Thus, the policy in Eq. (7) will be very expensive

to compute. To address this challenge, we will design not

just one but a set of k related Q-functions which will be used

in a cascading fashion for finding the maximum in Eq. (7).

Denote the recommender actions as A = {a1:k} ⊂ I and

the optimal action as A∗ = {a∗1:k} = argmaxA Q∗(s,A).
Our cascading Q-networks are inspired by the key fact:

max
a1:k

Q∗(s, a1:k) = max
a1

(

max
a2:k

Q∗(s, a1:k)
)

. (8)

Also, there is a set of mutually consistent Q1∗, . . . , Qk∗:

Cascading Q-Networks:

a∗1 = argmaxa1
{Q1∗(s, a1) := maxa2:k

Q∗(s, a1:k)},

a∗2 = argmaxa2
{Q2∗(s, a∗1, a2) := maxa3:k

Q∗(s, a1:k)},

· · ·

a∗k = argmaxak
{Qk∗(s, a∗1:k−1, ak) := Q∗(s, a1:k)}.

Thus, we can obtain an optimal action in O (k|I|) computa-

tions by applying these functions in a cascading manner.

See Algorithm 1 and Figure 2(c) for a summary. However,

this cascade of Qj∗ functions are usually not available and

need to be estimated from the data.

5.2. Parameterization and Estimation

Each Qj∗ function is parameterized by a neural network

q⊤
j σ

(

Lj

[

s⊤, f⊤
a∗

1

, . . . , f⊤
a∗

j−1

, f⊤
aj

]⊤
+ cj

)

, ∀j, (9)

where Lj ∈ R
ℓ×(dn+dj), cj ∈ R

ℓ and qj ∈ R
ℓ are the set

Θj of parameters, and we use the same embedding for the

state s as in Eq. (4). Now the problem left is how we can

estimate these functions. Note that the set of Qj∗ functions

need to satisfy a large set of constraints. At the optimal

point, the value of Qj∗ is the same as Q∗ for all j, i.e.,

Qj∗(s, a∗1, · · · , a
∗
j) = Q∗(s, a∗1, · · · , a

∗
k), ∀j. (10)

It is not easy to strictly enforce these constraints, we take

them into account in a soft and approximate way. That is,

we define the loss as
(

y −Qj
)2
, where

y = r(st,At, at) + γQk(st+1, a∗1:k; Θk), ∀j. (11)

All Qj networks are fitting against the same target y. Then

the parameters Θk can be updated by performing gradient

steps over the above loss. We note that in our experiments

the set of learned Qj networks satisfies the constraints

nicely with a small error (Figure 5).

The overall cascading Q-learning algorithm is summarized

Generative Adversarial User Model for RL Based Recommendation System

Algorithm 1 Recommend using Qj Cascades

Let A∗ = ∅ be empty, remove clicked items I = A \ s

For j = 1 to k do

a∗j = argmaxaj∈I\A∗Qj(s, a∗1:j−1, aj ; Θj)
Update A∗ = A∗ ∪ {a∗j}

return A∗ = (a∗1, · · · , a
∗
k)

in Algorithm 2 in Appendix B, where we employ the cas-

cading Q functions to search the optimal action efficiently.

Besides, both the experience replay (Mnih et al., 2013) and

ε-exploration techniques are applied.

6. Experiments

We conduct three sets of experiments to evaluate our gener-

ative adversarial user model (called GAN user model) and

the resulting RL recommendation policy. Our experiments

are designed to investigate the following questions: (1) Can

GAN user model lead to better user behavior prediction? (2)

Can GAN user model lead to higher user reward and click

rate? and (3) Can GAN user model help reduce the sample

complexity of reinforcement learning?

Dataset and Feature Description. We use 6 real-world

datasets: (1) MovieLens contains a large number of movie

ratings, from which we randomly sample 1,000 active users.

Each display set is simulated by collecting 39 movies re-

leased near the time the movie is rated. Movie features

are collected from IMDB. Categorical and descriptive fea-

tures are encoded as sparse and dense vectors respectively;

(2) Last.fm contains listening records from 359,347 users.

Each display set is simulated by collecting 9 songs with the

nearest time-stamp. (3) Yelp contains users’ reviews to var-

ious businesses. Each display set is simulated by collecting

9 businesses with the nearest location. (4) Taobao contains

the clicking and buying records of users in 22 days. We con-

sider the buying records as positive events. (5) RecSys15

YooChoose contains click-streams that sometimes end with

purchase events. (6) Ant Financial News dataset contains

clicks records from 50,000 users for one month, involving

dozens of thousands of news. On average each display set

contains 5 news articles. It also contains user-item cross fea-

tures which are widely used in this online platform. (More

details in Appendix C)

6.1. Predictive Performance of User Model

To assess the predictive accuracy of GAN user model with

position weight (GAN-PW) and LSTM (GAN-LSTM), we

choose a series of most widely used or state-of-the-arts

as the baselines, including: (1) W&D-LR (Cheng et al.,

2016), a wide & deep model with logistic regression loss

function; (2) CCF (Yang et al., 2011), an advanced collabo-

rative filtering model which takes into account the context

information in the loss function; we further augment it with

wide & deep feature layer (W&D-CCF); (3) IKNN (Hidasi

et al., 2015), one of the most popular item-to-item solutions,

which calculates items similarly according to the number of

co-occurrences in sessions; (4) S-RNN (Hidasi et al., 2016),

a session-based RNN model with a pairwise ranking loss;

(5) SCKNNC (Jannach & Ludewig, 2017), a strong meth-

ods which unify session based RNN and KNN by cascading

combination; (6) XGBOOST (Chen & Guestrin, 2016), a

parallel tree boosting; (7) DFM (Guo et al., 2017) is a deep

neural factorization-machine based on wide & deep features.

S-RNN (Hidasi et al., 2016), a session-based RNN model

with a pairwise ranking loss; (8) SCKNNW (Jannach &

Ludewig, 2017) and (9) SCKNNC (Jannach & Ludewig,

2017), two methods which unify S-RNN and CKNN by

weighted combination and cascading combination respec-

tively; (10) XGBOOST (Chen & Guestrin, 2016), a parallel

tree boosting, which is also known as GBDT and GBM.

Top-k precision (Prec@k) is employed as the evaluation

metric. It is the proportion of top-k ranked items at each

page view that are actually clicked by the user, averaged

across test page views and users. Users are randomly di-

vided into train(50%), validation(12.5%) and test(37.5%)

sets. The results in Table 1 show that GAN model performs

significantly better than baselines. Moreover, GAN-PW per-

forms nearly as well as GAN-LSTM, but it is more efficient

to train. Thus we use GAN-PW for later experiments and

refer to it as GAN.

We also tested different types of regularization (Table 2).

In general, Shannon entropy performs well and it is also

favored for its closed form solution. However, on the Yelp

dataset, we find that L2 regularization R(φ) = ‖φ‖22 leads

to a better user model. It is noteworthy that the user model

with L2 regularization is trained with Shannon entropy ini-

tialization scheme proposed in section 4.3.

An interesting result on Movielens is shown in Figure 3 (see

Appendix D.1 for similar figures). It shows GAN performs

much better as time goes by, while the items predicted by

W&D-CCF are concentrated on several categories. This

indicates a drawback of static models — it fails to capture

user interest evolution.

6.2. Recommendation Policy Based on User Model

With a learned user model, we can immediately derive a

greedy policy to recommend k items with the highest es-

timated likelihood. We will compare the strongest base-

line methods W&D-LR, W&D-CCF and GAN-Greedy

in this setting. Furthermore, we will learn an RL policy

using the cascading Q-networks from section 5 (GAN-

CDQN) and compare it with two RL methods: a cas-

cading Q-network trained with ±1 reward (GAN-RWD1),

and an additive Q-network policy (He et al., 2016),

Generative Adversarial User Model for RL Based Recommendation System

Table 1. Comparison of predictive performances, where we use Shannon entropy for GAN-PW and GAN-LSTM.
(1) MovieLens (2) LastFM (3) Yelp (4) Taobao (5) YooChoose (6) Ant Financial

Model prec(%)@1 prec(%)@2 prec(%)@1 prec(%)@2 prec(%)@1 prec(%)@2 prec(%)@1 prec(%)@2 prec(%)@1 prec(%)@2 prec(%)@1 prec(%)@2

IKNN 38.8(±1.9) 40.3(±1.9) 20.4(±0.6) 32.5(±1.4) 57.7(±1.8) 73.5(±1.8) 32.8(±2.6) 46.6(±2.6) 39.3(±1.5) 69.8(±2.1) 20.6(±0.2) 32.1(±0.2)

S-RNN 39.3(±2.7) 42.9(±3.6) 9.4(±1.6) 17.4(±0.9) 67.8(±1.4) 73.2(±0.9) 32.7(±1.7) 47.0(±1.4) 41.8(±1.2) 69.9(±1.9) 32.2(±0.9) 40.3(±0.6)

SCKNNC 49.4(±1.9) 51.8(±2.3) 21.4(±0.5) 26.1(±1.0) 60.3(±4.5) 71.6(±1.8) 35.7(±0.4) 47.9(±2.1) 40.8(±2.5) 70.4(±3.8) 34.6(±0.7) 43.2(±0.8)

XGBOOST 66.7(±1.1) 76.0(±0.9) 10.2(±2.6) 19.2(±3.1) 64.1(±2.1) 79.6(±2.4) 30.2(±2.5) 51.3(±2.6) 60.8(±0.4) 80.3(±0.4) 41.9(±0.1) 65.4(±0.2)

DFM 63.3(±0.4) 75.9(±0.3) 10.5(±0.4) 20.4(±0.1) 72.1(±2.1) 80.3(±2.1) 30.1(±0.8) 48.5(±1.1) 61.3(±0.3) 82.5(±1.5) 41.7(±0.1) 64.2(±0.2)

W&D-LR 61.5(±0.7) 73.8(±1.2) 7.6(±2.9) 16.6(±3.3) 62.7(±0.8) 86.0(±0.9) 34.0(±1.1) 54.6(±1.5) 51.9(±0.8) 75.8(±1.5) 37.5(±0.2) 60.9(±0.1)

W&D-CCF 65.7(±0.8) 75.2(±1.1) 15.4(±2.4) 25.7(±2.6) 73.2(±1.8) 88.1(±2.2) 34.9(±1.1) 53.3(±1.3) 52.1(±0.5) 76.3(±1.5) 37.7(±0.1) 61.1(±0.1)

GAN-PW 66.6(±0.7) 75.4(±1.3) 24.1(±0.8) 34.9(±0.7) 72.0(±0.2) 92.5(±0.5) 34.7(±0.6) 54.1(±0.7) 52.9(±0.7) 75.7(±1.4) 41.9(±0.1) 65.8(±0.1)

GAN-LSTM 67.4(±0.5) 76.3(±1.2) 24.0(±0.9) 34.9(±0.8) 73.0(±0.2) 88.7(±0.4) 35.9(±0.6) 55.0(±0.7) 52.7(±0.3) 75.9(±1.2) 42.1(±0.2) 65.9(±0.2)

Table 2. GAN-LSTM user model with SE (Shannon entropy) ver-

sus L2 regularization on Yelp dataset. pr is the short for prec(%).

Split 1 Split 2 Split 3

Model pr@1 pr@2 pr@1 pr@2 pr@1 pr@2

SE 73.1 88.8 72.8 89.0 73.1 88.2
L2 73.5 89.0 78.8 91.5 76.1 91.1

GAN	prediction

Figure 3. Comparison of the true trajectory (blue) of a user’s

choices, the simulated trajectory predicted by GAN model (orange

curve in upper sub-figure) and the simulated trajectory predicted by

W&D-CCF (the orange curve in the lower sub-figure). Y -axis rep-

resents 80 categories of movies. Each data point (t, c) represents

time step t and the category c of the clicked item.

Q(s, a1, · · · , ak) :=
∑k

j=1 Q(s, aj) trained with learned

reward (GAN-GDQN).

Since we cannot perform online experiments at this moment,

we use collected data from the online news platform to fit a

user model, and then use it as a test environment. To make

the experimental results trustful and solid, we fit the test

model based on a randomly sampled test set of 1,000 users

and keep this set isolated. The RL policies are learned from

another set of 2,500 users without overlapping the test set.

The performances are evaluated by two metrics: (1) Cumu-

lative reward: For each recommendation action, we can

observe a user’s behavior and compute her reward r(st, at)
using the test model. Note that we never use the reward

of test users when we train the RL policy. The numbers

shown in Table 3 are the cumulative rewards averaged over

time horizon first and then averaged over all users. It can be

formulated as 1
N

∑N

u=1
1
T

∑T

t=1r
t
u, where rtu is the reward

received by user u at time t. (2) CTR (click through rate):

it is the ratio of the number of clicks and the number of steps

it is run. The values displayed in Table 3 are also averaged

over 1,000 test users.

Experiments with different numbers of items in each page

Table 3. Comparison of recommendation performance.
k = 3 k = 5

model reward ctr reward ctr
W&D-LR 14.46(±0.42) 0.46(±0.01) 15.18(±0.38) 0.48(±0.01)

W&D-CCF 19.93(±1.09) 0.62(±0.03) 20.94(±1.03) 0.65(±0.03)

GAN-Greedy 21.37(±1.24) 0.67(±0.04) 22.97(±1.22) 0.71(±0.03)

GAN-RWD1 22.17(±1.07) 0.68(±0.03) 25.15(±1.04) 0.78(±0.03)

GAN-GDQN 23.60(±1.06) 0.72(±0.03) 23.19(±1.17) 0.70(±0.03)

GAN-CDQN 24.05(±0.98) 0.74(±0.03) 25.36(±1.10) 0.77(±0.03)

DQN-Off 20.31(±0.14) 0.63(±0.01) 21.82(±0.08) 0.67(±0.01)

view are conducted and the results are summarized in Ta-

ble 3. Since users’ behaviors are not deterministic, each

policy is evaluated repeatedly for 50 times on test users.

The results show that: (1) Greedy policy built on GAN

model is significantly better than the policies built on other

models. (2) RL policy learned from GAN is better than

the greedy policy. (3) Although GAN-CDQN is trained to

optimize the cumulative reward, the recommendation pol-

icy also achieves a higher CTR compared to GAN-RWD1

which directly optimizes ±1 reward. The learning of GAN-

CDQN may have benefited from the well-known reward

shaping effects of the learned continuous reward (Mataric,

1994; Ng et al., 1999; Matignon et al., 2006). (4) While

the computational cost of GAN-CDQN is about the same

as that of GAN-GDQN (both are linear in the total num-

ber of items), our proposed GAN-CDQN is a more flexible

parametrization and achieved better results.

Since Table 3 only shows average values taken over test

users, we compare the policies in user level and the results

are shown in figure 4. GAN-CDQN policy results in higher

averaged cumulative reward for most users. A similar figure

which compares the CTR is deferred to Appendix D. Fig-

ure 5 shows that the learned cascading Q-networks satisfy

constraints in Eq. (10) well when k = 5.

6.3. User Model Assisted Policy Adaptation

Former results in section 6.1 and 6.2 have demonstrated that

GAN is a better user model and RL policy based on it can

achieve higher CTR compared to other user models, but this

user model may be misspecified. In this section, we show

that our GAN model can help an RL policy to quickly adapt

to a new user. The RL policy assisted by GAN user model

is compared with other policies that are learned from and

adapted to online users: (1) CDQN with GAN: cascading

Q-networks which are first trained using the learned GAN

Generative Adversarial User Model for RL Based Recommendation System

Figure 4. Cumulative rewards among 1,000 users under the recommendation policies based on different user models. The experiments are

repeated for 50 times and the standard deviation is plotted as the shaded area.

user model from other users and then adapted online to

a new user using MAML (Finn et al., 2017). (2) CDQN

model free: cascading Q-networks without pre-trained by

the GAN model. It interacts with and adapts to online users

directly. (3) LinUCB: a classic contextual bandit algorithm

which assumes adversarial user behavior. We choose its

stronger version - LinUCB with hybrid linear models (Li

et al., 2010) - to compare with.

The experiment setting is similar to section 6.2. All policies

are evaluated on a set of 1,000 test users associated with a

test model. Two sets of results corresponding to different

sizes of display set are plotted in Figure 6. It shows how the

CTR increases as each policy interacts with and adapts to

users over time. In fact, the performances of users’ cumula-

tive reward according to different policies are also similar,

and the corresponding figure is deferred to Appendix D.3.

The results show that the CDQN policy pre-trained over

a GAN user model can quickly achieve a high CTR even

when it is applied to a new set of users (Figure 6). Without

the user model, CDQN can also adapt to the users during

its interaction with them. However, it takes around 1,000

iterations (i.e., 100,000 interactive data points) to achieve

similar performance as the CDQN policy assisted by GAN

user model. LinUCB(hybrid) is also capturing users’ in-

terests during its interaction with users. Similarly, it takes

too many interactions. In Appendix D.3, another figure is

attached to compare the cumulative reward received by the

user instead of CTR. Generally speaking, GAN user model

provides a dynamical environment for RL policies to inter-

act with. It helps the policy achieve a more satisfying status

before applying to online users.

7. Conclusion and Future Work

We proposed a novel model-based reinforcement learning

framework for recommendation systems, where we devel-

oped a GAN formulation to model user behavior dynamics

and her associated reward function. Using this user model as

the simulation environment, we develop a novel cascading

Q-network for combinatorial recommendation policy which

Figure 5. Each scatter-plot compares Qj∗ with Q5∗ values

in Eq. (10) evaluated at the same set of k recommended items.

In the ideal case, all scattered points should lie along the diagonal.

Figure 6. Comparison of the averaged click rate averaged over

1,000 users under different recommendation policies. X-axis rep-

resents how many times the recommender interacts with online

users. Y -axis is the click rate. Each point (x, y) means the click

rate y is achieved after x times of user interactions.

can handle a large number of candidate items efficiently.

Although the experiments show clear benefits of our method

in an offline and realistic simulation setting, even stronger

results could be obtained via future online A/B testing.

Acknowledgement

This project was supported in part by NSF IIS-1218749,

NIH BIGDATA 1R01GM108341, NSF CAREER IIS-

1350983, NSF IIS-1639792 EAGER, NSF IIS-1841351 EA-

GER, NSF CNS-1704701, ONR N00014-15-1-2340, Intel

ISTC, NVIDIA, Google and Amazon AWS.

Generative Adversarial User Model for RL Based Recommendation System

References

Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse

reinforcement learning. In ICML, 2004.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boost-

ing system. In Proceedings of the 22Nd ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, pp. 785–794. ACM, 2016.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra,

T., Aradhye, H., Anderson, G., Corrado, G., Chai, W.,

Ispir, M., Anil, R., Haque, Z., Hong, L., Jain, V., Liu, X.,

and Shah, H. Wide & deep learning for recommender

systems. In Proceedings of the 1st Workshop on Deep

Learning for Recommender Systems. ACM, 2016.

Clavera, I., Nagabandi, A., Fearing, R. S., Abbeel, P.,

Levine, S., and Finn, C. Learning to adapt: Meta-

learning for model-based control. arXiv preprint

arXiv:1803.11347, 2018.

Deisenroth, M. P., Fox, D., and Rasmussen, C. E. Gaussian

processes for data-efficient learning in robotics and con-

trol. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2015. ISSN 0162-8828.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-

learning for fast adaptation of deep networks. arXiv

preprint arXiv:1703.03400, 2017.

Guo, H., Tang, R., Ye, Y., Li, Z., and He, X. Deepfm: a

factorization-machine based neural network for ctr pre-

diction. arXiv preprint arXiv:1703.04247, 2017.

He, J., Ostendorf, M., He, X., Chen, J., Gao, J., Li, L., and

Deng, L. Deep reinforcement learning with a combinato-

rial action space for predicting popular reddit threads. In

EMNLP, 2016.

Hidasi, B., Karatzoglou, A., Baltrunas, L., and Tikk, D.

Session-based recommendations with recurrent neural

networks. arXiv preprint arXiv:1511.06939, 2015.

Hidasi, B., Karatzoglou, A., Baltrunas, L., and Tikk, D.

Session-based recommendations with recurrent neural

networks. In ICLR, 2016.

Ho, J. and Ermon, S. Generative adversarial imitation learn-

ing. In NIPS, 2016.

Ho, J., Gupta, J. K., and Ermon, S. Model-free imitation

learning with policy optimization. In ICML, 2016.

Jannach, D. and Ludewig, M. When recurrent neural net-

works meet the neighborhood for session-based recom-

mendation. In Proceedings of the Eleventh ACM Con-

ference on Recommender Systems, pp. 306–310. ACM,

2017.

Li, L., Chu, W., Langford, J., and Schapire, R. E. A

contextual-bandit approach to personalized news article

recommendation. In Proceedings of the 19th interna-

tional conference on World wide web, pp. 661–670. ACM,

2010.

Manski, C. F. Maximum score estimation of the stochastic

utility model of choice. Journal of Econometrics, pp. 205

– 228, 1975. ISSN 0304-4076.

Mataric, M. J. Reward functions for accelerated learning.

In ICML, 1994.

Matignon, L., Laurent, G. J., and Fort-Piat, N. L. Reward

function and initial values: Better choices for accelerated

goal-directed reinforcement learning. In ICANN, 2006.

McFadden, D. Conditional logit analysis of qualitative

choice behaviour. In Zarembka, P. (ed.), Frontiers in

Econometrics, pp. 105–142. Academic Press New York,

1973.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,

Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing

atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602, 2013.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S.

Neural network dynamics for model-based deep rein-

forcement learning with model-free fine-tuning. arXiv

preprint arXiv:1708.02596, 2017.

Ng, A. Y., Harada, D., and Russell, S. J. Policy invariance

under reward transformations: Theory and application to

reward shaping. In ICML, 1999.

Shi, J.-C., Yu, Y., Da, Q., Chen, S.-Y., and Zeng, A.-X.

Virtual-taobao: Virtualizing real-world online retail en-

vironment for reinforcement learning. In Thirty-Third

AAAI Conference on Artificial Intelligence, 2019.

Torabi, F., Warnell, G., and Stone, P. Behavioral cloning

from observation. In IJCAI, 2018.

Watkins, C. J. C. H. Learning from Delayed Rewards.

PhD thesis, King’s College, Oxford, May 1989. (To

be reprinted by MIT Press.).

Yang, S.-H., Long, B., Smola, A. J., Zha, H., and Zheng,

Z. Collaborative competitive filtering: learning recom-

mender using context of user choice. In Proceedings

of the 34th international ACM SIGIR conference on Re-

search and development in Information Retrieval, pp.

295–304. ACM, 2011.

Zhao, X., Xia, L., Zhang, L., Ding, Z., Yin, D., and Tang, J.

Deep reinforcement learning for page-wise recommenda-

tions. 2018a.

Generative Adversarial User Model for RL Based Recommendation System

Zhao, X., Zhang, L., Ding, Z., Yin, D., Zhao, Y., and Tang,

J. Deep reinforcement learning for list-wise recommen-

dations. CoRR, 2018b.

Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N. J.,

Xie, X., and Li, Z. Drn: A deep reinforcement learning

framework for news recommendation. 2018.

