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Abstract—The rapid development of the Internet of Things
(IoT) has prompted a recent interest into realistic IoT network
traffic generation. Security practitioners need IoT network traffic
data to develop and assess network-based intrusion detection
systems (NIDS). Emulating realistic network traffic will avoid
the costly physical deployment of thousands of smart devices.
From an attacker’s perspective, generating network traffic that
mimics the legitimate behavior of a device can be useful to
evade NIDS. As network traffic data consist of sequences of
packets, the problem is similar to the generation of sequences
of categorical data, like word by word text generation. Many
solutions in the field of natural language processing have been
proposed to adapt a Generative Adversarial Network (GAN) to
generate sequences of categorical data. In this paper, we propose
to combine an autoencoder with a GAN to generate sequences
of packet sizes that correspond to bidirectional flows. First, the
autoencoder is trained to learn a latent representation of the real
sequences of packet sizes. A GAN is then trained on the latent
space, to learn to generate latent vectors that can be decoded
into realistic sequences. For experimental purposes, bidirectional
flows produced by a Google Home Mini are used, and the
autoencoder is combined with a Wassertein GAN. Comparison
of different network characteristics shows that our proposed
approach is able to generate sequences of packet sizes that behave
closely to real bidirectional flows. We also show that the synthetic
bidirectional flows are close enough to the real ones that they
can fool anomaly detectors into labeling them as legitimate.

Index Terms—Deep Learning, Generative Adversarial Net-
work, Autoencoder, Network Security, Internet of Things

I. INTRODUCTION

The rapid adoption of the Internet of Things (IoT) raises
new security concerns. Most smart devices are vulnerable
because of a lack of security awareness from both the man-
ufacturer and the end users. Most users never change the
default password or use weak credentials making their device
vulnerable to brute force attacks. When a vulnerability is
discovered, it is seldom properly patched because of a poor
update policy from the manufacturer. Since Mirai in 2016 [1],
IoT malware have evolved and are getting more and more
sophisticated.

To protect IoT networks, Network Intrusion Detection Sys-
tems (NIDS) specifically designed for IoT are being devel-
oped [2]. To evaluate the ability of an NIDS to correctly detect
intrusions, both legitimate and malicious network traffics are
required (see Figure 1.a). While malicious network traffic is

used to evaluate attack detection rate, legitimate network traffic
is necessary to assess the false positive rate. However, very
few IoT network traffic datasets are publicly available. One
solution is to physically deploy real IoT devices to produce
network traffic data. Yet, this can become very costly if one
needs a network with thousands of smart devices. Moreover,
due to privacy concerns, it might not be possible to share real
network traffic data. An alternative is to synthetically generate
IoT network traffic. Synthetic network traffic generation can
also be useful for data augmentation purposes (see Figure 1.b).
Using data augmentation, a machine learning model can be
trained on both real and synthetic network traffic allowing
a faster convergence of the model and a better achieved
performance.

Such synthetic traffic can also be used for malicious pur-
poses. Rigaki and Garcia [3] have explored the special case
of data exfiltration. In this context, an attacker, who has the
ability to sniff the network, may collect legitimate traffic. The
attacker then proceeds to train generative models from the
collected traffic, so as to learn how to generate network traffic
resembling the real, legitimate one. In order to deceive an
NIDS, the trained model may be used to initiate network
communications that mimic the legitimate behavior of the
infected device (also known as mimicry attack ). For example,
as illustrated in Figure 1.c, the microphone of a compromised
Google Home Mini can be used to spy on and listen to con-
versations. However, the network being protected by an NIDS,
the attacker needs to find a way to generate network traffic
that looks legitimate in order to circumvent detection, and
exfiltrate sensitive data. Indeed, contrary to general-purpose
computers, IoT devices perform very specific tasks, hence
their networking behavior is very stable and follows specific
patterns. Any network communication that does not follow the
legitimate behavioral pattern can be easily pinpointed as being
anomalous.

Network traffic consists of flows identified by source and
destination IP addresses and ports, and the transport layer
protocol. We represent bidirectional flows as a sequence of
packets sent and received between an internal source and
an external destination. Despite the fact that a flow and the
packets composing it are closely related, existing works either
focus on the generation of flow-level features or packet-level



(a) NIDS performance assessment (b) Model training (c) Data exfiltration

Fig. 1: Motivation for IoT network traffic generation: Scenario (a): realistic network traffic generation for NIDS performance
evaluation; Scenario (b): Data augmentation to train machine learning based NIDS; Scenario (c): mimicry attack generation
for data exfiltration purpose.

features, but not both at the same time.
In this paper, we aim at generating synthetic sequences of

packet sizes that correspond to bidirectional flows that look
like they were generated by a real IoT device. In addition
to generating packet-level features which are the sizes of
individual packets, our developed generator implicitly learns
to comply with flow-level characteristics, such as the total
number of packets and bytes in a bidirectional flow. Similarly
to text data, sequences of packet sizes are sequences of cate-
gorical data. Hence, our problem is analogous to word by word
text generation, a domain in which many solutions have been
proposed to adapt a Generative Adversarial Network (GAN)
to generate sequences of categorical data [4]–[6]. Inspired by
the work proposed in [6], we propose to generate sequences of
packet sizes by combining an autoencoder with a Wasserstein
GAN (WGAN). First, the autoencoder is trained to learn a
latent representation of the real sequences of packet sizes. A
WGAN is then trained on the latent space, to learn to generate
latent vectors that can be decoded into realistic sequences.
For the experimental part of our study, we use network
traffic data produced by a Google Home Mini. Comparing the
distributions of different network characteristics, such as the
number of packets and bytes per flow, shows that the generated
bidirectional flows exhibit behavioral patterns that are very
similar to the real traffic.

The rest of the paper is organized as follows: Section II
presents the related work; in Section III, we formally define
a sequence of packet sizes that correspond to a bidirectional
flow; then, in Section IV we present our proposed generative
model; Section V describes the experimental settings and
Section VI presents the obtained results; finally, Section VII
discusses some of the limitations of the proposed approach and
Section VIII concludes and presents possible future works.

II. RELATED WORK

Network traffic generation has long been addressed through
the use of very simple statistical models. Hence, the very first
work focusing on the generation of legitimate network traffic
is from J. Sommers et al. [7], in which, flow characteristics
are collected from standard NetFlow [8] or packet traces.
Then, the empirical distributions of each parameter are derived
and used to generate new flows. Interdependencies between
different parameters are not taken into account. The generation

of network traffic using generative deep learning models is an
emerging topic, thus very few related work exist. Some of
them attempt to generate network flows while others propose
to generate individual network packets. A network flow is
identified by its i) source IP address ii) destination IP address
iii) source port iv) destination port, and v) the transport layer
protocol. The features that characterize a flow are usually the
duration, the total number of packets sent and the total number
of bytes sent. The features used to describe a packet are the
different fields of the network layer (e.g., IP) or the transport
layer (e.g., TCP or UDP) headers. Approaches addressing flow
generation only use flow-level features and do not attempt to
characterize the individual packets that constitute the flow. On
the other hand, work focusing on the generation of individual
packets ignore the flow-level features.

Recently, Ring et al. [9] use GANs to generate flow-based
network traffic with all typical attributes. Different from most
existing works on flow generation, they consider IP addresses
and ports as features to be generated. Other works focus on the
generation of flows for malicious purpose. For example, Rigaki
et al. [3] propose to evade malware detection by generating
flows that mimic the behavior of a legitimate Facebook chat
application using a GAN. The generated features include the
total number of bytes in the flow, the duration of the flow
and the time between two successive flows. Yan et al. [10]
leverage the capabilities of GANs to generate ambivalent
traffic: DDoS attacks that mimic legitimate behavior. Features
are categorized between mutable and immutable, the latter
ones are mostly related to the DoS function and are not to be
generated by the GAN, for fear it will lose its traffic function
and hence its attack ability. Similarly, Charlier et al. [11]
focus on the use of GANs to generate DDoS attack flows. In
[12], Wu et al. describe a deep reinforcement learning (DRL)
based framework to generate adversarial flows to deceive an
intrusion detection model. The DRL agent acts by adding
perturbations to malicious flows. The limitation of existing
work on flow generation is that they do not attempt to
characterize individual packets that compose the flow. They
are limited to the generation of flow-level features, such as, the
total number of packets and bytes contained in the flow. They
do not consider more fine-grained features, such as the size
of the individual packets composing a flow. Traffic generation



based only on flow-level features is not realistic enough and
will fail to fool network monitoring tools that perform packet-
level analysis.

Other studies work at the packet level. They intend to
generate valid network packets using GANs. In [13], Z. Lin et
al. describe preliminary works on how to use GANs for obliv-
ious network analysis, that is, to learn the internal structures
and protocol formats of black-box devices. To this purpose,
they develop synthetic protocols to show that a GAN is able
to learn intra-field and inter-field dependencies, ultimately
generating compliant packets for a black-box protocol. They
also discuss how GANs can be used to generate malicious
packets. A. Cheng proposes to generate individual IP packets
using convolutional neural networks (CNN) and GANs [14].
The aim of the GAN is to generate IP packets with compliant
header values from scratch. To this purpose, the raw byte-
wise representation of an IP packet is mapped to a pixel-wise
image-like representation. Then, a CNN-based GAN is trained
to learn to generate valid IP packets. One different CNN-
GAN is trained for each specific packet type (e.g., ICMP ping,
DNS query or HTTP GET request packets). H. Nguyen-An
et al. [15] propose a very basic packet-level network traffic
generator for the IoT. They do not use any algorithm to learn
patterns from the training set. Instead they only compute the
average packet size and the average time periodicity between
the packets. Then, they simply generate a stream of packets
of constant size (equal to the average packet size) and with a
constant time periodicity (equal to the average period). Works
focusing on packets generation treat packets individually and
independently from each other, failing to capture the sequential
nature of network communication.

To the best of our knowledge, all existing works either
focus either on flow-level or packet-level traffic generation,
but not a combination of both. However, we believe that the
resulting traffic is incomplete since a flow and the packets
composing it are closely linked. For example, the number of
bytes exchanged for the duration of a flow usually amounts to
the sum of the sizes of each packet that composes the flow.

III. SEQUENCE OF PACKET SIZES

The packet size is a widely used feature in studies that
focus on the development of IoT device network monitoring
systems [16]–[21]. Hence, it is an important network traffic
feature for both security product developers and malware
authors that want to mimic the legitimate behavior of a device.
However, note that the solution proposed in this paper can
be used to generate any feature that can be represented as a
sequence of categorical elements, like TCP flags for example.
We propose to generate sequences that represent the size of
the individual packets composing a bidirectional flow. Hence,
besides learning to generate packet-level features which are the
sizes of individual packets, our developed generator implicitly
learn to comply with flow-level characteristics, such as the
ordering of the packets or the total number of packets and
bytes in a bidirectional flow. To the best of our knowledge,
this is the first attempt at bridging the gap between flow

generation and packet generation problems. Moreover, none
of the existing works on artificial network traffic generation
have focused on the specific context of IoT as we do.

We aim to generate sequences of packet sizes, representing
bidirectional flows, that look like they were generated by a
real IoT device. A bidirectional flow is identified by a 5-
tuple, the source and destination IP addresses and ports, and
the transport layer protocol. A sequence contains the sizes of
packets sent as well as the sizes of packets received during a
single communication. A communication is a complete TCP
session (from SYN to FIN). Note that a timeout is used to
split long communications into multiple bidirectional flows.
Let N be the maximum number of packets that can be sent (or
received) in a single bidirectional flow. That is, a bidirectional
flow can contain a maximum of 2 × N packets (N packets
sent and N packets received). It is important to note that N is
device- or application-specific. We have witnessed that some
devices never generate flows with more than a certain number
of packets. For experimental purposes, one might set N and
truncate sequences that are too long. This might be useful to
control the cost of the training process, in terms of resources,
which increases as N grows. Let P be a sequence of packet
sizes corresponding to a bidirectional flow, let si be the size of
the ith packet sent and ri the size of the ith packet received.
P can therefore be defined as follows:

P = {s1, r1, s2, r2, ..., sN , rN}

If a bidirectional flow contains less than N packets sent
then the remaining elements of the sequence are filled with
zeros (the same is true for the packets received). Hence, zero
acts as an end of sequence marker. It is important to notice
that we consider P as a sequence of categorical data rather
than numerical data. For example, let D be a device which
generates sequences of packet sizes of the following form:

60 60 52 52 123 135 52 52 52

Considering the dataset of collected sequences, we may notice
that the device D never generates packets of size 61, 53 or
50. If, for once, D generates the following (approximate)
sequence:

60 61 52 53 122 135 52 50 52

we may decide that it cannot have been generated by D as
it contains packet sizes that D never generated in its history,
namely 61, 53, and 50. The approximate sequence is still very
similar to the original one (erroneous packet sizes are close to
legitimate ones, if considered as numerical values). To avoid
ending up generating such close but unrealistic sequences, one
needs to consider the packet size as a categorical variable.
Hence, we use one-hot-encoding over all the possible packet
size values to represent each element of P .

Note that our problem is similar to word by word text data
generation in that a bidirectional flow is equivalent to a sen-
tence (with 2×N being the maximum length of the sentence),
while packet sizes, as categorical data, are equivalent to the
words that compose the sentence.



IV. GENERATIVE MODELS FOR SEQUENCE GENERATION

In this Section, we firstly introduce GANs and explain
their limitations when dealing with sequences of categorical
data. Then, we describe our proposed model that combine an
autoencoder with a GAN.

A. On the Difficulty of Generating Sequences of Categorical
Data

GANs were introduced by I. Goodfellow et al. [22] and
have been successfully applied in computer vision to generate
realistic images [23]. A GAN consists of a generator and
a discriminator. The role of the generator is to generate
observations as similar as possible to the samples present
in a given dataset. To this purpose, the generator transforms
random noise into samples that look as if they have been drawn
from the original dataset. The role of the discriminator is to
predict whether a given sample comes from the original dataset
or has been generated by the generator. Both, the discriminator
and generator are neural networks. At the beginning of the
training process, their weights are randomly initialized. The
GAN is trained by alternatively training the generator and the
discriminator. As the generator begins to fool the discrimina-
tor, the discriminator must learn new patterns to differentiate
real samples from generated ones. In turn, the generator needs
to find new ways to fool an ever improving discriminator. This
cycle continues up to the point the generator starts generating
samples that the discriminator cannot discriminate from real
samples anymore. However, GANs are very hard to train and
are prone to mode collapse. Mode collapse occurs when the
generator starts generating one or a small set of possible
observations that always fool the discriminator [24]. In that
case, the generator stops learning anything useful. It raises
the issue of how representative the generated samples are of
the diversity of the original dataset. The Wasserstein GAN
(WGAN) [25] improves traditional GANs. It provides more
stable training process and gets rid of mode collapse issues.
This motivates us to use WGAN for our experiments. The loss
function of a WGAN is the Wasserstein loss, given by:

− 1
m

∑m
i=1 yipi

where m is the total number of training instances, yi and pi
are respectively the label, and the prediction of the critic (the
discriminator of a WGAN is called the critic), corresponding
to the ith training instance. The label yi is either equal to
1 (real) or -1 (generated), and the prediction pi is in the
range [−∞,+∞]. Hence, by minimizing the loss function, the
critic of a WGAN tries to maximize the difference between its
predictions for real samples and generated samples. Without
any additional constraint, the Wassestein loss can be very large
and become intractable. This is why the critic of a WGAN
must be a 1-Lipschitz continuous function. In the original
paper, the 1-Lipschitz constraint is enforced by clipping the
weight of the critic. In [26], the authors proposed to enforce the
1-Lipschitz constraint by penalizing the norm of the gradient
of the critic with respect to its input, which is a more natural
way to achieve the 1-Lipschitz constraint. In this paper, we

will explore both WGAN with weight clipping (WGAN-C)
and WGAN with gradient penalty (WGAN-GP).

Although successful for image generation [27], GANs
have known little success with sequence of categorical data
generation until recently. Indeed, when generating the next
element of a sequence of categorical values, the generator
actually provides a probability distribution over all possibilities
(e.g., the vocabulary for text data). The actual sequence is
constructed by picking the next element from this probability
distribution. This picking operation is hard to back-propagate
as it is not differentiable [4], [5]. To overcome this issue,
many solutions have been proposed in the context of text
generation. Kusner et al. [4] propose to use the Gumbel-
softmax distribution as the output of the generator. Yu et al. [5]
describe how Reinforcement Learning can be used to bypass
the issue. The model we use to generate sequences of packet
sizes is highly inspired from the work of D. Donahue et al. [6]
who propose to combine a vanilla autoencoder with a GAN
to generate text data. First, the autoencoder is trained to learn
to convert sequences of categorical data (sentences composed
of words) into a latent vector in a continuous space. Then
a GAN is trained in the continuous latent space to learn to
generate latent vectors that can be decoded into sequences of
categorical data.

B. Combining Autoencoder with GAN

To generate sequences of packet sizes, we propose to
combine an autoencoder with a GAN as described in Figure 2.

An autoencoder is composed of an encoder and a decoder.
The encoder compresses the input to obtain a latent representa-
tion of it. The role of the decoder is to reconstruct the original
input from its latent representation. Hence, the training process
aims at minimizing the reconstruction error between the input
and the output. For our sequence of one-hot encoded packet
size data, this corresponds to minimizing the cross-entropy
loss between the input and the output of the autoencoder. Let
L = 2×N (N defined in Section III) be the total length of a
sequence of packet sizes, and V be the vocabulary size, that
is, the number of possible values that a packet size can take.
Hence, the one-hot encoded representation of a single packet
size is a vector of length V . A sequence of one-hot encoded
packet sizes can be represented with a matrix X:

X =


x11 x12 ... x1L

x21 x22 ... x2L

... ... ...
xV 1 xV 2 ... xV L


where the ith column of X corresponds to the one-hot encoded
representation of the ith packet size in the sequence. Let X
be the matrix representation of the input of the autoencoder,
and X̂ be the equivalent matrix representation of the output of
the autoencoder. Then, the cross-entropy loss LCE between X
and X̂ is given by summing the binary cross-entropies between
every single element of X and X̂:

LCE =
∑L

j=1

∑V
i=1(xij log(x̂ij) + (1− xij)log(1− x̂ij))



Fig. 2: Combining an autoencoder with a GAN to generate
sequences of categorical values

Once the autoencoder has been trained, a GAN is trained
on the latent space. For our model, we will use a WGAN
(both WGAN-C and WGAN-GP will be tested) as it provides
more stability in the training stage and is more resilient to
mode collapse [25]. Figure 2 shows the different steps from the
training phase to the generation phase. First, an autoencoder
is trained to learn to compress and reconstruct real sequences
of packet sizes. The encoder part of the autoencoder is then
used to obtain the continuous latent representation of the real
sequences. Next, a WGAN is trained on the continuous latent
space to learn to generate realistic latent vectors. Once trained,
the generator of the WGAN is used to generate real-looking
latent vectors. The generated latent vectors are then fed to the
decoder of the autoencoder to generate realistic sequences of
packet sizes that correspond to bidirectional flows.

V. EXPERIMENTS

In this Section we first define the different methods used to
assess the quality of the generated bidirectional flows. Then,

we describe the experimental settings, that is, the dataset used
and the architecture of the autoencoder and WGAN.

A. Evaluation Methodology

The quality of the generated bidirectional flows is assessed
using different methods. First, we measure the percentage of
generated sequences that are valid. Then, we plot histograms
to compare the empirical distributions of different network
characteristics of the synthetic bidirectional flows with the real
ones. The characteristics that are compared are i) the distri-
bution of the packets sizes, ii) the distribution of the number
of packets per bidirectional flow, and iii) the distribution of
the number of bytes per bidirectional flow. Those network
characteristics are widely used to describe network flows [3],
[9], [10], [12], [28]. The purpose of comparing the distribu-
tions of different network characteristics is to determine if
the generated bidirectional flows are diverse enough (no mode
collapse) and if they behave like the real ones. Finally, we
also assess the proportion of synthetic bidirectional flows that
can evade a potential anomaly detection based NIDS. To this
purpose, we train different anomaly detection algorithms to
learn the legitimate networking behavior profile of a Google
Home Mini. Synthetic bidirectional flows are then fed to
the trained anomaly detectors to determine the proportion of
synthetic flows that is able to fool the trained detectors into
labeling them as legitimate.

B. Experimental Setup

A Google Home Mini was used to produce real network
traffic data. The device was actively used for 7 days. We set
the value of N , described in Section III, to 21. That is, we
only keep bidirectional flows that contain at most 21 packets
sent and 21 packets received, which correspond to sequences
of length L = 42. As explained in Section III, if a bidirectional
flow contains less than 21 sent packets, the remaining elements
are filled with zeros – the same is applied to received packets.
The following is an example of a sequence of packet sizes
(after zero padding), where 6 packets have been sent and 4
packets have been received:

60 60 52 52 123 135 52 52 52 0 52 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0

The reason we only keep sequences of maximum length 42
is because they correspond to 90% of the bidirectional flows
produced by our hosted Google Home Mini. The remaining
10% of the bidirectional flows contain a number of packets
exchanged ranging from 43 to 7674 packets. Meaning that if
we were to represent all the bidirectional flows of the Google
Home Mini, we would need sequences of length 7674, which
can be computationally expensive. For this reason, limiting
sequences to 42 packet sizes is reasonable. Moreover, in the
case of a malware that want to mimic legitimate behavior, it
makes more sense to focus on the 90% most common flows
rather than on the 10% rarest flows. The final dataset contains
12,198 sequences of packet sizes. The total number of possible



(a) Encoder (b) Decoder

Fig. 3: Architecture of the autoencoder used for the experiment

packet size values is V = 535 (the vocabulary size). Hence,
each element of the sequence is one-hot encoded in a vector
of size 535. Hence, the shape of the corresponding matrix X
(defined in Section IV-B) describing one sequence of packet
sizes is (V,L) = (535, 42).

The architecture used for the autoencoder is given in Fig-
ure 3. The sequences of shape (535, 42) are compressed to
16-dimensional latent vectors by the encoder. The encoder
is composed of a time distributed dense layer, followed by
two LSTM layers and two densely connected layers. An
LSTM network is a type of recurrent neural network that
can capture temporal dependencies in sequential data. Hence,
LSTM layers are well suited to capture the ordering of the
packet sizes in a sequence. The activation function used in all
layers of the encoder is the hyperbolic tangent (tanh). The
decoder consists of a dense layer, followed by two LSTM
layers and one time distributed dense layer. The activation
function used for all layers is also tanh, except for the output
layer for which a sigmoid activation is used. Note that
for dense layers to avoid vanishing gradient issues that occur
when using tanh and sigmoid activation functions, Batch
Normalization [29] is performed before applying the activation
function. The loss function used is the cross-entropy loss, as
described in Section IV-B. The autoencoder is trained for 300
epochs using Adam optimizer. The learning rate is set to 0.001
for the first 100 epochs, then to 0.0005 for another 100 epochs,
finally to 0.0001 for the last 100 epochs.

As for the WGAN used to learn to generate latent vectors
that decode into realistic features vector, both the generator
and the critic are densely connected neural networks as shown
in Figure 4. The generator takes as input a noise of dimension
16 drawn from a standard Gaussian distribution. It consists
of 4 hidden layers, each composed of 16 units with tanh
activation. As with the autoencoder, to avoid vanishing gradi-
ent issues, Batch Normalization is performed before applying

(a) Generator (b) Critic

Fig. 4: Architecture of the WGAN used for the experiment

tanh activation function. The output layer of the generator
is a densely connected layer with 16 units and no activation
function. The critic consists of 4 hidden layers. Each composed
of 16 units with LeakyReLU (alpha=0.01) activation. The
output of the critic is a single neuron with no activation.
As proposed in [25], RMSprop optimizer, with learning rate
0.00005, is used for training. The critic is trained 5 times
between each generator updates. Both, WGAN-C and WGAN-
GP are tested. As explained in Section IV-A they only differ
in the way the 1-Lipschitz constraint of the critic is enforced.

VI. RESULTS

A. Percentage of Valid Sequences

The generated sequences are of length 42 and consist of
the size of the packets sent and received. As described in
Section III, if a sequence has less than 21 packets sent
thenthe remaining elements must be zeros. As a consequence,
if the size of a sent packet in the sequence is equal to
zero then all the subsequent elements of the sequence that
correspond to sent packets must also be equal to zero. The
generated sequences that do not comply with this basic rule
are considered invalid. The same reasoning holds for the
elements of the sequence that corresponds to the size of
packets received. Our trained autoencoder/WGAN-GP and
autoencoder/WGAN-C models generate 99.5% and 99.1% of
valid sequences respectively. For the evaluation performed in
the next subsections, invalid sequences are discarded.

B. Statistical Characteristics Comparison

The distributions of different network characteristics of the
generated and real bidirectional flows are compared for both
autoencoder/WGAN-GP and autoencoder/WGAN-C models.
The obtained results are also compared to the ones obtained
by a baseline variational autoencoder (VAE) model. A VAE is
a special type of autoencoder that can be used as a generative



(a) Autoencoder/WGAN-GP (b) Autoencoder/WGAN-C (c) VAE

(d) Autoencoder/WGAN-GP (e) Autoencoder/WGAN-C (f) VAE

(g) Autoencoder/WGAN-GP (h) Autoencoder/WGAN-C (i) VAE

Fig. 5: Comparison of the distribution of packet sizes (a, b, c), the number of packets per bidirectional flow (d, e, f), the
number of bytes per bidirectional flows (g, h, i) for different models (autoencoder/WGAN-GP, autoencoder/WGAN-C, VAE)

model [30]. The architecture of the VAE used is very similar to
the architecture of the autoencoder described in Figure 3. The
only difference is that, for the VAE the encoder outputs two
parameters: a mean vector and a variance vector. Those two
parameters are used to sample the latent vector. Once trained,
to generate new instances, latent vectors are sampled from
the standard normal distribution and fed to the decoder of the
VAE. The aim is to determine if combining an autoencoder
with a WGAN is necessary, or if a VAE model is enough to
generate realistic data.

The 12,198 real bidirectional flows produced by the Google
Home Mini along with 12,198 generated bidirectional flows
are used to plot each histogram. Figure 5 shows the ob-
tained distributions of packets sizes, number of packets per
bidirectional flow and the number of bytes per bidirectional
flow. The frequency is represented in a logarithmic scale,

as the number of occurrences of rare events is very small
compared to the occurrences of common events. The distri-
bution plots indicate that the bidirectional flows generated
by both autoencoder/WGAN-GP and autoencoder/WGAN-C
models share very close characteristics with the real ones.
The similarity is even more emphasized for occurrences that
are very common in the real traffic (more than 10 times).
For example, packet sizes between 40 bytes and 600 bytes,
bidirectional flows containing between 32 and 40 packets, or
bidirectional flows containing around 4000 bytes, are very
common in the real traffic and are also very common in
the generated traffic. Both the WGAN-GP and the WGAN-C
based models outperform the VAE which suffers from severe
mode collapse. Indeed, the flows generated by the VAE lack
diversity and do not cover all the possible flow types that



WGAN-GP WGAN-C VAE
Packet sizes 1.694 1.539 27.439
Packets per

bidirectional flows 10.228 9.799 97.362

Bytes per
bidirectional flows 4.673 3.837 40.597

TABLE I: Earth mover’s distance (10−4) between the real
and generated traffic histograms of Figure 5. WGAN-C based
model achieves the smallest distance.

the Google Home Mini produces. In terms of the diversity of
the generated bidirectional flows, the WGAN-C based model
seems to perform better than the WGAN-GP based model. For
example, the WGAN-C based model generates bidirectional
flows containing between 16 and 21 packets, which is not the
case for the WGAN-GP based model (see Figures 5.d and 5.e).

We use the Earth Mover’s Distance (EMD, also referred as
the first Wasserstein distance) to compare the histograms [31]:
informally, if two distributions are seen as two masses of
earth, the EMD between those two distributions is proportional
to the minimum amount of work required to transform one
distribution into the other (one unit of work is the amount of
work necessary to move one unit of weight by one unit of
distance). The EMD is a statistical distance that provides a
measure to quantify the dissimilarity between the histograms
of the generated traffic and the histograms of the real traffic.
The smaller the EMD between the generated and real traffic
histograms the closer the generated traffic is to the real one.
As the EMD is used to compare probability distributions, the
histograms are normalized to have a total area equal to 1.
Table I shows the EMD for the histograms in Figure 5. The
WGAN-C based model achieves the smallest EMD for every
compared network characteristics. Hence, it is performing
slightly better than the WGAN-GP based model in generating
sequences of packet sizes that behaves closely to the real
bidirectional flows.

C. Evading an Anomaly Detection Based NIDS

In this subsection, the aim is to assess how our proposed
generative model can be used by a malware to mimic legiti-
mate behavior and evade an anomaly detection based NIDS. In
anomaly detection, during the training phase, the model learns
the profile of the legitimate networking behavior of a device.
Then during the testing phase, the model is applied to new
data to detect any deviation from the learnt legitimate behavior
profile. We train different anomaly detection algorithms on
real Google Home Mini network data to learn the legitimate
behavior profile. The trained anomaly detectors are tested
against legitimate traffic to assess their False Positive Rate
(FPR) and against malicious traffic to assess their True Positive
Rate (TPR) (also referred as the recall or the attack detection
rate). Malicious network traffic is obtained from IoTPOT [32],
an IoT honeypot designed to be infected by IoT malware. The
trained anomaly detectors are also tested against synthetically

OCSVM IForest EE
TPR .9504 .8947 .9234
FPR .0238 .0217 .1246

TABLE II: TPR and FPR on the test set achieved by the trained
anomaly detectors

generated bidirectional flows to evaluate the proportion of
synthetic flows that can evade them.

Three anomaly detection algorithms are tested: One-Class
SVM (OCSVM), Isolation Forest (IForest), and Elliptic Enve-
lope (EE). The features used as input for the anomaly detectors
are the normalized packet sizes. As for the datasets, 80% of the
12,198 real Google Home Mini bidirectional flows are used
for training and 20% for testing. 2440 malicious bidirectional
flows from IoTPOT are used during the testing phase to assess
the TPR of the trained detectors.

Table II presents the performance on the test set achieved
by the different anomaly detectors. In terms of the attack
detection rate OCSVM seems to perform the best with an
TPR of 95.04%. While in terms of the FPR, IForest performs
the best with an FPR of 2.17%. EE yields the worst FPR
(12.46%).

Table III shows the False Negative Rate (FNR) on the
synthetic bidirectional flows, denoted FNRsynthetic, which
corresponds to the proportion of synthetic bidirectional flows
that are predicted as being legitimate despite the fact that
those flows are not coming from the Google Home Mini but
potentially from a malware. It is compared to the FNR and
the True Negative Rate (TNR) on the test set containing real
bidirectional flows. The FNR on the test set (FNRtest) is the
proportion of malicious flows that are incorrectly predicted as
being legitimate. While the TNR on the test set corresponds to
the proportion of bidirectional flows actually coming from the
Google Home Mini that are correctly labeled by the anomaly
detector as legitimate.

The FNRsynthetic is very high compared to the FNRtest

meaning that if a malware was to use our trained generative
model to mimic the legitimate networking behavior, it would
considerably improve its evasion capability and the malware
would be able to evade the anomaly detectors most of the
time. In fact, the FNRsynthetic indicates that from 89.48%
to 98.86% of the synthetic bidirectional flows (depending on
the type of anomaly detector and the WGAN type used for
the generator training) are able to fool the anomaly detectors
into labeling them as legitimate. While without the use of a
generative model the FNRtest indicates that only 4.96% to
10.53% of the malicious flows are incorrectly predicted as
being legitimate. The FNRsynthetic is also slightly higher
than the TNR in most of the cases indicating that a synthetic
bidirectional flow is more likely to be labeled as legitimate by
the anomaly detectors than a real flow actually coming from
a Google Home Mini. This can be explained by the presence
of bidirectional flows coming from the Google Home Mini
that are very rare and end up being wrongly labeled as being



OCSVM IForest EE
FNRsyntheticFNRsyntheticFNRsynthetic

(WGAN-GP) .9817 .9833 .9047

FNRsyntheticFNRsyntheticFNRsynthetic

(WGAN-C) .9798 .9886 .8948

FNRtestFNRtestFNRtest .0496 .1053 .0766
TNR .9762 .9783 .8754

TABLE III: FNR when the anomaly detectors are fed with
synthetic flows (FNRsynthetic) compared to the FNR and
TNR on the test set

malicious (rare instances that appear in the test set but were not
seen during anomaly detector training). While the generative
model tends to generate the rarest bidirectional flow types less
often and give priority to the frequent ones.

VII. DISCUSSION

Mimicking the legitimate networking behavior of a device
is interesting for data exfiltration purposes. For example, one
can imagine a malware intended for Google Home Minis that
uses the microphone of the compromised device to listen to
conversations and exfiltrate the data. However for other types
of malware, such as botnets used to perform large-scale DDoS
attacks, complying with the legitimate networking behavior
might be too much of a constraint. In an attempt to comply
with the legitimate behavior, the malware might end up losing
its malicious capability altogether. Further studies need to be
carried out on how to find a balance between complying with
legitimate behavior and not loosing malicious capabilities.

The types of sequences of packet sizes generated by the
trained generator are very dependent on the data used during
training. The generator will only be able to generate sequences
similar to the sequences it has seen during the training phase.
For our experimental setup we interacted with the Google
Home Mini primarily to ask questions like ”what’s the weather
today?” or ”what’s the news today?”. Hence, our trained gener-
ator will generate sequences of packets that are representative
of our interactions with the Google Home Mini like asking
questions. Now, If someone makes a very different use of
the Google Home Mini, like asking it to play music via a
Spotify account, then the Google Home Mini might produce
very different types of packet sequences. For the generator to
be able to generate these new types of sequences, it will need
to be retrained on the new data.

The generated bidirectional flows can be seen as two
unidirectional flows: one unidirectional flow for the packets
sent and the other for the packets received. The order of the
packet sizes for each unidirectional flow is correct. However,
the ordering of packet sizes for the bidirectional flow might
not be correct. Indeed, in Section III a sequence of packet
sizes P is defined by:

P = {s1, r1, s2, r2, ..., sN , rN}

where si is the size of the ith packet sent and ri the size of the
ith packet received. Hence, we assume that one packet sent is

followed by one packet received, which is not necessarily the
case. For example, one packet sent might trigger the reception
of multiple packets and vice versa. Further studies are required
to properly model the packet sizes ordering in a bidirectional
flow.

VIII. CONCLUSION AND FUTURE WORKS

IoT network traffic generation is of importance for both
the network defenders and the attackers. While the defenders
would like to be able to develop and test NIDS without the
costly physical deployment of real smart devices, the aim of
the attackers is to be able to generate traffic that mimic the
legitimate behavior of a device in order to evade NIDS. In
this paper, we presented a method to generate sequences of
packet sizes representing bidirectional flows that look as if
they were generated by a real smart device. To overcome
the issue with the use of GANs for sequence of categorical
data generation, we decided to combine an autoencoder with
a WGAN. First, the autoencoder is trained to learn to convert
sequences of packet sizes (sequences of categorical data) into
a latent vector in a continuous space. Then a WGAN is trained
on the latent space to learn to generate latent vectors that can
be decoded into realistic sequences, through the decoder of
the autoencoder. Experimental results using a Google Home
Mini show that our method allows us to generate high quality
and realistic looking sequences of packet sizes representing
bidirectional flows.

For future works, we should train and test our model on
more data and with a variety of smart devices including
security cameras. We are also planning to model packets
ordering to better take into account cases when multiple
packets are received for one packet sent or vice versa. We are
also considering to include other packet features such as the
status of the TCP flags or the TTL value of each packet in the
sequence. Moreover, the inter-arrival times between packets
in the sequence, as well as the total duration of the generated
bidirectional flows are also important characteristics that need
to be considered.
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