
Generative Image Modeling Using Style

and Structure Adversarial Networks

Xiaolong Wang(B) and Abhinav Gupta

Robotics Institute, Carnegie Mellon University, Pittsburgh, USA
xiaolonw@cs.cmu.edu

Abstract. Current generative frameworks use end-to-end learning and
generate images by sampling from uniform noise distribution. However,
these approaches ignore the most basic principle of image formation:
images are product of: (a) Structure: the underlying 3D model; (b) Style:
the texture mapped onto structure. In this paper, we factorize the image
generation process and propose Style and Structure Generative Adversar-
ial Network (S2-GAN). Our S2-GAN has two components: the Structure-
GAN generates a surface normal map; the Style-GAN takes the surface
normal map as input and generates the 2D image. Apart from a real vs.
generated loss function, we use an additional loss with computed surface
normals from generated images. The two GANs are first trained inde-
pendently, and then merged together via joint learning. We show our
S2-GAN model is interpretable, generates more realistic images and can
be used to learn unsupervised RGBD representations.

1 Introduction

Unsupervised learning of visual representations is one of the most fundamental
problems in computer vision. There are two common approaches for unsuper-
vised learning: (a) using a discriminative framework with auxiliary tasks where
supervision comes for free, such as context prediction [1,2] or temporal embed-
ding [3–8]; (b) using a generative framework where the underlying model is
compositional and attempts to generate realistic images [9–12]. The underlying
hypothesis of the generative framework is that if the model is good enough to
generate novel and realistic images, it should be a good representation for vision
tasks as well. Most of these generative frameworks use end-to-end learning to
generate RGB images from control parameters (z also called noise since it is sam-
pled from a uniform distribution). Recently, some impressive results [13] have
been shown on restrictive domains such as faces and bedrooms.

However, these approaches ignore one of the most basic underlying prin-
ciples of image formation. Images are a product of two separate phenomena:
Structure: this encodes the underlying geometry of the scene. It refers to the
underlying mesh, voxel representation etc. Style: this encodes the texture on the
objects and the illumination. In this paper, we build upon this IM101 principle of
image formation and factor the generative adversarial network (GAN) into two
generative processes as Fig. 1. The first, a structure generative model (namely

c© Springer International Publishing AG 2016
B. Leibe et al. (Eds.): ECCV 2016, Part IV, LNCS 9908, pp. 318–335, 2016.
DOI: 10.1007/978-3-319-46493-0 20

Generative Image Modeling using Style and Structure Adversarial Networks 319

Structure

GAN
Style

GAN
Uniform Noise

Distribution

Output1: Surface Normal

Uniform Noise

Distribution

Output2: Natural Indoor Scenes

(a) Generative Pipeline

(b) Generated Examples

(c) Synthetic Scenes Rendering

Fig. 1. (a) Generative Pipeline: Given ẑ sampled from uniform distribution, our
Structure-GAN generates a surface normal map as output. This surface normal map is
then given as input with z̃ to a second generator network (Style-GAN) and outputs an
image. (b) We show examples of generated surface normal maps and images. (c) Our
Style-GAN can be used as a rendering engine: given a synthetic scene, we can use it to
render a realistic image. To visualize the normals, we represent facing right with blue,
horizontal surface with green, facing left with red (blue → X; green → Y; red → Z).
(Color figure online)

Structure-GAN), takes ẑ and generates the underlying 3D structure (y3D) for the
scene. The second, a conditional generative network (namely Style-GAN), takes
y3D as input and noise z̃ to generate the image yI . We call this factored gener-
ative network Style and Structure Generative Adversarial Network (S2-GAN).

Why S2-GAN? We believe there are fourfold advantages of factoring the style
and structure in the image generation process. Firstly, factoring style and struc-
ture simplifies the overall generative process and leads to more realistic high-
resolution images. It also leads to a highly stable and robust learning procedure.
Secondly, due to the factoring process, S2-GAN is more interpretable as com-
pared to its counterparts. One can even factor the errors and understand where
the surface normal generation failed as compared to texture generation. Thirdly,
as our results indicate, S2-GAN allows us to learn RGBD representation in an
unsupervised manner. This can be crucial for many robotics and graphics appli-
cations. Finally, our Style-GAN can also be thought of as a learned rendering
engine which, given any 3D input, allows us to render a corresponding image.
It also allows us to build applications where one can modify the underlying 3D
structure of an input image and render a completely new image.

320 X. Wang and A. Gupta

However, learning S2-GAN is still not an easy task. To tackle this challenge,
we first learn the Style-GAN and Structure-GAN in an independent manner. We
use the NYUv2 RGBD dataset [14] with more than 200 K frames for learning the
initial networks. We train a Structure-GAN using the ground truth surface nor-
mals from Kinect. Because the perspective distortion of texture is more directly
related to normals than to depth, we use surface normal to represent image
structure in this paper. We learn in parallel our Style-GAN which is conditional
on the ground truth surface normals. While training the Style-GAN, we have two
loss functions: the first loss function takes in an image and the surface normals
and tries to predict if they correspond to a real scene or not. However, this loss
function alone does not enforce explicit pixel based constraints for aligning gen-
erated images with input surface normals. To enforce the pixel-wise constraints,
we make the following assumption: if the generated image is realistic enough, we
should be able to reconstruct or predict the 3D structure based on it. We achieve
this by adding another discriminator network. More specifically, the generated
image is not only forwarded to the discriminator network in GAN but also a
input for the trained surface normal predictor network. Once we have trained
an initial Style-GAN and Structure-GAN, we combine them together and per-
form end-to-end learning jointly where images are generated from ẑ, z̃ and fed
to discriminators for real/fake task.

2 Related Work

Unsupervised learning of visual representation is one of the most challenging
problems in computer vision. There are two primary approaches to unsupervised
learning. The first is the discriminative approach where we use auxiliary tasks
such that ground truth can be generated without labeling. Some examples of
these auxiliary tasks include predicting: the relative location of two patches [2],
ego-motion in videos [15,16], physical signals [17–19].

A more common approach to unsupervised learning is to use a generative
framework. Two types of generative frameworks have been used in the past.
Non-parametric approaches perform matching of an image or patch with the
database for tasks such as texture synthesis [20] or super-resolution [21]. In
this paper, we are interested in developing a parametric model of images. One
common approach is to learn a low-dimensional representation which can be used
to reconstruct an image. Some examples include the deep auto-encoder [22,23] or
Restricted Boltzmann machines (RBMs) [24–28]. However, in most of the above
scenarios it is hard to generate new images since sampling in latent space is not
an easy task. The recently proposed Variational auto-encoders (VAE) [10,11]
tackles this problem by generating images with variational sampling approach.
However, these approaches are restricted to simple datasets such as MNIST. To
generate interpretable images with richer information, the VAE is extended to
be conditioned on captions [29] and graphics code [30]. Besides RBMs and auto-
encoders, there are also many novel generative models in recent literature [31–34].
For example, Dosovitskiy et al. [31] proposed to use CNNs to generate chairs.

Generative Image Modeling using Style and Structure Adversarial Networks 321

In this work, we build our model based on the Generative Adversarial Net-
works (GANs) framework proposed by Goodfellow et al. [9]. This framework was
extended by Denton et al. [35] to generate images. Specifically, they proposed to
use a Laplacian pyramid of adversarial networks to generate images in a coarse
to fine scheme. However, training these networks is still tricky and unstable.
Therefore, an extension DCGAN [13] proposed good practices for training adver-
sarial networks and demonstrated promising results in generating images. There
are more extensions include using conditional variables [36–38]. For instance,
Mathieu et al. [37] introduced to predict future video frames conditioned on the
previous frames. In this paper, we further simplify the image generation process
by factoring out the generation of 3D structure and style.

In order to train our S2-GAN we combine adversarial loss with 3D surface
normal prediction loss [39–42] to provide extra constraints during learning. This
is also related to the idea of combining multiple losses for better generative
modeling [43–45]. For example, Makhzani et al. [43] proposed an adversarial
auto-encoder which takes the adversarial loss as an extra constraint for the latent
code during training the auto-encoder. Finally, the idea of factorizing image into
two separate phenomena has been well studied in [46–49], which motivates us
to decompose the generative process to structure and style. We use the RGBD
data from NYUv2 to factorize and learn a S2-GAN model.

3 Background for Generative Adversarial Networks

The Generative Adversarial Networks (GAN) [9] contains two models: generator
G and discriminator D. The generator G takes the input which is a latent random
vector z sampled from uniform noise distribution and tries to generate a realistic
image. The discriminator D performs binary classification to distinguish whether
an image is generated from G or it is a real image. Thus the two models are
competing against each other (hence, adversarial): network G will try to generate
images which will be hard for D to differentiate from real image, meanwhile
network D will learn to avoid getting fooled by G.

Formally, we optimize the networks using gradient descent with batch size M .
We are given samples as X = (X1, ..., XM) and a set of z sampled from uniform
distribution as Z = (z1, ..., zM). The training of GAN is an iterative procedure
with 2 steps: (i) fix the parameters of network G and optimize network D;
(ii) fix network D and optimize network G. The loss for training network D is,

LD(X,Z) =

M/2∑

i=1

L(D(Xi), 1) +

M∑

i=M/2+1

L(D(G(zi)), 0). (1)

Inside a batch, half of images are real and the rest G(zi) are images generated by
G given zi. D(Xi) ∈ [0, 1] represents the binary classification score given input
image Xi. L(y∗, y) = −[y log(y∗) + (1 − y)log(1 − y∗)] is the binary entropy loss.
Thus the loss Eq. 1 for network D is optimized to classify the real image as label

322 X. Wang and A. Gupta

Table 1. Network architectures. Top: generator of Structure-GAN; bottom: discrimi-
nator of Structure-GAN (left) and discriminator of Style-GAN (right). “conv” means
convolutional layer, “uconv” means fractionally-strided convolutional (deconvolutional)
layer, where 2(up) stride indicates 2x resolution. “fc” means fully connected layer.

Structure-GAN(G) fc uconv conv conv conv conv uconv conv uconv conv
Input Size − 9 18 18 18 18 18 36 36 72
Kernel Number 9 × 9 × 64 128 128 256 512 512 256 128 64 3
Kernel Size − 4 3 3 3 3 4 3 4 5
Stride − 2(up) 1 1 1 1 2(up) 1 2(up) 1

Structure-GAN(D) conv conv conv conv conv fc
Input Size 72 36 36 18 9 −
Kernel Number 64 128 256 512 128 1
Kernel Size 5 5 3 3 3 −
Stride 2 1 2 2 1 −

Style-GAN(D) conv conv conv conv conv fc
Input Size 128 64 32 16 8 −
Kernel Number 64 128 256 512 128 1
Kernel Size 5 5 3 3 3 −
Stride 2 2 2 2 1 −

1 and the generated image as 0. On the other hand, the generator G is trying to
fool D to classify the generated image as a real image via minimizing the loss:

LG(Z) =

M∑

i=M/2+1

L(D(G(zi)), 1). (2)

4 Style and Structure GAN

GAN and DCGAN approaches directly generate images from the sampled z.
Instead, we use the fact that image generation has two components: (a) gener-
ating the underlying structure based on the objects in the scene; (b) generating
the texture/style on top of this 3D structure. We use this simple observation
to decompose the generative process into two procedures: (i) Structure-GAN -
this process generates surface normals from sampled ẑ and (ii) Style-GAN - this
model generates the images taking as input the surface normals and another
latent variable z̃ sampled from uniform distribution. We train both models with
RGBD data, and the ground truth surface normals are obtained from the depth.

4.1 Structure-GAN

We can directly apply GAN framework to learn how to generate surface normal
maps. The input to the network G will be ẑ sampled from uniform distribution
and the output is a surface normal map. We use a 100-d vector to represent the
ẑ and the output is in size of 72× 72× 3 (Fig. 2). The discriminator D will learn
to classify the generated surface normal maps from the real maps obtained from
depth. We introduce our network architecture as following.

Generator Network. As Table 1 (top row) illustrates, we apply a 10-layer
model for the generator. Given a 100-d ẑ as input, it is first fully connected to a
3D block (9×9×64). Then we further perform convolutional operations on top of

Generative Image Modeling using Style and Structure Adversarial Networks 323

Fig. 2. Left: 4 Generated Surface Normal maps. Right: 2 Pairs of rendering results on
ground truth surface normal maps using the Style-GAN without pixel-wise constraints.

it and generate the surface normal map in the end. Note that “uconv” represents
fractionally-strided convolution [13], which is also called as deconvolution. We
follow the settings in [13] and use Batch Normalization [50] and ReLU activations
after each layer except for the last layer, where a TanH activation is applied.

Discriminator Network. We show the 6-layer network architecture in Table 1
(bottom left). Taking an image as input, the network outputs a single num-
ber which predicts the input surface normal is real or generated. We use
LeakyReLU [51,52] for activation functions as in [13]. However, we do not apply
Batch Normalization here. In our case, we find that the discriminator network
easily finds trivial solutions with Batch Normalization.

4.2 Style-GAN

Given the RGB images and surface normal maps from Kinect, we train another
GAN in parallel to generate images conditioned on surface normals. We call this
network Style-GAN. First, we modify our generator network to a conditional
GAN as proposed in [35,36]. The conditional information, i.e., surface normal
maps, are given as additional inputs for both the generator G and the discrim-
inator D. Augmenting surface normals as an additional input to D not only
forces the generated image to look real, but also implicitly enforces the gener-
ated image to match the surface normal map. While training this discriminator,
we only consider real RGB images and their corresponding surface normals as
the positive examples. Given more cues from surface normals, we generate higher
resolution of 128 × 128 × 3 images with the Style-GAN.

Formally, we have a batch of RGB images X = (X1, ..., XM) and their corre-
sponding surface normal maps C = (C1, ..., CM), as well as samples from noise
distribution Z̃ = (z̃1, ..., z̃M). We reformulate the generative function from G(z̃i)
to G(Ci, z̃i) and discriminative function is changed from D(Xi) to D(Ci, Xi).
Then the loss of discriminator network in Eq. 1 can be reformulated as,

LD
cond(X,C, Z̃) =

M/2∑

i=1

L(D(Ci, Xi), 1) +
M∑

i=M/2+1

L(D(Ci, G(Ci, z̃i)), 0), (3)

and the loss of generator network in Eq. 2 can be reformulated as,

LG
cond(C, Z̃) =

M∑

i=M/2+1

L(D(Ci, G(Ci, z̃i)), 1). (4)

324 X. Wang and A. Gupta

64

64

64
32

32

128

128

128

64
8

8

64
16

16
32

32

256

5x5

conv
64

5x5

conv

4x4

uconv
4x4

uconv

3x3

conv

3x3

conv

3x3

conv

4x4

uconv
4x4

uconv 4x4

uconv

5x5

conv

32

32

16

16

512 512

16

16

256

32

32

128

64

64

64

128

128 128

128

Concat
100

fc

Fig. 3. The architecture of the generator in Style-GAN.

Style

Generator

Network
Fully

Convolutional

Network

Style

Discriminator

Network

Binary

Classification
Input

Surface Normal

Estimation
Generated

Images

Real

Images

Uniform Noise

Distribution

Fig. 4. Our Style-GAN. Given the ground truth surface normals and z̃ as inputs,
the generator G learns to generate RGB images. The supervision comes from two
networks: The discriminator network takes the generated images, real images and their
corresponding normal maps as inputs to perform classification; The FCN takes the
generated images as inputs and predict the surface normal maps.

We apply the same scheme of iterative training. By doing this, we can gen-
erate the images with network G as visualized in Fig. 2 (right).

Network Architecture. We show our generator as Fig. 3. Given a 128×128×3
surface normal map and a 100-d z̃ as input, they are firstly forwarded to convo-
lutional and deconvolutional layers respectively and then concatenated to form
32 × 32 × 192 feature maps. On top of these feature maps, 7 layers of convolu-
tions and deconvolutions are further performed. The output of the network is a
128 × 128 × 3 RGB image. For the discriminator, we apply the similar architec-
ture of the one in Structure-GAN (bottom right in Table 1). The input for the
network is the concatenation of surface normals and images (128 × 128 × 6).

4.3 Multi-task Learning with Pixel-Wise Constraints

The Style-GAN can make the generated image look real and also enforce it to
match the provided surface normal maps implicitly. However, as shown Fig. 2, the
images are noisy and the edges are not well aligned with the edges in the surface
normal maps. Thus, we propose to add a pixel-wise constraint to explicitly guide
the generator to align the outputs with the input surface normal maps.

Generative Image Modeling using Style and Structure Adversarial Networks 325

Style

Generator

Network

Style

Discriminator

Network

Generated

Images

Structure

Generator

Network

Structure

Discriminator

Network

Uniform Noise

Distribution

Uniform Noise

Distribution

Generated

Normals
Generated

Normals

Fig. 5. Full model of our S2-GAN. It can directly generate RGB images given ẑ, z̃ as
inputs. For simplicity, we do not visualize the positive samples in training. During joint
learning, the loss from Style-GAN is also passed down to the Structure-GAN.

We make the following assumption: If the generated image is real enough,
it can be used for reconstructing the surface normal maps. To encode this con-
straint, we train another network for surface normal estimation. We modify the
Fully Convolutional Network (FCN) [53] with the classification loss as men-
tioned in [39] for this task. More specifically, we quantize the surface normals to
40 classes with k-means clustering as in [39,54] and the loss is defined as

LFCN (X,C) =
1

K × K

M∑

i=1

K×K∑

k=1

Ls(Fk(Xi), Ci,k), (5)

where Ls means the softmax loss and the output surface normal map is in K×K

dimension, and K = 128 is in the same size of input image. Fk(Xi) is the output
of kth pixel in the ith sample. Ci,k(1 � Ci,k � 40) is the label for the kth pixel in
sample i. Thus the loss is designed to enforce each pixel in the image to generate
accurate surface normal. Note that when training the FCN, we use the RGBD
data which provides indoor scene images and ground truth surface normals. The
model is trained from scratch without ImageNet pre-training.

FCN Architecture. We apply the AlexNet [55] following the same training
scheme as [53], with modifications on the last 3 layers. Given a generated 128 ×
128 image, it is first upsampled to 512×512 before feeding into the FCN. For the
two layers before the last layer, we use smaller kernel numbers of 1024 and 512.
The last layer is a deconvolutional layer with stride 2. In the end, upsampling
(4x resolution) is further applied to generate the high quality results.

Given the trained FCN model, we can use it as an additional supervision
(constraint) in the adversarial learning. Our final model is illustrated in Fig. 4.
During training, not only the gradients from the classification loss of D will be
passed down to G, but also the surface normal estimation loss from the FCN is
passed through the generated image to G. This way, the adversarial loss from
D will make the generated images look real, and the FCN will give pixel-wise
constraints to make the generated images aligned with surface normal maps.

Formally, we combine the two losses in Eqs. 4 and 5 for the generator G,

LG
multi(C, Z̃) = LG

cond(C, Z̃) + LFCN (G(C, Z̃),C), (6)

326 X. Wang and A. Gupta

where G(C, Z̃) represents the generated images given a batch of surface normal
maps C and noise Z̃. The training procedure for this model is similar to the
original adversarial learning, which includes three steps in each iteration:

– Fix the generator G, optimize the discriminator D with Eq. 3.
– Fix the FCN and the discriminator D, optimize the generator G with Eq. 6.
– Fix the generator G, fine-tune FCN using generated and real images.

Note that the parameters of FCN model are fixed in the beginning of multi-
task learning, i.e., we do not fine-tune FCN in the beginning. The reason is the
generated images are not good in the beginning, so feeding bad examples to FCN
seems to make the surface normal prediction worse.

4.4 Joint Learning for S2-GAN

After training the Structure-GAN and Style-GAN independently, we merge all
networks and train them jointly. As Fig. 5 shows, our full model includes surface
normal generation from Structure-GAN, and based on it the Style-GAN gener-
ates the image. Note that the generated normal maps are first passed through
an upsampling layer with bilinear interpolation before they are forwarded to the
Style-GAN. Since we do not use ground truth surface normal maps to generate
the images, we remove the FCN constraint from the Style-GAN. The discrim-
inator in Style-GAN takes generated normals and images as negative samples,
and ground truth normals and real images as positive samples.

For the Structure-GAN, the generator network receives not only the gradients
from the discriminator of Structure-GAN, but also the gradients passed through
the generator of Style-GAN. In this way, the network is forced to generate surface
normals which not only are realistic but also help generate better RGB images.
Formally, the loss for the generator network of Structure-GAN can be represented
as combining Eqs. 2 and 4,

LG
joint(Ẑ, Z̃) = LG(Ẑ) + λ · LG

cond(G(Ẑ), Z̃) (7)

where Ẑ = (ẑ1, ..., ẑM) and Z̃ = (z̃1, ..., z̃M) represent two sets of samples drawn
from uniform distribution for Structure-GAN and Style-GAN respectively. The
first term in Eq. 7 represents the adversarial loss from the discriminator of
Structure-GAN and the second term represents that the loss of the Style-GAN
is also passed down. We set the coefficient λ = 0.1 and smaller learning rate for
Structure-GAN than Style-GAN in the experiments, so that we can prevent the
generated normals from over fitting to the task of generating RGB images via
Style-GAN. In our experiments, we find that without constraining λ and learn-
ing rates, the loss LG(Ẑ) easily diverges to high values and the Structure-GAN
can no longer generate reasonable surface normal maps.

5 Experiments

We perform two types of experiments: (a) We qualitatively and quantitatively
evaluate the quality of images generates using our model; (b) We evaluate the

Generative Image Modeling using Style and Structure Adversarial Networks 327

quality of unsupervised representation learning by applying the network for dif-
ferent tasks such as image classification and object detection.

Dataset. We use the NYUv2 dataset [14] in our experiment. We use the raw
video data during training and extract 200 K frames from the 249 training video
scenes. We compute the surface normals from the depth as [39,42].

Parameter Settings. We follow the parameters in [13] for training. We trained
the models using Adam optimizer [56] with momentum term β1 = 0.5, β2 = 0.999
and batch size M = 128. The inputs and outputs for all networks are scaled to
[−1, 1] (including surface normals and RGB images). During training the Style
and Structure GANs separately, we set the learning rate to 0.0002. We train the
Structure-GAN for 25 epochs. For Style-GAN, we first fix the FCN model and
train it for 25 epochs, then the FCN model are fine-tuned together with 5 more
epochs. For joint learning, we set learning rate as 10−6 for Style-GAN and 10−7

for Structure-GAN and train them for 5 epochs.

Baselines. We have 4 baseline models trained on NYUv2 training set:
(a) DCGAN [13]: it takes uniform noise as input and generate 64 × 64 images;
(b) DCGAN + LAPGAN: we train a LAPGAN [35] on top of DCGAN, which
takes lower resolution images as inputs and generates 128 × 128 images. We
apply the same architecture as our Style-GAN for LAPGAN (Fig. 3 and Table 1).
(c) DCGANv2: we train a DCGAN with the same architecture as our Structure-
GAN (Table 1). (d) DCGANv2+LAPGAN: we train another LAPGAN on top
of DCGANv2 as (b) with the same architecture. Note that baseline (d) has the
same model complexity as our model.

5.1 Qualitative Results for Image Generation

Style-GAN Visualization. Before showing the image generation results of
the full S2-GAN model, we first visualize the results of our Style-GAN given the
ground truth surface normals on the NYUv2 test set. As illustrated in the first
3 rows of Fig. 6, we can generate nice rendering results which are well aligned
with the surface normal inputs. By comparing with the original RGB images, we
show that our method can generate a different style (illumination, color, texture)
of image with the same structure. We also make comparisons on the results of
Style-GAN with/without pixel-wise constraints as visualized in Fig. 7. We show
that if we train the model without the pixel-wise constraint, the output is less
smooth and noisier than our approach.

Rendering on Synthetic Scenes. One application of our Style-GAN is ren-
dering synthetic scenes. We use the 3D models annotated in [57] to generate the
synthetic scenes. We use the scenes corresponding to the NYUv2 test set and
make some modifications by rotation, zooming in/out. As the last two rows of
Fig. 6 show, we can obtain very realistic rendering results on 3D models.

S2-GAN Visualization. We now show the results of our full generative model.
Given the noise ẑ, z̃, our model generate both surface normal maps (72×72) and

328 X. Wang and A. Gupta

Input Output Original Input Output Original Input Output Original

Input Output Input Output Input Output Input Output

Fig. 6. Results of Style-GAN conditioned on ground truth surface normals (first 3
rows) and synthetic scenes (last 2 rows). For ground truth normals, we show the input
normals, our generated images and the original corresponding images.

Fig. 7. Comparison between models with and without pixel-wise constraints.

RGB images (128 × 128) after that, as shown in Fig. 8(a). We compare with the
baselines including DCGAN (Fig. 8(b)) and DCGAN + LAPGAN (Fig. 8(c)).
We can see that our method can generate more structured indoor scenes, i.e., it
is easier to figure out the structure and objects in our image. We also find that
using LAPGAN does not help much improving the qualitative results.

Walking the Latent Space. One big advantage of our model is that it is
interpretable. Recall that we have two random uniform vectors ẑ, z̃ as inputs for
Structure and Style networks. We conduct two experiments here: (i) Fix z̃ (style)
and manipulate the structure of images by changing ẑ; (ii) Fix ẑ (structure) and
manipulate the style of images by changing z̃. Specifically, given an initial set of

Generative Image Modeling using Style and Structure Adversarial Networks 329

Fig. 8. (a) Pairs of surface normals and images generated by S2-GAN. (b) Results of
DCGAN. (c) Results of DCGAN + LAPGAN. For each pair, result on the left is from
DCGAN and on the right is applying LAPGAN after it.

ẑ and z̃, we pick up a series of 10 random points in ẑ or z̃ and gradually add 0.1
to these points for 6–7 times. We show that we can obtain smooth transitions
in the outputs by interpolating the inputs as Fig. 9. For the example in the first
two rows of Fig. 9, we show that by interpolating ẑ, we can gradually “grow”
a 3D cube in the room and the style of the RGB images are consistent since
we fix the z̃. For the last rows in Fig. 9, we fix the structure of the image and
interpolate the z̃ so that the window of the room is gradually shut down.

User Study. We collect 1000 pairs of images randomly generated by our method
and DCGAN. We let the AMT workers to judge which one is more realistic in
each pair and 71% of the time they think our approach generates better images.

5.2 Quantitative Results for Image Generation

To evaluate the generated images quantitatively, we apply the AlexNet pre-
trained (supervised) on Places [58] and ImageNet dataset [59] to perform classi-
fication and detection on them. The motivation is: If the generated images are
realistic enough, state of the art classifiers and detectors should fire on them
with high scores. We compare our method with the three baselines mentioned in
the beginning of experiment: DCGAN, DCGANv2 and DCGANv2 + LAPGAN.
We generate 10 K images for each model and perform evaluation on them.

Classification on Generated Images. We apply the Places-AlexNet [58] to
perform classification on the generated images. If the image is real enough, the

330 X. Wang and A. Gupta

Fix Structure

&

Change Style

Fix Structure

&

Change Style

Fix Style

&

Change

Structure

Fix Style

&

Change

Structure

Fig. 9. Walking the latent space: Our latent space is more interpretable and we obtain
smooth transitions of generated results by interpolating the inputs.

Places-AlexNet will give high response in one class during classification. Thus,
we can use the maximum norm || · ||∞ of the softmax output (i.e., the maximum
probability) of Places-AlexNet to represent the image quality. We compute the
results for this metric on all generated images and show the mean for different
models as Fig. 10(a). S2-GAN is around 2% better than the baselines.

Object Detection on Generated Images. We used Fast-RCNN detector [60]
fine-tuned on the NYUv2 dataset with ImageNet pre-trained AlexNet. We then
apply the detector on generated images. If the image is realistic enough, the
detector should find objects (door, bed, sofa, table, counter etc.). Thus, we want
to investigate on which images the detector can find more foreground objects. We
plot the curves shown in Fig. 10(b) (the x-axis represents the detection threshold,
and the y-axis represents average number of detections). We show that the detec-
tor can find more foreground objects in the images generated by S2-GAN. At
0.3 threshold, there are on average 2.2 detections per image and 1.72 detections
on images generated by DCGAN.

5.3 Representation Learning for Recognition Tasks

We now explore whether the representation learned by the discriminator network
in our Style-GAN can be transferred to tasks such as scene classification and
object detection. Since the input for the network is RGB image and surface

Generative Image Modeling using Style and Structure Adversarial Networks 331

(a) Classification on generated images.

(b) Object detection on generated images.

S2-GAN

Maximum

Norm

DCGAN DCGANv2 DCGANv2 +

LAPGAN

29.0 25.6 27.1 27.2

S2-GAN

RGB Accuracy

DCGAN GIST Places-AlexNet

- 21.3 19.7

D Accuracy

RGBD Accuracy

-

35.3

19.1

27.1

20.1

23.0

38.1

27.7

39.0

(c) Classification on SUN RGB-D dataset.

Fig. 10. (a) The maximum norm of classification results on generated images.
(b) Number of fires over different thresholds for object detection on generated images.
(c) Scene classification on SUN RGB-D with our model and other methods (no fine-
tuning).

normal map, our model can be applied to recognition tasks in RGBD data. We
perform the experiments on scene classification on SUN RGB-D dataset [14,61–
63] as well as object detection on NYUv2 dataset.

Scene Classification. We use the standard train/test split for scene classi-
fication in SUN RGB-D dataset, which includes 19 classes with 4852 training
and 4660 testing images. We use our model, taking RGB images and normals as
inputs, to extract the feature of the second-to-last layer and train SVM on top of
it. We compare our method with the discriminator network in DCGAN and the
baselines reported in [61]: GIST [64] feature as well as Places-AlexNet [58]. For
the networks trained with only RGB data, we follow [61,65], which directly use
them to extract feature on the depth representation. Then the features extracted
from both RGB and depth are concatenated together as inputs for SVM classi-
fier. Note that all models are not fine-tuned on the dataset. As Fig. 10(c) shows,
our model is 8.2% better than DCGAN and 3.7% away from the Places-AlexNet.

Object Detection. In this task, we perform RGBD object detection on the
NYUv2 dataset. We follow the Fast-RCNN pipeline [60] and use the code and
parameter settings provided in [66]. In our case, we use surface normal to rep-
resent the depth. To apply our model for the detection task, we stacked two
fully connected layer (4096-d) on top of the last convolutional layer and fine-
tune the network end-to-end. We compare against four baselines: network with
the same architecture trained from scratch, network pre-trained with DCGAN,
DCGANv2, and ImageNet pre-trained AlexNet. For networks pre-trained on
only RGB data, we fine-tune them on both the RGB and surface normal inputs
separately and average the detection results during testing as [66]. We apply
Batch Normalization [50] except for ImageNet pre-trained AlexNet. We show
the results in Table 2. Our approach has 1.5% improvement compared to the
model trained from scratch.

332 X. Wang and A. Gupta

Table 2. Detection results on NYU test set.

mean bath bed book box chair counter desk door dresser garbage lamp monitor night pillow sink sofa table tele toilet
tub shelf bin stand vision

Ours 32.4 44.0 67.7 28.4 1.6 34.2 43.9 10.0 17.3 33.9 22.6 28.1 24.8 41.7 31.3 33.1 50.2 21.9 25.1 54.9
Scratch 30.9 35.6 67.7 23.1 2.1 33.1 40.5 10.1 15.2 31.2 19.4 26.8 29.1 39.9 30.5 36.6 43.8 20.4 29.5 52.8
DCGAN 30.4 38.9 67.6 26.3 2.9 32.5 39.1 10.6 16.9 23.6 23.0 26.5 25.1 44.5 29.6 37.0 45.2 21.0 28.5 38.4

DCGANv2 31.1 35.3 69.0 21.5 2.0 32.6 36.4 9.8 14.4 30.8 25.4 29.2 27.3 39.6 32.2 34.6 47.9 21.1 27.2 54.4
Imagenet 37.6 33.1 69.9 39.6 2.3 38.1 47.9 16.1 24.6 40.7 26.5 37.8 45.6 49.5 36.1 34.5 53.2 25.0 35.3 58.4

6 Conclusion

We present a novel Style and Structure GAN which factorizes the image gen-
eration process. We show our model is more interpretable and generates more
realistic images compared to the baselines. We also show that our method can
learn RGBD representations in an unsupervised manner.

Acknowledgement. This work was supported by ONR MURI N000141010934, ONR
MURI N000141612007 and gift from Google. The authors would also like to thank
David Fouhey and Kenneth Marino for many helpful discussions.

References

1. Doersch, C., Gupta, A., Efros, A.A.: Context as supervisory signal: discovering
objects with predictable context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars,
T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 362–377. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-10578-9 24

2. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning
by context prediction. In: ICCV (2015)

3. Wang, X., Gupta, A.: Unsupervised learning of visual representations using videos.
In: ICCV (2015)

4. Goroshin, R., Bruna, J., Tompson, J., Eigen, D., LeCun, Y.: Unsupervised learning
of spatiotemporally coherent metrics. In: ICCV (2015)

5. Zou, W.Y., Zhu, S., Ng, A.Y., Yu, K.: Deep learning of invariant features via
simulated fixations in video. In: NIPS (2012)

6. Li, Y., Paluri, M., Rehg, J.M., Dollar, P.: Unsupervised learning of edges. In: CVPR
(2016)

7. Walker, J., Gupta, A., Hebert, M.: Dense optical flow prediction from a static
image. In: ICCV (2015)

8. Misra, I., Zitnick, C.L., Hebert, M.: Shuffle and learn: unsupervised learning using
temporal order verification. In: ECCV (2016)

9. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS (2014)

10. Kingma, D., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)
11. Gregor, K., Danihelka, I., Graves, A., Rezende, D.J., Wierstra, D.: Draw: a recur-

rent neural network for image generation. CoRR abs/1502.04623 (2015)
12. Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: ICML

(2014)
13. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with

deep convolutional generative adversarial networks. CoRR abs/1511.06434 (2015)

http://dx.doi.org/10.1007/978-3-319-10578-9_24

Generative Image Modeling using Style and Structure Adversarial Networks 333

14. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support
inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y.,
Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33715-4 54

15. Agrawal, P., Carreira, J., Malik, J.: Learning to see by moving. In: ICCV (2015)
16. Jayaraman, D., Grauman, K.: Learning image representations tied to ego-motion.

In: ICCV (2015)
17. Owens, A., Isola, P., McDermott, J., Torralba, A., Adelson, E., Freeman, W.:

Visually indicated sounds. In: CVPR (2016)
18. Pinto, L., Gupta, A.: Supersizing self-supervision: learning to grasp from 50 k tries

and 700 robot hours. In: ICRA (2016)
19. Pinto, L., Gandhi, D., Han, Y., Park, Y.L., Gupta, A.: The curious robot: learning

visual representations via physical interactions. In: ECCV (2016)
20. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: ICCV

(1999)
21. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. In:

Computer Graphics and Applications (2002)
22. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training

of deep networks. In: NIPS (2007)
23. Le, Q.V., Ranzato, M.A., Monga, R., Devin, M., Chen, K., Corrado, G.S., Dean,

J., Ng, A.Y.: Building high-level features using large scale unsupervised learning.
In: ICML (2012)

24. Ranzato, M.A., Krizhevsky, A., Hinton, G.E.: Factored 3-way restricted Boltzmann
machines for modeling natural images. In: AISTATS (2010)

25. Osindero, S., Hinton, G.E.: Modeling image patches with a directed hierarchy of
Markov random fields. In: NIPS (2008)

26. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with
neural networks. Science 313, 504–507 (2006)

27. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations. In: ICML (2009)

28. Taylor, G.W., Hinton, G.E., Roweis, S.: Modeling human motion using binary
latent variables. In: NIPS (2006)

29. Mansimov, E., Parisotto, E., Ba, J.L., Salakhutdinov, R.: Generating images from
captions with attention. CoRR abs/1511.02793 (2015)

30. Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.B.: Deep convolutional
inverse graphics network. In: NIPS (2015)

31. Dosovitskiy, A., Springenberg, J.T., Brox, T.: Learning to generate chairs with
convolutional neural networks. In: CVPR (2015)

32. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Single-view to multi-view: reconstruct-
ing unseen views with a convolutional network. CoRR abs/1511.06702 (2015)

33. Theis, L., Bethge, M.: Generative image modeling using spatial LSTMs. CoRR
abs/1506.03478 (2015)

34. Oord, A.V.D., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks.
CoRR abs/1601.06759 (2016)

35. Denton, E., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models
using a laplacian pyramid of adversarial networks. In: NIPS (2015)

36. Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR
abs/1411.1784 (2014)

37. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond
mean square error. CoRR abs/1511.05440 (2015)

http://dx.doi.org/10.1007/978-3-642-33715-4_54

334 X. Wang and A. Gupta

38. Im, D.J., Kim, C.D., Jiang, H., Memisevic, R.: Generating images with recurrent
adversarial networks. CoRR abs/1602.05110 (2016)

39. Wang, X., Fouhey, D.F., Gupta, A.: Designing deep networks for surface normal
estimation. In: CVPR (2015)

40. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with
a common multi-scale convolutional architecture. In: ICCV (2015)

41. Fouhey, D.F., Gupta, A., Hebert, M.: Data-driven 3D primitives for single image
understanding. In: ICCV (2013)

42. Ladický, L., Zeisl, B., Pollefeys, M.: Discriminatively trained dense surface nor-
mal estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV
2014. LNCS, vol. 8693, pp. 468–484. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-10602-1 31

43. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.J.: Adversarial autoencoders.
CoRR abs/1511.05644 (2015)

44. Larsen, A.B.L., Sønderby, S.K., Winther, O.: Autoencoding beyond pixels using a
learned similarity metric. CoRR abs/1512.09300 (2015)

45. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics
based on deep networks. CoRR abs/1602.02644 (2016)

46. Barrow, H.G., Tenenbaum, J.M.: Recovering intrinsic scene characteristics from
images. In: Computer Vision Systems (1978)

47. Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear mod-
els. In: Neural Computation (2000)

48. Fouhey, D.F., Hussain, W., Gupta, A., Hebert, M.: Single image 3D without a
single 3D image. In: ICCV (2015)

49. Zhu, S.C., Wu, Y.N., Mumford, D.: Filters, random fields and maximum entropy
(frame): towards a unified theory for texture modeling. In: IJCV (1998)

50. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. CoRR abs/1502.03167 (2015)

51. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: ICML (2013)

52. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations
in convolutional network. CoRR abs/1505.00853 (2015)

53. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR (2015)

54. Ladický, L., Shi, J., Pollefeys, M.: Pulling things out of perspective. In: CVPR
(2014)

55. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS (2012)

56. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014)

57. Guo, R., Hoiem, D.: Support surface prediction in indoor scenes. In: ICCV (2013)
58. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features

for scene recognition using places database. In: NIPS (2014)
59. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large
scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

60. Girshick, R.: Fast r-cnn. In: ICCV (2015)
61. Song, S., Lichtenberg, S., Xiao, J.: Sun RGB-D: a RGB-D scene understanding

benchmark suite. In: CVPR (2015)

http://dx.doi.org/10.1007/978-3-319-10602-1_31
http://dx.doi.org/10.1007/978-3-319-10602-1_31

Generative Image Modeling using Style and Structure Adversarial Networks 335

62. Janoch, A., Karayev, S., Jia, Y., Barron, J., Fritz, M., Saenko, K., Darrell, T.: A
category-level 3-D object dataset: Putting the kinect to work. In: Workshop on
Consumer Depth Cameras in Computer Vision (with ICCV) (2011)

63. Xiao, J., Owens, A., Torralba, A.: SUN3D: a database of big spaces reconstructed
using SfM and object labels. In: ICCV (2013)

64. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation
of the spatial envelope. IJCV 42, 145–175 (2011)

65. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from RGB-
D images for object detection and segmentation. In: Fleet, D., Pajdla, T., Schiele,
B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345–360. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-10584-0 23

66. Gupta, S., Hoffman, J., Malik, J.: Cross modal distillation for supervision transfer.
In: CVPR (2016)

http://dx.doi.org/10.1007/978-3-319-10584-0_23

	Generative Image Modeling Using Style and Structure Adversarial Networks
	1 Introduction
	2 Related Work
	3 Background for Generative Adversarial Networks
	4 Style and Structure GAN
	4.1 Structure-GAN
	4.2 Style-GAN
	4.3 Multi-task Learning with Pixel-Wise Constraints
	4.4 Joint Learning for S2-GAN

	5 Experiments
	5.1 Qualitative Results for Image Generation
	5.2 Quantitative Results for Image Generation
	5.3 Representation Learning for Recognition Tasks

	6 Conclusion
	References

