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Abstract

This paper discusses a new, symbolic approach to geometric modeling called

generative modeling. The approach allows specification, rendering, and

analysis of a wide variety of shapes including 3D curves, surfaces, and

solids, as well as higher-dimensional shapes such as surfaces deforming in

time, and volumes with a spatially varying mass density. The system also

supports powerful operations on shapes such as “reparameterize this curve

by arclength”, “compute the volume, center of mass, and moments of inertia

of the solid bounded by these surfaces”, or “solve this constraint or ODE

system”. The system has been used for a wide variety of applications, in-

cluding creating surfaces for computer graphics animations, modeling the

fur and body shape of a teddy bear, constructing 3D solid models of elastic

bodies, and extracting surfaces from magnetic resonance (MR) data.

Shapes in the system are specified using a language which builds multidi-

mensional parametric functions. The language is based on a set of symbolic

operators on continuous, piecewise differentiable parametric functions. We

present several shape examples to show how conveniently shapes can be

specified in the system. We also discuss the kinds of operators useful in

a geometric modeling system, including arithmetic operators, vector and

matrix operators, integration, differentiation, constraint solution, and con-

strained minimization. Associated with each operator are several methods,

which compute properties about the parametric functions represented with

the operators. We show how many powerful rendering and analytical opera-

tions can be supported with only three methods: evaluation of the parametric

function at a point, symbolic differentiation of the parametric function, and

evaluation of an inclusion function for the parametric function.

Like CSG, and unlike most other geometric modeling approaches, this

modeling approach is closed, meaning that further modeling operations can

be applied to any results of modeling operations, yielding valid models. Be-

cause of this closure property, the symbolic operators can be composed very

flexibly, allowing the construction of higher-level operators without chang-

ing the underlying implementation of the system. Because the modeling

operations are described symbolically, specified models can capture the de-

signer’s intent without approximation error.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and

Object Modeling – curve, surface, solid, and object representations; geo-

metric algorithms, languages, and systems

Additional Key Words: geometric modeling, parametric shape, sweep

1 Introduction

One way of representing a limited class of shapes uses sweeps. A sweep rep-

resents a shape by moving an object (called a generator) along a trajectory

through space. The simplest sweeps are extrusions and surfaces of revo-

lution, which sweep 2D curves. Sweeps whose generator can change size,

orientation, or shape are called general sweeps. General sweeps that use 2D

curve generators are called generalized cylinders [BINF71].

Several researchers have studied sweeps [GOLD83,CARL82b,WANG86,

COQU87]. Barr’s spherical product [BARR81], is an example of a sweep

that uses a constant 2D curve generator with translation and scaling. Carlson

[CARL82b] introduced the idea of varying the sweep generator. Wang and

Wang [WANG86] explored sweeps of surfaces for use in manipulating nu-

merically controlled milling machine cutter paths. Sweeps have been used in

solid modeling systems for many years (e.g., GMSolid, ROMULUS). Loss-

ing and Eshleman [LOSS74] developed a system using sweeps of constant

2D curves. Alpha 1, a modeling system developed at the University of Utah,

has a much more sophisticated sweeping facility [COHE83].

One of the advantages of sweeps is their naturalness, compactness, and

controllability in representing a large class of man-made objects. For exam-

ple, an airplane wing is naturally viewed as an airfoil cross section which is

translated from the root to the tip of the wing. At the same time its thickness

is modified, it is twisted, swept back, and translated vertically according to

other schedules. Two crucial questions remain concerning how sweeps fit

into a general shape design and manipulation program:

�
how can sweeps be specified by the human designer in a general and

powerful way?

�
what tools are appropriate to allow swept shapes to be rendered and

simulated?

The generative modeling approach presented here extends the kinds of

sweeps that can be conveniently specified, and provides high-level tools for

their rendering and simulation. The approach specifies sweeps procedurally,

in a fashion similar to other procedural specification methods in computer

graphics: shade trees [COOK84], Perlin’s texturing language [PERL85],

and the POSTSCRIPT language [ADOB85].

A prototype system called GENMOD has been developed implementing

these ideas, which includes a C interpreter, a curve editor, methods for sev-

eral dozen primitive symbolic operators, and a multidimensional visualiza-

tion library. While each piece of the system is fairly simple, we have found

that combining all the pieces into a single system produces an extremely

powerful geometric modeling tool.

2 Generative Modeling Overview

A generative model is a shape generated by the continuous transformation

of a shape called the generator. As an example, consider a curve generator
✁ (u): R 1 ✂ R3, and a parameterized transformation, ✄ (p ☎ v): R 3 ✆ R ✂ R3 ,

that acts on points p ✝ R 3 given a parameter v. A generative surface, S(u ☎ v),

may be formed consisting of all the points generated by the transformation

✄ acting on the curve ✁ , i.e.,

S(u ☎ v) = ✄ (✁ (u) ☎ v)

A cylinder is an example of a generative model. The generator, a circle

in the xy plane, is translated along the z axis. The set of points generated as

the circle is translated yield a cylinder. Mathematically, the generator and



transformation for a cylinder are

✁ (u) =

�
cos(2✁ u)

sin(2✁ u)

0 ✂ ✄ (p ☎ v) =

�
p1

p2

p3 + v ✂
yielding the surface

S(u ☎ v) = ✄ (✁ (u) ☎ v) =

�
cos(2✁ u)

sin(2✁ u)

v ✂
2.1 Parametric Functions and the Closure Property

If a generator is expressed as a parametric function, then a generative model

built by transforming this generator is also a parametric function. General-

izing from the cylinder example, let a generator be represented by the para-

metric function

F(x): R l ✂ Rm

A continuous set of transformations can be represented as a parameterized

transformation

T(p; q): R m ✆ Rk ✂ Rn

where p ✝ Rm is a point to be transformed, and q ✝ R k is an additional

parameter that defines a continuous set of transformations. The generative

model is the parametric function 1

T(F(x); q): R l+k ✂ Rn

The ability to use a generative model as a generator in another genera-

tive model will be called the closure property of the generative modeling

representation. The use of parametric generators and transformations yields

closure because transformation of a generator can be expressed as a simple

composition of parametric functions, resulting in another parametric func-

tion. In fact, the use of parametric generators and transformations blurs the

distinction between generator and transformation. Both are parametric func-

tions; the domain of a generator must be completely specified, while the

domain of a transformation is partly specified and partly determined as the

image of a generator.

2.2 Terminology

Let F: Rn ✂ Rm be a parametric function with scalar variables

x1 ☎ x2 ☎ ✄ ✄ ✄ ☎ xn, called the parametric variables or parametric coordinates.

The number of parametric coordinates on which F depends, n, is called the

input dimension of the parametric function. The number of components in

the result of F, m, is called the output dimension of the parametric function.

In this work, the domain of F is a rectilinear region of R n , called a hyper-
rectangle, of the form:

[a1 ☎ b1] ✆ [a2 ☎ b2] ✆ ✄ ✄ ✄ ✆ [an ☎ bn]

Hyper-rectangles are convenient for sampling and integration of the para-

metric functions in a computer implementation. The image of F over a spec-

ified hyper-rectangle defines the shape of interest.

2.3 Operators and Methods

One way of specifying parametric functions is by selecting a set of opera-
tors. An operator is a function that takes parametric functions as input and

produces a parametric function as output. For example, addition is an op-

erator that acts on two parametric functions f and g, and produces a new

parametric function, f + g. The addition operator is recursive, in that we can

continue to use it on its own results or on the results of other operators, in

order to build more complicated parametric functions (e.g., (f + g) + h).

Like the addition operator, all operators in the system are recursive; their

results can be used as inputs to other operators. 2 Together with the closure

1More precisely, the generative model is the set of points in the image of T(F(x); q) over a domain

U ☎ Rl+k .
2It shouldbe noted that the result of an operator can not always beused as input to another operator.

Operators may constrain the output dimensionof their arguments (e.g., an operator may accept only a

scalar functionas an argument and prohibit the useof functions of higheroutput dimension). Inspecial

circumstances, it may be desirable to constrain other properties of operator arguments. For example,

property of parametric generators, this recursive nature of operators yields

a modeling system with closure. That is, the designer is not prevented from

using any reasonable combination of operations to specify shapes. For ex-

ample, the addition operator can be applied to parametric functions of any

input dimension ( e.g., curves or surfaces). It can also be applied to paramet-

ric functions of any output dimension, to perform vector addition, as long as

the output dimension of its two arguments is identical.

Of course, it is not enough to represent parametric functions; we must also

be able to compute properties about the parametric functions for rendering

and analysis. Such computations can be implemented by defining a set of

methods for each operator. One method evaluates the parametric function at

a point in its parameter space. Other methods include symbolic differentia-

tion of the parametric function and evaluation of an inclusion function (see

[SNYD92a] for a discussion of inclusion functions). Section 3.2 discusses

methods in more detail.

3 Symbolic Operators

3.1 Specific Operators

In this section, we examine specific operators that form a basis for a flexible

variety of shapes. This set of operators will be used in Section 4 to show the

capability of the generative modeling approach for combining such operators

to build interesting shapes.

Elementary Operators Elementary operators include constants, paramet-

ric coordinates, arithmetic operators, square root, trigonometric functions,

exponentiation, and logarithm. 3 The constant operator represents a paramet-

ric function with a real, constant value, such as f (x) = 2 ✆5 . The parametric

coordinate operator represents a particular parametric coordinate, such as

f (x) = x 2, where x2 is the second component of the parametric domain, in

a global coordinate system. Arithmetic operators are addition, subtraction,

multiplication, division, and negation of parametric functions. They are use-

ful for such geometric operations as scaling and interpolation, and in many

other more complicated operations. They can also be combined to represent

bicubic patches, NURBS, and other parametric polynomials.

Other elementary operators are useful in special circumstances. The

square root operator, for example, is useful to compute the distance between

points. The sine and cosine operators are useful in building parametric cir-

cles and arcs.

Vector and Matrix Operators Vector operators are projection, cartesian

product, vector length, dot product, and cross product. Projection and carte-

sian product allow extraction and rearrangement of coordinates of paramet-

ric functions. Vector length, dot product, and cross product find many appli-

cations in defining geometric constraints on parameterized shapes.

Vector operator analogs of the arithmetic operators are also useful for ge-

ometric modeling. These operators include addition and subtraction of vec-

tors, and multiplication and division of vectors by scalars. Matrix operators

include multiplication and addition of matrices, matrix determinant, and in-

verse. Matrix multiplication is especially useful to define affine transforma-

tions, which are used extensively in simple sweeps (see Section 4.2). While

these operators can be defined in terms of simple projection, cartesian prod-

uct, and arithmetic operators, they are included as primitive operators for the

sake of efficiency.

Differentiation and Integration Operators The differentiation operator

returns the partial derivative of a parametric function with respect to one of

its parametric coordinates. This is useful, for example, in finding tangent or

normal vectors on curves and surfaces.

The integration operator integrates a parametric function with respect to

one of its parametric coordinates, given two parametric functions represent-

ing the upper and lower limits of integration. For example, the function

a(u ✝v)

b(u)

s(v ☎ ✞ )d✞
the inversion operator expects its argument to be a monotonic scalar function. In this context, closure

of the set of operators implies that an operator not arbitrarily prohibit any “reasonable” arguments,

given the nature of the operator.
3GENMOD contains many more simple operators like these, listed in [SNYD92b].



can be formed by the integration operator applied to three parametric func-

tions, where s(v ☎ ✞ ) is the integrand, a(u ☎ v) the upper limit of integration,

and b(u) the lower limit of integration. In general, parametric functions hav-

ing any number of input parameters can be used as the integrand, or limits of

integration. Integration can be used to compute arclength of curves, surface

area of surfaces, and volumes and moments of inertia of solids.

Indexing and Branching Operators A useful operation in geometric

modeling is concatenation, the piecewise linking together of a collec-

tion of shapes. For example, the concatenation of the set of n curves
✁

1(u) ☎ ✁ 2(u) ☎ ✄ ✄ ✄ ☎ ✁
n(u), each defined over the parametric variable u ✝

[0 ☎ 1], may be defined as

✁ (u) = �✁✂✁✄
✁

1(nu) u ✝ [0 ☎ 1☎ n]
✁

2(nu ✆ 1) u ✝ (1☎ n ☎ 2☎ n]

.

.

.
✁

n(nu ✆ (n ✆ 1)) u ✝ ((n ✆ 1)☎ n ☎ 1]

The concatenation of surfaces or functions with many parameters can be

defined similarly, where the concatenation is done with respect to one of the

coordinates. This kind of concatenation is uniform concatenation, because

each concatenated segment is defined in an interval of equal length (1☎ n) in

parameter space. It is commonly used in defining piecewise cubic curves

such as B-splines.

Uniform concatenation is implemented using an indexingoperator, which

takes as input an array of parametric functions and an index function that

controls which function is to be evaluated. Given the same ✁
i(u) curves

used in the previous example, and an index function q(x), the index operator

is defined as

index(q(x) ☎ ✁
1(u) ☎ ✄ ✄ ✄ ☎ ✁

n(u)) = ✁ ✝
q(x)

✞ (u)

where q(x) = nu results in the uniform concatenation of the ✁
i functions.

In addition to the indexing operator, it is also useful to have a substitution
operator to define uniform concatenation. The substitution operator sym-

bolically substitutes a given parametric function for one of the parametric

coordinates of another parametric function. For example, this can be used to

represent ✁
i(nu ✆ (i ✆ 1)) given ✁

i(u), by substituting the function nu ✆ (i ✆ 1)

for the parametric coordinate u.

The index operator is a special case of a branching operator, an operator

that takes as input a sequence of conditional functions and evaluation func-

tions. The result of the branching operator is the result of the first evaluation

function whose corresponding conditional is true. This multiway branch op-

erator can be used to define a nonuniform concatenation of parametric func-

tions where each concatenated segment need not be defined on an equally

sized interval. Branching operators are also useful for finding the minimum

and maximum of a pair of functions, for defining deformations that act only

on certain parts of space, and for detecting error conditions (e.g., taking the

square root of a negative number, or normalizing a zero length vector).

Relational and Logical Operators In order to support the definition of

useful conditional expressions for the branching operators (and the con-

straint solution operator to be presented), we include the standard mathe-

matical relational operators such as equality, inequality, greater than, etc.,

and the logical operators (such as “and”, “or”, and “not”).

Curve and Table Operators Curve and table operators allow shapes to be

specified from data produced outside the system. The curve operator spec-

ifies continuous curves such as piecewise cubic splines, produced using an

interactive curve editor. The table operator is used to specify an interpolation

of a multidimensional data set (GENMOD implements both linear and bicu-

bic interpolation). For example, a simulation program may produce data

defined over a discrete collection of points on a solid. The table operator

interpolates this data to yield a continuous parametric function.

Inversion Operator Inversion of monotonic functions can be used, for

example, to reparameterize a curve by arclength, as shown in Figure 1. Let
✁ (t) be a continuous curve specifying the object’s trajectory, starting at t = 0

and ending at t = 1. The arclength along ✁ , ✁
arc(t) is given by

✁
arc(t) =

t

0 ✟ ✁ ✠ (✞ ) ✟ d✞

original reparameterized by arclength

Figure 1: A parametric curve is reparameterized by arclength. Each dot

represents a point on the curve along uniform increments of the curve’s input

parameter.

The integration and differentiation operators mentioned previously serve to

define ✁
arc . The reparameterization of ✁ by arclength, ✁

new, is then given

by4

✁
new(s) = ✁ ✡ ✁ ☛ 1

arc ☞ s ✁
arc(1)✌ ✍

This reparameterization involves the inversion of the monotonic arclength

function, ✁
arc .

Many other useful operations can also be formulated in terms of the inver-

sion of monotonic functions, including the reparameterizing of curves and

surfaces so that their parameters are matched by arclength, polar angle, or

output coordinate to some other curve or surface. Inversion of monotonic

functions in a single variable may be computed using fast algorithms, such

as Brent’s method [PRES86].

Constraint Solution Operator The constraint solution operator takes a

parametric function representing a system of constraints, and produces a so-

lution to the constrained system or an indication that no solution exists. 5 Two

forms of solution are useful: finding any point that solves the system, or find-

ing all points that solve it, assuming there is a finite set of solutions. 6 The

operator also requires a parametric function specifying the hyper-rectangle

in which to solve the constraints.

For example, the constraint solution operator can be used to find an inter-

section between two planar curves. Let ✁ 1(s) and ✁ 2(t) be two curves in R 2 .

These curves could be represented using the curve operator of Section 3.1,

or any of the other operators. The appropriate constraint is

F(s ☎ t) ✎ (✁ 1(s) = ✁ 2(t))

which can be represented using the equality relational operator. The con-

straint solution operator applied to F produces a constant function repre-

senting a point, (s ☎ t), where the two curves intersect. Such an operation can

be used to define boolean operations on planar areas bounded by parametric

curves, which we will use in the screwdriver tip example of Section 4.4.

The constraint system can also be solved over a subset of its parameters,

to yield a non-constant parametric function. For example, the constraint

system ✁ 1(r ☎ s) = ✁ 2(t) can be solved over s and t, resulting in a function that

depends on r. The user therefore specifies not only a parametric function

representing the constraint system, but also which parametric coordinates

the system should be solved over, and which coordinates parameterize the

system.

Constraint solution has application to problems involving intersection,

collision detection, and finding appropriate parameters for parameterized

shapes. A robust algorithm for evaluating this operator uses interval analy-

sis, and is described in [SNYD92a].

4The s parameter of ✏ new actually represents “normalized” arclength, in that s varies between 0

and 1 to traverse the original curve ✏ , and equal distances in s represent equal distances in arclength

on the curve.
5Note that inversion operator of the previous section is a special case of the constraint solution

operator.
6One form of the constraint solution operator producesa single solution, with an output dimension

equal to the number of coordinates over which the constraint is solved. The other form returns the

number of solutions as one output coordinate, followed by the solution points. The concatenated

array of solution points is padded to some maximum length, n, specifiedby the user. Padding is done

because parametric functions in GENMOD always have a fixed output dimension. The second form

thus has output dimension n + 1.



Constrained Minimization Operator The constrained minimization op-

erator takes two parametric functions representing a system of constraints

and an objective function, and produces a point that globally minimizes the

objective function, subject to the constraints. The operator also requires a

parametric function specifying a hyper-rectangle in which to perform the

minimization. The minimization operator has many applications to geomet-

ric modeling, including

�
finding intersections of rays with surfaces

�
finding the point on a shape closest to given point

� finding the minimum distance between shapes

� finding whether a point is inside or outside a region defined with para-

metric boundaries

A robustalgorithm for evaluating parametric functions defined with the min-

imization operator uses interval analysis, and is described in [SNYD92a].

ODE Solution Operator The ODE operator solves a first order, initial

value ordinary differential equation. It is useful for defining limited kinds

of physical simulations within the modeling environment. For example, we

can simulate rigid body mechanics, or find flow lines through vector fields.

Figure 12 illustrates the results of the ODE operator for a simple simulation

specified entirely in GENMOD.

Let f be a specified parametric function of the form

f (t ☎ y1 ☎ y2 ☎ ✄ ✄ ✄ ☎ yn): Rn+1 ✂ Rn

The ODE operator returns the solution y(t) to the system of n first order

equations
dy

dt
= f (t ☎ y)

with the initial condition

y(t0) = y 0

Parameterized ODEs, in which f and y 0 (and thus the result y) depend on an

additional m parameters x 1 ☎ ✄ ✄ ✄ ☎ xm, are also allowed. The user supplies the

ODE operator with an indication of which parametric coordinates of f are

the t and y i variables, and which are the additional parameters x i.

GENMOD implements the ODE operators using a Numerical Algorithms

Group(NAG) ODE solver. Similar operators, for solution of boundary value

problems and PDEs, are also useful in a geometric modeling environment,

but have not been implemented in the present GENMOD system.

3.2 Operator Methods

Let P be an operator that takes n parametric functions as inputs and produces

the parametric function p = P(f 1 ☎ ✄ ✄ ✄ ☎ fn). A method for P is a function that

can be evaluated by evaluating similar methods for the functions f 1 ☎ ✄ ✄ ✄ ☎ fn .

A method on parametric functions is called locally recursive for P if its re-

sult on p is completely determined by the set of its results on each of the

n parametric functions f 1 ☎ ✄ ✄ ✄ ☎ fn . Thus, a method to evaluate a parametric

function at a point in parameter space is locally recursive for the addition

operator because f + g can be evaluated by evaluating f , evaluating g, and

adding the result. A method to symbolically integrate a parametric function

is not locally recursive for the division operator, because � f ☎ g can not be

computed given only � f and � g. Generally, a locally recursive method

can be simply implemented and efficiently computed.

We now examine specific methods useful in a geometric modeling system.

Evaluation at a Point Computation of points on a shape is necessary to

approximate the shape for visualization and simulation. A method to evalu-

ate a parametric function at a point in parameter space is locally recursive for

most of the operators discussed previously. Several operators are exceptions:

the integration, inversion, and ODE solution operators. 7 All three of these

operators require their input parametric functions to be evaluated repeatedly

over many domain points. For example, evaluation of the integration op-

erator can be computed numerically using Romberg integration [PRES86,

7The derivative operator, and the constraint solution and constrained minimization operators are

also exceptions. As we will discuss later, the evaluation method for the differentiation operator de-

pends on the differentiation method, while the evaluation method for the constraint solution and con-

strained minimization operators uses the inclusion function method.

pages 123–125], which adds evaluations of the integrand over many points

in its domain.

Two forms of the evaluation method have proved useful: evaluation at

a single, specified point in parameter space and evaluation over a multidi-

mensional, rectilinear lattice of points in parameter space. Evaluation of

a parametric function over a rectilinear lattice gives information about how

the function behaves over a whole domain, and is useful in “quick and dirty”

rendering schemes. Although evaluation over a rectilinear lattice can be im-

plemented by repeated evaluation at specified points, much greater compu-

tational speed can be achieved with a special method, as we will see in the

Appendix.

The evaluation methods return an error condition as well as a numerical

result. The error condition signifies whether the parametric function has

been evaluated at an invalid point in its domain (e.g., f ☎ g where g evaluates

to 0, or ✁ h where h ✂ 0). A failure error condition is also returned when

the constraint solution or constrained minimization operators are evaluated

in a domain in which there are no solutions.

Differentiation The differentiation method is used to implement the dif-

ferentiation operator introduced in Section 3.1. The differentiation method

computes a parametric function that is the partial derivative of a given para-

metric function with respect to one of the parametric coordinates. The partial

derivative is computed symbolically; that is, the partial derivative result is

represented using the set of symbolic operators. For example, the partial

derivative with respect to x 1 of the parametric function x 1 + ✁ x1x2 yields

the parametric function 1 + x 2 ☎ (2✁ x1x2), which is represented with the ad-

dition, multiplication, division, square root, constant, and parametric coor-

dinate operators.

Although the differentiation method is not locally recursive for most oper-

ators discussed previously, it is still relatively easy to compute. For example,

the partial derivative of the parametric function h = cos (f ) depends not only

on the partial derivative of f , but also on f itself, since✄
h✄
xi

= ✆ sin (f )

✄
f✄
xi

The differentiation method is therefore not locally recursive for the cosine

operator, but may be computed simply if a sine operator exists. Similar situ-

ations arise for many of the other operators. Fortunately, it is a simple matter

to extend a set of operators such that the set is closed with respect to the dif-

ferentiation method, meaning that any partial derivative may be represented

in terms of available operators. 8

Evaluation of an Inclusion Function An inclusion function computes

a hyper-rectangular bound for the range of a parametric function, given a

hyper-rectangular domain. It is used in interval analysis algorithms to eval-

uate parametric functions defined with the constrained minimization and

constraint solution operators. It is also useful to approximate shapes to

user-defined tolerances, and compute CSG and offset operations. The uses

and implementation of inclusion functions are fully discussed in [SNYD92a,

SNYD92b].

Although an inclusion function computes a global property of a paramet-

ric function, it can often be computed using locally recursive methods. For

example, an inclusion function method for the multiplication operator can be

computed using interval arithmetic on the results of the inclusion functions

for its parametric function multiplicands.

Other Methods Another useful method determines whether a paramet-

ric function is continuous or differentiable to a specified order over a given

hyper-rectangle. Many times, algorithms for rendering and analysis require

differentiability of input functions (e.g., multidimensional root finding meth-

ods). The differentiability operator can therefore be used to select whether

an algorithm that assumes differentiability is appropriate, or if a more robust

and slower algorithm must be used instead.

The differentiability/continuity method is locally recursive for most of

the operators discussed previously, but there are exceptions. For example,

the differentiability method for the division operator can not simply check

that the two parametric functions being divided are differentiable. It must

8For example, this implies that if the cosine operator is included in the set of primitive operators,

then the sine operator must be included as well. Some operators, such as the constrained minimiza-

tion operator, do not have analytically expressible partial derivatives. For these operators, the partial

derivative must be computed numerically.



also check whether the denominator is 0 in the given domain. This can be

accomplished using an inclusion function method.

Other operator methods, whose implementation is still a research issue,

include determining whether a function f : R n ✂ Rn is one-to-one over a

hyper-rectangle. A similar method is degree, defined as

d(f ☎ D ☎ p) = cardinality � x ✝ D ✁ f (x) = p✂
where D ✄ Rn .

3.3 Operator Libraries

While the primitive operators described in Section 3.1 form a powerful basis

for a shape representation, they do not always match the operations the de-

signer wishes to perform. In these cases, the designer can employ operators

formed by composition of the primitive operators. The GENMOD system

includes operator libraries which predefine hundreds of such higher level op-

erators. The definitions of these operators are loaded from interpreted files

when the program is first run, and can be dynamically modified and added

to by the user.

For example, a simple but useful non-primitive operator is the linear in-

terpolation operator, ☎ ✆ ✝ ✞ ✟ ✠ ✡ ☛ , whose GENMOD definition is 9

☞ ✌ ✍ ☎ ✆ ✝ ✞ ✟ ✠ ✡ ☛ ✎ ☞ ✌ ✍ ✏ ✑ ☞ ✌ ✍ ✒ ✑ ☞ ✌ ✍ ✓ ✔✕
✡ ✠ ✟ ✖ ✡ ✞ ✒ ✗ ✏ ✘ ✎ ✓ ✙ ✒ ✔ ✚✛

The
☞ ✌ ✍

type (for manifold) is the basic data structure in GENMOD, rep-

resenting a parametric function. The
✗

,
✙
, and

✘
operators have been over-

loaded to perform addition, subtraction, and multiplication of manifolds.

The ☎ ✆ ✝ ✞ ✟ ✠ ✡ ☛ operator takes three parametric functions as input: f and

g are functions to be interpolated, and h is the interpolation variable. The

parametric functions f and g can be of any input or output dimension, as

long as they have equal output dimension. This allows linear interpolation

between two curves, surfaces, or even higher dimensional shapes. 10

The closure property of the generative modeling approach means that

such non-primitive operators can be very powerful. For example, the

☎ ✆ ✜ ✡ ✢ ✆ ✣ ☛ ✟ ✆ ✏ ✠ ✝ ✓ ✏ ✟ non-primitive operator used in the next section forms

a circular arc connecting two 2D points and having a specified height above

their line of connection. The 2D points supplied as arguments to this opera-

tor need not be constants but can depend on parameters, allowing convenient

definition of the spoon of Section 4.3.

4 Examples

This section presents examples of generative shapes and their specification

in GENMOD. It is meant to show how the generative modeling approach

leads a designer to think about shape, and the size of the domain of shapes

that can be represented. Many other examples can be found in [SNYD92b].

4.1 Lamp Bases and Profile Products

A profile product [BARR81] is perhaps the simplest nontrivial generative

surface. It is formed by scaling and translating a 2D cross section according

to a 2D profile. More precisely, a profile product surface, S(u ☎ v), is defined

using a cross section curve, ✁ (u) = (✁ 1 ☎ ✁ 2), and a profile curve, ✄ (v) =

(✄ 1 ☎ ✄ 2), where

S(u ☎ v) =

� ✁
1(u)✄ 1(v)

✁
2(u)✄ 1(v)

✄ 2(v) ✂
A profile product may be defined in the GENMOD language as follows:

9GENMOD’s language is based on ANSI C, with several extensions. The extensions allow over-

loadingof the C operators, in order to more naturally express parametric functions. Several additional

operators were also added.
10The binary arithmetic operators in GENMOD can be used in two modes. If the two parametric

function arguments have the same output dimension, the operation is performed separately for each

component on the corresponding components of the two arguments. If the output dimension of one

argument is 1, and the other greater than 1, then the operation is performed on each component of the

multicomponent argument with the same value of the scalar argument. Thus, f + g denotes vector

addition of f and g when f and g have the same output dimension, but f ✤ 2 scales each component

of f by a factor of 2.
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Figure 2: Lamp base example — A lamp base shape is represented by a

profile surface. The GENMOD definition of a lamp base is shown, followed

by graphs of the two curves (plotted between -1 and 1 in x and y) used in the

definition, and a wire frame image of the shape.

☞ ✌ ✍ ☎ ✆ ☛ ✡ ✥ ✒ ✝ ✭ ✠ ✎ ☞ ✌ ✍ ✢ ✡ ✥ ✦ ✦ ✑ ☞ ✌ ✍ ☛ ✡ ✥ ✒ ✝ ✭ ✠ ✔✕
✡ ✠ ✟ ✖ ✡ ✞ ✰ ✎ ✢ ✡ ✥ ✦ ✦ ✱ ✬ ✲ ✘ ☛ ✡ ✥ ✒ ✝ ✭ ✠ ✱ ✬ ✲ ✑

✢ ✡ ✥ ✦ ✦ ✱ ✮ ✲ ✘ ☛ ✡ ✥ ✒ ✝ ✭ ✠ ✱ ✬ ✲ ✑
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The ✰ ✎ ✔
operator, a C extension in GENMOD’s language, is the cartesian

product operator, which, in this case, combines three scalar functions into a

3D point. The ✱ ✲ operator returns a single output coordinate of a parametric

function. In keeping with C language convention (and unlike the mathemat-

ical notation used in the definition of S(u ☎ v)), coordinate indexing is done

starting with index 0 for the first coordinate, rather than index 1.

Figure 2 presents an example of a profile product surface for a lamp base

shape. It uses the ☎ ✆ ☛ ✡ ✥ ✒ ✝ ✭ ✠ operator defined above, and the primitive

curve operator ☎ ✆ ✢ ✡ ★ . The curve operator takes the name of a file, produced

using a curve editor program, and creates a parametric curve that is evaluated

over the parametric function specified as its second argument. In this case,

the shape of the cross section curve is specified in the file ✢ ✡ ✥ ✦ ✦ ✪ ✢ ✡ ★ , and is

evaluated over ☎ ✆ ✫ ✎ ✬ ✔
, representing parametric coordinate x 0. The profile

curve is evaluated over parametric coordinate x 1 (☎ ✆ ✫ ✎ ✮ ✔
).

4.2 Impeller Blades and Affine Transformations

An affine transformation shape uses a 2D or 3D curve generator and a trans-

formation represented by a linear transformation and a translation. Let ✁ (u)

be a 3D curve, M(v) be a linear transformation on 3D space, and T(v) be

another 3D curve. An affine transformation surface, S(u ☎ v), is given by

S(u ☎ v) = M(v)✁ (u) + T(v)

One method of representing affine transformations is to use 4 ✆ 4 matrices

(homogeneous transformations), allowing the composition of affine trans-

formations using simple matrix multiplies.

Figure 3 presents an example of an affine transformation representing

the impeller blade of a centrifugal compressor. The ☎ ✆ ✟ ✡ ✜ ✞ ✦ ✒ ✥ ✡ ☎ ✳ ✴ non-

primitive GENMOD operator takes a vector and applies an affine transfor-

mation to it. Note that because the matrix transforms the cross section by
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Figure 3: Impeller blade example — An impeller blade surface is repre-

sented using an affine transformation. A square cross section in the xy plane,

which forms the bottom of the blade, is scaled separately in x and y, trans-

lated in x, rotated around z, translated back in x, and translated up the z axis.

premultiplying it, transformations that affect the cross section first must ap-

pear last in the list of multiplied transformations. The ☎ ✆ ✟ ✡ ✜ ✞ ✦ � , ☎ ✆ ✡ ✥ ✟ � ,

☎ ✆ ✦ ✢ ✜ ✭ ✠ ✫ , and ☎ ✆ ✦ ✢ ✜ ✭ ✠ ✂ are non-primitive operators that produce 4 ✆ 4

matrices representing translation along z, rotation around z, and scaling of

the x and y axes, respectively. They are multiplied together to define the

complete affine transformation applied to a square cross section.

4.3 Spoons and Closed Offsets

Curve offsetting can also be used to define a cross section with a given thick-

ness that surrounds a given non-closed curve (see Figure 4). An offset curve

of radius r around a 2D curve ✁ (t) is given by

✁ (t) + rn(t)

where n(t) is the unit normal to the curve. The closed offset of a 2D curve
✁ (t) of radius r can therefore be defined as the uniform concatenation of 4

curve segments: the offset curve of ✁ of radius r, the reversed offset curve

of ✁ of radius ✆ r, and two semicircles of radius r with centers at ✁ (0) and
✁ (1). The non-primitive GENMOD operator ☎ ✢ ✭ ✥ ✦ ✠ ✴ ✥ ✒ ✒ ✦ ✠ ✟ creates

the closed offset to a 2D curve (first argument), of a given radius (second

argument).

Figure 5 shows a spoon whose cross section is formed using this tech-

nique. In this case, the curve that is offset is a circular arc whose end points

and radius are varied.

4.4 Screwdriver Tips and CPG

Constructive planar geometry (CPG) is the analog of constructive solid ge-

ometry for 2D areas. It is a modeling operation that uses Boolean set oper-

ations on closed planar areas to produce new planar areas. Figure 6 shows

some examples of CPG operations.

Many objects can be represented as surfaces where each cross section is

a Boolean set subtraction of one closed area from another. The fact that

Figure 4: Defining a cross section using offsets and circular end caps —

A closed cross section may be defined in terms of a non-closed curve by

concatenating two offset curves and two circular end caps.
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Figure 5: Spoon example – A spoon surface is formed using a cross section

formed by the closed offset of an arc. The curve that is offset is deformed

as it is extruded – its radius is increased to give the spoon its bowl, and its

length is changed to shape the width of the spoon.

the two planar areas may be swept according to different schedules before

being subtracted makes the operation more powerful. Figure 7 shows two

screwdriver blade tips specified using CPG. The Phillips blade, for exam-

ple, is specified by sweeping a circle with a varying radius, from which is

subtracted a notch of varying size.

CPG operations require computation of the intersections between planar

curves bounding the 2D regions. Often, the intersections between boundary

curves can be computed analytically, such as for regions whose boundary is

represented as a piecewise series of line segments. When intersections can

not be analytically computed, the constraint solution operator can be used.

The resulting segments can then be combined by concatenation as described

in Section 3.1.

5 Rendering

Most methods of rendering shapes require approximation of the shape into

units such as cubes, polygons, or line segments. Such approximation, in

turn, require sampling – computation of points over the shape. Two sampling

techniques are available in the GENMOD system: uniform sampling, used

to quickly preview the shape, and adaptive sampling, used to obtain a more

accurate approximation.
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Figure 6: Constructive planar geometry – Two planar regions, A and B, are

used in four binary CPG operations. We can compute the boundary of the

result of a CPG operation by computing the intersections of the boundaries

of the regions, dividing the boundaries into segments at these intersections,

and concatenating appropriate segments.

Figure 7: Screwdriver example – The tips of two screwdriver blades are con-

structed using CPG. The regular screwdriver on the left is generated using

a cross section formed by subtracting two half-plane regions from a circle.

The two half-planes are gradually moved toward each other as the cross sec-

tion is translated to the tip of the screwdriver. The Phillips screwdriver on the

right has a cross section formed by subtracting four wedge shaped regions

from a circle. In this case, the wedge shaped regions are moved toward the

circle’s center as the cross section is translated to the tip of the screwdriver.

while the circle is scaled down near the tip to yield a pointed blade.

5.1 Sampling

Uniform sampling of a parametric function involves evaluating the function

over a rectilinear lattice of domain points. For each parametric coordinate

xi, we pick a number of samples, N i . The parametric function S is then

evaluated over the
� n

i=1
Ni samples given by✁

a1 +
i1(b1 ✆ a1)

N1 ✆ 1
☎ ✄ ✄ ✄ ☎ an +

in(bn ✆ an)

Nn ✆ 1 ✂

where ai and b i define the hyper-rectangular domain of the parametric func-

tion. Each of the indices i j independently ranges from 0 to N j ✆ 1. This

evaluation is done by calling the uniform evaluation method of S (from Sec-

tion 3.2). Uniform evaluation can be optimized so that it computes much

faster than simple evaluation at each point in the rectilinear lattice of do-

main points, as discussed in the Appendix.

Adaptive sampling can be used to generate approximations that satisfy

criteria [VONH87], where the sampling density varies over the parameter

space. Robust approximation techniques that use inclusion functions are dis-

cussed in [SNYD92b]. The simple “evaluation at a specified point” method

is used to compute the samples. Such evaluation can be optimized using

caching, as discussed in the Appendix.

5.2 Interactive Visualization

A visualization method takes a shape and produces a renderable object,

or produces a transformation that can be applied to a renderable object.

There are four kinds of interactively renderable objects in GENMOD: points,

curves, planar areas, and surfaces. A point is rendered as a dot in 2D or 3D

space. A curve is rendered as a sequence of line segments. A planar region

is rendered as a single polygon formed by the interior of an approximated

curve.11 A surface is rendered as a collection of triangles. A transformation

can be applied to any of the other renderable objects, transforming it via the

4x3 affine transformation

p ✂ Mp + T

where M is a 3 ✆ 3 matrix and T is a 3D vector.

Each of the visualization methods expects a shape of a given output di-

mension (e.g., a function S(u ☎ v) must have output dimension three to be used

as input to the surface visualization method). Each visualization method also

expects an input dimension at least as large as the intrinsic input dimension

of the shape. For example, a function C(t): R ✂ R3 can be used in the curve

visualization method, as can D(t ☎ s): R 2 ✂ R3, since C and D have input di-

mension at least 1. On the other hand, a constant function is not appropriate

for the curve method, nor is a function of a single coordinate appropriate for

the surface method. The following table shows the number of intrinsic input

parameters and output parameters of GENMOD’s visualization methods:

name intrinsic dim. output dim.

point 0 2 or 3

curve 1 2 or 3

planar area 1 2 or 3

surface 2 3

transformation 0 12

Functions that have an input dimension greater than the visualization

method’s intrinsic dimension (e.g., a surface that deforms in time) are still

valid input to the visualization method. The extra input coordinates, called

variable input parameters, can be visualized with two techniques: anima-
tion or superimposition. The shapes are first sampled at various points in

the variable input parameter space. Superimposition combines these shape

instances in a single image, while animation renders the instances one at a

time, according to the values of graphics input devices.

As an example, consider a parameterized family of 3D lines, L(t ☎ u ☎ v)

defined as

L(t ☎ u ☎ v) = S(u ☎ v) + tV(u ☎ v)

where S(u ☎ v) represents the line origin, and V(u ☎ v), the line direction. The

t parameter is the intrinsic parameter of the line; u and v are variable input

parameters. This family of lines can be visualized by superimposition as

in Figure 8, resulting in an image containing a 2D family of line segments.

Alternatively, the u and v parameters can be animated, resulting in an image

of a single line segment which interactively changes as the user controls, say,

two dials. The user could also superimpose the u parameter and animate v,

resulting in a 1D family of line segments that changes in response to a single

dial. Visualization methods therefore require an argument specifying which

of the variable input coordinates are to be superimposed, and which are to

be animated.

11The curve must not self intersect, and must lie in a plane. Planar regions are convenient for

forming end caps of generalized tubes, where the tube cross-section is boundedby an arbitrary planar

curve. Surfaces can also be used for this purpose, but are less convenient, since they require a 2D

parameterization of the region’s interior, rather than a simple boundary curve.


