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Generative Models from the perspective of Continual Learning

Timothée Lesort∗,1,2, Hugo Caselles-Dupré∗,1,3, Michael Garcia-Ortiz3, Andrei Stoian2, David Filliat1

Abstract— Which generative model is the most suitable
for Continual Learning? This paper aims at evaluating and
comparing generative models on disjoint sequential image
generation tasks. We investigate how several models learn and
forget, considering various strategies: rehearsal, regularization,
generative replay and fine-tuning. We used two quantitative
metrics to estimate the generation quality and memory ability.
We experiment with sequential tasks on three commonly used
benchmarks for Continual Learning (MNIST, Fashion MNIST
and CIFAR10). We found that among all models, the original
GAN performs best and among Continual Learning strategies,
generative replay outperforms all other methods. Even if
we found satisfactory combinations on MNIST and Fashion
MNIST, training generative models sequentially on CIFAR10
is particularly instable, and remains a challenge. Our code is
available online 1.

I. INTRODUCTION

Learning in a continual fashion is a key aspect for cogni-

tive development among biological species [1]. In Machine

Learning, such learning scenario has been formalized as a

Continual Learning (CL) setting [2, 3, 4, 5, 6]. The goal of

CL is to learn from a data distribution that changes over time

without forgetting crucial information. Unfortunately, neural

networks trained with back-propagation are unable to retain

previously learned information when the data distribution

changes, an infamous problem called "catastrophic forget-

ting" [7]. Successful attempts at CL with neural networks

have to overcome the inexorable forgetting happening when

tasks change.

In this paper, we focus on generative models in Continual

Learning scenarios. Previous work on CL has mainly focused

on classification tasks [8, 9, 5, 6]. Traditional approaches are

regularization, rehearsal and architectural strategies, as de-

scribed in Section II. However, discriminative and generative

models strongly differ in their architecture and learning ob-

jective. Several methods developed for discriminative models

are thus not directly extendable to the generative setting.

Generative models can be used as memory of the past for

learning continually in particular in reinforcement learning

and classification. For example, successful CL strategies with

generative models have been used, via sample generation as

detailed in the next section, to continually train discrimina-

tive models. Hence, studying the viability and success/failure

modes of CL strategies for generative models is an important
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2 Thales, Theresis Laboratory.
3 Softbank Robotics Europe.
∗ Equal contribution.
1https://github.com/TLESORT/Generative_Continual_

Learning

Fig. 1: The disjoint setting considered. At task i the training

set includes images belonging to category i, and the task

is to generate samples from all previously seen categories.

Here MNIST is used as a visual example,but we experiment

in the same way Fashion MNIST and CIFAR10.

step towards a better understanding of generative models and

Continual Learning in general.

We conduct a comparative study of generative models with

different CL strategies. In our experiments, we sequentially

learn generation tasks. We perform ten disjoint tasks, using

commonly used benchmarks for CL: MNIST [10], Fashion

MNIST [11] and CIFAR10 [12]. In each task, the model

gets a training set from one new class, and should learn

to generate data from this class without forgetting what it

learned in previous tasks, see Fig. 1 for an example with

tasks on MNIST.

We evaluate several generative models: Variational Auto-

Encoders (VAEs), Generative Adversarial Networks (GANs),

their conditional variant (CVAE ans CGAN), Wasserstein

GANs (WGANs) and Wasserstein GANs Gradient Penalty

(WGAN-GP). We compare results on approaches taken from

CL in a classification setting: finetuning, rehearsal, regu-

larization and generative replay. Generative replay consists

in using generated samples to maintain knowledge from

previous tasks. All CL approaches are applicable to both

variational and adversarial frameworks. We evaluate with

two quantitative metrics, Fréchet Inception Distance [13]

and Fitting Capacity [14], as well as visualization. Also, we

discuss the data availability and scalability of CL strategies.

Our contributions are:

• Evaluating a wide range of generative models in a

Continual Learning setting.

• Highlight success/failure modes of combinations of

generative models and CL approaches.

• Comparing, in a CL setting, two evaluation metrics of

generative models.

We describe related work in Section II, and our approach

in Section III. We explain the experimental setup that imple-

ments our approach in Section IV. Finally, we present our
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results and discussion in Section V and VI, before concluding

in Section VII.

II. RELATED WORK

A. Continual Learning for discriminative models

Continual Learning has mainly been applied to discrimi-

native tasks. On this scenario, classification tasks are learned

sequentially. At the end of the sequence the discriminative

model should be able to solve all tasks. The naive method of

fine-tuning from one task to the next one leads to catastrophic

forgetting [7], i.e. the inability to keep initial performance

on previous tasks. Previously proposed approaches can be

classified into four main methods.

The first method, referred to as rehearsal, is to keep

samples from previous tasks. The samples may then be

used in different ways to overcome forgetting. The method

can not be used in a scenario where data from previous

tasks is not available, but it remains a competitive baseline

[9, 3]. Furthermore, the scalability of this method can also

be questioned because the memory needed to store samples

grows linearly with the number of tasks.

The second method employs regularization. Regulariza-

tion constrains weight updates in order to maintain knowl-

edge from previous tasks and thus avoid forgetting. Elastic

Weight Consolidation (EWC) [8] has become the standard

method for this type of regularization. It estimates the

weights’ importance and adapt the regularization accord-

ingly. Extensions of EWC have been proposed, such as

online EWC [6]. Another well known regularization method

is distillation, which transfers previously learned knowledge

to a new model. Initially proposed by [15], it has gained

popularity in CL [16, 9, 17, 5] as it enables the model to

learn about previous tasks and the current task at the same

time.

The third method is the use of a dynamic architecture

to maintain past knowledge and learn new information.

Remarkable approaches that implement this method are Pro-

gressive Networks [18], Learning Without Forgetting (LWF)

[19] and PathNet [20].

The fourth and more recent method is generative replay

[5, 21], where a generative model is used to produce samples

from previous tasks. This approach has also been referred to

as pseudo-rehearsal.

B. Continual learning for generative models

Discriminative and generative models do not share the

same learning objective and architecture. For this reason, CL

strategies for discriminative models are usually not directly

applicable to generative models. Continual Learning in the

context of generative models remains largely unexplored

compared to CL for discriminative models.

Among notable previous work, [4] successfully apply

EWC on the generator of Conditional-GANs (CGANS), after

observing that applying the same regularization scheme to

a classic GAN leads to catastrophic forgetting. However,

their work is based on a scenario where two classes are

presented first, and then unique classes come sequentially,

e.g the first task is composed of 0 and 1 digits of MNIST

dataset, and then is presented with only one digit at a

time on the following tasks. This is likely due to the

failure of CGANs on single digits, which we observe in

our experiments. Moreover, the method is shown to work

on CGANs only. Another method for generative Continual

Learning is Variational Continual Learning (VCL) [3], which

adapts variational inference to a continual setting. They

exploit the online update from one task to another inspired

from Bayes’ rule. They successfully experiment on a single-

task scenario. However, they experiment only on VAEs. Plus,

since they use a multi-head architecture, they use specific

weights for each task, which need task index for inference.

A second method experimented on VAEs is to use a student-

teacher method where the student learns the current task

while the teacher retains knowledge [22]. Finally, VASE [23]

is a third method, also experimented only on VAEs, which

allocates spare representational capacity to new knowledge,

while protecting previously learned representations from

catastrophic forgetting by using snapshots (i.e. weights) of

previous model.

A different approach, introduced by [5] is an adaptation of

the generative replay method mentioned in Section II-A. It

is applicable to both adversarial and variational frameworks.

It uses two generative models: one which acts as a memory,

capable of generating all past tasks, and one that learns to

generate data from all past tasks and the current task. It

has mainly been used as a method for Continual Learning

of discriminative models [5, 21, 24]. Recently, [25] have

developed a similar approach called Memory Replay GANs,

where they use Generative Replay combined to replay align-

ment, a distillation scheme that transfers previous knowledge

from a conditional generator to the current one. However they

note that this method leads to mode collapse because it could

favor learning to generate few class instances rather than a

wider range of class instances.

III. APPROACH

Typical previous work on Continual Learning for gen-

erative models focus on presenting a novel CL technique

and comparing it to previous approaches, on one type of

generative model (e.g. GAN or VAE). On the contrary, we

focus on searching for the best generative model and CL

strategy association. For now, empirical evaluation remain

the only way to find the best performing combinations.

Hence, we compare several existing CL strategies on a wide

variety of generative models with the objective of finding the

most suited generative model for Continual Learning.

In this process, evaluation metrics are crucial. CL ap-

proaches are usually evaluated by computing a metric at the

end of each task. Whichever method that is able to main-

tain the highest performance is best. In the discriminative

setting, classification accuracy is the most commonly used

metric. Here, as we focus on generative models, there is no

consensus on which metric should be used. Thus, we use

and compare two quantitative metrics.



The Fréchet Inception Distance (FID) [13] is a commonly

used metric for evaluating generative models. It is designed

to improve on the Inception Score (IS) [26] which has many

intrinsic shortcomings, as well as additional problems when

used on a dataset different than ImageNet [27]. FID circum-

vent these issues by comparing the statistics of generated

samples to real samples, instead of evaluating generated

samples directly. [13] propose using the Fréchet distance

between two multivariate Gaussians:

FID = ‖µr − µg‖
2 + Tr(Σr +Σg − 2(ΣrΣg)

1/2), (1)

where the statistics (µr,Σr) and (µg,Σg) are the activations

of a specific layer of a discriminative neural network trained

on ImageNet, for real and generated samples respectively.

A lower FID correspond to more similar real and generated

samples as measured by the distance between their activation

distributions. Originally the activation should be taken from

a given layer of a given Inception-v3 instance, however this

setting can be adapted with another classifier in order to

compare a set of models with each other [28, 14].

A different approach is to use labeled generated samples

from a generator G (GAN or VAE) to train a classifier

and evaluate it afterwards on real data [14]. This evalu-

ation, called Fitting Capacity of G, is the test accuracy

of a classifier trained with G’s samples. It measures the

generator’s ability to train a classifier that generalize well on

a testing set, i.e the generator’s ability to fit the distribution

of the testing set. This method aims at evaluating generative

models on complex characteristics of data and not only on

their features distribution. In the original paper, the authors

annotated samples by generating them conditionally, either

with a conditional model or by using one unconditional

model for each class. In this paper, we also use an adaptation

of the Fitting Capacity where data from unconditional models

are labelled by an expert network trained on the dataset.

We believe that using these two metrics is complementary.

FID is a commonly used metric based solely on the distri-

bution of images features. In order to have a complementary

evaluation, we use the Fitting Capacity, which evaluate

samples on a classification criterion rather than features

distribution.

For all the progress made in quantitative metrics for evalu-

ating generative models [29], qualitative evaluation remains

a widely used and informative method. While visualizing

samples provides a instantaneous detection of failure, it does

not provide a way to compare two well-performing models.

It is not a rigorous evaluation and it may be misleading when

evaluating sample variability.

IV. EXPERIMENTAL SETUP

We now describe our experimental setup: data, tasks, and

evaluated approaches.

A. Datasets, tasks, metrics and models

Our main experiments use 10 sequential tasks created

using the MNIST, Fashion MNIST and CIFAR10 dataset.

For each dataset, we define 10 sequential tasks, one task

corresponds to learning to generate a new class and all the

previous ones (See Fig. 1 for an example on MNIST). Both

evaluations, FID and Fitting Capacity of generative models,

are computed at the end of each task.

We use 6 different generative models. We experiment

with the original and conditional version of GANs [30] and

VAEs [31]. We also added WGAN [32] and a variant of it

WGAN-GP [33], as they are commonly used baselines that

supposedly improve upon the original GAN.

B. Strategies for continual learning

We focus on strategies that are usable in both the varia-

tional and adversarial frameworks. We use 3 different strate-

gies for Continual Learning of generative models, that we

compare to 3 baselines. Our experiments are done on 8 seeds

with 50 epochs per tasks for MNIST and Fashion MNIST

using Adam [34] for optimization (for hyper-parameter set-

tings, see Appendix ). For CIFAR10, we experimented with

the best performing CL strategy.

The first baseline is Fine-tuning, which consists in ignor-

ing catastrophic forgetting and is essentially a lower bound of

the performance. Our other baselines are two upper bounds:

Upperbound Data, for which one generative model is trained

on joint data from all past tasks, and Upperbound Model, for

which one separate generator is trained for each task.

For Continual Learning strategies, we first use a vanilla

Rehearsal method, where we keep a fixed number of samples

of each observed task, and add those samples to the training

set of the current generative model. We balance the resulting

dataset by copying the saved samples so that each class

has the same number of samples. The number of samples

selected, here 10, is motivated by the results in Fig. 7a and

7b, where we show that 10 samples per class is enough

to get a satisfactory but not maximal validation accuracy

for a classification task on MNIST and Fashion MNIST.

As the Fitting Capacity share the same test set, we can

compare the original accuracy with 10 samples per task to

the final fitting capacity. A higher Fitting capacity show that

the memory prevents catastrophic forgetting. Equal Fitting

Capacity means overfitting of the saved samples and lower

Fitting Capacity means that the generator failed to even

memorize these samples.

We also experiment with EWC. We followed the method

described by [4] for GANs, i.e. the penalty is applied only on

the generator’s weights , and for VAEs we apply the penalty

on both the encoder and decoder. As tasks are sequentially

presented, we choose to update the diagonal of the Fisher

information matrix by cumulatively adding the new one to

the previous one. The last method is Generative Replay,

described in Section II-B. Generative replay is a dual-model

approach where a “frozen” generative model Gt−1 is used to

sample from previously learned distributions and a “current”

generative model Gt is used to learn the current distribution

and Gt−1 distribution. When a task is over, the Gt−1 is

replaced by a copy of Gt , and learning can continue.



V. RESULTS

Fig. 2: Comparison, averaged over 8 seeds, between FID

results(left, lower is better) and Fitting Capacity results

(right, higher is better) with GAN trained on MNIST.

The figures we report show the evolution of the metrics

through tasks. Both FID and Fitting Capacity are computed

on the test set. A well performing model should increase

its Fitting Capacity and decrease its FID. We observe a

strong correlation between the Fitting Capacity and FID (see

Fig. 2 for an example on GAN for MNIST and Appendix

for full results). Nevertheless, Fitting Capacity results are

more stable: over the 8 random seeds we used, the standard

deviations are less important than in the FID results. For that

reason, we focus our interpretation on the Fitting Capacity

results.

A. MNIST and Fashion MNIST results

1) Main results: Our main results with Fitting Capacity

are displayed in Fig. 3 and Table I. The best combination was

Generative Replay + GAN with a mean Fitting Capacity of

95.81% on MNIST and 81.52% on Fashion MNIST. The

relative performance of each CL method on GAN can be

analyzed class by class in Fig. 4. We observe that, for

the adversarial framework, Generative Replay outperforms

other approaches by a significant margin. However, for the

variational framework, the Rehearsal approach was the best

performing. The Rehearsal approach worked quite well but is

unsatisfactory for CGAN and WGAN-GP. Indeed, the Fitting

Capacity is lower than the accuracy of a classifier trained on

10 samples per classes (see Fig. 7a and 7b in Appendix).

In our setting, EWC is not able to overcome catastrophic

forgetting and performs as well as the naive Fine-tuning

baseline which is contradictory with the results of [4] who

found EWC successful in a slightly different setting. We

replicated their result in a setting where there are two classes

by tasks (see Appendix for details), showing the strong effect

of task definition.

In [4] authors already found that EWC did not work with

non-conditional models but showed successful results with

conditional models (i.e. CGANs). The difference come from

the experimental setting. In [4], the training sequence start

by a task with two classes. Hence, when CGAN is trained it

is possible for the Fisher Matrix to understand the influence

of the class-index input vector c. In our setting, since there

is only one class at the first task, the Fisher matrix can not

get the importance of the class-index input vector c. Hence,

as for non conditional models, the Fisher Matrix is not able

Fig. 3: Means and standard deviations over 8 seeds of Fitting

Capacity metric evaluation of VAE, CVAE, GAN, CGAN

and WGAN. The four considered CL strategies are: Fine

Tuning, Generative Replay, Rehearsal and EWC. The setting

is 10 disjoint tasks on MNIST and Fashion MNIST.

to protect weights appropriately and at the end of the second

task the model has forgot the first task. Moreover, since the

generator forgot what it learned at the first task, it is only

capable of generating samples of only one class. Then, the

Fisher Matrix will still not get the influence of c until the

end of the sequence. Moreover, we show that even by starting

with 2 classes, when there is only one class for the second

task, the Fisher matrix is not able to protect the class from

the second task in the third task. (see Figure 12).

Our results do not give a clear distinction between condi-

tional and unconditional models. However, adversarial meth-

ods perform significantly better than variational methods.

GANs variants are able to produce better, sharper quality

and variety of samples, as observed in Fig. 14 and 15 in

Appendix . Hence, adversarial methods seem more viable for

CL. We can link the accuracy from 7a and 7b to the Fitting

Capacity results. As an example, we can estimate that GAN

with Generative Replay is equivalent for both datasets to a

memory of approximately 100 samples per class.

2) Corollary results: Catastrophic forgetting can be visu-

alized in Fig.4. Each square’s column represent the task index



TABLE I: Mean and standard deviations for Fitting Capacity (in %) metric evaluation on last task of 10 disjoint task setting,

on MNIST and Fashion MNIST, over 8 seeds.

Strategy Dataset GAN CGAN WGAN WGAN-GP VAE CVAE

Fine-tuning MNIST 18.43±4.85 11.93±2.97 23.17±5.66 22.79±5.75 38.98±5.57 11.96±2.56

EWC - 20.34±2.39 11.53±1.42 29.57±5.59 22.00±3.39 34.93±7.06 13.37±3.28

Rehearsal - 82.69±18.21 66.14±19.2 92.05±0.64 74.79±25.25 92.99±0.64 86.47±1.69

Generative Replay - 95.81±0.31 93.89±0.35 95.41±2.41 91.12±5.09 79.38±4.40 84.95±1.24

Upperbound Model - 94.50±9.51 96.84±3.22 95.72±6.93 79.41±27.85 97.82±0.17 97.89±0.12

Upperbound Data - 97.10±0.13 96.65±0.21 96.76±0.29 84.79±27.76 96.88±0.27 96.17±0.19

Fine-tuning Fashion MNIST 20.82±4.69 12.30±3.33 19.68±3.92 18.75±2.58 18.60±4.24 12.82±3.55

EWC - 22.22±2.03 12.58±3.48 19.81±4.18 22.63±6.91 17.70±1.83 11.00±1.16

Rehearsal - 65.34±21.3 57.12±14.4 76.32±0.33 63.28±7.9 76.03±1.77 71.73±1.29

Generative Replay - 81.52±0.87 72.98±1.22 81.50±1.26 75.37±5.49 54.49±3.24 68.70±1.71

Upperbound Model - 77.93±15.07 80.96±0.69 73.20±5.63 65.5±2.69 78.64±1.36 79.15±0.96

Upperbound Data - 83.27±0.41 80.09±0.94 83.29±0.52 81.5±0.50 80.21±0.79 79.51±0.55

and each row the class, the color indicate the Fitting Capacity

(FC). Yellow squares show a high FC, blue one show a low

FC. We can visualize both the performance of VAE and

GAN but also the performance evolution for each class. For

Generative Replay, at the end of the task sequence, VAE

decreases its performance in several classes when GAN does

not. For Rehearsal it is the opposite. Concerning the high

performance of original GAN and WGAN with Generative

Replay, they benefit from their samples quality and their

stability. In comparison, samples from CGAN and WGAN-

GP are more noisy and samples from VAE and CVAE

more blurry (see in appendix 14). However in the Rehearsal

approach GANs based models seems much less stable (See

Table I and Figure 3). In this setting the discriminative task

is almost trivial for the discriminator which make training

harder for the generator. In opposition, VAE based models

are particularly effective and stable in the Rehearsal setting

(See Fig. 4b). Indeed, their learning objective (pixel-wise

error) is not disturbed by a low samples variability and

their probabilistic hidden variables make them less prone to

overfit.

However the Fitting Capacity of Fine-tuning and EWC in

Table I is higher than expected for unconditional models. As

the generator is only able to produce samples from the last

task, the Fitting capacity should be near 10%. This is a down-

side of using an expert for annotation before computing the

Fitting Capacity. Fuzzy samples can be wrongly annotated,

which can artificially increase the labels variability and thus

the Fitting Capacity of low performing models, e.g., VAE

with Fine-tuning. However, this results stay lower than the

Fitting Capacity of well performing models.

Incidentally, an important side result is that the Fitting

capacity of conditional generative models is comparable

to results of Continual Learning classification. Our best

performance in this setting is with CGAN: 94.7% on MNIST

and 75.44% on Fashion MNIST . In a similar setting with

2 sequential tasks, which is arguably easier than our setting

(one with digits from 0,1,2,3,4 and another with 5,6,7,8,9),

[35] achieve a performance of 94.91%. This shows that using

generative models for CL could be a competitive tool in a

classification scenario. It is worth noting that we did not

compare our results of unconditional models Fitting Capacity

with classification state of the art. Indeed, in this case, the

Fitting capacity is based on an annotation from an expert not

trained in a continual setting. The comparison would then not

be fair.

(a) Fine-tuning (b) G. Replay (c) EWC (d) Rehearsal

Fig. 4: Fitting Capacity results for GAN (top) and VAE

(bottom) on MNIST. Each square is the accuracy on one class

for one task. Abscissa is the task index (left: 0 , right: 9) and

orderly is the class index (top: 0, down: 9). The accuracy is

proportional to the color (dark blue : 0%, yellow 100%)

B. CIFAR10 results

In this experiment, we selected the best performing CL

methods on MNIST and Fashion MNIST, Generative Re-

play and Rehearsal, and tested it on the more challenging

CIFAR10 dataset. We compared the two method to naive

Fine-tuning, and to Upperbound Model (one generator for

each class). The setting remains the same, one task for

each category, for which the aim is to avoid forgetting of

previously seen categories. We selected WGAN-GP because

it produced the most satisfying samples on CIFAR10 (see

Fig. 16 in Appendix ).

Results are provided in Fig. 5, where we display images

sampled after the 10 sequential tasks, and FID + Fitting

Capacity curves throughout training. The Fitting Capacity

results show that all four methods fail to generate images that

allow to learn a classifier that performs well on real CIFAR10

test data. As stated for MNIST and Fashion MNIST, with

non-conditional models, when the Fitting Capacity is low,

it can been artificially increased by automatic annotation

which make the difference between curves not significant in



Fig. 5: Fitting capacity and FID score of Continual Learning methods applied to WGAN_GP, on CIFAR10. For each method,

images sampled after the 10 sequential tasks are displayed.

this case. Naive Fine-tuning catastrophically forgets previous

tasks, as expected. Rehearsal does not yield satisfactory

results. While the FID score shows improvement at each new

task, visualization clearly shows that the generator copies

samples in memory, and suffers from mode collapse. This

confirms our intuition that Rehearsal overfits to the few

samples kept in memory. Generative Replay fails; since

the dataset is composed of real-life images, the generation

task is much harder to complete. We illustrate its failure

mode in Figure 17 in Appendix . As seen in Task 0, the

generator is able to produce images that roughly resemble

samples of the category, here planes. As tasks are presented,

minor generation errors accumulated and snowballed into

the result in task 9: samples are blurry and categories are

indistinguishable. As a consequence, the FID improves at

the beginning of the training sequence, and then deteriorates

at each new task. We also trained the same model separately

on each task, and while the result is visually satisfactory,

the quantitative metrics show that generation quality is not

excellent.

These negative results shows that training a generative

model on a sequential task scenario does not reduce to

successfully training a generative model on all data or each

category, and that state-of-the-art generative models struggle

on real-life image datasets like CIFAR10. Designing a CL

strategy for these type of datasets remains a challenge.

VI. DISCUSSION

Besides the quantitative results and visual evaluation of the

generated samples, the evaluated strategies have, by design,

specific characteristics relevant to CL that we discuss here.

Rehearsal violates the data availability assumption, often

required in CL scenarios, by recording part of the samples.

Furthermore the risk of overfitting is high when only few

samples represent a task, as shown in the CIFAR10 results.

EWC and Generative Replay respect this assumption. EWC

has the advantage of not requiring any computational over-

load during training, but this comes at the cost of computing

the Fisher information matrix, and storing its values as well

as a copy of previous parameters. The memory needed for

EWC to save information from the past is twice the size

of the model which may be expensive in comparison to

rehearsal methods. Nevertheless, with Rehearsal and Gener-

ative Replay, the model has more and more samples to learn

from at each new task, which makes training more costly.

Another point we discuss is about a recently proposed

metric [25] to evaluate CL for generative models. Their

evaluation is defined for conditional generative models. For

a given label l, they sample images from the generator

conditioned on l and feed it to a pre-trained classifier. If

the predicted label of the classifier matches l, then it is

considered correct. In our experiment we find that it gives a

clear advantage to rehearsal methods. As the generator may

overfit the few samples kept in memory, it can maximizes



the evaluation proposed by [17], while not producing diverse

samples. We present this phenomenon with our experiments

in appendix . Nevertheless, even if their metric is unable to

detect mode collapse or overfitting, it can efficiently expose

catastrophic forgetting in conditional models.

VII. CONCLUSION AND FUTURE WORK

In this paper, we experimented with the viability and

effectiveness of generative models on Continual Learning

(CL) settings. We evaluated the considered approaches on

commonly used datasets for CL, with two quantitative met-

rics. Our experiments indicate that on MNIST and Fashion

MNIST, the original GAN combined to the Generative

Replay method is particularly effective. This method avoids

catastrophic forgetting by using the generator as a memory

to sample from the previous tasks and hence maintain past

knowledge. Furthermore, we shed light on how generative

models can learn continually with various methods and

present successful combinations. We also reveal that gen-

erative models do not perform well enough on CIFAR10

to learn continually. Since generation errors accumulate,

they are not usable in a continual setting. The considered

approaches have limitations: we rely on a setting where task

boundaries are discrete and given by the user. In future

work, we plan to investigate automatic detection of tasks

boundaries. Another improvement would be to experiment

with smoother transitions between tasks, rather than the

disjoint tasks setting.
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Fig. 6: Samples of a well performing solution : GAN + Generative Replay for each step in a sequence of 10 tasks with

MNIST and Fashion MNIST.



(a) MNIST Classifier accuracy (b) fashion-MNIST Classifier accuracy

Fig. 7: Test set classification accuracy as a function of number of training samples, on MNIST. Those figures make possible

to estimate the minimal number of samples needed to achieve a high test accuracy. Furthermore by comparing against the

fitting capacity we can estimate how many different images of the dataset a generator can produce.



(a) Fitting Capacity GAN (b) FID GAN

(c) Fitting Capacity CGAN (d) FID CGAN

(e) Fitting Capacity WGAN (f) FID WGAN

(g) Fitting Capacity CVAE (h) FID CVAE

(i) Fitting Capacity VAE (j) FID VAE

(k) F. Capacity WGAN-GP (l) FID WGAN-GP

Fig. 8: Comparison of the Fitting Capacity and FID results on MNIST.



(a) Fitting Capacity GAN (b) FID GAN

(c) Fitting Capacity CGAN (d) FID CGAN

(e) Fitting Capacity WGAN (f) FID WGAN

(g) Fitting Capacity CVAE (h) FID CVAE

(i) Fitting Capacity VAE (j) FID VAE

(k) Fitting Capacity WGAN-GP (l) FID WGAN-GP

Fig. 9: Comparison of the Fitting Capacity and FID results on Fashion MNIST.



TABLE II: Our results using the metric proposed by [25]. Re-

hearsal, even thought suffers from mode collapse, performs

as good as Generative Replay, which visually produce better

samples.

Strategy Dataset CVAE CGAN

Rehearsal Mnist 99.86% 95.72%
Generative Replay - 99.70% 99.26%

Ewc - 10.78% 10.54%
Baseline - 10.70% 10.52%

Rehearsal Fashion 94.42% 92.36%
Generative Replay - 88.64% 89.98%

Ewc - 10.62% 10.50%
Baseline - 10.68% 10.60%

Fig. 10: CGAN augmented with EWC. MNIST samples after

5 sequential tasks of 2 digits each. Catastrophic forgetting in

avoided.

Fig. 11: CGAN results with EWC, Rehearsal and Generative

Replay, on 5 sequential tasks of 2 digits each. EWC performs

well, compared to the results obtained on a 10 sequential task

setting.



(a) Task 2 (b) Task 3 (c) Task 4

Fig. 12: Reproduction of EWC experiment [4] with four tasks. First task with 0 and 1 digits, then digits of 2 for task 2,

digits of 3 for task 3 etc. When task contains only one class, the Fisher information matrix cannot capture the importance

of the class-index input vector because it is always fixed to one class. This problem makes the learning setting similar to a

non-conditional models one which is known to not work [4]. As a consequence 0 and 1 are well protected when following

classes are not.

TABLE III: Hyperparameters for MNIST and Fashion MNIST all models ( all CL strategies have the same training hyper

parameters)

Model Datasets Epochs Lr n_critic beta1 beta2 Batch lambda clipping value

GAN 50 2e-4 1 5e-1 0.999 64 - -

CGAN 50 2e-4 1 5e-1 0.999 64 - -

VAE 50 2e-4 1 5e-1 0.999 64 - -

CVAE 50 2e-4 1 5e-1 0.999 64 - -

WGAN 50 2e-4 2 5e-1 0.999 64 - 0.01

WGAN_GP 50 2e-4 2 5e-1 0.999 64 0.25 -

Classifier 50 0.5 - 5e-1 0.999 64 - -

Fig. 13: Samples from GAN and Conditional-GAN for each Continual Learning strategy. Upperbound refers to Upperbound

Model.



Fig. 14: MNIST samples for each generative model and each Continual Learning strategy, at the end of training on 10

sequential tasks. The goal is to produce samples from all categories.



Fig. 15: Fashion MNIST samples for each generative model and each Continual Learning strategy, at the end of training on

10 sequential tasks. The goal is to produce samples from all categories.



Fig. 16: WGAN-GP samples on CIFAR10, with on training for each separate category. The implementation we used is

available here: https://github.com/caogang/wgan-gp. Classes, from 0 to 9, are planes, cars, birds, cats, deers,

dogs, frogs, horses, ships and trucks.

https://github.com/caogang/wgan-gp


Fig. 17: WGAN-GP samples on 10 sequential tasks on CIFAR10, with Generative Replay. Classes, from 0 to 9, are planes,

cars, birds, cats, deers, dogs, frogs, horses, ships and trucks. We observe that generation errors snowballs as tasks are

encountered, so that the images sampled after the last task are completely blurry.
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