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Abstract

Recent advances in commonsense reasoning

depend on large-scale human-annotated train-

ing sets to achieve peak performance. How-

ever, manual curation of training sets is ex-

pensive and has been shown to introduce an-

notation artifacts that neural models can read-

ily exploit and overfit to. We propose a

novel generative data augmentation technique,

G-DAUG
c, that aims to achieve more accu-

rate and robust learning in a low-resource set-

ting. Our approach generates synthetic exam-

ples using pretrained language models, and

selects the most informative and diverse set

of examples for data augmentation. On ex-

periments with multiple commonsense reason-

ing benchmarks, G-DAUG
c consistently out-

performs existing data augmentation methods

based on back-translation, establishing a new

state-of-the-art on WINOGRANDE, CODAH,

and COMMONSENSEQA, and also enhances

out-of-distribution generalization, proving to

be more robust against adversaries or per-

turbations. Our analysis demonstrates that

G-DAUG
c produces a diverse set of fluent

training examples, and that its selection and

training approaches are important for perfor-

mance.

1 Introduction

While recent advances in large-scale neural lan-

guage models (Devlin et al., 2019; Liu et al., 2019;

Radford et al., 2019; Raffel et al., 2019) have led to

strong performance on several commonsense rea-

soning benchmarks (Talmor et al., 2019; Lv et al.,

2020; Sakaguchi et al., 2020), their accuracy by

and large depends on the availability of large-scale

human-authored training data. However, crowd-

sourcing examples at scale for each new task and

domain can be prohibitively expensive. Moreover,

human-authored data has been shown to exhibit an-

notation artifacts (Gururangan et al., 2018; Agrawal

Figure 1: Example of a selected high-quality generated

example compared to a human-authored example from

the WINOGRANDE dataset. Composing commonsense

questions can require creativity.

et al., 2018; Schwartz et al., 2017), leading to mod-

els with considerably weaker performance on out-

of-distribution samples (Jia and Liang, 2017; Be-

linkov and Bisk, 2017; Iyyer et al., 2018).

A candidate solution that has shown promise

in other tasks, such as reading comprehension, is

to augment a human-authored training set with

a large set of synthetically-generated examples

(Zhou et al., 2017; Du et al., 2017; Zhao et al.,

2018a). But, generating synthetic examples for

commonsense reasoning poses a unique challenge.

In reading comprehension, for instance, the goal of

data augmentation is to generate questions that are

directly answerable by a given reference passage.

In contrast, answering commonsense questions re-

lies on commonsense notions that are seldom stated

explicitly (Gordon and Van Durme, 2013; Forbes

and Choi, 2017), and authoring such questions can

require creativity (see Figure 1). Based on promis-

ing evidence from previous work (Yang et al., 2018;

Trinh and Le, 2018; Bosselut et al., 2019; Davi-

son et al., 2019), we hypothesize that pretrained

language models, such as GPT-2 (Radford et al.,

2019), capture some common sense expressed im-

plicitly in their pretraining corpus. Could ques-

tions generated by such models serve as helpful
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training data? In this work, we explore this ques-

tion through Generative Data Augmentation for

commonsense reasoning (G-DAUG
c; §2): a novel

framework for augmenting training data with di-

verse and informative synthetic training examples

to improve both in-distribution performance and

out-of-distribution generalization of commonsense

reasoning models.1

Although a generative model allows us to pro-

duce large pools of synthetic training examples, the

generated examples may be noisy or redundant. To

ensure that we use the most informative examples

for augmentation, we introduce data selection meth-

ods based on influence functions (Koh and Liang,

2017) and a heuristic to maximize the diversity of

the generated data pool. Finally, we propose an

effective two-stage training scheme for augmen-

tation with synthetic data. In experiments across

multiple commonsense benchmarks, we show that

G-DAUG
c can mitigate the expense and brittleness

resulting from large training sets for commonsense

reasoning tasks.

To summarize, our contributions include:

1. G-DAUG
c, a generative data augmentation

framework for commonsense reasoning (§2),

2. novel selection methods that identify informa-

tive and diverse synthetic training examples

from the generated pool (§3),

3. experiments showing that G-DAUG
c im-

proves in-distribution performance, achieving

a 1–4% average absolute gain across four com-

monsense reasoning data sets and state-of-the-

art results on the WINOGRANDE (Sakaguchi

et al., 2020), COMMONSENSEQA (Talmor

et al., 2019), and CODAH (Chen et al., 2019)

benchmarks, and also improves model robust-

ness in terms of resistance to adversarial at-

tacks (Jin et al., 2020) and accuracy on per-

turbed evaluation sets (§4), and

4. a comprehensive analysis of the factors that

influence G-DAUG
c’s performance (§5).

2 G-DAUG
c

We now describe our framework for Generative

Data Augmentation for Commonsense Reasoning

(G-DAUG
c). Figure 2 shows an overview of the

approach. We describe G-DAUG
c’s data genera-

tion procedure (steps 1 and 2 in the figure) in this

section, and cover the data selection and training

1https://github.com/yangyiben/G-DAUG-c-Generative-
Data-Augmentation-for-Commonsense-Reasoning

Figure 2: Illustration of the G-DAUG
c process: (1) gen-

erate synthetic data and train a task model, (2) relabel

the generated data using the task model, (3) filter the

generated data based on estimated influence scores, (4)

further select a subset based on a diversity-maximizing

heuristic, (5) train a new task model using the filtered

generations (synthetic training), and (6) further train

this model using the original training data (organic

training).

components (steps 3-5) in §3.

2.1 Synthetic Training Data Generation

We will use multiple choice question answering

as a running example to describe synthetic data

generation. Formally, consider a dataset of N

questions D = {(Qi, Ci, yi) : i = 1, 2, ..., N},
where Qi is a sequence of words denoting the ith

question, Ci = {Ci
j : j = 1, 2, ...,K} is the cor-

responding choice set with K choices which are

word sequences as well, and a ground truth label

yi ∈ {1, 2, ...,K}. We denote the answer as Ci
yi

and the distractors as Ci
j 6=yi

s.

Our text generators are pretrained generative

language models, finetuned to maximize the log-

likelihood of a sequence of text W, LW (θ) =
∑T

t=1
logP (wt|W1:t−1;θ), where W1:t−1 de-

notes a subsequence of W and θ denotes the model

parameters.2 Below, we describe how we use vari-

ations of this objective to finetune different LMs to

generate questions, answers and distractors.3

Generating Synthetic Questions To train our

question generator, we finetune the LM on

the training question set {Qi} to optimize

2W1:0 denotes an empty sequence
3Specific modifications for other tasks, e.g. textual entail-

ment, are discussed in Appendix A.
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the language modeling objective: Lq(θq) =
∑N

i=1
logP (Qi;θq), where θq denotes the param-

eters of the question generator. After finetuning,

we generate new questions with nucleus sampling

(Holtzman et al., 2020), which is suitable for gen-

erating long-form text.

Generating Synthetic Answers and Distractors

To generate choice sets, we independently finetune

two separate generative LMs, one for answers and

the other for distractors. The answer and distractor

generators are trained to maximize the conditional

log-likelihood of the answer and the distractors, re-

spectively, given the question. Mathematically, we

optimize both La(θa) =
∑N

i=1
logP (Ci

yi
|Qi;θa)

and Ld(θd) =
∑N

i=1

∑

j 6=yi logP (Ci
j |Q

i;θd),
where θa and θd denote the parameters of the an-

swer and distractor generators, respectively. For

answers, we use nucleus sampling with low tem-

perature (for long answers) or greedy decoding (for

short answers). To encourage diversity across gen-

erated distractors, we use nucleus sampling without

temperature for these.

Data Relabeling. Our choice of generative LMs

naturally defines labels for the synthetic choice sets.

Alternatively, we consider using a supervised task

model trained on the original training set, to re-

label a candidate pool of synthetic answers and

distractors. This is similar to treating the syn-

thetic questions as unlabeled data and applying

self-training. The utility of this self-training can be

task-dependent; in our experiments, we used vali-

dation performance to determine whether or not to

relabel our synthetic training data.

3 Synthetic Data Selection and Training

The above generation method can produce a large

pool of examples, but training on all of them would

be computationally expensive and might harm per-

formance due to noisy generations. Here, we pro-

pose three data selection methods aimed at choos-

ing more effective training examples from the gen-

erated pool (§3.1). Further, we outline a simple

staged training procedure (§3.2) to mitigate the

negative impact from noise in the synthetic data.

3.1 Selecting High-quality and Diverse

Synthetic Examples

A randomly sampled synthetic dataset may contain

examples that are similar to one another, along with

low-quality generations (Holtzman et al., 2020).

We refer to such a random selection approach as

G-DAUG
c-Rand. We hypothesize that a diverse

and high-quality synthetic set would benefit the

task model more. We present three data selection

algorithms that target quality, diversity and a com-

bination of both.

Filtering with Influence Functions. We hypoth-

esize that filtering out detrimental synthetic training

examples can boost downstream performance (Bras

et al., 2020). A given training example x is con-

sidered detrimental if including x in the training

set results in a higher generalization error, approxi-

mated by validation loss, i.e.:

L(X ,θ) =
1

|X |

∑

xi∈X

l(xi,θ),

L(Xval, θ̂(Xtr ∪ {x}))− L(Xval, θ̂(Xtr)) > 0.

This would naively require retraining the model

with x, which is computationally prohibitive. Fortu-

nately, the validation loss change can be efficiently

approximated through the use of influence func-

tions (Atkinson et al., 1983; Koh and Liang, 2017).

While previous work focuses on removing or per-

turbing existing training examples (Koh and Liang,

2017; Wang et al., 2018), we use influence func-

tions to estimate the effect of including a novel

synthetic example.

The main result from previous work (Atkinson

et al., 1983; Koh and Liang, 2017) tells us that the

influence of upweighting a training example x by

some small ǫ on the model parameters θ̂ with the

corresponding parameter space Θ is given by:

θ̂ǫ,x = argmin
θ∈Θ

ǫl(x,θ) +
1

∑N
i=1

wi

N
∑

i=1

wil(xi,θ)

Iup,params(x) :=
dθ̂ǫ,x

dǫ

∣

∣

∣

∣

∣

ǫ=0

= −H−1

θ̂
∇θl(x, θ̂),

where wi is weight for the training example xi and

H
θ̂

is the Hessian evaluated at θ̂. The above result

is a slight generalization of Koh and Liang (2017),

but it is straightforward to generalize their proof to

the weighted empirical risk case. Then, we apply

the chain rule to get the influence of upweighting

x on the validation loss:

Iup,loss(x) :=
dL(Xval, θ̂ǫ,x)

dǫ

∣

∣

∣

∣

∣

ǫ=0

= ∇θL(Xval, θ̂)
⊤Iup,params(x).
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Note that L(Xtr,θ) can be rewritten as the follow-

ing weighted average form to incorporate a new

training example xnew:

L(Xtr,θ) =
1

∑N+1

i=1
wi

N+1
∑

i=1

wil(xi,θ),

where wi = 1∀i 6= N + 1, wN+1 = 0 and

xN+1 = xnew. Adding the new training example

xnew is equivalent to upweighting xN+1 by 1

N
:

L(Xtr ∪ {xnew},θ) ∝
1

N
l(xN+1,θ)

+
1

∑N+1

i=1
wi

N+1
∑

i=1

wil(xi,θ).

Applying the influence function Iup,loss(x), we

obtain the following linear approximation of the

validation loss change upon adding the training

example xnew:

L(Xval, θ̂(Xtr ∪ {xnew}))− L(Xval, θ̂(Xtr))

≈
1

N
Iup,loss(xnew).

We adopt the stochastic estimation method de-

scribed in Koh and Liang (2017) to efficiently com-

pute Iup,loss. Detrimental synthetic data will have
1

N
Iup,loss > 0.

Another distinction between our approach and

Koh and Liang (2017) is that they compute the in-

fluence of a single training example on a single

test example, whereas we estimate influence of a

synthetic training example on all validation exam-

ples at once, which makes our approach scalable

to large pools of synthetic data. Our approach, re-

ferred to as G-DAUG
c-Influence, filters out detri-

mental synthetic data (i.e., the examples that have a

positive estimated influence on the validation loss).

Selecting Diverse Examples. While G-DAUG
c-

Influence promotes training data quality, it ignores

diversity; we hypothesize that better diversity can

provide a more reliable training signal. We propose

a simple greedy algorithm that iteratively selects a

synthetic training example from the pool that maxi-

mizes a diversity measure. Here, we use a simple

measure of diversity equal to the number of unique

unigrams in the selected training set. Surprisingly,

preliminary experiments with a more sophisticated

diversity method based on embedding distance did

not improve results (see Appendix E for details).

We refer to this approach as G-DAUG
c-Diversity

(see Algorithm 1).

Algorithm 1 G-DAUG
c-Diversity

Input: Synthetic data pool Dpool, Target size N

Output: Synthetic dataset

Initialization: Dsynthetic ←− {}
repeat

xmax = argmaxx∈Dpool
#n-grams(Dsynthetic

∪{x})− #n-grams(Dsynthetic)
Add xmax to Dsynthetic

Remove xmax from Dpool

until |Dsynthetic| = N

return Dsynthetic

Combining Influence Filtering and Diver-

sity Maximization G-DAUG
c-Influence and

G-DAUG
c-Diversity have complementary

benefits—the former aims at improving the quality

of individual examples by filtering out detrimental

ones, and the latter is designed to compose a di-

verse training set but does not consider quality. To

reap both benefits, we propose a combined selec-

tion technique, G-DAUG
c-Combo, that first filters

the data using G-DAUG
c-Influence, then selects

examples according to G-DAUG
c-Diversity.

3.2 Training with Synthetic Data

In traditional data augmentation, new data is usu-

ally mixed with the original training examples to

create an augmented training set (Wei and Zou,

2019; Kafle et al., 2017). However, when aug-

menting with data produced using a generative

model, label noise can be detrimental to learning

(Kafle et al., 2017). Moreover, the generated ques-

tions themselves can be noisy, i.e. nonsensical or

ambiguous (see Table 7 under §4.2). To address

this issue, we propose a simple training procedure

that treats the synthetic and original data differ-

ently. We first train a model on the synthetic data

(Synthetic Training), then further train on the orig-

inal, human-authored training set (Organic Train-

ing). The motivation is to correct any unfavorable

noise that may have been learnt during the first

stage, by subsequently training on original data

as more recent training data is favored by neural

models (Goodfellow et al., 2014) .

We also experiment with a mixing approach that

minimizes a weighted average of the loss for the

synthetic data and the original data, with an impor-

tance weight to downweight the synthetic examples
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to mitigate noise. We find that two-stage training

performs better than the importance-weighted loss

(see Section 5).

4 Experiments

We present experiments on four commonsense mul-

tiple choice QA benchmarks: COMMONSENSEQA

(Talmor et al., 2019), WINOGRANDE (Sakaguchi

et al., 2020), CODAH (Chen et al., 2019) and Hel-

laSwag (Zellers et al., 2019). Our techniques are

also directly applicable to other closed-book multi-

ple choice QA setups, such as science QA, and to

textual entailment tasks with minor modifications.

To evaluate G-DAUG
c’s extensibility to these set-

tings, we also experiment with a textual entailment

task, SNLI (Bowman et al., 2015), and a closed-

book version of the ARC-Challenge Scientific QA

task (Clark et al., 2018) in which access to the sci-

entific corpus for the ARC dataset (or any other

information sources) is disallowed during test. We

simulate low-resource settings on the large Hel-

laSwag and SNLI datasets by downsampling these

to 2K and 3K training samples respectively; the

other data sets are either already low-resource or

have a low-resource component. Dataset details

are provided in Appendix A.

Robustness Evaluation In addition to measur-

ing in-distribution performance, we also analyze

robustness to perturbed or adversarial data. Fol-

lowing Wei and Zou (2019), we perform WordNet-

based (Fellbaum, 1998) synonym replacement on

the validation or test set (when test labels are avail-

able) with a 10% replacement rate.5 Our second

evaluation with TextFooler (Jin et al., 2020) iden-

tifies the most important words and replaces these

with the most semantically and grammatically cor-

rect substitutes, until the model prediction is al-

tered. We adopt two metrics to measure robust-

ness under TextFooler’s attacks: 1) failure rate:

the proportion of examples for which TextFooler

fails to change the prediction and 2) average per-

turbation ratio: the average fraction of words re-

placed when TextFooler succeeds in altering a pre-

diction. We re-implement TextFooler with two

minor changes: we only swap words in questions,

not answers, and we replace the Universal Sentence

Encoder with SROBERTA (Reimers and Gurevych,

4https://leaderboard.allenai.org/

winogrande/submissions/public, https:

//www.tau-nlp.org/csqa-leaderboard
5https://github.com/jasonwei20/eda_nlp

2019).

4.1 Experimental Settings

We use ROBERTA (Liu et al., 2019) as our pre-

trained task model, and GPT-2 (Radford et al.,

2019) as our pretrained generator.6 We use valida-

tion performance to decide whether to do relabel-

ing for COMMONSENSEQA and WINOGRANDE,

and apply relabeling by default on all other tasks

(tuning this choice may boost performance). To

perform a controlled comparison, we restrict the

synthetic set size to be equal across all methods.

We repeat all experiments with 10 random restarts

and pick the best model based on validation per-

formance. Additional experimental details, with

hyperparameters, are provided in Appendix C.

Baselines Our first baseline is a finetuned

ROBERTA model with no augmentation. We com-

pare with existing work on data augmentation via

a BACKTRANSLATION approach from Xie et al.

(2019); under our setting the original and back-

translated data are mixed at random.7

4.2 In-Distribution Results

Our main results for commonsense question

answering are reported in Table 1. All

G-DAUG
cvariants outperform the baselines, high-

lighting the impact of generative data augmentation.

On average, every other variant achieves higher

test performance than G-DAUG
c-Rand, which fur-

ther highlights the importance of our data selection

approaches. In addition, influence and diversity

selection methods score similarly, however, their

combination (in G-DAUG
c-combo) outperforms

either alone, which suggests that they are comple-

mentary selection approaches. More specifically,

G-DAUG
c-Combo performs the best on 3/4 tasks

and obtains the highest average score. Further,

G-DAUG
c-Combo provides a 5.0% absolute gain

over previously published state-of-the-art results

on WINOGRANDE.8 For COMMONSENSEQA,

G-DAUG
c-Combo outperforms the previous non-

ensemble state-of-the-art (Zhu et al., 2020) by

0.4%. We also achieve a new state-of-the-art on

CODAH, where the previous best (BERT-based)

score was 67.5% (Chen et al., 2019). We find

6We used the HuggingFace library (Wolf et al., 2019).
7https://github.com/google-research/

uda/
8These results are state-of-the-art for our model class;

higher scores have been obtained using a T5 model with
roughly an order of magnitude more parameters than ours.

https://leaderboard.allenai.org/winogrande/submissions/public
https://leaderboard.allenai.org/winogrande/submissions/public
https://www.tau-nlp.org/csqa-leaderboard
https://www.tau-nlp.org/csqa-leaderboard
https://github.com/jasonwei20/eda_nlp
https://github.com/google-research/uda/
https://github.com/google-research/uda/
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CSQA
(Acc)

WINOGRANDE

(AUC)
CODAH

(Acc)
HellaSwag-2K
(Acc)

Average

ROBERTA (reported) 72.1 66.4 - - -
ROBERTA (ours) 71.6 67.5 82.3 75.4 74.2
BACKTRANSLATION 70.2 67.2 81.8 73.0 73.1

G-DAUG
c-Rand 71.8 70.9 83.6 75.9 75.6

G-DAUG
c-Influence 72.1 70.9 84.3 75.8 75.8

G-DAUG
c-Diversity 72.3 71.2 83.5 76.1 75.8

G-DAUG
c-Combo 72.6 71.4 84.0 76.8 76.2

Table 1: Results on the test sets of four commonsense benchmarks. ROBERTA (reported) is the result for the

ROBERTA-large baseline reported on public leaderboards.4ROBERTA (ours) is re-evaluation of the ROBERTA-

large model using our setup. All G-DAUG
c methods outperform the baseline methods, and G-DAUG

c-Combo

performs the best overall.

CSQA WINOGRANDE CODAH HellaSwag-2K Average

ROBERTA (ours) 69.9 63.8 74.7 63.2 67.9
BACKTRANSLATION 69.0 62.3 75.5 65.4 68.1

G-DAUG
c-Rand 72.1 65.5 75.9 64.1 69.4

G-DAUG
c-Influence 71.0 65.7 76.2 64.3 69.3

G-DAUG
c-Diversity 71.6 66.0 76.0 64.8 69.6

G-DAUG
c-Combo 72.0 66.0 76.0 65.2 69.8

Table 2: Results on WordNet-based synonym replacement sets. For CODAH and HellaSwag-2K, we perturb test

sets, as the labels are available. G-DAUG
c-Combo achieves the highest average score.

that BACKTRANSLATION hurts performance, and

uniformly underperforms the ROBERTA baseline.

See Appendix B for validation set results.

4.3 Robustness Results

Table 2 presents our evaluation on synonym re-

placement sets. The G-DAUG
c variants outper-

form the baselines, and G-DAUG
c-Combo obtains

the best average performance. Table 3 shows re-

sults on the TextFooler adversarial attacks. Models

trained with data augmentation are more robust to

adversarial attacks, as all G-DAUG
c variants and

BACKTRANSLATION outperform the ROBERTA

baseline on both metrics. G-DAUG
c-Diversity

obtains the best failure rate and average pertur-

bation ratio (higher is better, in both metrics),

and G-DAUG
c-Combo performs comparably with

slightly worse numbers. Overall, the findings sug-

gest that optimizing diversity increases robustness.

4.4 Results on ARC and SNLI

We explore G-DAUG
c’s applicability outside of

the commonsense domain in Table 4, via evalu-

ation on the closed-book ARC-Challenge Scien-

tific QA. Valid science questions are hard to gen-

erate because their semantics need to be precise,

and we find that many of G-DAUG
c’s generations

for ARC are noisy. Perhaps surprisingly, nonethe-

less G-DAUG
c outperforms the baselines by a

large margin. G-DAUG
c-Influence achieves the

best in-distribution performance, while G-DAUG
c-

Diversity is the most robust against TextFooler but

has worse accuracy than G-DAUG
c-Rand. This

may suggest that optimizing for quality is more

important when the synthetic data is noisier.

We also evaluate G-DAUG
c on a textual entail-

ment using the SNLI dataset (Bowman et al., 2015)

in Table 4. This task has a different format; it is a

pair-wise classification task with 3 labels (details

in Appendix A). We find that G-DAUG
c slightly

improves accuracy and robustness over baselines.

The performance is likely affected by a label skew

introduced by influence-based filtering.

5 Analysis and Discussion

We now analyze G-DAUG
c’s performance, focus-

ing on WINOGRANDE where G-DAUG
c offers the

most benefit. We first identify several factors that

affect performance, and then present evidence that

G-DAUG
c works by transferring knowledge from

the pretrained generator to the task model.

5.1 Factors that Affect G-DAUG
c’s

Performance

G-DAUG
c is effective at different training

sizes. Figure 3 illustrates that our winning strat-

egy, G-DAUG
c-Combo, remains effective as the

amount of training data varies, for WINOGRANDE.
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CSQA WINOGRANDE CODAH Hellaswag-2K Average

ROBERTA (ours) 14.8 / 12.6 4.5 / 7.8 30.9 / 15.8 17.4 / 9.8 16.9 / 11.5
BACKTRANSLATION 17.0 / 12.9 5.0 / 8.2 37.1 / 15.9 20.2 / 10.2 19.8 / 11.8

G-DAUG
c-Rand 15.6 / 13.0 5.7 / 8.4 36.2 / 15.9 20.0 / 10.6 19.4 / 12.0

G-DAUG
c-Influence 16.3 / 12.8 5.4 / 8.4 34.9 / 15.8 19.2 / 10.7 19.0 / 11.9

G-DAUG
c-Diversity 16.0 / 12.9 5.9 / 8.4 36.1 / 16.2 21.4 / 10.4 19.9 / 12.0

G-DAUG
c-Combo 16.5 / 12.6 5.9 / 8.5 35.2 / 15.7 21.3 / 10.5 19.7 / 11.8

Table 3: Robustness to TextFooler-based adversarial attacks (failure rate / average perturbation ratio, higher is

better for both). Models trained with augmented data are more robust to TextFooler’s attacks compared to models

without data augmentation. On average, G-DAUG
c-Diversity performs the best.

ARC-Challenge Scientific QA SNLI-3K

Val. Test Syn. TF:Fail TF:Pert Val. Test Syn. TF:Fail TF:Pert NLI Diag.

RoBERTa (ours) 43.5 39.4 35.2 6.6 9.3 91.8 88.6 77.5 17.0 20.2 56.7
Backtranslation 43.1 43.1 42.4 6.6 9.3 91.2 8.1 81.0 18.8 21.7 54.0

G-DAUG
c-Rand 50.8 48.1 43.4 12.9 10.8 91.8 89.0 78.6 17.7 20.6 57.4

G-DAUG
c-Influence 51.5 48.5 45.2 12.4 11.0 92.3 88.7 78.6 18.0 20.7 56.9

G-DAUG
c-Diversity 49.5 47.5 42.2 13.9 10.8 92.0 89.0 79.4 19.0 20.5 57.7

G-DAUG
c-Combo 50.8 48.2 43.8 13.1 10.7 91.9 88.7 78.7 16.7 20.5 57.6

Table 4: Results on closed-book ARC-Challenge Scientific QA and SNLI-3K, along with robustness to synonym

replacement, TextFooler (TF) attacks and NLI Diagnostics. G-DAUG
cimproves accuracy and robustness.

Figure 3: Validation results for different training set

sizes on the WINOGRANDE dataset (in log scale).

G-DAUG
chelps more for smaller training sizes.

The improvement over baseline is largest in the

low-resource (small training size) regime. For the

smallest sizes, XS and S, G-DAUG
c-Combo in-

creases the effective training size by a factor of 4

(i.e. training on XS or S matches unaugmented

ROBERTA’s performance on S or M, respectively).

In contrast, BACKTRANSLATION only helps for

the XS size, but hurts performance on larger sizes.

Staged training is essential. G-DAUG
c uses a

two-staged training method (Section 3.2) aimed

at mitigating the effect of noise in the generated

data. We analyze alternative training protocols

on the WINOGRANDE-L dataset: Mixing (train-

ing on the union of generated and original data)

and Importance Weighted Loss. Compared to a

no-augmentation baseline (with accuracy of 75.9),

two stage training (+1.8 increase) outperforms both

mixing (+0.0) and importance weighted loss (+0.7).

Random Influence Diversity Whole Pool

Size 127478 127478 127478 380700
Acc 71.7 74.4 73.0 73.1

Table 5: Results comparing G-DAUG
c’s filtering meth-

ods against using the entire synthetic data pool for aug-

mentation, on WINOGRANDE-M.

Filtering synthetic data does not hurt accuracy.

G-DAUG
c’s filtering methods are designed to iden-

tify a high-quality and diverse subset of the gen-

erated data, to reduce training cost (compared to

training on the entire generated pool) without harm-

ing accuracy. We evaluate whether G-DAUG
c is

successful at achieving this in Table 5, by compar-

ing G-DAUG
c against using the entire synthetic

data pool for G-DAUG
c-Influence and G-DAUG

c-

Diversity.9 The selection approaches provide com-

parable or better accuracy compared to using the

entire pool, despite using three times less data.

5.2 Why Does G-DAUG
c Work?

Below, we present analysis suggesting that

G-DAUG
c works by transferring knowledge from

the pretrained model to the task model. In partic-

ular, we find that using a pre-trained generator is

9G-DAUG
c-Combo utilizes a larger pool, so it is not com-

parable.
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critical, and that the generated questions are often

coherent, include new semantic units, and carry

informative labels.

Using a Pretrained Generator is critical. We

analyze the impact of the pretrained generator by

comparing our standard G-DAUG
c-Rand setting

with a setting where the generator is not pretrained,

but instead trained from scratch. We find that us-

ing GPT-2 trained from scratch results in a score

of 67.8% on the WINOGRANDE-M validation set.

This is a slight improvement (by 0.2%) over the

unaugmented baseline, but is far inferior to the

3.9% improvement obtained when using the pre-

trained GPT-2. This suggests that using a pre-

trained generator is critical for G-DAUG
c.

WINOGRANDE-L CSQA

Baseline 75.9 77.1

Generator label 76.2 78.1
Random relabeling 66.8 77.1
Model relabeling 77.7 77.7

Table 6: Validation accuracy of G-DAUG
cwith differ-

ent labeling methods on WINOGRANDE-L and COM-

MONSENSEQA. Random labels hurt accuracy, and

model relabeling helps on WINOGRANDE but not on

COMMONSENSEQA.

Synthetic data labels are important. Even

fully unsupervised language model pretraining can

improve performance, when using task-relevant

data (Gururangan et al., 2020). This raises the ques-

tion of whether G-DAUG
c boosts performance by

simply exposing the model to more task-relevant

text, or if the generated labels are in fact informa-

tive. A related question is whether G-DAUG
c’s

optional self-supervised relabeling improves per-

formance. We analyze these questions for WINO-

GRANDE-L and COMMONSENSEQA in Table 6,

evaluating G-DAUG
c with three labeling methods:

(i) generator labels, (ii) random relabeling, and (iii)

relabeling with a task model. When the generator

labels are flipped randomly, G-DAUG
c is unable to

outperform the baselines for either dataset (in fact,

it dramatically underperforms on WINOGRANDE-

L). This implies that the correctness of labels is

crucial for G-DAUG
c. Self-supervised relabeling

provides a 1.5% absolute gain in WINOGRANDE-

L, but a 0.4% drop in COMMONSENSEQA, which

suggests its utility is task-dependent.

G-DAUG
c introduces new semantic units. We

investigate how distinct the generated questions

Figure 4: OpenIE analysis on the original data and

synthetic data used by G-DAUG
c-Combo on WINO-

GRANDE-M. The synthetic dataset contains many

more unique semantic units compared to the original

dataset.

are from each other and from the original training

data. We observe that G-DAUG
c only rarely gener-

ates exact duplicate questions (e.g., on COMMON-

SENSEQA, 0.06% of the questions are duplicates).

We further investigate if G-DAUG
c introduces new

entities and relations to the training data, or if it

merely reuses the ones found in the original train-

ing set. We quantify the diversity of our synthetic

dataset compared to the original data by counting

the number of unique semantic units produced by

performing Open Information Extraction (Banko

et al., 2007) on the data. Specifically, we run the

Stanford Open IE package (Angeli et al., 2015)

and report the number of unique triplets, relations

and entities extracted from our WINOGRANDE-M

datasets in Figure 4. The synthetic data includes

many more unique semantic units than the origi-

nal training data, suggesting that G-DAUG
c does

introduce new semantic units in the training set.

G-DAUG
cproduces mostly fluent questions.

To evaluate G-DAUG
c’s output for fluency, we

employ three human annotators to rate generated

COMMONSENSEQA questions for their coherence

and answerability on a scale of 1 to 4, where a

rating of 3 denotes an acceptable question. We

obtained a total of 1,387 labels. We measured an-

notator agreement on a separate set of 50 questions,

obtaining a Fleiss’ Kappa of 0.41, which is at the

low end of moderate annotator agreement, accept-

able given the subjective nature of the task. A large

(74.04%) majority of questions met the acceptabil-

ity threshold, with an overall average rating of 3.34.

Examples are shown in Table 7.

Next, we ask annotators to answer the 1,027

acceptable questions, where they can edit choices

(but not questions) if they are unable to pick a

unique correct answer from the given choices. The
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Rating Description Examples Count Pct.

1 Nonsensical
What is a square leg made of made out of?
What country does a cow go to make a milk run?

54 3.89%

2 Ambiguous or unanswerable
A person is a human, but they are called what?
He hated flying, the controls were what?

306 22.06%

3 Minor errors (e.g., grammar)
What do you put on your head to do when you’re swimming?
Where does a bugle call be played?

138 9.95%

4 Coherent and Fluent
What is a person likely to feel when applying for jobs?
If you’re running late for work what would you be doing?

889 64.10%

Table 7: Examples and prevalence of generated commonsense questions with different manually-assigned fluency

ratings, for the COMMONSENSEQA dataset. Ratings of 3 and higher correspond to questions that are answerable

and address common sense, and most of G-DAUG
c’s generated questions fall into this category.

editing rate is relatively high, at 55.3%. We mix

these human-labeled examples with the original

training set to train a ROBERTA model, and obtain

78.1% validation accuracy, which is comparable to

G-DAUG
c, despite using approximately 50x fewer

questions. This suggests that human labels can

provide higher leverage than the noisy labels from

G-DAUG
c, although human labeling is expensive.

Additional analyses, provided in Appendix F,

show that model sharpness approximated by the

Hessian trace (Yao et al., 2019) does not completely

explain G-DAUG
c’s performance; and, G-DAUG

c

is more effective than ensembling with a finetuned

generator.

6 Related Work

Data augmentation is a common practice in com-

puter vision, where it takes the form of image trans-

formations like translation and rotation (Perez and

Wang, 2017). For language tasks, data augmenta-

tion is less straightforward. Broadly, previous aug-

mentation methods have used back-translation ar-

chitectures (Sennrich et al., 2016; Xie et al., 2019),

heuristics based on syntactic and semantic proper-

ties of text including word replacements using a the-

saurus (Zhang et al., 2015; Wei and Zou, 2019) and

word embeddings (Wang and Yang, 2015; Fadaee

et al., 2017; Kobayashi, 2018; Wu et al., 2019),

and recently, generative models for synthesizing

novel examples for text classification and reading

comprehension (Anaby-Tavor et al., 2020; Kumar

et al., 2020; Puri et al., 2020b). Our framework is

similar to the last of these as we focus on genera-

tive models for data augmentation, but our work

is the first to present a generative approach for the

challenging commonsense QA setting, and we in-

troduce new data selection approaches to improve

the informativeness and diversity of synthetic data.

Concurrently, there has been work on generat-

ing adversarial examples for analyzing black-box

classifiers. These approaches use generative adver-

sarial networks (Zhao et al., 2018b) and population-

based optimization algorithms (Alzantot et al.,

2018). Previous work has also presented meth-

ods to generate questions for reading comprehen-

sion (Heilman and Smith, 2010; Rus et al., 2011;

Alberti et al., 2019; Puri et al., 2020a), online tu-

toring (Lindberg et al., 2013), factual QA (Ser-

ban et al., 2016) and visual question generation

(Mostafazadeh et al., 2016). A comprehensive sur-

vey on neural question generation can be found in

Pan et al. (2019). Our work is distinct in that it tar-

gets question generation in a closed-book setting,

investigates the generation of answers as well as

distractors, and is aimed at data augmentation.

7 Conclusion

We introduced G-DAUG
c, a novel data augmenta-

tion framework to generate synthetic training data,

preserving quality and diversity. We demonstrate

that G-DAUG
c is effective on multiple common-

sense reasoning benchmarks, with improvements

on in-distribution performance, as well as robust-

ness against perturbed evaluation sets and chal-

lenge sets. Our analysis shows that G-DAUG
c

tends to perform better in low-resource settings

and that our data selection strategies are important

for performance. Future work might explore more

sophisticated methods to enhance quality and di-

versity of generated training data, including having

humans-in-the-loop for relabeling.
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A Datasets

CommonsenseQA (Talmor et al., 2019): Com-

monsenseQA is a multiple choice QA dataset that

consists of 12,247 examples, which aims to test

commonsense reasoning capabilities. We use the

official random split 1.11 which is an 80/10/10 split.

We apply greedy decoding to generate answers, as

answers are fairly short for this dataset.

WINOGRANDE (Sakaguchi et al., 2020):

WINOGRANDE is a benchmark for commonsense

reasoning, inspired by the original Winograd

Schema Challenge design (Levesque et al., 2011),

with a larger dataset size and higher difficulty level.

It consists of 44K questions with five different

training sizes: 160, 640, 2,558, 10,234 and 40,398

questions. The evaluation metric is Area Under

the (learning) Curve. We observe that applying

top-2 greedy decoding on the answer generator is

able to yield a satisfactory set of choices, so the

distractor generator is not used in this task. The

Winograd schema requires that questions in twin

pairs have opposite labels (Levesque et al., 2011).

We use the following method to generate twin

questions: 1. generate a sequence until a blank

symbol ” ” is produced. 2. use two independent

runs of sampling to complete the question in two

different ways to form twins. The above process

does not guarantee that the labels will differ for the

two twins, so we further filter out generated pairs

that do not have different labels.

CODAH (Chen et al., 2019): CODAH is

an adversarially-constructed benchmark which

tests commonsense reasoning using sentence-

completion questions, inspired by the Swag dataset

(Zellers et al., 2018). It contains 2,801 questions

in total, and uses 5-fold cross validation for eval-

uation.10 We lower the temperature to 0.5 for the

answer generation in order to increase the confi-

dence of the generated answers.

HellaSwag (Zellers et al., 2019): HellaSwag is

a more challenging version of the Swag dataset

(Zellers et al., 2018), and the task is similar to CO-

DAH. The dataset consists of 70K questions where

each question comes from one of two domains: Ac-

tivityNet or WikiHow. In order to test our methods

under a low-resource setting, we downsample the

training set to 2,000 examples. We take a random

10The original CODAH work does not specify a particular
5-fold split, so we choose these randomly. We will release our
splits for replicability.

sample of 1000 questions from the original valida-

tion set to serve as our validation data, and another

non-overlapping random sample of 5,000 questions

from the same set as our test data. The generation

settings are the same as CODAH’s.

SNLI (Bowman et al., 2015): SNLI is a natu-

ral language inference dataset with 570K pairs of

labeled sentences. The label assigned to each sen-

tence pair is one of entailment, contradiction or

neutral. For low-resource experiments, we down-

sample the dataset to 3K training examples, which

contains 1K unique premises and a hypothesis for

all three labels. Similarly, we use a downsampled

development set with 999 examples (333 premises

and 3 hypotheses for each label). The generative

model is fine-tuned by providing the premise, la-

bel and hypothesis, separated by special delimiters

marking the beginning and end of each element.

ARC-Challenge (Clark et al., 2018): The ARC

Dataset consists of 7,787 natural grade-school sci-

ence questions that are used on standardized tests.

The ARC-Challenge Set contains 2,590 questions

answered incorrectly by both a retrieval-based al-

gorithm and a word co-occurence algorithm. We

use the official split, which has 1,119 train, 299 val-

idation, and 1,172 test examples. The generation

settings are the same as COMMONSENSEQA’s.

B Validation Set Results

In Table 8, we summarize our main results on the

validation sets, comparing the G-DAUG
cmethods

against an unaugmented baseline and a backtransla-

tion augmentation baseline. All G-DAUG
cmethods

consistently outperform the baseline methods in

every benchmark. The proposed selection meth-

ods provide an extra boost on average, compared

to G-DAUG
c-Rand. Among those, G-DAUG

c-

Influence achieves the best performance across all

tasks, which is expected as G-DAUG
c-Influence

selects examples which are helpful in reducing

validation loss. Interestingly, G-DAUG
c-Combo

scores lower than G-DAUG
c-Influence, although

it outperforms G-DAUG
c-Diversity. Finally, back-

translation does not demonstrate any benefit and

obtains lower results compared to the augmented

baseline in all benchmarks.
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Method
CSQA
(Acc)

WINOGRANDE

(AUC)
CODAH

(Acc)
HellaSwag-2K
(Acc)

Average

ROBERTA (reported) 78.4 66.6 - - - -
ROBERTA (ours) 77.1 68.4 84.2 75.2 76.2
Backtranslation 76.4 67.7 83.4 74.2 75.4

G-DAUG
c-Rand 78.1 72.0 85.7 77.2 78.3

G-DAUG
c-Influence 78.8 73.0 87.2 78.3 79.3

G-DAUG
c-Diversity 78.1 72.8 86.0 76.6 78.4

G-DAUG
c-Combo 78.2 72.7 86.7 77.5 78.8

Table 8: Results on the validation sets of four commonsense benchmarks. All G-DAUG
cmethods outperform the

baseline methods, in particular, G-DAUG
c-Influence performs the best on all tasks, which is expected as it selects

examples which are helpful in reducing validation loss.

C Hyperparameter Settings and Input

Formats

Hyperparameter settings for finetuning GPT-2,

ROBERTA and G-DAUG
care shown in Tables 11,

12, 14, 15 and 16. We manually tune the learning

rate and the number of epochs for GPT-2 finetun-

ing based on validation perplexity. For finetuning

ROBERTA baseline models, we select the number

of epochs from {1,3,5,8,10} based on validation ac-

curacy for CSQA, WINOGRANDE and HellaSwag-

2K. For CODAH, SNLI-3K and ARC-Challenge,

we simply use 5 epochs. For G-DAUG
csynthetic

training, we train all models using a learning rate

of 5e-6 for one epoch. For G-DAUG
corganic

training, we use the same hyperparameter settings

as ROBERTA baselines (except for CSQA and

HellaSwag-2K, where we find reducing 2 epochs

gives significantly better results). In Tables 9 and

10, we specify the input formats for finetuning GPT-

2 and ROBERTA. Finally, we benchmark the run-

ning time of our implementations of the influence

and diversity selection methods on the task of se-

lecting 127,478 examples from a pool consisting

of 380,700 candidates for WINOGRANDE-M. We

use one Nvidia 2080 Ti GPU and one Intel Core

I9-7900X with 10 cores and a clockspeed of 3.3

GHz. The running time of the influence and diver-

sity algorithms is about 8.3 hours and 2.9 hours,

respectively.

D Influence Functions

In practice, since the generalization error is usu-

ally approximated by validation loss, a training

example xi is considered detrimental if it increases

validation loss, i.e.:

L(X ,θ) =
1

|X |

∑

x∈X

l(x,θ), (1)

L(Xval, θ̂(Xtrain ∪ {xi}))− L(Xval, θ̂(Xtrain)) > 0,
(2)

where Xtrain = {xi}
N
i=1 is a training set, Xval =

{xi}
M
i=1 is a validation set, l is a loss function, and

θ̂(Xtrain) = argmin
θ∈Θ

L(Xtrain,θ) is an empirical

risk minimizer.

The main result from previous work (Atkinson

et al., 1983; Koh and Liang, 2017) tells us that the

influence of upweighting a training example x by

some small ǫ on the model parameters θ̂ with the

corresponding parameter space Θ is given by:

θ̂ǫ,x = argmin
θ∈Θ

ǫl(x,θ) +
1

∑N
i=1

wi

N
∑

i=1

wil(xi,θ)

(3)

Iup,params(x) :=
dθ̂ǫ,x

dǫ

∣

∣

∣

∣

∣

ǫ=0

= −H−1

θ̂
∇θl(x, θ̂),

(4)

where wi is weight for the training example xi and

H
θ̂
= 1∑N

i=1
wi

∑N
i=1

wi∇
2
θ
l(xi, θ̂) is the Hessian

evaluated at θ̂. The above result is a slight general-

ization of Koh and Liang (2017), since the simple

average used in that work is a special case of our

weighted average, but it is straightforward to gener-

alize their proof to our weighted empirical risk case

and we omit the details of the proof in this paper.

Then, we apply the chain rule to get the influence

of upweighting x on the validation loss:

Iup,loss(x) :=
dL(Xval, θ̂ǫ,x)

dǫ

∣

∣

∣

∣

∣

ǫ=0

(5)

= ∇θL(Xval, θ̂)
⊤Iup,params(x). (6)
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Task Format

CSQA Q: Where can I stand on a river to see water falling without getting wet? A: waterfall 〈/s〉
WINOGRANDE 〈/s〉Feeling a draft, William asked Neil to please close the front door because was closer.〈/s〉Neil〈/s〉
CODAH 〈/s〉I am always very hungry before I go to bed. I am〈/s〉concerned that this is an illness.〈/s〉
HellaSwag-2K 〈/s〉A man is on a sandy beach, playing croquette. he〈/s〉is parasailing, making a random move.〈/s〉
SNLI-3K 〈PREM〉Five black dogs run in a field.〈/PREM〉〈ANS〉entailment〈/ANS〉〈HYP〉Some animals running.〈/HYP〉
ARC-Challenge Q: Which of the following is an example of a physical change? A: breaking a glass 〈/s〉

Table 9: Input formats for GPT-2. ”Q:” and ”A:” are the prefix for a question and a candidate answer (choice).

Task Format

CSQA 〈s〉Q: Where can I stand on a river to see water falling without getting wet?〈/s〉 A: waterfall 〈/s〉
WINOGRANDE 〈s〉Feeling a draft, William asked Neil to please close the front door because was closer.〈/s〉Neil〈/s〉
CODAH 〈s〉I am always very hungry before I go to bed. I am〈/s〉concerned that this is an illness.〈/s〉
HellaSwag-2K 〈s〉A man is on a sandy beach, playing croquette. he〈/s〉is parasailing, making a random move.〈/s〉
SNLI-3K 〈s〉Five black dogs run in a field.〈/s〉Some animals running.〈/s〉
ARC-Challenge 〈s〉Q: Which of the following is an example of a physical change?〈/s〉A: breaking a glass 〈/s〉

Table 10: Input formats for ROBERTA. ”Q:” and ”A:” are the prefix for a question and a candidate answer

(choice).

Note that L(Xtrain,θ) can be rewritten as the

following weighted average form to incorporate a

new training example xnew:

L(Xtrain,θ) =
1

∑N+1

i=1
wi

N+1
∑

i=1

wil(xi,θ),

where wi = 1∀i 6= N + 1, wN+1 = 0 and

xN+1 = xnew. Adding the new training example

xnew is equivalent to upweighting xN+1 by 1

N
:

L(Xtrain ∪ {xnew},θ) =
N

N + 1
(
1

N
l(xN+1,θ)

+
1

∑N+1

i=1
wi

N+1
∑

i=1

wil(xi,θ))

∝
1

N
l(xN+1,θ) +

1
∑N+1

i=1
wi

N+1
∑

i=1

wil(xi,θ).

Applying the influence function Iup,loss(x), we

obtain the following linear approximation of the

validation loss change upon adding the training

example xnew:

L(Xval, θ̂(Xtrain ∪ {xnew}))− L(Xval, θ̂(Xtrain))

(7)

≈
1

N
Iup,loss(xnew). (8)

We adopt the stochastic estimation method de-

scribed in Koh and Liang (2017) to efficiently com-

pute Iup,loss. Detrimental synthetic data will have
1

N
Iup,loss > 0.

E Diversity Selection using Embedding

Distance

We define our embedding distance based diversity

measure as the sum of the cosine distances between

every pair of selected examples. To attempt to max-

imize this measure, we use a greedy algorithm that

at each iteration randomly samples 10K candidate

examples from the pool, and selects the candidate

that maximizes the distance between it and its near-

est neighbor in the set of examples selected so far.

We use SROBERTA (Reimers and Gurevych, 2019)

as our sentence embedding method and Faiss (John-

son et al., 2017) as our nearest neighbor searcher.

We compare the embedding distance based mea-

sure with the unigram approach on WINOGRANDE

dataset. The embedding distance based diversity

selection is not found to be more effective than the

unigram approach, in fact it performs 0.6% worse.

F Additional Analysis

Sharpness Analysis. Previous work (Hochreiter

and Schmidhuber, 1997; Keskar et al., 2016; Yao

et al., 2019) has shown that models with flatter local

minima tend to generalize better. Moreover, Hao

et al. (2019) show that pretraining helps BERT to

achieve flat and wide optima in the finetuning stage,

which partially explains its performance benefits.

We investigate whether G-DAUG
c’s data augmen-

tation may also encourage flatter optima. Specif-

ically, using the fact that a larger Hessian trace

for a model implies a sharper local minimum (Yao

et al., 2019), we compute the Hessian trace of 10

baseline and 10 G-DAUG
c-Combo methods using
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Hyperparam CSQA WINOGRANDE CODAH HellaSwag-2K SNLI-3K ARC-Challenge

Version Large Medium Medium Medium Large Medium
Hardware I9-7900X RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 8000 RTX 2080Ti
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Adam β1 0.9 0.9 0.9 0.9 0.9 0.9
Adam β2 0.98 0.98 0.98 0.98 0.999 0.98
Adam ǫ 1e-6 1e-6 1e-6 1e-6 1e-8 1e-6
Mixed Precision No Yes Yes Yes Yes Yes
LR (q/a/d) 1e-5/5e-6/2e-5 * 4e-5/5e-5/5e-5 4e-5/5e-5/5e-5 5e-5 2e-5/1e-5/1e-5
Epochs (q/a/d) 3/5/3 * 3/3/3 3/3/3 3 3/5/5
Grad Clipping 1.0 1.0 1.0 1.0 1.0 1.0
Weight Decay 0.01 0.01 0.01 0.01 0.0 0.01
Batch Size 16 16 16 16 16 16
Max Length (q/a/d) 62/70/70 72/72/- 62/92/92 62/128/128 128 90/120
Warmup Ratio 0.06 0.06 0.06 0.06 0.06 0.06
LR Decay Linear Linear Linear Linear Linear Linear

Table 11: Hyperparameter settings for finetuning GPT-2. ”q/a/d” stands for ”question/answer/distractor”. Some

hyperparameters for WINOGRANDE is shown in a separate table as they vary with the train size.

Hyperparam XS S M L XL

LR (q/a) 5e-5/5e-5 2e-5/5e-5 2e-5/5e-5 2e-5/5e-5 1e-5/5e-5
Epochs (q/a) 8/12 6/6 3/3 3/3 3/1

Table 12: Hyperparameter settings for finetuning GPT-2 on WINOGRANDE.

Test AUC

Baseline 67.5
Baseline + Generator 67.5
G-DAUG

c-Combo 71.4

Table 13: Test performance of an unaugmented base-

line model and the same model ensembled with a fine-

tuned GPT-2 generator on WINOGRANDE. We use

weighted average ensemble with weights tuned on vali-

dation data.

the Hutchinson Method (Avron and Toledo, 2011)

and find an average relative decrease of 9.5% for

G-DAUG
c-Combo, suggesting that G-DAUG

cdoes

find slightly flatter optima. Likewise, when compar-

ing the best performing models of each approach,

G-DAUG
c-Combo’s best model is slightly flatter

than the baseline (a relative decrease of 0.2%).

However, we also find the contradictory fact that,

over the 20 models, flatter optima tend to be as-

sociated with worse task performance (Spearman

correlation of 0.39, p ≈ 0.09). So, it does not

appear that sharpness explains G-DAUG
c’s perfor-

mance advantage over the baseline. A more thor-

ough analysis of this hypothesis is an item of future

work.

Generator/Task Model Ensemble.

G-DAUG
charnesses pretrained knowledge

from GPT-2 in order to improve a ROBERTA-

based task model. A more standard approach

for model combination (albeit, with twice the

computational cost at runtime) would be to

ensemble the two models instead. We evaluate

ensembling a baseline ROBERTA model with a

finetuned GPT-2 generator for WINOGRANDE in

Table 13. We adopt a weighted-average ensemble

method, where the weights are tuned on validation

data (the tuning is important to achieve peak

performance). The ensemble model performs same

as the baseline model, and G-DAUG
c-Combo

outperforms both of them by 3.9%. This suggests

that G-DAUG
cis more effective than simply

ensembling the finetuned generator.



1025

Hyperparam CSQA WINOGRANDE CODAH HellaSwag-2K SNLI-3K ARC-Challenge

Version Large Large Large Large Large Large
Hardware RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti RTX 8000 RTX 2080Ti
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Adam β1 0.9 0.9 0.9 0.9 0.9 0.9
Adam β2 0.98 0.98 0.98 0.98 0.98 0.98
Adam ǫ 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6
Mixed Precision Yes Yes Yes Yes Yes Yes
LR 1e-5 * 1e-5 1e-5 1e-5 1e-5
Epochs 5 * 5 3 5 5
Grad Clipping 0.0 0.0 0.0 0.0 0.0 0.0
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01
Batch Size 16 16 16 16 16 16
Max Length 70 70 90 128 128 120
Warmup Ratio 0.06 0.06 0.06 0.06 0.06 0.06
LR Decay Linear Linear Linear Linear Linear Linear

Table 14: Hyperparameter settings for finetuning ROBERTA. Some hyperparameters for WINOGRANDE are

shown in a separate table as they vary with the training set size.

Hyperparam XS S M L XL

LR 1e-5 1e-5 1e-5 1e-5 1e-5
Epochs 10 8 5 5 5

Table 15: Hyperparameter settings for finetuning ROBERTA on WINOGRANDE.

Hyperparam CSQA WINOGRANDE CODAH HellaSwag-2K SNLI-3K ARC-Challenge

Synthetic Data Size 50K ∼ 50K-130K11 100K 50K 100K 50K
LR (synthetic) 5e-6 5e-6 5e-6 5e-6 5e-6 5e-6
Epochs (synthetic) 1 1 1 1 1 1

Table 16: Additional hyperparameter settings for G-DAUG
cTwo-Stage Training. For finetuning on the original

data, we use the same settings as ROBERTA (except for CSQA and HellaSwag-2K, where we find reducing

2 epochs gives significantly better results). For Winogrande, we generate 400K examples before the rejection

procedure (see Appendix A). The examples retained after the rejection procedure approximately ranges from 50K-

130K depending on the training size.


