
 Open access Proceedings Article DOI:10.1145/3375395.3387659

Generative Datalog with Continuous Distributions — Source link

Martin Grohe, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Peter Lindner

Institutions: RWTH Aachen University, University College London

Published on: 14 Jun 2020 - Symposium on Principles of Database Systems

Topics: Probabilistic programming language, Datalog, Probabilistic database, Probabilistic logic and
Semantics (computer science)

Related papers:

 Generative Datalog with Continuous Distributions

 Probabilistic Ontologies in Datalog

 Well-founded semantics for extended datalog and ontological reasoning

 Non-monotonic Negation in Hybrid Probabilistic Logic Programs.

 Event choice datalog: a logic programming language for reasoning in multiple dimensions

Share this paper:

View more about this paper here: https://typeset.io/papers/generative-datalog-with-continuous-distributions-
4yimxjkpv2

https://typeset.io/
https://www.doi.org/10.1145/3375395.3387659
https://typeset.io/papers/generative-datalog-with-continuous-distributions-4yimxjkpv2
https://typeset.io/authors/martin-grohe-bpab000dy6
https://typeset.io/authors/benjamin-lucien-kaminski-bfmr2c209a
https://typeset.io/authors/joost-pieter-katoen-1kd4tj9yud
https://typeset.io/authors/peter-lindner-18z98j8y3r
https://typeset.io/institutions/rwth-aachen-university-11171osb
https://typeset.io/institutions/university-college-london-269wra00
https://typeset.io/conferences/symposium-on-principles-of-database-systems-3mp3fkcy
https://typeset.io/topics/probabilistic-programming-language-1f85q33r
https://typeset.io/topics/datalog-3r8dgp0a
https://typeset.io/topics/probabilistic-database-1o5by083
https://typeset.io/topics/probabilistic-logic-r1sp2jpw
https://typeset.io/topics/semantics-computer-science-1y4xeqvu
https://typeset.io/papers/generative-datalog-with-continuous-distributions-6jtsvldj67
https://typeset.io/papers/probabilistic-ontologies-in-datalog-3iauw6qab7
https://typeset.io/papers/well-founded-semantics-for-extended-datalog-and-ontological-ds3c822ovk
https://typeset.io/papers/non-monotonic-negation-in-hybrid-probabilistic-logic-3f6nq99de3
https://typeset.io/papers/event-choice-datalog-a-logic-programming-language-for-26v42xed7s
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/generative-datalog-with-continuous-distributions-4yimxjkpv2
https://twitter.com/intent/tweet?text=Generative%20Datalog%20with%20Continuous%20Distributions&url=https://typeset.io/papers/generative-datalog-with-continuous-distributions-4yimxjkpv2
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/generative-datalog-with-continuous-distributions-4yimxjkpv2
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/generative-datalog-with-continuous-distributions-4yimxjkpv2
https://typeset.io/papers/generative-datalog-with-continuous-distributions-4yimxjkpv2

Generative Datalog with Continuous Distributions

Martin Grohe
RWTH Aachen University

Aachen, Germany
grohe@informatik.rwth-aachen.de

Benjamin Lucien Kaminski
RWTH Aachen University

Aachen, Germany
University College London
London, United Kingdom
b.kaminski@ucl.ac.uk

Joost-Pieter Katoen
RWTH Aachen University

Aachen, Germany
katoen@informatik.rwth-aachen.de

Peter Lindner
RWTH Aachen University

Aachen, Germany
lindner@informatik.rwth-aachen.de

ABSTRACT

Arguing for the need to combine declarative and probabilistic pro-

gramming, Bárány et al. (TODS 2017) recently introduced a proba-

bilistic extension of Datalog as a łpurely declarative probabilistic

programming language.ž We revisit this language and propose a

more foundational approach towards defining its semantics. It is

based on standard notions from probability theory known as sto-

chastic kernels and Markov processes. This allows us to extend the

semantics to continuous probability distributions, thereby settling

an open problem posed by Bárány et al.

We show that our semantics is fairly robust, allowing both paral-

lel execution and arbitrary chase orders when evaluating a program.

We cast our semantics in the framework of infinite probabilistic

databases (Grohe and Lindner, ICDT 2020), and we show that the se-

mantics remains meaningful even when the input of a probabilistic

Datalog program is an arbitrary probabilistic database.

CCS CONCEPTS

· Mathematics of computing → Probabilistic representations; ·

Theory of computation → Constraint and logic programming;

Database query languages (principles); Incomplete, inconsistent, and

uncertain databases.

KEYWORDS

Datalog; Probabilistic Databases; Generative Datalog; Measure The-

ory; Stochastic Kernels; Probabilistic Programming

ACM Reference Format:

Martin Grohe, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Peter

Lindner. 2020. Generative Datalog with Continuous Distributions. In Pro-

ceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles

of Database Systems (PODS’20), June 14ś19, 2020, Portland, OR, USA. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3375395.3387659

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PODS’20, June 14ś19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7108-7/20/06. . . $15.00
https://doi.org/10.1145/3375395.3387659

1 INTRODUCTION

Augmenting programming languages with stochastic behavior such

as probabilistic choices or random sampling has a long tradition

in computer science. In recent years, a lot of effort went into the

development of dedicated probabilistic programming languages

(see e.g. Anglican [39], Church [17], Figaro [33], Pyro [4], R2 [32],

Stan [7]) that allow the specification and łexecutionž, via probabilis-

tic inference, of sophisticated probabilistic models. Such languages

are nowadays important tools in a large variety of applications

in different fields like artificial intelligence, computer vision, and

cryptography to name a few [16, 18, 40].

From a database perspective, it is desirable to have a declarative

probabilistic programming language that operates on a standard

relational data model. Bárány, ten Cate, Kimelfeld, Olteanu, and

Vagena [3] have recently introduced Probabilistic Programming

Datalog (PPDL) which is relational and declarative in nature, while

employing main features of probabilistic programming languages.

PPDL, however, comes with the restriction that it only allows sam-

pling from discrete probability distributions. As an open question,

Bárány et al. [3] ask for an extension of their programming lan-

guage semantics to continuous probability distributions. In this

paper, we provide such an extension.

Probabilistic databases (PDBs) are a formal model for describing

uncertainty in data [1, 38]. Traditionally, they were limited to prob-

ability spaces that consist of a finite number of possible alternative

database instances (called possible worlds). Continuous probability

distributions, however, arise naturally in many application scenar-

ios that involve uncertain data like noisy sensor measurements.

Moreover, for example, a lot of real world statistical phenomena,

especially those that concern aspects of human behavior, follow

normal or lognormal distributions [30].

Unfortunately, generalizing from discrete to continuous distribu-

tions usually comes with substantial mathematical overhead. While

several systems [2, 24, 35] handle continuous probability distribu-

tions, only recently [21, 22], Grohe and Lindner proposed a gen-

eral framework for rigorously dealing with probabilistic databases

over continuous domains. Moreover, they establish basic proper-

ties such as the measurability of relational calculus and Datalog

queries, which in turn allows for formally specifying the semantics

of queries over continuous probabilistic databases. This framework

https://doi.org/10.1145/3375395.3387659
https://doi.org/10.1145/3375395.3387659

and some of the basic results, specifically the measurability of rela-

tional calculus queries, is also the foundation for this work.

The main contribution of this paper is a formal semantics for an

extension of the probabilistic Datalog of Bárány et al. [3] allowing

for sampling from continuous probability distributions. We focus

on the łgenerativež component of probabilistic Datalog (called Gen-

erative Datalog (GDatalog) in [3]). A second component augmenting

probabilistic Datalog by constraints is not considered in this pa-

per. GDatalog programs generate a probabilistic database (that is,

a probability distribution on database instances) from a fixed in-

put instance. In fact, they can also be viewed as transforming a

probabilistic input database to a probabilistic output database. Such

transformations between probability spacesÐassuming they satisfy

certain technical conditionsÐare known as stochastic kernels.

Our semantics essentially extends the semantics of Bárány et

al. [3] for discrete distributions to continuous ones, which requires

a more principled approach rooted in tools from measure theory.

The basic idea of our semantics is the same as in [3]: we associate

an existential Datalog program with a every GDatalog program,

define a probability distribution on the paths of a chase tree for

this program, and then derive a distribution on database instances

from this distribution on the chase tree. To define a distribution

on the chase tree, we show that each chase step is a stochastic

kernel between probabilistic databases. This allows viewing the

chase tree as a Markov process. The probability distribution we

associate with the chase tree is the so-called push-forward measure

of the Markov process. A technical difficulty we have to deal with is

that only finite paths in a chase tree actually correspond to database

instances, because instances are always required to be finite.

Our main technical result is a proof that the semantics is inde-

pendent of the choice of the chase tree and that it is equivalent

to the semantics obtained from parallel execution of all applicable

rules at any step of the execution of a Datalog program.

We slightly modify the semantics of Bárány et al. [3] even for dis-

crete distributions. The reason is that we want to avoid certain pecu-

liarities of the original semantics, illustrated in the example below.

We note, however, that apart from this, our change in the semantics

is not central for the mathematical developments of this paper.

Example 1.1. Consider the GDatalog programs G0 and Gε :

G0 : R(Flip⟨1/2⟩) ← ⊤
R(Flip⟨1/2⟩) ← ⊤

Gε : R(Flip⟨1/2⟩) ← ⊤
R(Flip⟨1/2 + ε⟩) ← ⊤

For p ∈ [0, 1], the rule R(Flip(p)) generates the fact R(1) with prob-

ability p and the fact R(0) with probability 1 − p.
Under the semantics of [3], the program G0 generates with prob-

ability 1/2 the instance {R(1)} and with probability 1/2 the instance
{R(0)}. For 0 < ε ≤ 1/2, the program Gε generates with probabil-

ity 1/4 + ε + ε2 the instance {R(1)}, with probability 1/4 − ε + ε2
the instance {R(0)}, and with probability 1/2 − 2ε2 the instance

{R(1),R(0)}. Thus, contrary to the intuition, the outcome of Gε does
not converge to that of G0 as ε → 0.

Under our semantics, the outcome of Gε remains as described

above, whereas the outcome of G0 becomes {R(1)} or {R(0)}, each
with probability 1/4, and {R(1),R(0)} with probability 1/2.

As another example, consider the following program G′0:

G′0 : R(Flip⟨1/2⟩) ← ⊤
R(Flip′⟨1/2⟩) ← ⊤

Here Flip′ is the same Bernoulli distribution as Flip, but with a

different name. Then, under the semantics of [3], the outcome of

G′0 is {R(1)} or {R(0)}, each with probability 1/4, and {R(1),R(0)}
with probability 1/2. Note that this differs from the outcome of

the, intuitively equivalent, program G0. Under our semantics, the

outcomes of G0 and G′0 are the same.

We believe that our semantics is simpler and arguably more

intuitive. On the downside, in our semantics, programs are no

longer invariant under first-order equivalence when random terms

are just interpreted as terms using function symbols. This difference

in the semantics is inessential to the goals of this paper however,

because we can rewrite programs in a way such that our semantics

simulates the semantics of [3] and vice versa.

Paper Outline. This paper is organized as follows. After concluding

the introduction with a short survey of related work, we present

the central mathematical definitions and background results from

measure theory and probabilistic databases in Section 2. In Sec-

tion 3, we introduce the syntax of GDatalog programs together

with the backbone of its semantics, that is, the translation into an

existential Datalog program. In Section 4 we present our version

of a probabilistic chase, generalizing the ideas of [3]. We show

that this notion defines a Markov process over database instances.

Section 5 is devoted to establishing similar results when a parallel

chase procedure is used (which is novel over [3]). In Section 6, we

discuss various properties of the semantics. First, we show that

no matter which kind of chase procedure is used, the probabilistic

database that is described by its semantics turns out to be the same.

We argue that our semantics can simulate the original semantics

of [3] and look the termination behavior of GDatalog programs.

We conclude the work and indicate topics for future research in

Section 7.

Related Work. In both the fields of probabilistic programming as

well as probabilistic databases, there is a variety of models and

systems that allow to specify continuous probability distributions.

We will mention some of them and indicate how they compare to

the scope of this paper. Note that the original work on Probabilistic

Programming Datalog [3] contains a broad discussion of related

concepts.

Several łpurež programming languages support continuous dis-

tributions, for instance Church [17], Anglican [39], and Figaro [33].

Languages that are conceptually closer to Probabilistic Program-

ming Datalog are those with direct ties to statistical relational ar-

tificial intelligence (StarAI) [10]. A prominent example of such a

language is ProbLog [9], a probabilistic variant of Prolog. In [23],

Problog has been extended by continuous distributions. Formalisms

such as Markov Logic Networks (MLNs) [34] (which have also been

equipped with continuous semantics [36]) have closer ties to so-

called probabilistic graphical models [27]. Probabilistic Soft Logic

(PSL) uses weighted Horn clauses as a łfrontendž for graphical

models [26]. Similarly, as Markov Logic Networks have Markov

Networks as their backbone, the language BLOG [31] builds upon

Bayesian networks. Recently, its continuous semantics have re-

ceived a thorough measure-theoretic treatment [42].

While all languages and formalisms mentioned above share indi-

vidual features with Probabilistic Programming Datalog, conjoining

Datalog with classical probabilistic programming was novel to [3].

Earlier proposed probabilistic versions of Datalog could, for exam-

ple specify a prior on the data [14] or let rules fire probabilistically

[11]. The probabilistic Datalog version JudgeD [41] supports the

introduction of dependencies among rules and facts using annota-

tions with logical formulae. Another probabilistic Datalog language

that introduces randomness by łevent annotationsž was introduced

in [19] where the language is used for specifying ontologies.

Finally, we mention MCDB [24] and its successor SimSQL [6].

Here, users are able to specify probabilistic models in the shape

of random database instances. In particular, SimSQL can define

Markov processes over database instances.

2 PRELIMINARIES

2.1 Foundations from Measure Theory

We briefly recall measure theoretical notions needed for our devel-

opment. For more details, we refer to Kallenberg [25] and Srivas-

tava [37]. Appendix B contains some well-known key results that

we do not state here for space reasons.

2.1.1 Measure Spaces. A family X of subsets of a set � is called a

σ -algebra on � if it contains � and is closed under relative com-

plementation w. r. t. � and under countable unions. A pair (�,X)
with X being a σ -algebra on � is called a measurable space. The

elements of X are called measurable sets or events.

LetG be a family of subsets of�. Then σ (G) denotes the coarsest
σ -algebra on� containingG, i. e. the intersections of all σ -algebras

on � containingG. We say σ (G) is generated byG.

If (�,X) is a measurable space and X ⊆ �, then X ↾ X ≔
{X′ ∩ X : X′ ∈ X} is a σ -algebra on � ∩ X, called the trace σ -

algebra of X.
Another standard construction is the disjoint union σ -algebra.

Let (�,X) and (�,Y) be measurable spaces with � ∩ � = ∅. Then
the family X ⊕ Y, defined by

Z ∈ X ⊕ Y :⇔Z ∩� ∈ X andZ ∩ � ∈ Y
is a σ -algebra on � ⊎ �. This generalizes to more than two łsum-

mandsž in a straight-forward manner [12, ğ 214L]. For I being some

finite set of indices, we denote the disjoint union σ -algebra of (suit-

able) σ -algebras Xi , i ∈ I by
⊕

i ∈I Xi .
A function µ : X → �≥0 ∪ {∞} is a measure on a measurable

space (�,X) if µ(⋃i ∈� Xi) =
∑

i ∈� µ(Xi) for any sequence of pair-

wise disjoint events Xi ∈ X (i ∈ �). An event X ∈ X is said to be of

(µ-)measure µ(X). The value µ(�) is called the mass of µ. Measures

of total mass µ(�) = 1 are called probability measures, measures of

mass µ(�) ≤ 1 are called sub-probability measures.

A triple (�,X, µ) is called a measure space if (�,X) is a mea-

surable space and µ is a measure on (�,X). The measure space

(�,X, µ) (or simply µ) is called σ -finite, if there exists a partition

of � into countably many measurable sets of finite measure. All

kinds of measures that appear in this paper are σ -finite.

A topological space is a pair (�,T) where � is a set and T is a

family of subsets of�, called the open sets, such thatT contains both

� and ∅ and is closed under finite intersections and arbitrary unions.
The σ -algebra on a topological space (�,T) that is generated by the
open sets is called the Borel σ -algebra of (�,T) (resp. on � if T is

understood from context). We denote the Borel σ -algebra on � by

Bor(�). Typical examples are Bor(�) and Bor[0, 1] ≔ Bor([0, 1]).
A central object for modern probability theory are the Borel

σ -algebras generated from Polish topological spaces, i.e. from com-

pletely metrizable spaces containing a countable dense set. The

resulting measurable spaces are called standard Borel spaces. We do

not delve into the details here, as all measurable spaces appearing

in this paper are standard Borel. For further information, especially

in the context of probabilistic databases, see [22].

2.1.2 Measurable Functions and Kernels. Let (�,X) and (�,Y) be
measurable spaces. A function f : �→ � is called (X,Y)-measur-

able (or simply measurable, if clear from context) if the preimage of

every measurable set in � is measurable in �; that is, if f −1(Y) ≔
{X ∈ � : f (X) ∈ Y} ∈ X whenever Y ∈ Y.

If f , as above, is (X,Y)-measurable and µ is a measure on (�,X),
then µ ◦ f −1 is the so-called push-forward measure of µ along f

on (�,Y). If µ is a (sub-)probability measure, so is µ ◦ f −1.
A function κ : � × Y→ [0, 1] is called a (sub-)stochastic kernel

from (�,X) to (�,Y) if
• f. a. X ∈ �, κ(X , ·) : Y→ [0, 1] is a (sub-)probability mea-

sure on (�,Y),
• f. a Y ∈ Y, κ(· ,Y) : �→ [0, 1] is (X,Bor[0, 1])-measurable.

For every measurable space (�,X), the function ι : � × X → [0, 1]
with ι(X ,X) = 1 if X ∈ X and ι(X ,X) = 0 if X < X is a stochastic

kernel from (�,X) to itself, called the identity kernel on (�,X).

2.1.3 Product Measures. Let (�i ,Xi), with i ∈ I for some index

set I , be a collection of measurable spaces and let � ≔
∏

i ∈I �i .
The product σ -algebra

⊗

i ∈I Xi is the coarsest σ -algebra on� that

makes all canonical projections πi : � → �i : (xi)i ∈I 7→ xi mea-

surable. If I is countable, then
⊗

i ∈I Xi is generated by the family

of measurable rectangles
∏

i ∈I Xi with Xi ∈ Xi . If I = {1, . . . ,n}
we write

⊗n
i=1 Xi or X1 ⊗ · · · ⊗ Xn for the product σ -algebra. If all

(�i ,Xi) are equal, we write X⊗n . For I countable, we write X⊗ω .
If f : � → � is measurable with (�,X) and (�,Y) standard

Borel, then the graph of f , defined by

graph(f) ≔ {(x , f (x)) : x ∈ �} ∈ � × �,
is measurable in X ⊗ Y [37, Proposition 3.1.21 and 2.1.9].

IfZ ⊆ � × � and x ∈ �, thenZx ≔ {y ∈ � : (x ,y) ∈ Z} ∈ �
is called the x-section ofZ. IfZ ∈ X ⊗ Y, thenZx ∈ Y. The same

applies symmetrically for they-sectionZy withy ∈ �, i. e.Zy ∈ X.
If (�,X, µ) and (�,Y,ν) are measure spaces with µ and ν σ -finite,

then there exists a unique product measure µ ⊗ ν of µ and ν on

(�×�,X ⊗Y) with the property that (µ ⊗ν)(X ×Y) = µ(X) ·ν (Y)
for all X ∈ X and Y ∈ Y. This can be extended to any finite

(nonempty) product of measures [25, cf. Theorem 1.27 and p. 15].

We use the notation
⊗n

i=1 µi and µ
⊗n analogous to the one for

product σ -algebras.

By Fubini’s Theorem (Fact B.8, see [25, Theorem 1.27]), for every

measurable f : � × �→ �≥0 it holds that
∫

f d(µ ⊗ ν) =
∫ ∫

f dµ dν =

∫ ∫

f dν dµ

whenever µ and ν are σ -finite.

2.1.4 Multifunctions and Selections. Let (�,X) and (�,Y) be mea-

surable spaces where (�,Y) is standard Borel (with fixed Polish

topology T�), and let 2� denote the power set of �. A function

M : �→ 2� \ ∅ is called a multifunction. We write M : �⇒ � if

M is a multifunction from � to �. A multifunctionM : �⇒ � is

called

• closed-valued, if for every x ∈ �, M(x) ⊆ � is closed w. r. t.

T�, and

• X-measurable, if M−1(Y) ≔ {x ∈ � : M(x) ∩ Y , ∅} ∈ X
for every open set Y ∈ T�.

Similarly to the corresponding statement for measurable functions,

ifM : �⇒ � is a closed-valued measurable multifunction, then

graph(M) ≔ {(x ,y) : y ∈ M(x)} ∈ � × �
is a measurable set in X ⊗ Y.

A selection of a multifunction M is a function s : � → � with

s(x) ∈ M(x) for all x ∈ �. A well-known result from Kuratowski

and Ryll-Nardzewski (Fact B.5, see [29] and [37, Theorem 5.2.1])

states that for (�,Y) standard Borel, every measurable, closed-

valued multifunctionM : �⇒ � has a (X,Y)-measurable selection.

2.1.5 (Discrete-Time) Stochastic Processes. A stochastic process in

discrete time is basically a sequence of random elements over some

state space (�,X). Intuitively, a (discrete-time) Markov process is

a stochastic process where the distribution in the ith step only

depends on the distribution of the previous step i − 1. By a theorem
of Kolmogorov (Fact B.9), Markov processes in discrete time are

guaranteed to exist for any initial distribution and any sequence of

stochastic kernels κi where κi describes the probabilistic transition

of the ith step of the process. If (�,X) is the state space of the

process, then (�ω ,X⊗ω) is its path space.

2.2 Parameterized Distributions

In the extension of conventional Datalog that we consider in this

paper, so-called parameterized distributions occur.

Definition 2.1. A parameterized distribution consists

(i) of a measure space (�,X, µ) such that either

• (�,X, µ) is the Euclidean space �d with its Lebesgue-

measurable sets and µ is the (d-dimensional) Lebesgue

measure; or

• � is discrete, X = 2� and µ is the counting measure on

(�,X) that maps every subset of � to its cardinality;

(ii) and a functionψ : Θ ×�→ �≥0 such that

• ψ (θ , ·) is a measurable function for all θ ∈ Θ, and
• the property that

∫

�
ψ (θ , ·) dµ = 1 for all θ ∈ Θ.

We usually identify a parameterized distribution via ψ with

(�,X, µ) and Θ left implicit if not specified otherwise. In this case,

we usually refer to � as domψ , to µ as µψ and to Θ as Θψ . More-

over, we usually make it explicit in the notation which part of the

expressionψ (θ ,x) forms the parameter by writingψ ⟨θ⟩(x) instead.
Note that for a parameterized distribution ψ and every fixed

θ ∈ Θψ the function

Pψ ⟨θ ⟩ : Xψ → [0, 1] : X 7→
∫

X
ψ ⟨θ⟩ dµψ (2.A)

is a probability measure on �ψ . In particular, if �ψ is the real line,

ψ ⟨θ⟩ is a probability density function. If �ψ is discrete, thenψ ⟨θ⟩
is a probability mass function andψ ⟨θ⟩ = Pψ ⟨θ ⟩ with our definition

from above. In any case, if Pψ ⟨θ ⟩ is among the łtypicalž probability

distributions, we will refer to the parameterized distribution by a

symbolic name such as Binomial, Poisson or Normal.

Example 2.2. Consider a set Ψ = {Flip,Binomial,Poisson,Normal}
of parameterized distributions.

• The Flip distributionmodels a coin flip that can be parameter-

izedwith the coin’s bias. Thus,ΘFlip = [0, 1] and Flip⟨θ⟩(1) =
θ and Flip⟨θ⟩(0) = 1 − θ .
• The Binomial distribution is a discrete distribution of finite

support for all individual parameters. Its parameters are

ΘBinomial = {(n,k) ∈ �2 : k ≤ n}. Note however, that the
union of all supports over all possible parameters is infinite.

• The Poisson distribution is discrete, although here, the sup-

port is infinite for any fixed parameter θ . We haveΘPoisson =

�>0 and Poisson⟨λ⟩(k) = λke−λ/k!.
• The normal distribution Normal is an łabsolutely continu-

ousž (see [25, p. 29]) distribution with ΘNormal = �×�>0

and

Normal⟨µ,σ 2⟩(x) = 1√
2πσ 2

e
−(x−µ)2

σ 2 .

In our application we need to be able to handle probability

distributions over parametrizations for a parameterized distribu-

tion. Thus, the following result on measurability with respect to

parametrizations is central for our work. It is a special case of [15,

Theorem 3.2], tailored to our definition of parameterized distribu-

tions. It states that, under suitable technical conditions, the prob-

ability of a fixed event under a parameterized distribution is a

measurable function of the parameters.

Fact 2.3 (Gaudard & Hadwin [15, Thm. 3.2]). Letψ be a parameter-

ized distribution on (�,X, µ) as in Definition 2.1 with Θ ≔ Θψ being

a Borel subset of a Polish space, such that:

• for every x ∈ �, the function Θ → [0, 1] : θ 7→ ψ ⟨θ⟩(x) is
continuous; and

• every θ0 ∈ Θ has a neighborhood N (θ0) with
∫

�

(

sup
θ ∈N (θ0)

ψ ⟨θ⟩
)

dµ < ∞; and

• if θ ,θ ′ ∈ Θψ with θ , θ ′, then Pψ ⟨θ ⟩ and Pψ ⟨θ ′⟩ are different
probability measures.

Then for every X ∈ X and Y ∈ Bor[0, 1], it holds that
{

θ ∈ Θ : Pψ ⟨θ ⟩(X) ∈ Y
}

∈ Bor(Θψ)
with Pψ ⟨θ⟩ as in Eq. (2.A).

As stated in [15], the previous fact applies to łmost common

parametric familiesž [15, p. 173], including, for example, all the

distributions of Example 2.2.

Remark 2.4. For our technical developments in the main part of the

paper, we might also consider using distributions that are mixtures

of discrete and continuous measures. The corresponding proofs

might then be carried out by considering these parts separately.

2.3 Probabilistic Databases

In a nutshell, a probabilistic database (PDB) is a collection of tradi-

tional database instances that is equipped with a probability mea-

sure. Throughout this paper, we use the framework of standard

probabilistic databases as developed in [22]. We will only briefly

introduce the important notions here and refer the reader to [22] for

details of the construction. For a database schema S, we let �S de-

note the set of facts that can be built from S. A basic assumption for

standard PDBs is that all attribute domains are standard Borel. Then

�S is standard Borel as well and we denote its (Borel) σ -algebra

by FS . The sample space � of a standard PDB is then the set of all

finite bags of facts. By a generic construction,� is equipped with a

σ -algebra D, turning it into a measurable space. The σ -algebra D

is generated by the family of counting events C(F ,n) consisting of

those instances that contain exactly n facts from F , where F is a

measurable set of facts. Any probability measure P on (�,D) then
yields a (standard) probabilistic database ∆ = (�,D, P). As we only
work with standard PDBs, we omit the term łstandardž henceforth.

Fact 2.5 (see Theorem A.1). The measurable space of standard PDBs

is a standard Borel space.

Fact 2.6 (Measurability of Queries[22]). Relational algebra and

aggregate queries are measurable functions on PDBs.

The construction of PDBs sketched before inherently uses bag

semantics stemming from its mathematical backbone of (finite)

point processes. For the purpose of this paper, we only want to

consider set semantics though. This can either be achieved on the

side of measures, i. e. PDBs with almost surely set-valued instances;

or by restricting the sample space to the set �∗ of duplicate-free
instances from �. Note that �∗ is a measurable subset of � and,

consequentially, D∗ ≔ D ↾ �∗ a sub-σ -algebra of D. Moreover,

D∗ is generated by the family of all set-valued counting events

C∗(F ,n) ≔ C(F ,n) ∩�∗ (cf. [37, p. 83]).
Throughout this paper we will exclusively use set instances and set

semantics. To simplify notation, we write (�,D) instead of (�∗,D∗)
for the measurable space of set instances.

Definition 2.7 (Subprobabilistic Databases). Let ∆ = (�,D, P) be
a PDB and let α ∈ [0, 1]. Then the measure space ∆α ≔ (�,D,p)
with the sub-probability measure p = αP is called subprobabilistic

database (SubPDB). The value α is called the mass of the SubPDB

∆α .

Let �err ≔ � ⊎ {err} and equip this space with the σ -algebra

Derr ≔ D ∪ {D ∪ {err} : D ∈ D}. Every probability measure P on

(�err,Derr) yields a sub-probability measure p on (�,D) and vice

versa such that P(D) = p(D) for all D ∈ D.
A natural interpretation of the łmissingž probability mass 1 − α

of an SubPDB is that it describes the probability of an error event

(or the outcome of a draw from the PDB to be undefined). The space

�err makes this error event (łerrž) explicit.

Note that the results of [22] concerning query measurability

directly also apply to subprobabilistic databases.

3 GENERAL GENERATIVE DATALOG

We assume the reader is familiar with the usual syntax and seman-

tics of conventional Datalog programs. The syntax of Generative

Datalog consists of components intended to carry both traditional

logical and stochastic semantics.

3.1 Logical Setup of Generative Datalog Rules

Let I and E be two disjoint relational schemas, called the inten-

sional and the extensional schemas, respectively. Let � be a count-

ably infinite set of variables. We fix a family Ψ of parameterized

distributions such that Θψ is a standard Borel space for allψ ∈ Ψ.

Definition 3.1 (Terms). All variables x ∈ � and all constants c

from I ∪ E are deterministic terms.

Let ψ ∈ Ψ and let θ be a tuple of constants and variables such

that there exists a valuation of the variables that maps θ into Θψ .

Thenψ ⟨θ⟩ is a random term.

Definition 3.2 (Atoms). AnI-atom (resp. E-atom) is an expression

of the form R(t1, . . . , tn) where n is the arity of R ∈ I (resp. R ∈ E)
and t1, . . . , tn are terms. We require that

• if ti = c is a constant, then it is a constant in the attribute

domain of the respective attribute in R; and

• if ti = ψ ⟨θ⟩ is a random term, then R ∈ I and �ψ is con-

tained in the attribute domain of the respective attribute in R.

If at least one of the terms ti is random, R(t1, . . . , tn) is called a

random atom; otherwise, it is called a deterministic atom.

Definition 3.3 (GDatalog Rules, cf. [3, Definition 3.1]). AGDatalog

rule φ is an expression of the shape φ = φh (x̄) ← φb (x̄) where
• φh (x̄) is an I-atom (called the head of the rule) where the

free variables of φh are a subset of the variables appearing

in x̄ ; and

• φb (x̄) is a conjunction of deterministic (I∪E)-atoms having

exactly x̄ as its free variables (called the body of the rule).

A rule φ is called random, if it contains a random atom, and deter-

ministic otherwise. A GDatalog program G is a finite collection of

GDatalog rules. As commonly done, we denote the conjunctions

within the rule body by commas.

Example 3.4. Below, we express the example from [3, Figure 3,

p. 22:8] in our syntax. (Its intended meaning is ibidem described in

detail). Here, Ψ = {Flip} as described in Example 2.2.

G : Earthquake(c, Flip⟨0.1⟩) ← City(c, r)
Unit(h, c) ← House(h, c)
Unit(b, c) ← Business(b, c)
Burglary(x , c, Flip⟨r ⟩) ← Unit(x , c),City(c, r)
Trig(x , Flip⟨0.6⟩) ← Unit(x , c),Earthquake(c, 1)
Trig(x , Flip⟨0.9⟩) ← Burglary(x , c, 1)
Alarm(x) ← Trig(x , 1)

Example 3.5. The following is a simple example program using

the (continuous) normal distribution. PCountry is a list of persons

together with their home country and CMoments contains the

expectation and the variance of people’s heights within the country

c . The program shall construct a list of persons with their height

from this data by random sampling.

G : PHeight(p,Normal⟨µ,σ 2⟩) ← PCountry(p, c),
CMoments(c, µ,σ 2)

3.2 Associating Existential Datalog Programs

Having introduced the syntax of GDatalog programs, we now pro-

ceed with the mathematical description of their semantics. For that,

we adopt the idea of [3] to associate an existential Datalog pro-

gram to every GDatalog program. An existential Datalog program

(Datalog∃ program) is a GDatalog program without random atoms

that additionally allows rules of the shape ∃y : φh (x̄ ,y) ← φb (x̄).
The semantics of GDatalog is then given in terms of its associated

Datalog∃ program. To simplify the proofs, we will assume that ev-

ery probabilistic rule of a GDatalog program contains exactly one

parameterized distribution. Our proofs can be generalized to multiple

parameterized distributions though, using their product densities.

Let G = {φ1, . . . ,φk } be a GDatalog program and let φi (x̄) =
φi,h (x̄) ← φi,b (x̄) be a rule in G. (Recall that φi,h (x̄) means that

φi,h has free variables among x̄ , not necessarily exactly x̄ .) If φi is

deterministic, we leave it unchanged. So suppose φi is a random

rule, say, with head φi,h (x̄) = R(x1, . . . ,xn ,ψ ⟨p1, . . . ,pm⟩) where
every xℓ , 1 ≤ ℓ ≤ n is either a variable from x̄ or a constant and

likewise for pℓ , 1 ≤ ℓ ≤ m. In this case, we replace φi with the

following two rules:

∃y : Ri (x1, . . . ,xn ,p1, . . . ,pm ,y) ← φi,b (x̄) (3.A)

R(x1, . . . ,xn ,y) ← φi,b (x̄),Ri (x1, . . . ,xn ,p1, . . . ,pm ,y) (3.B)

Where Ri is a new, distinguished relation symbol. This procedure

associated a Datalog∃ program Ĝ to the GDatalog program G. We

call the rules of the shape of Eq. (3.A) existential. All other rules of

Ĝ are called deterministic.

3.3 Rule Applicability

In this subsection, we formalize the notion of rules being applicable

for valuations of their free variables in a measure-theoretic way.

A rule being applicable for a valuation in an instance intuitively

means that it is allowed to fire for that instance (and the valuation)

in the execution of the program.

Let φ̂ be a rule of the Datalog∃ program Ĝ associated to our

GDatalog program G. For the tuple x̄ of free variables of φ̂, we

let �φ̂ be their associated joint domain, i. e. the Cartesian product

of the attribute domains for the positions in the relation symbols

where the free variables occur.1 The space �φ̂ is equipped with its

product σ -algebra Vφ̂ .

A pair (φ̂, ā) with φ̂ ∈ Ĝ and ā ∈ �φ̂ is called applicable in D if

D ̸ |= φ̂h (ā) and D |= φ̂b (ā). (That is, D satisfies the rule body, but

not the head.) The reason to explicitly require that the head is not

fulfilled comes from the semantics of existential Datalog programs.

We let App(D) denote the set of applicable pairs in D. If there is
no pair applicable in D, we set App(D) = {(□,□)}. Formally, this

1We assumed here that all the positions where a variable x occurs are typed equally,
i. e. have the same domain. In general, we only require that the domains of x are Polish
subspaces of a common larger Polish space and if x occurs in the head of the rule, this
larger space is the domain of the corresponding attribute in the head relation.

defines a multifunction App : �⇒ � where

� ≔
{

(φ̂, ā) : φ̂ ∈ Ĝ and ā ∈ �φ̂
}

∪ {(□,□)}.

Note that for all D ∈ �, App(D) will be a finite, nonempty subset

of �. The space � can be canonically equipped with the disjoint

union σ -algebra A ≔
⊕

φ̂ ∈Ĝ
(

{φ̂} ⊗ Vφ̂
)

⊕ {∅, {(□,□)}}.

Lemma 3.6.

(i) Let A ∈ A. Then App−1(A) ≔ {D ∈ � : App(D) ∩ A , ∅}
is a measurable subset of �.

(ii) There exists a measurable function app : � → � with the

property that app(D) ∈ App(D) for all D ∈ � (that is, app is

a measurable selection of App).

We use measurable selections app of App to resolve in a mea-

surable way nondeterminism occurring during the execution of an

existential Datalog program. In a high-level view, suitable functions

app determine the chase sequence (or, better yet łchase treež) for a

program. This will become evident in the following sections.

3.4 Follow-Up Instances

It is crucial for our measurability considerations that there is a mea-

surable correspondence between łintermediate instancesž within

the execution of the program and all the follow-up instances or exten-

sions that emerge from such instances by a single rule application.

Intuitively, whenever a rule is applicable (that is, its body is satisfied

but its head is not), it may fire. If the rule is deterministic, then the

fact from the head of the rule gets added to the current database

instance. If the rule is probabilistic, then the fact from the head of

the rule gets added with some valuation of the existentially quanti-

fied variable and we get a distribution over the follow-up instances

according to the parameterized distribution from the original rule.

Let φ̂ be a rule of the Datalog∃ version Ĝ of G. As in the previous

section, �φ̂ (with σ -algebra Vφ̂) denotes the space of valuations of

the free variables of φ̂. If φ̂ is existential, then�φ̂ (with σ -algebra

Wφ̂ denotes the domain of the existentially quantified variale in φ̂.

That is,�φ̂ = �ψ ifψ is the parameterized distribution of the rule

φ of G from which φ̂ was constructed. If φ̂ is deterministic, then we

let�φ̂ = {∗} be a fixed singleton set. This is just a technical device

to unify the treatment of deterministic and existential rules later.

For every rule φ̂ there is a function fφ̂ : �φ̂×�φ̂ → �φ̂ mapping

a valuation ā and b ∈�φ̂ to the fact from the head of φ̂ under ā:

• If φ̂ is existential with free variables exactly x̄ ′ = x1, . . . ,xm ,

rule head ∃y : Ri (x̄ ′,y) and ā = (a1, . . . ,am) is a valuation
of x̄ ′, then fφ̂ (ā,b) = Ri (x̄ ′,y)[x1/a1, ...,xm/am,y/b].
• If φ̂ is deterministic with rule head R(x̄ ′) and x̄ ′ and ā exactly
as above, then fφ̂ (ā, ∗) = R(x̄ ′)[x1/a1, ...,xm/am].

It is easy to see that fφ̂ is measurable for all φ̂. (A formal proof is

contained in the full version of this paper [20].)

Definition 3.7. We define two extension functions:

• For � ≔ {(D, φ̂, ā,b) : D ∈ �, φ̂ ∈ Ĝ, ā ∈ �φ̂ and b ∈ �φ̂ },
we let ext : �→ � be the function defined via

ext(D, φ̂, ā,b) 7→ D ∪ { fφ̂ (ā,b)}. (3.C)

• Suppose Ĝ = {φ̂1, . . . , φ̂k } and let ®ℓ = (ℓ1, . . . , ℓk) be any
k-tuple of non-negative integers. Let �®ℓ e the set of tuples

(D, φ̂1, ā11,b11, . . . , φ̂1, ā1ℓ1 ,b1ℓ1 , . . . , φ̂k , ākℓk ,bkℓk)

where D ∈ �, ai j ∈ �φ̂i and bi j ∈�φ̂i . Then Ext ®ℓ : �®ℓ →
� is the function defined via

Ext ®ℓ(D, φ̂1, ā11,b11, . . . , φ̂k , ākℓk ,bkℓk)
= D ∪⋃

1≤i≤k
1≤ji ≤ℓi

{ fφ̂i (āi ji ,bi ji)}. (3.D)

� is the disjoint union of the spaces�×{φ̂}×�φ̂×�φ̂ for φ̂ ∈ Ĝ
and is as such equipped with a σ -algebra U in the straightforward

way. Similarly,�®ℓ is the product space�×
∏

φ̂ ∈Ĝ({φ̂}×�φ̂×�φ̂)ℓi
and accordingly equipped with a product σ -algebra U ®ℓ .

As the following lemma states, the functions we just defined are

measurable. The proof of this result can be found in the full version

of this paper [20].

Lemma 3.8.

(i) The function ext is (U,D)-measurable.

(ii) The function Ext ®ℓ is (U ®ℓ ,D)-measurable for all ®ℓ ∈ �k .

For the following, we let ξ and Ξ ®ℓ denote the characteristic func-
tions of the graphs of ext and Ext ®ℓ , respectively. That is, ξ : �→
{0, 1} is defined by

ξ (D, φ̂, ā,b,D ′) =
{

1 if ext(D, φ̂, ā,b) = D ′ and
0 otherwise.

(3.E)

Ξ ®ℓ is defined similarly. (Cf. Definition 3.7 for the definition of �.)

Corollary 3.9.

(i) The function ξ is (U ⊗ D,Bor(�))-measurable.

(ii) The function Ξ ®ℓ is (U⊗D,Bor(�))-measurable for all ®ℓ ∈ �k .

Proof. By Lemma 3.8, the functions ext and Ext ®ℓ are measur-

able. Thus, their graphs are measurable sets in the corresponding

product space. Since characteristic functions of measurable sets are

measurable, the claim follows. □

3.5 Induced Functional Dependencies

With every existential rule φ̂ of Ĝ, we associate a functional depen-
dency FD(φ̂) in the following way. Suppose Ri is the relation in the

head of φ̂ with attributes A1, . . . ,Ak . Then FD(φ̂) is the functional
dependency Ri : A1, . . . ,Ak−1 → Ak . That is, the functional depen-

dency expresses that there is at most one value of the random (resp.

existential) attribute when all other attribute values are fixed, cf. [3,

p. 22:8]. The following is then easy to check using the definitions

of App, fφ̂ and ext.

Lemma 3.10 (cf. [3, Proposition 4.2]). Let φ̂ be an existential rule

of Ĝ. Then the following holds:

(i) Every database instance D of schema E satisfies FD(φ̂).
(ii) If D is a database instance and (φ̂, ā) ∈ App(D) for some ā,

then D satisfies FD(φ̂). Moreover, for every b, the follow-up

instance ext(D, φ̂, ā,b) satisfies FD(φ̂) as well.

4 SEQUENTIAL PROBABILISTIC CHASE

As in [3], the chase of a GDatalog programG corresponds to chasing

its Datalog∃ version Ĝ. The authors of [3] thus construct a łchase
treež for the existential Datalog program Ĝ whose nodes are labeled

with database instances and whose edges are derived from rule

applications. The edges are labeled with the respective probability

to go from the parent instance to its child by applying the rule.

While we follow the general spirit of this approach, it is due to the

involvement of uncountable domains no longer sufficient to label

the edges this way. Instead, we label nodes with the probability

distribution that is induced by the application of the rule. This

section is devoted to formally describe the above and to demonstrate

how such chase trees induce a stochastic process.

From a measure-theoretic point of view, there is no need to

associate the execution of Datalog program to a tree in the way we

are going to do it. We believe though, that doing so is beneficial for

exposing the intuition behind the underlying stochastic process and

for emphasizing the connections to the original approach in [3].

4.1 Chase Steps and Chase Trees

A chase step captures the semantics of applying a single (applicable)

rule in an input instance. (The reader may want to compare this

with the discrete version in [3, p. 22:12].)

Definition 4.1 (Chase Step). A tuple (D, φ̂, ā,D, µ) is called a (se-

quential) chase step for G if

• D is a database instance,

• (φ̂, ā) ∈ App(D), provided App(D) , {(□,□)},
• D = ext(D, φ̂, ā,�φ̂) =

⋃

b ∈�φ̂
ext(D, φ̂, ā,b), and

• µ is the probability measure on the trace σ -algebraD↾D on

D where for all measurable E ⊆ D, in the case of φ̂ being

an existential rule of Ĝ,

µ(E) =
∫

�φ̂

ξ (D, φ̂, ā,b, E) ·ψ ⟨ā⟩(b) dµψ (4.A)

withψ being the parameterized distribution from the rule of

the original program G that generated the rule φ̂ in Ĝ;
and, in the case that φ̂ is a non-existential rule and accord-

ingly D = {E} for some E ∈ �,

µ(E) =
{

1 if E = {E} and
0 if E = ∅. (4.B)

We denote a chase step (D, φ̂, ā,D, µ) as D φ̂(ā)−−−−→ (D, µ) and say it

starts in D, uses φ̂ with valuation ā and goes intoD with distribution

µ.

Note that the definition of µ in Eq. (4.B) can be seen as a special

case of Eq. (4.A) (recall that for deterministic rules,�φ̂ is a singleton

set {∗}, we may just let ψ ⟨ā⟩(∗) = µψ (∗) = 1 in this case). This

allows us without loss of generality to uniformly treat all the chase

step measures that appear later as if they were of shape (4.A).

Furthermore it follows that µ is indeed a probability measure on

the trace σ -algebra �↾D. (A formal proof can be found in the full

version of this paper [20].)

Given a database instance D, we can now argue about sequences

of follow-up instances using sequences of chase steps. In this pro-

cess however, sequences can branch, when the rules that are applied

are existential rules of the Datalog∃ version of G. What we just

described is formalized in the notion of chase trees. (See [3, p. 22:13]

for a comparison with the discrete case.)

Definition 4.2 (Chase Tree). Let D0 be a database instance and let

app be a measurable selection of App (which we call a measurable

chase sequence). The (sequential) chase tree Tapp,D0
for D0 w. r. t.

the program G and app is the labelled tree Tapp,D0
= (V ,E,Λ) of

countable depth with Λ : v ∈ V 7→ (Dv , φ̂v , āv ,Dv , µv) such that

(i) For the root r of Tapp,D0
, Dr = D0.

(ii) For any node v , if (φ̂v , āv) , (□,□), then the children of v

are bijectively labelled with the instances from Dv . Other-
wise, v is a leaf.

(iii) For every node v ∈ V , the label Λ(v) is either
• a (sequential) chase step Dv

φ̂v (āv)−−−−−−→ (Dv , µv) where
(φ̂v , āv) = app(Dv), or
• a tuple (Dv ,□,□, {Dv },Dv 7→ 1)with app(Dv) = (□,□).

D0 is also called the root instance of Tapp,D0
.

It is easy to see that Tapp,D0
is indeed uniquely determined by

app andD0. Formally, this can be shown by induction over its levels.

Note that if the rules of the program G only use discrete dis-

tributions, then any function app of fitting domain and range is

measurable. Moreover, modulo our changes to the definition of the

existential program we compile from G, we obtain the same chase

trees as in [3] with just a more complicated labelling (that would

be unnecessarily complicated for a completely discrete setting).

4.2 Mapping Paths to Instances

We aim to łprojectž paths in a chase treeTapp,D0
to the collections of

facts they represent, that is, the limit their instance labels approach

with respect to set union. In the case of finite paths, this results in

database instances. Infinite paths correspond to non-terminating

chase sequences and to infinite collections of facts. As we always

require database instances to be finite, these infinite paths are not

database instances, and we will treat them as error events.

This section contains some auxiliarymeasurability results, whose

proofs can be found in the full version of this paper [20].

For measurable chase sequence app, let ⊢app be the relation on

(�2,D⊗2) with D ⊢app D ′ if and only if

• D φ̂(ā)−−−−→ (D, µ) for some D ∋ D ′ where (φ̂, ā) = app(D); or
• D = D ′ and app(D) = (□,□).

Lemma 4.3. Seen as a set in �2, ⊢app ∈ D⊗2.

Define sets

paths(app) ≔ {(D0,D1, . . .) ∈ �ω : Di ⊢app Di+1 for all i ∈ �}
paths(app,D0) ≔ paths(app) ∩

(

{D0} ×�ω
)

f. a. D0 ∈ �.

Note that paths(app,D0) is the set of paths of the tree Tapp,D0

(where finite maximal sequences have been extended to infinite

sequences by repeating the label of the leaf node). The following is

a direct consequence of Lemma 4.3.

Corollary 4.4. It holds that paths(app), paths(app,D0) ∈ D⊗ω
for all measurable chase sequences app and all fixed D0 ∈ �.

Figure 1: Paths of the Sequential Chase Tree

D0, app(D0)

leaves→

· · ·

D′ with app(D′) = (□, □)

7→ err finite maximal paths,
mapped into�

infinite maximal paths,
mapped to err

7→ err

�

�

�

.

.

.

stepapp

stepapp

stepapp

�ω

Call a sequence ®D = (D0,D1, . . .) ∈ �ω stable at i if ®D ∈ �i−1×
diag(�ω). If there exists i ∈ � such that ®D is stable at i , then we

call ®D stable. Note that diag(�ω) ∈ D⊗ω since (�,D) is standard
Borel (Theorem A.1).

We now define a function lim-instapp that maps paths in �ω to

their associated instance (or the error event łerrž):

lim-instapp(®D) ≔
{

Di if ®D ∈ paths(app) and ®D is stable at i

err otherwise.

(4.C)

Similarly, for all D0 ∈ �, we define lim-instapp,D0
: �ω → �err

using paths(app,D0) instead of paths(app) in Eq. (4.C).

Lemma 4.5. Let app be a measurable chase sequence and let D0 be

a fixed database instance. Then:

(i) The functions lim-instapp and lim-instapp,D0
are (D⊗ω ,Derr)-

measurable.

(ii) If ®D ⊆ lim-inst−1app(�) is measurable set in D⊗ω , then its

image lim-instapp(®D) is measurable in D as well.

Likewise, if ®D ⊆ lim-inst−1
app,D0

(�) is measurable in D⊗ω ,

then its image lim-instapp,D0
(®D) is measurable in D.

4.3 Chase Trees as Markov Processes

In this subsection, we establish a correspondence between a chase

tree for a given GDatalog program and a discrete-time Markov

process whose state space is the (in general not countable) space of

database instances. We have seen in the previous subsection how

paths in a chase tree naturally correspond to a set of paths of such

a process (w. r. t. the usual notion of path for stochastic processes)

in the countably infinite product space (�ω ,D⊗ω).
To obtain the correspondence to a Markov process, we need

to show that the probabilistic transitions that are encoded within

the nodes of any level of the chase tree, or, to be more precise, by

its measurable chase sequence, describe a stochastic kernel from

(�,D) to itself.

The interpretation of the GDatalog semantics as a database-

valued Markov process (which, by itself, was already recognized

in [3, p. 22:14]) makes also apparent that a natural generalization

of the GDatalog language is to allow the input to be a (sub-)proba-

bilistic database rather than a single instance. A GDatalog program

then induces a mapping from a (sub-)probabilistic database to a

sub-probabilistic database (łlosingž the mass of łnon-terminatingž

paths).

Let app be a measurable chase sequence. We define a function

stepapp : � ×D→ [0, 1] as follows. Let D ∈ � and E ∈ D.

• If app(D) = (φ̂, ā) , (□,□) and D φ̂(ā)−−−−→ (D, µ) is the corre-
sponding chase step, we let

stepapp(D, E) = µ(D ∩ E)

=

∫

�

ξ (D, φ̂, ā, · ,D ∩ E) ·ψ ⟨ā⟩ dµψ

where� = �φ̂ , ψ is the parameterized distribution of φ̂

and ξ is the function from Eq. (3.E).

• Otherwise, if app(D) = (□,□), we let

stepapp(D, E) = ι(D, E) =
{

1 if D ∈ E and

0 if D < E.
Recall that ι denotes the identity kernel.

The following proposition resolves the main technical obstacle

for turning measurable chase sequences and sequential chase trees

into Markov processes.

Proposition 4.6. For all measurable chase sequences app, the step

function stepapp is a stochastic kernel.

Proof. Clearly, stepapp(D, ·) is a probability measure for all

D ∈ �. We need to show that step(· , E) is (D,Bor[0, 1])-mea-

surable for all E ∈ D. In order to show this, we fix E ∈ D and,

moreover, demonstrate that the statement holds when we restrict

ourselves to database instanceD where a fixed rule φ̂ fires according

to app. That is, we concentrate on the restriction of the preimage

of stepapp to �φ̂ ≔ app−1({φ̂} × �φ̂). Therein, recall that �φ̂ is

the joint domain of the free variables of φ̂.

(Note that the result clearly holds for the restriction of � to the

set�□ of instances with app(D) = (□,□) since on these instances,

step is the identity kernel.)

Let us fix a rule φ̂. Without restriction (see the short discussion

below Definition 4.1), we may treat φ̂ as if it were an existential rule.

We let �φ̂ ≕ � and�φ̂ ≕ � for the space of the existentially

quantified variable of φ̂. Let ψ be the parameterized distribution

occurring in the rule φ of G that φ̂ originated from.

From Fact 2.3, we know that the following function is a stochastic

kernel from � to�:

G : � ×W → [0, 1] : (ā,B) 7→
∫

B
ψ ⟨ā⟩ dµψ .

Then the following function is a stochastic kernel as well:

K : (�φ̂ ×�) ×W → [0, 1] : (D, ā,B) 7→ G(ā,B).
Note that the function

ξ (· , φ̂, · , · , E) : �φ̂ ×� ×�→ {0, 1}
is measurable, as it is the characteristic function of the φ̂-section

of ext−1(E), the latter of which is measurable by Lemma 3.8. Then

(using Fact B.2 from Appendix B for ξ (· , φ̂, · , · , E) and K), the
following function is measurable:

K ′ : �φ̂ ×�→ [0, 1] : (D, ā) 7→
∫

�

ξ (D, φ̂, ā, · , E) ·ψ ⟨ā⟩ dµψ .

Now observe that the function h : �φ̂ → �φ̂ ×� with h(D) =
(φ̂, ā) is measurable due to the measurability of app (and using

Fact B.1). Let ł<αž denote the interval [0,α) ⊆ [0, 1]. Then

h−1(K ′(<α)) ∈ D. (4.D)

Finally note that for all D ∈ �φ̂ , b ∈� and ā being the tuple from

� with app(D) = (φ̂, ā) and D being the set of follow-up instances

of D from the chase step, it holds that

ξ (D, φ̂, ā,b,D ∩ E) = ξ (D, φ̂, ā,b, E).

This means that h−1(K ′(<α)) = stepapp(· , E)−1(<α), so Eq. (4.D)

shows the assertion. □

With Fact B.9, we obtain the following.

Corollary 4.7. For every measurable chase sequence app and every

initial (sub-)probability distributionp on (�,D), there exists a Markov

process with state space (�,D), initial distribution ν and transition

kernels stepapp.

Since every (sub-)probability distribution on (�ω ,D⊗ω) (the
path space of such a process) yields a push-forward (sub-)probability

distribution on (�err,Derr) along lim-instapp (or lim-instapp,D0
),

every such Markov process defines an SubPDB.

Theorem 4.8. For every measurable chase sequence app and all

instances D0 ∈ �, G on input D0 defines an SubPDB ∆app,D0
.

If ∆ is an SubPDB, then for every measurable chase sequence app,

G (with input ∆) defines an SubPDB ∆app.

For the first part of the above theorem, we let the initial dis-

tribution of Corollary 4.7 be the Dirac one on the instance D0.

For the second part, the initial distribution is the (sub-)probability

distribution of the input SubPDB.

Remark 4.9. In the end, we might want to get rid of the auxiliary

relations that were created in the translation to the Datalog∃ pro-

gram. This can be done in a measurable way by Fact 2.6, yielding

again an SubPDB.

5 PARALLEL PROBABILISTIC CHASE

We obtain another variant of the chase procedure if we allow all

applicable rules to fire simultaneously. The aim of this section is to

formalize this notion of parallel chase for the GDatalog language

and to subsequently exhibit how it relates to the sequential chase

that we discussed in the previous section.

As most of the results can be obtained in a manner analogous

to Section 4, we omit the details when they can be easily derived

from ideas of the aforementioned section.

Throughout the following, we fix a GDatalog program G with

its Datalog∃ version Ĝ and assume that Ĝ = {φ̂1, . . . , φ̂k }.

5.1 Parallel Chase Steps and the Parallel Tree

If D is a database instance, the firing configuration of D is the tuple
®ℓ(D) = (ℓ1, . . . , ℓk) ∈ �k where ℓi = |{ā : (φ̂i , ā) ∈ App(D)}| for
all 1 ≤ i ≤ k . Note that the set � ®ℓ of database instances having

a fixed firing configuration ®ℓ is measurable in (�,D), since we

know that App corresponds to an Relational Calculus view and the

cardinalities in question can be obtained by a counting aggregation.

This yields a measurable mapping by Fact 2.6.

Definition 5.1 (Parallel Chase Step). A tuple (D,A,D, µ) is called
a parallel chase step for G if

• D ∈ � with some firing configuration ®ℓ = (ℓ1, . . . , ℓk),
• A = App(D) with A , {(□,□)}, say

A = {(φ̂i , āi ji) : 1 ≤ i ≤ k and 1 ≤ ji ≤ ℓi }
• withZi j = {(φ̂i , āi j ,b) : b ∈�φ̂i },

D = Ξ ®ℓ(D,Z11, . . . ,Z1ℓ1 , . . . ,Zk1, . . . ,Zkℓk)
(Recall that Ξ ®ℓ is the characteristic function of the graph of

Ext ®ℓ , cf. Definition 3.7 and Eq. (3.E).)

• µ is the probability measure on the trace σ -algebra of �↾D
with

µ(E) =
∫

�

Ξ ®ℓ
(

D, φ̂1, ā11,b11, . . . , φ̂k , ākℓk ,bkℓk , E
)

·ψ1⟨ā11⟩(b11) · · ·ψk ⟨ākℓk ⟩(bkℓk)

d

(

µ
⊗ℓ1
ψ1
⊗ · · · ⊗ µ⊗ℓk

ψk

)

where� = �ℓ1
φ̂1
× · · · ×�ℓk

φ̂k
and ψi is the parameterized

distribution of the rules φ̂i .

Just as in Section 4, we concentrate on the existential rules and

interpret the deterministic ones as special cases. (See again the

discussion below Definition 4.1.) In particular note that it poses no

problem that in a database instance multiple deterministic rules

with the same left-hand side might be applicable, by the definition

ofΞ ®ℓ . Also observe that µ fromDefinition 5.1 is again a well-defined

probability measure.

We point out that in the definition of µ, we use the product

density of the individual densities. We thus make an implicit inde-

pendence assumption (cf. [25, Lemma 3.10]): all probabilistic rules

firing in a parallel chase step sample their respective distributions

independently. By Fubini’s theorem Fact B.8 and the definition

of Ξ ®ℓ , the concrete order of the (φ̂i , āi j ,bi j) has no impact on µ

whatsoever.

We denote parallel chase steps (D,A,D, µ) as D A−−→ (D, µ). In
the case of the sequential chase, there were multiple possible chase

steps starting in a database instance D, depending on the choice of

the selection app of App. This is no longer the case for the parallel

chase. A parallel chase step in database instance D is (if it exists)

unique.

Definition 5.2 (Parallel Chase Tree). LetD0 be a database instance.

The parallel chase tree for D0 w. r. t. the GDatalog program G is

the labelled tree TApp,D0
= (V ,E,Λ) of countable depth where

Λ : v ∈ V 7→ (Dv ,Av ,Dv , µv) such that

(i) For the root r of TApp,D0
, Dr = D0.

(ii) For any node v , if Av , (□,□), then the children of v are

bijectively labelled with the instances from Dv . Otherwise,
v is a leaf.

(iii) For every node v ∈ V , the label Λ(v) is either
• a parallel chase step Dv

Av−−−→ (Dv , µv) where Av =
App(Dv), or
• a tuple (Dv , (□,□), {Dv },δDv)withApp(Dv) = {(□,□)}.

D0 is called the root instance of TApp,D0
.

As in Section 4, it is easy to see that TApp,D0
determined by

D0 (which can be shown inductively over the levels of the tree).

The key difference between Definition 4.2 and Definition 5.2 that

parallel chase steps attain the role that sequential chase steps had

in sequential chase trees in Item (iii).

Based on the ideas of Section 4.2 we derive functions ⊢App,
lim-instApp and lim-instApp,D0

(for all D0 ∈ �) as well as sets
paths(App) and paths(App,D0) (for all D0 ∈ �). In a similar man-

ner as is done there, they enjoy the properties from Lemmas 4.3

and 4.5 and Corollary 4.4. The detailed definitions and arguments

can be found in the full version of this paper [20].

5.2 The Markov Process for Parallel Chasing

In analogy to Section 4.3, we show in this section how the parallel

chase defines a Markov process of database instances. Throughout

this section, let G again be a fixed GDatalog program.

We define a function stepApp : � × D → [0, 1] as follows. Let
D ∈ � and E ∈ D.
• If App(D) , {(□,□)} andD A−−→ (D, µ) is the corresponding
parallel chase step, we let stepApp(D, E) = µ(D ∩ E) with µ
as in Definition 5.1.

• If App(D) = {(□,□)}, we let stepApp(D, E) = ι(D, E)where
ι is the identity kernel.

Proposition 5.3. The parallel step function stepApp is a stochastic

kernel.

This works similar to the proof of Proposition 4.6 using Fubini’s

theorem (Fact B.8) to break up the product measure and handling

the resulting integrals iteratively. The proof can be found in full

version of this paper [20]. As in Section 4.3 we eventually obtain:

Corollary 5.4. For every intial (sub-)probability distribution p on

(�,D), there exists a Markov process with state space (�,D), initial
distribution p and transition kernels stepApp.

Theorem 5.5. For all instances D0 ∈ �, program G with input D0

defines an SubPDB ∆App,D0
. If ∆ is an SubPDB, then G (with input

∆) defines an SubPDB ∆App.

6 SEMANTIC PROPERTIES OF GDATALOG

6.1 Chase Independence

Let G be a GDatalog program. From Theorems 4.8 and 5.5 we know

that G, given some input, produces SubPDBs. Let D0 ∈ � and fix a

measurable chase sequence app.

Theorem 6.1. ∆app,D0
= ∆App,D0

.

Theorem 6.1 means that no matter which chase sequence we use

(or whether we use the parallel chase), the resulting SubPDB is the

same, rendering our semantics fairly robust. The proof can be found

in the full version of the paper. The basic idea is to partition events

in the resulting measurable space into classes based on how they

were produced in Tapp,D0
and TApp,D0

, respectively. This includes

fixing a chase sequence for the sequential chase, a sequence of

firing configurations for the parallel chase and a correspondence

between applicable pairs in both of the chase procedures. Then it

may be argued how the resulting integrals may be replaced and

then, using Fubini’s theorem, rearranged to obtain Theorem 6.1.

This is another non-trivial step that requires reasoning about which

replacements are allowed with respect to rule applicability.

Theorem 6.2. If ∆ is an SubPDB, then G (with input ∆) defines

the same output SubPDB ∆
′ regardless of the chase procedure that is

used.

6.2 Remarks Regarding the Original Semantics

In this subsection, we want to briefly discuss how our semantics

relate to the one proposed by Bárány et al. [3]. As mentioned in the

introduction, Bárány et al. wanted their probabilistic Datalog to be

invariant under first-order equivalence. For example, they want the

program G0 from Example 1.1 to be equivalent to the program G′′0
consisting of a single rule R(Flip⟨1/2⟩) ← ⊤. Note that G0 and G′′0
are not equivalent under our semantics.

The way Bárány et al. achieved this behaviour is by allowing

each probability distribution to only be sampled once with each

parameter value. So where we say that each probabilistic rule sam-

ples at most once, they tie samples to the (name of) the distribution.

This is why renaming a probability distribution may change the

semantic behaviour of a program, as illustrated by the program G′0
in Example 1.1. Of course it may sometimes be desirable to sample

several times from the same distribution with the same parameters.

Bárány et al. deal with this by łtaggingž individual applications

with additional parameters instantiated by constants.

To illustrate how we can simulate the behavior of Bárány et al.’s

semantics with our version, consider the following program:

H : R(Flip⟨1/2⟩) ← ⊤
S(Flip⟨1/2⟩) ← ⊤

With Bárány et al.’s semantics, H has outcomes {R(0), S(0)} and
{R(1), S(1)} with probability 1/2 each. With our semantics, it has

out comes {R(0), S(0)}, {R(1), S(0)}, {R(0), S(1)}, and {R(1), S(1)}
with probability 1/4 each. However, we can easily simulateH under

Bárány et al.’s semantics by pulling out the sampling to a separate

rule, as in the following program:

H ′ : A(Flip⟨1/2⟩) ← ⊤
R(x) ← A(x)
S(x) ← A(x)

This program has outcomes {R(0), S(0),A(0)} and {R(1), S(1),A(1)}
with probability 1/2 each. We can ignore the auxiliary predicate

A and restrict the resulting probabilistic database to the schema

{R, S} without changing the probabilities.

This simple argument can be generalized to arbitrary programs.

We leave the details to the reader. Let us remark that it is similarly

easy to simulate our semantics with that of Bárány et al. All our

results would also hold starting from Bárány et al.’s semantics for

discrete distributions, so it is really just a matter of taste which

version the reader prefers; technically, it makes no difference.

6.3 Termination Behavior

As we have seen in Section 4 resp. Section 5, the execution of a

GDatalog program corresponds to a Markov process. Every point

in the ith level of the path space (�ω ,D⊗ω) can be seen as corre-

sponding to a program configuration and every path in (�ω ,D⊗ω)
as a program run. A run is called terminating if it corresponds to a

finite path in the respective chase tree. The program G is called ter-

minating if all runs terminate and is called almost surely terminating

(AST) if the set of non-terminating runs is a set of measure zero.

The following result from the original paper trivially extends to our

setting, with the notion of weak acyclicity remaining unchanged

(see [3]).

Theorem 6.3 (cf. [3, Theorem 3.10]). Let G be a GDatalog pro-

gram. If G is weakly acyclic, then G terminates.

Basically it states that whenever there are no circular dependen-

cies involving probabilistic rules, then all paths in any chase tree

are finite. Note that in our probabilistic setting, the mere existence

of infinite paths is no problem, as long as they are an event of

probability zero (or, perhaps, of sufficiently low probability).

One might wonder now, whether there are more sophisticated

criteria that ensure almost sure termination of G, that is, termina-

tion with probability 1. We informally argue that in the presence of

circular dependencies involving continuous distributions, we can-

not hope for a more powerful criterion other than imposing some

acyclicity constraint with respect to the probabilistic rules. Recall

that an instance corresponds to a leaf node of a chase tree, if no rule

is applicable anymore. For the existential rules of Datalog∃, this is

in particular the case, whenever its parameterized distribution has

been sampled before along with the same valuation. The circular

dependency means that, one way or another, the sample result is

at some point fed into the same rule again as a parameter. That is,

a probabilistic rule application attributes to the termination of G,
if it samples from some łgood setž that is present in the current

intermediate instance. Since intermediate instances are always fi-

nite collections of facts and since continuous distributions typically

allot measure zero to every countable subset of the sampling space,

the probability to generate łbad samplesž will always be 1, so the

program will almost surely not terminate.

In cycles that only include discrete probability distributions, we

see some hope though to bound the probability of terminating

in terms of the parameterized distribution that is used. We are

currently investigating this and refer to future work.

7 CONCLUSION

In this paper, we generalise the probabilistic Datalog language in-

troduced in [3] to a setting that allows for continuous probability

distributions. Such distributions, for example, normal or exponen-

tial distributions, appear naturally in many application scenarios,

and indeed Bárány et al. [3] explicitly asked for a continuous gen-

eraliztation of their language.

To summarize the technical developments laid out in this pa-

per, let us give a high-level view of this semantics. A probabilistic

Datalog program can sample from probability distributions to gen-

erate values appearing in its intensional facts, and it can do so

recursively. The semantics is then described via infinite chase trees,

where different branches correspond to different samples. While in

the discrete case it is relatively straightforward to formalise this,

with continuous distributions, where a node in the chase tree may

have unconutably many children (corresponding to the outcomes

of the application of a single probabilistic rule), this becomes tech-

nically challenging. Using advanced tools from probability theory,

we show that such an uncountable chase tree can be viewed as a

Markov process (a fairly well-behaved stochastic process). Associ-

ated with each Markov process is a probability measure on its paths,

that is, the paths of the chase tree. Each path of the tree corresponds

to a possibly infinite collection of facts generated along the path,

and, taking into account that database instances are required to be

finite and thus only finite paths correspond to instances, we can

łprojectž the probability measure on the paths back to instances

and thereby obtain the PDB łgeneratedž by the Datalog program.

FutureWork. The second part of Probabilistic ProgrammingDatalog

of [3] allows the user to condition the result of the generative part

based on logical constraints. However, in the continuous setting

this causes some delicate issues. For example, it might be reasonable

to use constraints involving equality, yet, for example equality on

� is under the hood the diagonal in �2 which is a set of Lebesgue

measure zero. Work from the area of probabilistic programming

[5] suggests that completing GDatalog towards a generalized Prob-

abilistic Programming Datalog is a nontrivial ask. In particular,

conditioning on events of measure zero can yield paradoxical re-

sults (see Borel-Kolmogorov paradox [28, p. 50 et seq.])

We are currently investigating the termination behavior of GDat-

alog programs that are not weakly acyclic but contain only discrete

distributions (cf. Section 6.3).

As GDatalog progams essentially produce SubPDBs, it seems

natural to ask how powerful they are as a representation system

for (infinite) PDBs. (Bárány et al. showed that PPDL is a complete

representation system for finite PDBs.)

ACKNOWLEDGMENTS

We are grateful to Benny Kimelfeld for bringing our attention to

GDatalog and to Marcel Hark for discussions regarding termination.

This work is supported by the German Research Foundation

(DFG) under grants GR 1492/16-1 and GRK 2236 (UnRAVeL).

REFERENCES
[1] Charu C. Aggarwal and Philip S. Yu. A Survey of Uncertain Data Algorithms

and Applications. IEEE Transactions on Knowledge and Data Engineering (TKDE),
21(5):609ś623, 2009. doi:10.1109/TKDE.2008.190.

[2] Parag Agrawal and Jennifer Widom. Continuous Uncertainty in Trio. In Pro-
ceedings of the 3rd VLDB workshop on Management of Uncertain Data (MUD
2009), pages 17ś32, Enschede, The Netherlands, 2009. Centre for Telematics and
Information Technology (CTIT).

[3] Vince Bárány, Balder ten Cate, Benny Kimelfeld, Dan Olteanu, and Zografoula
Vagena. Declarative Probabilistic Programming with Datalog. ACM Transactions
on Database Systems (TODS), 42(4):22:1ś22:35, 2017. doi:10.1145/3132700.

[4] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj
Pradhan, Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, and
Noah D. Goodman. Pyro: Deep Universal Probabilistic Programming. J. Mach.
Learn. Res., 20:28:1ś28:6, 2019.

[5] Johannes Borgström, Andrew D. Gordon, Michael Greenberg, James Margetson,
and Jurgen Van Van Gael. Measure Transformer Semantics for Bayesian Machine

Learning. Logical Methods in Computer Science, 9(3), 2013. doi:10.2168/LMCS-
9(3:11)2013.

[6] Zhuhua Cai, Zografoula Vagena, Luis Perez, Subramanian Arumugam, Peter J.
Haas, and Christopher Jermaine. Simulation of Database-Valued Markov Chains
using SimSQL. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data (SIGMOD 2013), pages 637ś648, New York, NY, USA,
2013. ACM. doi:10.1145/2463676.2465283.

[7] Bob Carpenter, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich,
Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell.
Stan: A Probabilistic Programming Language. Journal of Statistical Software,
76(1), 2017.

[8] D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes,
Volume II: General Theory and Structure. Probability and its Applications. Springer,
New York, NY, USA, 2nd edition, 2008. doi:10.1007/978-0-387-49835-5.

[9] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A Probabilistic
Prolog and Its Application in Link Discovery. In Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2007), pages 2468ś2473,
San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

[10] Luc De De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole.
Statistical Relational Artificial Intelligence: Logic, Probability, and Computa-
tion, volume 10. Morgan & Claypool Publishers, 2016. doi:10.2200/

S00692ED1V01Y201601AIM032.
[11] Daniel Deutch, Christoph Koch, and Tova Milo. On Probabilistic Fixpoint and

Markov Chain Query Languages. In Proceedings of the 29th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2010), pages
215ś226, New York, NY, USA, 2010. ACM. doi:10.1145/1807085.1807114.

[12] David H. Fremlin. Measure Theory. Vol. II: Broad Foundations. Torres Fremlin,
2nd edition, 2010.

[13] David H. Fremlin. Measure Theory. Vol. IV: Topological Measure Spaces, Part I.
Torres Fremlin, 2nd edition, 2013.

[14] Norbert Fuhr. Probabilistic Datalog ś A Logic for Powerful Retrieval Methods.
In Proceedings of the 18th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 1995), pages 282ś290, New York,
NY, USA, 1995. ACM. doi:10.1145/215206.215372.

[15] Marie Gaudard and Donald Hadwin. Sigma-Algebras on Spaces of Probability
Measures. Scandinavian Journal of Statistics, 16(2):169ś175, 1989.

[16] Noah D. Goodman. The principles and practice of probabilistic programming. In
Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2013), pages 399ś402, New York, NY, USA, 2013.
ACM. doi:10.1145/2429069.2429117.

[17] Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith Bonawitz, and
Joshua B. Tenenbaum. Church: A Language for Generative Models. In Proceedings
of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence (UAI 2008),
pages 220ś229, Arlington, VA, USA, 2008. AUAI Press.

[18] AndrewD. Gordon, Thomas A. Henzinger, Aditya V. Nori, and SriramK. Rajamani.
Probabilistic programming. In Proceedings of the on Future of Software Engineering
(FOSE 2014), pages 167ś181, New York, NY, USA, 2014. ACM. doi:10.1145/

2593882.2593900.
[19] Georg Gottlob, Thomas Lukasiewicz, Maria Vanina Martinez, and Gerardo I.

Simari. Query Answering under Probabilistic Uncertainty in Datalog +/- On-
tologies. Annals of Mathematics and Artificial Intelligence, 69(1):37ś72, 2013.
doi:10.1007/s10472-013-9342-1.

[20] Martin Grohe, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Peter Lindner.
Generative Datalog with Continuous Distributions. arXiv e-prints, 2020. URL:
https://arxiv.org/abs/2001.06358.

[21] Martin Grohe and Peter Lindner. Probabilistic Databases with an Infinite Open-
World Assumption. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (PODS 2019), pages 17ś31, New
York, NY, USA, 2019. ACM. doi:10.1145/3294052.3319681.

[22] Martin Grohe and Peter Lindner. Infinite Probabilistic Databases. In Carsten Lutz
and Jean Christoph Jung, editors, 23rd International Conference onDatabase Theory
(ICDT 2020), volume 155 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 16:1ś16:20, Dagstuhl, Germany, 2020. Schloss DagstuhlśLeibniz-Zentrum
fuer Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2020/11940, doi:
10.4230/LIPIcs.ICDT.2020.16.

[23] Bernd Gutmann, Manfred Jaeger, and Luc De Raedt. Extending ProbLog with
Continuous Distributions. In Inductive Logic Progamming (ILP 2010), volume
6489 of Lecture Notes in Computer Science, pages 76ś91, Berlin, Germany and
Heidelberg, Germany, 2011. Springer. doi:10.1007/978-3-642-21295-6_12.

[24] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Perez, Chris Jermaine, and Peter J. Haas.
The Monte Carlo Database System: Stochastic Analysis Close to the Data. ACM
Transactions on Database Systems (TODS), 36(3):18:1ś18:41, 2011. doi:10.1145/
2000824.2000828.

[25] Olav Kallenberg. Foundations of Modern Probability. Springer Series in Statistics.
Probability and its Applications. Springer, New York, NY, USA, 2nd edition, 2002.
doi:10.1007/978-1-4757-4015-8.

[26] Angelika Kimmig, Stephen Bach, Matthias Broecheler, Bert Huang, and Lise
Getoor. A Short Introduction to Probabilistic Soft Logic. In Proceedings of the

http://dx.doi.org/10.1109/TKDE.2008.190
http://dx.doi.org/10.1145/3132700
http://dx.doi.org/10.2168/LMCS-9(3:11)2013
http://dx.doi.org/10.2168/LMCS-9(3:11)2013
http://dx.doi.org/10.1145/2463676.2465283
http://dx.doi.org/10.1007/978-0-387-49835-5
http://dx.doi.org/10.2200/S00692ED1V01Y201601AIM032
http://dx.doi.org/10.2200/S00692ED1V01Y201601AIM032
http://dx.doi.org/10.1145/1807085.1807114
http://dx.doi.org/10.1145/215206.215372
http://dx.doi.org/10.1145/2429069.2429117
http://dx.doi.org/10.1145/2593882.2593900
http://dx.doi.org/10.1145/2593882.2593900
http://dx.doi.org/10.1007/s10472-013-9342-1
https://arxiv.org/abs/2001.06358
http://dx.doi.org/10.1145/3294052.3319681
https://drops.dagstuhl.de/opus/volltexte/2020/11940
http://dx.doi.org/10.4230/LIPIcs.ICDT.2020.16
http://dx.doi.org/10.4230/LIPIcs.ICDT.2020.16
http://dx.doi.org/10.1007/978-3-642-21295-6_12
http://dx.doi.org/10.1145/2000824.2000828
http://dx.doi.org/10.1145/2000824.2000828
http://dx.doi.org/10.1007/978-1-4757-4015-8

NIPS Workshop on Probabilistic Programming: Foundations and Applications, pages
1ś4, 2012.

[27] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles
and Techniques. Adaptive Computation and Machine Learning. The MIT Press,
Cambridge, MA, USA, 2009.

[28] Andrei Nikolajewitsch Kolmogorov. Foundations of the Theory of Probability.
Chelsea Publishing Company, New York, NY, USA, 2nd English edition, 1956.

[29] C. Kuratowski and C. Ryll-Nardzewski. A General Theorem on Selectors. Bulletin
of the Polish Academy of Sciences, 13:397ś403, 1965.

[30] Eckhard Limpert, Werner A. Stahel, and Markus Abbt. Log-normal Distributions
across the Sciences: Keys and Clues. BioScience, 51(5):341ś352, 2001. doi:10.
1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2.

[31] Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, David L. Ong, and
Andrey Kolobov. Blog: Probabilistic Models with Unknown Objects. In Pro-
ceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI
2005), pages 1352ś1359, San Francisco, CA, USA, 2005. Morgan Kaufmann.

[32] Aditya V. Nori, Chung-Kil Hur, Sriram K. Rajamani, and Selva Samuel. R2: An
Efficient MCMC Sampler for Probabilistic Programs. In Proceedings of the 28th
AAAI Conference on Artificial Intelligence, pages 2476ś2482. AAAI Press, 2014.

[33] Avi Pfeffer. Figaro: An Object-Oriented Probabilistic Programming Language.
Technical report, Charles River Analytics, 2009.

[34] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine
Learning, 62(1ś2):107ś136, 2006. doi:10.1007/s10994-006-5833-1.

[35] Sarvjeet Singh, Chris Mayfield, Sagar Mittal, Sunil Prabhakar, Susanne Ham-
brusch, and Rahul Shah. Orion 2.0: Native Support for Uncertain Data. In
Proceedings of the 2008 ACM SIGMOD International Conference on Management
of Data (SIGMOD 2008), pages 1239ś1242, New York, NY, USA, 2008. ACM.

doi:10.1145/1376616.1376744.
[36] Parag Singla and Pedro Domingos. Markov logic in infinite domains. In Pro-

ceedings of the 23rd Conference on Uncertainty in Artificial Intelligence (UAI 2007),
pages 368ś375, Arlington, VA, USA, 2007. AUAI Press.

[37] Sashi Mohan Srivastava. A Course on Borel Sets, volume 180 of Graduate Texts in
Mathematics. Springer, New York, NY, USA, 1998.

[38] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic
Databases. Synthesis Lectures on Data Management. Morgan & Claypool, San
Rafael, CA, USA, 1st edition, 2011. doi:10.2200/S00362ED1V01Y201105DTM016.

[39] David Tolpin, Jan-Willem van de Meent, and Frank Wood. Probabilistic Pro-
gramming in Anglican. In Machine Learning and Knowledge Discovery in
Databases (ECML PKDD 2015), volume 9286 of Lecture Notes in Computer Sci-
ence, pages 308ś311, Cham, Switzerland, 2015. Springer International Publishing.
doi:10.1007/978-3-319-23461-8_36.

[40] Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An
Introduction to Probabilistic Programming. arXiv e-prints, 2018. URL: https:
//arxiv.org/abs/1809.10756.

[41] Brend Wanders, Maurice van Keulen, and Jan Flokstra. JudgeD: A Probabilistic
Datalog with Dependencies. In The Workshops of the Thirtieth AAAI Conference
on Artificial Intelligence: Technical Reports WS-16-01 ś WS-16-15, Palo Alto, CA,
USA, 2016. AAAI Press.

[42] Yi Wu, Siddharth Srivastava, Nicholas Hay, Simon Du, and Stuart Russell.
Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Seman-
tics and Inference Algorithms. In Proceedings of the 35th International Conference
on Machine Learning (ICML 2018), volume 80 of Proceedings of Machine Learning
Research, pages 5343ś5352. PMLR, 2018.

http://dx.doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
http://dx.doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
http://dx.doi.org/10.1007/s10994-006-5833-1
http://dx.doi.org/10.1145/1376616.1376744
http://dx.doi.org/10.2200/S00362ED1V01Y201105DTM016
http://dx.doi.org/10.1007/978-3-319-23461-8_36
https://arxiv.org/abs/1809.10756
https://arxiv.org/abs/1809.10756

A STANDARD PROBABILISTIC DATABBASES

All facts we use about standard probabilistic databases we use in

this paper were shown in [22] with the exception of the following.

Theorem A.1. The instance measurable space of any standard

PDB (�,D) is standard Borel, as is its restriction (�∗,D∗) to set

instances.

Proof Sketch. This is an instantiation of a known result from

point process theory and the theory of random measures. We use

the notation from [8]. For any standard Borel space (�,X), the set
N#
�

of � ∪ {∞}-valued measures µ on (�,X) with the property

that µ(X) < ∞ for all bounded X ∈ X is a Polish space and its Borel

σ -algebra is generated by the evaluation maps

evalX : N#
�
→ �: µ 7→ µ(X)

whereX ∈ X [8, Proposition 9.1.IV]. The subspaceN� = eval−1
�
(�)

of measures of N#
�
of finite total mass is a measurable subset of

N#
�
and thus, a standard Borel space when equipped with the cor-

responding trace σ -algebra [13, ğ 424G]. It is easy to see that there

is a Borel isomorphism between our space (�,D) and the space

(N�,Bor(N�)). Since �∗ is a measurable subset of �, (�∗,D∗) is
standard Borel as well. □

B BACKGROUND RESULTS FROM MEASURE

THEORY

This section is intended to extend Section 2.1 by some well-known

results. They can accordingly be found in the literature [25].

B.1 Measurability of Functions and Sets

The following statement says that collections of measurable func-

tions yield a function that is measurable with respect to the product

σ -algebra.

Fact B.1 ([25, Lemma 1.8, p. 5]). If (�,X) and (Xi ,Xi) are measur-

able spaces (for i in some index set I) and fi : �→ �i is measurable

for all i ∈ I , then f : �→∏

i ∈I Xi : x 7→ (fi (x))i ∈I is X-
⊗

i ∈I Xi -
measurable.

The next two results are concerned with the measurability of

certain kinds of integration maps.

Fact B.2 ([25, Lemma 1.41(i), p. 21]). Let µ be a stochastic kernel

from � to � and let f : � × �→ �≥0 be measurable. Then

�→ �≥0 : x 7→
∫

f (x , ·) dµ(x , ·)

is measurable.

Fact B.3 ([25, Lemma 1.26, p. 14]). Let (�,X) and (�,Y) be mea-

surable spaces, µ a σ -finite measure on � and f : � × �→ �≥0 a
measurable function.

(i) The y-section f (· ,y) : � → �≥0 of f is (X,Bor(�≥0))-
measurable for all y ∈ �.

(ii) The function y 7→
∫

f (x ,y) µ(dx) is (Y,Bor[0, 1])-measur-

able.

If we have a measurable function between two standard Borel

spaces, then the image of measurable sets needs not to be mea-

surable in general, the standard example perhaps being projection

functions (see [37, Proposition 4.1.1 and Theorem 4.1.5]. Given cer-

tain conditions however, measurable sets have measurable images

under measurable functions:

Fact B.4 ([37, Theorem 4.5.4, p. 153]). Let (�,X) and (�,Y) be
standard Borel, X ∈ X and let f : X → � be an injective, (X↾X,Y)-
measurable function. Then f (X) ∈ Y.

Finally, we come back to the multifunctions of Section 2.1.4 and

explicitly state the theorem of Kuratowski and Ryll-Nardzewski on

the existence of measurable selections:

Fact B.5 (Kuratowski and Ryll-Nardzewski [29], see [37, Theorem

5.2.1]). Let (�,X) be a measurable space and let (�,Bor(�)) be
standard Borel. Then every closed-valued X-measurable multifunction

M : �⇒ � has a (X,Bor(�))-measurable selection s : �→ �.

B.2 Identities for Integration

If µ is a measure and f a measurable function, then f · µ ≔ ν ,

defined by ν (X) =
∫

X f dµ is a measure. The following chain and

substitution rules are the main tools to establish statements regard-

ing the equality of transformed measures.

Fact B.6 (Chain Rule, cf. [25, Lemma 1.23, p. 12]). Let (�,X, µ) be
a measure space and f : � → � and д : � → �≥0 be measurable

function. Let ν be defined from f and µ like above (that is, ν ≔ f · µ).
Then, if either of the following integrals exists (i. e. is finite), it holds

that
∫

�

f · д dµ =
∫

�

д dν .

Fact B.7 (Substitution, cf. [25, Lemma 1.22, p.12]). Let (�,X) and
(�,Y) be measurable spaces and µ a measure on (�,X). Let f : �→
� and д : � → � be measurable. Then, if either of the following

integrals exists (i. e. is finite), it holds that
∫

�

д ◦ f dµ =

∫

�

д d(µ ◦ f −1)

where µ ◦ f −1 is the push-forward measure of µ along f on (�,Y).
Another suchmain tool is Fubini’s Theorem, stating, in a nutshell

that integration in a product space can be carried out in an arbitrary

order.

Fact B.8 (Fubini’s Theorem, cf. [25, Theorem 1.27]). Let (�,X) and
(�,Y) be measurable spaces and µ be a σ -finite measure on (�,X).
Then for all measurable f : � × �→ �≥0, it holds that

∫

�×�
f d(µ ⊗ ν) =

∫

�

(

∫

�

f dν
)

dµ =

∫

�

(

∫

�

f dµ
)

dν .

B.3 Existence of Markov Processes

Fact B.9 (Existence of Markov Processes, Kolmogorov, cf. [25, The-

orem 8.4]). Let (�,X) be a standard Borel space, µ0 a probabil-

ity measure on (�,X) and (µi)i≥1 a family of stochastic kernels

µi : � × X → [0, 1] for i ≥ 1. Then there exists a Markov process ξ

(with time scale � and paths in
∏∞
i=0�) with initial distribution µ0

and transition kernels µi .

