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Abstract

Video anomaly detection is well investigated in weakly-
supervised and one-class classification (OCC) settings.
However, unsupervised video anomaly detection methods
are quite sparse, likely because anomalies are less frequent
in occurrence and usually not well-defined, which when
coupled with the absence of ground truth supervision, could
adversely affect the performance of the learning algorithms.
This problem is challenging yet rewarding as it can com-
pletely eradicate the costs of obtaining laborious annota-
tions and enable such systems to be deployed without hu-
man intervention. To this end, we propose a novel unsuper-
vised Generative Cooperative Learning (GCL) approach
for video anomaly detection that exploits the low frequency
of anomalies towards building a cross-supervision between
a generator and a discriminator. In essence, both networks
get trained in a cooperative fashion, thereby allowing unsu-
pervised learning. We conduct extensive experiments on two
large-scale video anomaly detection datasets, UCF crime
and ShanghaiTech. Consistent improvement over the exist-
ing state-of-the-art unsupervised and OCC methods corrob-
orate the effectiveness of our approach.

1. Introduction
In the real world, learning-based anomaly detection tasks

are extremely challenging mainly because of the rare oc-

currence of such events. The challenge further exacerbates

owing to the unconstrained nature of these events. Obtain-

ing sufficient anomaly examples is thus quite cumbersome,

while one may safely assume that an exhaustive set, par-

ticularly required for training fully-supervised models, will

never be collected. To make learning tractable, anomalies

have often been attributed as significant deviations from

the normal data. Therefore, a popular approach towards

anomaly detection is to train a one-class classifier which

learns the dominant data representations using only normal

training examples [14,17,25,28,41,42,45,47,60,64,66,72]
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Figure 1. Different training modes for video anomaly detection:

(a) Fully supervised mode requires frame-level normal/abnormal

annotations in the training data. (b) One-Class Classification

(OCC) requires only normal training data. (c) Weakly supervised

mode requires video-level normal/abnormal annotations. (d) Un-

supervised mode requires no training data annotations.

(Fig. 1). A noticeable drawback of one-class classifica-

tion (OCC) methods is the limited availability of the nor-

mal training data, not capturing all normalcy variations [9].

In addition, the OCC approaches are usually unsuitable for

complex problems with diverse multiple classes and a wide

range of dynamic situations often found in video surveil-

lance. In such cases, an unseen normal activity may deviate

significantly from the learned normal representations to be

predicted as anomalous, resulting in false alarms [14, 67].

Recently, weakly supervised anomaly detection methods

have gained significant popularity [24,26,34,46,56,63] that

reduce the cost of obtaining manual fine-grained annota-

tions by employing video-level labels [50, 65, 67, 69, 74].

Specifically, a video is labeled as anomalous if some of its

contents are anomalous and normal if all of its contents are

normal, requiring manual inspection of the full videos. Al-

though such annotations are relatively cost-effective, yet re-

main impractical in many real-world applications. There is

a plethora of video data, specifically raw footage, that can

be leveraged for anomaly detection training if no annotation

cost is incurred. Unfortunately, to the best of our knowl-

edge, there are hardly any notable attempts in leveraging

the unlabelled training data for video anomaly detection.

In this work, we explore unsupervised mode for video

anomaly detection that is certainly more challenging than

fully, weakly or one-class supervision (Fig. 1). However,

it is also more rewarding due to minimal assumptions and

hence will encourage the development of novel and more

practical algorithms. Note that, the term ‘unsupervised’

in literature often refers to OCC approaches which assume

all normal training data [11, 37, 64, 66]. However, it ren-
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ders the overall learning problem partially supervised [19].

In approaching unsupervised anomaly detection in videos,

we exploit the simple facts that videos are information-rich

compared to still images and anomalies are less frequent

than the normal happenings [8, 29, 51, 67], and attempt to

leverage such domain knowledge in a structured manner.

To this end, we propose a Generative Cooperative
Learning (GCL) method which takes unlabelled videos as

input and learns to predict frame-level anomaly score pre-

dictions as output. The proposed GCL comprises two key

components, a generator and a discriminator, which get

trained in a mutually cooperative manner towards improv-

ing the anomaly detection performance. The generator

not only reconstructs the abundantly available normal rep-

resentations but also distorts the possible high-confidence

anomalous representations by using a novel negative learn-

ing (NL) approach. The discriminator instead estimates the

probability of an instance to be anomalous. For unsuper-

vised anomaly detection, we create pseudo-labels from the

generator and use these to train the discriminator. In the fol-

lowing step, we create pseudo-labels from the trained ver-

sion of discriminator and then use these to improve the gen-

erator. The overall system is trained in an alternate fashion

where, in each iteration, both the generator and the discrim-

inator get improved with mutual cooperation.

Contributions. We propose an anomaly detection approach

capable of localizing anomalous events in complex surveil-

lance scenarios without requiring labelled training data. To

the best of our knowledge, our method is the first rigorous

attempt tackling the surveillance videos anomaly detection

in a fully unsupervised mode. A novel Generative Coopera-

tive Learning (GCL) framework is proposed that comprises

a generator, a discriminator, and cross-supervision. The

generator network is forced not to reconstruct anomalies by

using a novel negative learning approach. Extensive exper-

iments on two large-scale complex anomalous event detec-

tion datasets, UCF-Crime and ShanghaiTech, show that our

method provides visible gains over the baselines and several

existing unsupervised as well as OCC methods.

2. Related Work
Anomaly detection is a widely studied problem both in

the image [7, 16, 39] and the video [49, 50, 64, 67, 69] do-

mains. We review different supervision modes for video

anomaly detection and mutual learning strategies.

Anomaly Detection as One-Class Classification (OCC).
OCC approaches have found their way in a wide range of

anomaly detection problems including, medical diagnosis

[58], cyber security [11], surveillance security systems [20,

29, 32, 64], and industrial inspection [5]. Some of these ap-

proaches use hand-crafted features [3, 31, 38, 55, 71], while

others use deep features extracted using pre-trained mod-

els [42, 47]. With the advent of generative models, many

approaches proposed variants of such networks to learn nor-

mal data representations [12,35,36,43–45,61,62,64]. OCC

approaches find it challenging to avoid well-reconstruction

of anomalous test inputs. This problem is attributed to

the fact that since OCC approaches only use normal class

data while training, an ineffective classifier boundary may

be achieved which is limited in enclosing normal data

while excluding anomalies [64]. In an attempt to address

this limitation, some researchers recently proposed pseudo-

supervised methods in which pseudo-anomaly instances are

generated using normal training data [1, 64].

Weakly Supervised (WS) Anomaly Detection. Video-

level binary annotations are used to train WS classifiers

capable of predicting frame-level anomaly scores [40, 50,

52, 65, 67, 69, 74]. Video-level labels are provided in such

a way that a normal labeled video is completely normal

whereas an anomalous labeled video contains both normal

and anomalous contents without any information about the

temporal whereabouts (Fig. 1).

Unsupervised Anomaly Detection. Anomaly detection

methods using unlabelled training data are quite sparse in

literature. According to the nomenclature shown in Fig. 1,

most unsupervised methods in the literature actually fall in

the category of OCC. For instance, MVTecAD [5] bench-

mark ensures the training data to be only normal, there-

fore its evaluation protocol is OCC and the methods inher-

iting this assumption are also essentially one-class classi-

fiers [6, 12]. In contrast to these algorithms, our proposed

GCL approach is capable of learning from unlabelled train-

ing data without assuming any normalcy. The training data

in the form of videos conform to several important attributes

regarding anomaly detection, such as, anomalies are less

frequent than normal events and events are often temporally

consistent. We derive our motivation from these clues to

carry out the training in a completely unsupervised fashion.

Teacher Student Networks. Our proposed GCL shares

some similarities with the Teacher Student (TS) frameworks

for knowledge distillation [18]. GCL is different from TS

framework mainly because its aim is not knowledge distil-

lation. Also our generator generates noisy labels while our

discriminator, being relatively robust to noise, cleans these

labels which is not the case in TS framework.

Mutual Learning (ML). The GCL framework also shares

similarities with the ML algorithms [73]. However, the two

components of GCL learn different types of information and

are trained with cross-supervision in contrast to the super-

vised learning used by the ML algorithms. Further in GCL,

the output of each network is passed through a threshold

process to produce pseudo-labels. In ML, the cohort learns

to match the distributions of each member while in GCL

each member tries to learn from the pseudo-labels generated

by the other. A mutual learning of a cohort in unsupervised

mode using unlabelled training data is unexplored yet.
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Figure 2. Proposed Generative Cooperative Learning (GCL) algorithm introduces cross-supervision for training a Generator G and a

Discriminator D. The pseudo-labels produced by G are used to compute the D loss and likewise, the pseudo-labels produced by D are

utilized to compute the loss of G. Both G and D are trained iteratively from unlabelled training data for anomalous events detection.

Dual Learning. It is also a related method in which two

language translation models interactively teach each other

[15]. However, the external supervision is provided using

pre-trained unconditional language expert models which

check the quality of translations. This way, different models

have different learning tasks whereas in our proposed GCL

approach the learning tasks are identical. Another variant of

Cooperative Learning [4] has been previously proposed to

learn multiple models jointly for the same task across differ-

ent domains. For instance, object recognition is formulated

by training a model on RGB images and another model on

depth images which then communicate the domain invari-

ant object attributes. Whereas, in our GCL approach both

models address the same task in the same domain.

3. Method
Our proposed Generative Cooperative Learning ap-

proach for Anomaly Detection (GCL) comprises a feature

extractor, a generator network, a discriminator network, and

two pseudo-label generators. Fig. 2 shows the overall archi-

tecture. Each of the components are discussed next.

3.1. Training Data Organization

To minimize the computational complexity and to re-

duce the training time of GCL, similar to the existing SOTA

[50, 52, 65, 67, 69, 74], we utilize a deep feature extractor to

convert video data into compact features. All input videos

are arranged as segments, features of which are then ex-

tracted. Furthermore, these features are randomly arranged

as batches. In each iteration a randomly selected batch is

used to train the GCL model (Fig. 2). Formally, given a

training dataset of n videos, every video is partitioned into

non-overlapping segments S(i,j) of p frames each, where

i ∈ [1, n] is the video index and j ∈ [1,mi] is the segment

index. The segment size p is kept the same across all train-

ing and test videos of a dataset. For each S(i,j), a feature

vector f(i,j) ∈ R
d is computed as f(i,j)=E(S(i,j)) using the

feature extractor E(·).
In the existing weakly supervised anomaly detection ap-

proaches, each training iteration is carried out on one or

more complete videos [50, 74]. Recently, CLAWS Net [67]

proposed to extract several batches of temporally consistent

features, each of which was then randomly input to the net-

work. Such configuration serves the purpose of minimizing

correlation between consecutive batches. In these existing

approaches, it is important to maintain temporal order at

batch or video level. However, in the proposed GCL ap-

proach we randomize the order of input features which re-

moves both the intra-batch and inter-batch correlations.

3.2. Generative Cooperative Learning

Our proposed Generative Cooperative Learning (GCL)

approach for anomaly detection consists of a generator

G which is an autoencoder (AE) and a discriminator D
which is a fully connected (FC) classifier. Both these

models are trained in a cooperative fashion without us-

ing any data annotations. More specifically, we neither

use the normal class annotations as in one class classifi-

cation (OCC) approaches [12, 37, 54], nor binary annota-

tions used by the weakly supervised anomaly detection sys-

tems [50,67,69,74]. As discussed in Section 1, the intuition

behind using an AE is that such models can somewhat cap-

ture the overall dominant data trends [12]. On the other

hand, the FC classification network used as a discriminator

is known to be efficient when provided with supervised, al-

beit noisy, training [67]. In order to carry out the training,

first pseudo annotations created using G are used to train

D. In the next step, pseudo annotations created by using D
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are used to improve G. Thus, each of the two models are

trained by using the annotations created by the other model

in an alternate training fashion. The training configuration

aims that the pseudo-labeling is improved over training it-

erations which consequently results in an improved overall

anomaly detection performance. Particular architecture de-

tails and several design choices are discussed next.

3.2.1 Generator Network

G takes features as input and produces reconstructions of

those features as output. Typically, G is trained by minimiz-

ing the reconstruction loss Lr as:

Lr =
1

b

b∑
q=1

Lq
G, Lq

G = ||fq
i,j − f̂q

i,j ||2, (1)

where fq
i,j is a feature vector that is input to G and f̂q

i,j is

the corresponding reconstructed vector, b is the batch size.

3.2.2 Pseudo Labels from Generator

In our proposed collaborative learning, pseudo labels from

G are created to train D. The labels are created by keep-

ing in view the distribution of the reconstruction loss Lq
G of

each instance q over a batch. The main idea is to consider

feature vectors resulting in higher loss values as anomalous

and those generating smaller loss values as normal. In or-

der to implement this intuition, one may consider using a

threshold Lth
G as:

lqG =

{
1, if Lq

G ≥ Lth
G

0, otherwise .
(2)

We have followed a simple approach for the Lth
G selection

by considering a fixed percentage of the samples having

maximum reconstruction error as anomalous. In the Lq
G

histograms we empirically observed a bigger peak towards

minimum error and a smaller peak towards maximum error.

Due to the fact that the class boundaries often fall in low

density regions, error histograms are also an effective tool

for the selection of appropriate Lth
G . Analysis of different

alternates for Lth
G selection is given in the Supplementary.

3.2.3 Discriminator Network

The binary classification network used as the discriminator

D is trained using the pseudo annotations from G by mini-

mizing the binary cross entropy loss over a batch b as:

LD =
−1

b

b∑
q=1

lqG ln l̂qi,j + (1− lqG) ln (1− l̂qi,j), (3)

where lqG ∈ {0, 1} is the pseudo label generated by G and

l̂qi,j is the output of D when a feature vector fq
i,j is input.

Reconstruction
Targets

Anomalous Pseudo Label Normal Pseudo Label
Pseudo Reconstruction Target

Input Batch

Pseudo-labels
from DiscriminatorD

G

Figure 3. Negative learning in GCL: G is constrained to not learn

the reconstruction of anomalies using Pseudo Reconstruction Tar-

gets (PRT). Based on the pseudo-labels produced by D, PRT are

generated for the anomalous inputs while normal targets are used

for the normal inputs to guide the training of G.

3.2.4 Pseudo Labels from Discriminator

Pseudo labels from D are used to improve the reconstruc-

tion discrimination capability of G. The output p̂qi,j of D
is the probability of a feature vector fq

i,j to be anomalous.

Therefore, the features obtaining higher probability are con-

sidered as anomalous by using a threshold mechanism on

the output p̂qi,j of D . The annotations generated by D are

then used to fine tune G in the next iteration.

lqD =

{
1, if p̂qi,j ≥ Lth

D

0, otherwise ,
(4)

where the threshold Lth
D is computed the same way as the

threshold Lth
G is computed.

3.2.5 Negative Learning of Generator Network

Training of G is carried out by using pseudo labels from D
by employing negative learning (NL). In order to increase

the discrimination among reconstructions of normal and

anomalous inputs, G is encouraged to poorly reconstruct the

samples which have anomalous pseudo labels whereas, the

samples having normal pseudo labels are aimed to be recon-

structed as usual with minimum error.

Some variants of NL have already been explored in the

literature. For instance, Munawar et al. [33] and Astrid et
al. [1] make the loss negative for a full batch of known

anomalous inputs. However, this configuration requires a

prior knowledge of the whole dataset and its labels. In the

proposed GCL approach, pseudo labels are generated iter-

atively as the training proceeds, therefore it may encounter

both normal and anomalous samples in the same batch. In

addition, instead of making the loss negative, we enforce

the abnormal samples to be poorly reconstructed by using

a pseudo reconstruction target. Therefore, as illustrated in

Fig. 3, for each feature vector which is pseudo-labeled as

anomalous by D, its reconstruction target is replaced by a
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different feature vector. In order to extensively explore this

concept, we propose the following different types of pseudo

targets: 1) All Ones Target: The original reconstruction

target is replaced by a similar dimensional vector of all 1’s.

2) Random Normal Target: The original reconstruction

target is replaced by a normal labeled feature vector selected

arbitrarily. 3) Random Gaussian Noise Target: The orig-

inal reconstruction target is perturbed by adding Gaussian

noise. 4) No Negative Learning: No negative learning is

applied to G. Instead only feature vectors pseudo-labeled as

normal are used for the training of G. Extensive analysis of

different pseudo targets is shown in Fig. 5. We empirically

observe that ‘ones’ as pseudo target yields more discrimi-

native reconstruction capability, thus better differentiating

normal and anomalous inputs. The loss function given by

Eq. (1) is modified to include negative learning:

LG =
1

b

b∑
q=1

||tqi,j − f̂q
i,j ||2, (5)

where the pseudo target tq is defined as:

tqi,j =

{
fq
i,j , if lqD = 0

1 ∈ R
d, if lqD = 1,

(6)

3.3. Self-Supervised Pre-training

The proposed GCL is trained using unlabelled videos by

utilizing the cooperation of G and D. Since anomaly detec-

tion is an ill-defined problem, the lack of constraints may

affect the convergence and the system may get stuck in a

local minima. In order to improve the convergence, we ex-

plore to jump-start the training process by pre-training both

G and D. We empirically observe that using a pre-trained

G (based on Eq. (1)) is beneficial for the overall stability of

the learning system and it also improves the convergence as

well as the performance of the system (Section 4).

Autoencoders are known to capture dominant represen-

tations of the training data [12, 64]. Despite the fact that

anomalies are sparse and normal features are abundant in

the training data, we experimentally observe that simply uti-

lizing all training data to pre-train G may not provide an ef-

fective jump-start. Using the fact that events in videos hap-

pen in temporal sequence and that anomalous frames are

usually more eventful than the normal ones, we utilize tem-

poral difference between the consecutive feature vectors as

an estimator to initially clean the training dataset for the

pre-training of G. That is, a feature vector f t+1
i,j will only be

used for pre-training if ||f t+1
i,j − f t

i,j ||2 ≤ Dth, where the

superscripts t and t+1 show the temporal order of features

in a video and Dth is the threshold. This approach does

not guarantee complete removal of anomalous events how-

ever, it cleans the data for an effective initialization of G to

jump-start the training. Once G is pre-trained, it is used to

generate pseudo labels which are then used to pre-train the

discriminator. In this step, the role of G is similar to a lousy

teacher because the generated pseudo-labels are quite noisy

and the role of D is like an efficient student because it learns

to discriminate normal and anomalous features better even

with noisy labels. In the following steps, both pre-trained G
and D are plugged into our collaborative learning loop.

3.4. Anomaly Scoring

In order to compute final anomaly score at test time, sev-

eral configurations are possible, i.e., using reconstruction

error of G or prediction scores of D. We experimentally

observed that G remains relatively lousy while D remains

efficient across consecutive training iterations. Therefore

for simplicity, unless stated otherwise, all results reported

in this work are computed using the predictions of D.

4. Experiments
In this section, we first provide experimental details, then

draw comparisons with the existing SOTA methods, and fi-

nally study different components of our GCL approach.

Datasets. UCF-Crime (UCFC) dataset contains 13 different

categories of real-world anomalous events which were cap-

tured by CCTV surveillance cameras spanning 128 hours

[50]. This dataset is complex because of the unconstrained

backgrounds. The training split contains 810 abnormal and

800 normal videos, while the testing split has 140 anoma-

lous and 150 normal videos. In training split, video-level

labels are provided while in test split frame-level binary la-

bels are provided. In our unsupervised setting, we discard

the training-split labels and train the proposed GCL using

unlabelled training videos.

ShanghaiTech contains staged anomalous events cap-

tured in a university campus at 13 different locations span-

ning 437 videos. This dataset was originally proposed for

OCC with only normal videos provided for training. Later,

Zhong et al. [74] reorganized this dataset to facilitate train-

ing of weakly-supervised algorithms. Normal and anoma-

lous videos were mixed in both the training and the testing

splits. The new training split contains 63 anomalous and

175 normal videos whereas, the new testing split contains

44 anomalous and 155 normal videos. In order to train our

proposed GCL, we follow the latter split both for training

and testing, without using training split video labels.

Evaluation Measures. Following the existing methods

[14, 27, 50, 74], we use area under ROC curve (AUC) for

evaluation and comparisons. AUC is computed based on

frame-level annotations of the test videos in both datasets.

Implementation Details. To demonstrate the concept of

cooperative learning in its true essence, we select fairly

simple architectures, without any bells and whistles, as our

G and D networks. Architectures of G and D are set as

FC[2048, 1024, 512, 256, 512, 1024, 2048] and FC[2048,
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Figure 4. Distribution of scores predicted on the test split of UCF-

crime dataset by (a) AE trained on all training data, (b) G trained

in GCLB , and (c) D trained in GCLB . Although G and D are

trained cooperatively, D being more robust to noise, demonstrates

superior discrimination between normal and anomalous examples.

512, 32, 1]. We train both networks using RMSprop opti-

mizer with a learning rate of 0.00002, momentum 0.60, for

15 epochs on training data with batch size 8192. Thresholds

for pseudo label generation are data driven. For G pseudo

labels Lth
G = μR + σR where μR and σR are the mean

and the standard deviation of reconstruction error as given

by Eq. (1) for each batch. For D, Lth
D = μP + 0.1σP ,

where μP and σP are the mean and standard deviations of

the probabilities p̂qi,j generated by D for each batch. The

value of Dth=0.70 is used in unsupervised pre-training. As

feature extractor, we use a popular framework ResNext3d

proposed by Hara et al. [13] in default mode. Segment size

p for feature extraction is set to 16 non-overlapping frames.

All experiments are performed on NVIDIA RTX 2070 with

Intel Core i7, 8th gen and 16GB RAM.

4.1. Comparisons with State-Of-The-Art (SOTA)

The proposed GCL approach is trained in an unsuper-

vised fashion without using any kind of annotations. GCL

with no pre-training, GCLB , is considered as the baseline.

In addition, GCL with pre-training, GCLPT , GCL com-

bined with OCC based pre-trained autoencoder, GCLOCC ,

and GCL weakly-supervised, GCLWS are also trained and

evaluated on UCFC and ShanghaiTech datasets.

As seen in Table 1, on UCFC dataset, the proposed

GCLB obtained an overall AUC of 68.17% which is 11.85%

higher than the Autoecnoder (AEAllData) trained on com-

plete training data including both normal and anomalous

training samples in an unsupervised fashion. Histogram

plotted over reconstructions in Fig. 4(a) also provides in-

sights that AEAllData is not able to learn discriminative re-

construction. Also in the GCL, the discrimination ability

of D (Fig. 4(c)) is much enhanced than G (Fig. 4(b)).

Experiments on kim et al. [21] are conducted on a re-

implementation of the method for unlabelled training data.

GCLPT is the version of proposed GCL with an au-

toencoder pre-trained in an unsupervised fashion. In this

experiment, an AUC performance of 71.04% is obtained

which is 2.87% better than the baseline GCLB . The two

methods are also compared in Fig. 10 using multiple ran-

dom seed initializations and GCLPT demonstrates consis-

tent performance gains. Table 1 also shows that the pro-

Table 1. Performance comparison with the existing state-of-the-

art methods on UCF-Crime (UCFC) and ShanghaiTech (STech)

datasets. We divide the methods into three categories based on the

supervision used in training. Best results are in bold.

Supervision
Type Method Features UCFC

AUC%
STech

AUC%

One Class
Classification

SVM [50] - 50.00 -

Hasan et al. [14] - 50.60 60.85

Sohrab et al. [48] - 58.50 -

Lu et al. [27] - 65.51 68.00

BODS [54] I3D 68.26 -

OGNet** [64] ResNext 69.47 69.90

GODS [54] I3D 70.46 -

TSC [28] - - 67.94

Frame Prediction [25] - - 73.40

MemAE [11] - - 71.20

MNAD [37] - - 70.50

STEAL Net [2] - - 73.70

Cho et al. [10] - - 74.70

LNTRA [1] - - 75.97

RUVAD [57] - - 76.67

BMAN [22] - - 76.20

Proposed GCLOCC ResNext 74.20 79.62∗

Weak
Supervision

Sultani et al. [50] C3D 75.41 -

Zhang et al. [70] C3D 78.66 82.50

Zhu et al. [75] C3D 79.00 -

Noise Cleaner [65] C3D 78.27 84.16

SRF [69] C3D 79.54 84.16

DUAD*** [23] C3D 72.90 -

GCN [74] C3D 81.08 76.44

GCN [74] TSNRGB 82.12 84.44

Wu et al. [59] I3D 82.44 -

DAM [30] I3D 82.67 88.22

CLAWS [67] C3D 83.03 89.67

CLAWS [67]** ResNext 82.61 -

CLAWS Net+ [68] C3D 83.37 90.12

CLAWS Net+ [68] ResNext 84.16 91.46

Yu et al. [52] C3D 83.28 91.51

Yu et al. [52] I3D 84.30 97.27
Purwantu et al. [40] TRN 85.00 96.85

Proposed GCLWS ResNext 79.84 86.21

Unsupervised

kim et al. ** [21] ResNext 52.00 56.47

AEAllData ResNext 56.32 62.73

Proposed GCLB ResNext 68.17 72.41

Proposed GCLPT C3D 70.74 -

Proposed GCLPT ResNext 71.04 78.93
∗ We follow the evaluation protocol of Zhong et al. [74].

∗∗We implemented the models and computed these scores.

*** [23] computes scores by taking average over videos.

posed GCLPT outperforms all existing one-class classifi-

cation based anomaly detection methods. It is despite the

fact that while training GCLPT , no labeled supervision is

used. In contrast, OCC methods use clean normal class for

training which provides extra information compared to our

unsupervised training based GCL.

In another experiment, the autoencoder is pre-trained on

only the normal class of the training data, which makes

the setting comparable with the one-class classifiers. This

scheme of extra information provided in the form of normal

class labels, referred as GCLOCC in Table 1, obtains an im-

proved performance of 74.20% on UCFC which is signif-

icantly better than all existing state-of-the-art OCC meth-
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(a) Training of G in GCLB (b) Training of D in GCLB

Figure 5. Convergence of G and D in GCL with/without Negative

Learning (NL). We test different pseudo reconstruction targets in

NL. Best performance is observed for ‘ones’ NL target.

ods. It is interesting to note that GCLOCC yields compa-

rable performance to the approach proposed by Sultani et
al. [50] which utilizes video-level labels for training.

Although GCL aims at unsupervised cooperative learn-

ing, we also extended it to incorporate weak-supervision.

The results for this version are reported as GCLWS in Table

1. Despite using fairly simple networks of G and D without

any bells and whistles, GCLWS obtains comparable results

to several existing weakly-supervised learning methods.

We also evaluated our approach on ShanghaiTech
dataset [29] and the results are compared with the existing

SOTA methods in Table 1. On this dataset, our proposed

GCLB obtained 72.41% AUC which is more than 10% bet-

ter than AEAllData showing the effectiveness of the baseline

approach. GCLPT obtained 78.93% AUC which is 6.5%

better than GCLB demonstrating the importance of unsu-

pervised pre-training for jump-start. Despite unsupervised,

GCLPT outperformed all existing OCC methods.

4.2. Ablation Study and Analysis

Analysis of different components, design choices, qualita-

tive results and inclusion of supervision are discussed next.

Component Wise Ablation Study. A detailed ablation

analysis of GCL with various design choices is reported

in Table 2 on UCFC. It can be seen that an autoen-

coder trained using all training dataset without any super-

vision AEAllData yields a significantly low performance of

56.32% compared to the one trained on clean normal data

in OCC setting AEOCC (65.76%). Training an autoencoder

AETD with our proposed frame temporal difference based

unsupervised pre-processing brings the performance closer

(a) AEAllData (b) AE in GCLw/oNL (c) AE in GCLB

Figure 6. tSNE [53] visualizations of the reconstructions. Using

GCLB , most of the anomalous samples (red) get clustered sepa-

rately from the normal samples (green), which is the underlying

desideratum of providing pseudo reconstruction targets.

Table 2. Ablation analysis of GCL approach: performance of dif-

ferent components with varying supervision levels.

Supervision Negative
learning

Unsup.
pre-training AUC%OCC Unsup.

AEAllData - � - - 56.32

AEOCC � - - - 65.76

AETD - - - � 63.84

GCLw/oNL - � - - 64.23

GCLB - � � - 68.17

GCLPT - � � � 71.04

GCLOCC � - � � 74.20

to AEOCC , which demonstrates effectiveness of our pre-

processing approach. Using negative learning enhances the

overall performance of GCLB over the counterpart training

without negative learning GCLw/oNL by 3.94%. Our com-

plete unsupervised system GCLPT which utilizes negative

learning and unsupervised pre-training enhances the overall

performance to 71.04%. In addition, in GCLOCC adding

one-class supervision improves this performance even fur-

ther by demonstrating an AUC of 74.20%. This also re-

validates our claim of the overall benefit that OCC may have

over a completely unsupervised setting, making them differ-

ent from the unsupervised approaches.

Evaluating Negative Learning (NL) Approaches. Exper-

iments are performed with and without NL in GCL frame-

work on UCFC. For the case of NL in GCLB the perfor-

mances of three different pseudo targets, ‘ones’ for all ones,

‘replace’ with random normal, and ‘Gaussian’ with μ = 0
and σ = {1.5, 6.0} (Section 3.2.5) are compared in Fig. 5.

We observe that the ‘ones’ pseudo target works better than

the other approaches. Gaussian perturbations with σ = 1.5
behaved almost identical to the model without any NL (

GCLw/oNL). With σ = 6, the performance improves but

still lower than the ‘ones’. It may be attributed to the fixed

pseudo target which helps in consistent learning of GCL

framework resulting in better discrimination.

To further explore the significance of NL, we provide

tSNE visualizations of the reconstructions produced by

AEAllData, GCLw/oNL, and GCLB , in Fig. 6. Both AEs,

with and without NL, demonstrate superior discrimination

over AEAllData. Also, GCLB (Fig. 6(c)), the anomalous

features form a distinct cluster which shows that the use of

NL is effective than using no NL.

Qualitative Analysis. A step by step evolution of our GCL

approach is visualized in Fig. 7. As the training proceeds,

GCLB learns to predict true anomalous portions within the

video in a completely unsupervised fashion. Fig. 8 shows

final anomaly scores predicted by our GCLPT on four dif-

ferent videos taken from UCFC. In Fig. 8(d), some normal

portions are also predicted as anomalous. Inspection of this

video reveals that the beginning and ending frames contain

floating text, which is unusual in the training data.

On Convergence. We empirically validate the convergence

of GCLB and GCLPT using multiple random seed initial-
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Figure 7. Evolution of the frame-level anomaly scores in GCLB framework during training. Note that our unsupervised approach success-

fully produces significantly higher scores in the anomalous portions whereas lower scores in the normal portions. Anomaly ground truth is

shown as red boxes, and the video is Explosion013 from UCFC. Interestingly, the anomaly score stays higher after the anomalous ground

truth is over which is essentially due to aftermath of the explosion that network figures to be anomalous.
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Figure 8. Anomaly scores by GCLPT are low in normal regions and high in abnormal regions on four different UCFC videos.

izations (Fig. 10). GCLB and GCLPT obtain an average

AUC of 67.09 ± 0.65 and 70.13 ± 0.52. GCLPT not only

improves the overall performance but also reduces the varia-

tion over different seeds, demonstrating better convergence.

On Adding Weak Supervision. In a series of experiments

using UCFC, weak video-level labels are infused to the

GCL ranging from 33% to 100%. Fig. 9 shows that both G
and D benefit from the added supervision. Noticeably, there

is a significant jump in AUC% upon only providing 33%

videos with weak labels which demonstrates that even min-

imal supervision is quite beneficial for the proposed GCL.

On Training G Using its Own Pseudo Labels. Under this

configuration, we observed an AUC of 62.28% on UCFC

using ResNext3d features. Although better than 56.32% of

AEAllData, it is still lower than 71.04% our GCLPT . This

demonstrates that the usage of D for pseudo labeling is crit-

ical due to its robust learning under noisy labels [67, 69].

63.98
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72.17
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74.81 76.4
79.84
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Figure 9. Performance evaluation of G and D in weakly supervised

GCLWS by increasing supervision level from 0 to 100%.

39

47

55

63

71

0 275

A
U

C
 %

Iterations 39

47

55

63

71

0 175Iterations

GCLB GCLPT

Figure 10. Convergence of both GCLB and GCLPT by initiating

training using several random seeds.

On Using Soft Labels. We explore the usage of soft labels

for training D by skipping thresholding (eq. (2)). It resulted

in an AUC of 63.58% on UCFC using ResNext3d features,

which is almost identical to AETD in Table 2. It is because

without threshold, D simply starts replicating the output of

G, thereby demonstrating identical performance.

Limitations. Our unsupervised setting enables an anomaly

detection system to start detecting abnormalities just based

on the observed data without any human intervention. In

case there is no abnormal event so far, the system may con-

sider the rare normal events as abnormal. However, if a sys-

tem remains operational for a significant time, the probabil-

ity of having no abnormal event will be rather very small.

5. Conclusion
We proposed an unsupervised anomaly detection ap-

proach (GCL) using unlabeled training videos, which can

be deployed without providing any manual annotations.

GCL shows excellent performance on two public bench-

mark datasets with varying supervision levels, including

no-supervision, one class and weak-supervision. Finally,

we discussed the limitations of unsupervised settings, i.e.,

the assumption of having anomalies in the training dataset.

However, this is more realistic than OCC methods as it is

natural to have anomalies in the real-world scenarios.
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