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Abstract

Security surveillance is critical to social harmony and
people’s peaceful life. It has a great impact on strengthen-
ing social stability and life safeguarding. Detecting anoma-
ly timely, effectively and efficiently in video surveillance
remains challenging. This paper proposes a new approach,
called S

2-VAE, for anomaly detection from video data.
The S

2-VAE consists of two proposed neural networks: a
Stacked Fully Connected Variational AutoEncoder (SF -
VAE) and a Skip Convolutional VAE (SC -VAE). The
SF -VAE is a shallow generative network to obtain a
Gaussian mixture like model to fit the distribution of the
actual data. The SC -VAE, as a key component of S

2-
VAE, is a deep generative network to take advantages
of CNN, VAE and skip connections. Both SF -VAE and
SC -VAE are efficient and effective generative networks
and they can achieve better performance for detecting
both local abnormal events and global abnormal events.
The proposed S

2-VAE is evaluated using four public
datasets. The experimental results show that the S

2-VAE
outperforms the state-of-the-art algorithms. The code will
be available publicly at https://github.com/tianwangbuaa/.

Index Terms—Spatio-temporal, anomaly detection, Variational
AutoEncoder, loss function,

I. INTRODUCTION

V IDEO surveillance is a key tool to maintain the security

and stability of public scene [1, 2]. Densely crowded

environments (such as shopping centers, train stations, etc.),

are equipped with CCTV cameras to meet the increasing chal-

lenges of security issues in these public areas. The surveillance

systems generate a large amount of video data. Detecting

abnormal events timely, effectively and efficiently from a

large amount of video data, without human interaction and

monitoring, has become a crucial task in video surveillance.

In video surveillance, abnormal events can be classified

into global abnormal event (GAE) or local abnormal event

(LAE) [3, 4]. We assume that abnormal events happen in

the foreground. Most of current research focuses on detecting
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abnormal events from foreground. The detection of GAE

is to identify the frames with an anomaly, while the task

of detecting LAE, beyond identifying the frames with an

anomaly, is to locate the individuals with abnormal behaviors

in the frames. It is more challenging to detect LAE than GAE.

In this paper, we aim to improve the detection of the LAE

and GAE. To this end, we propose to use a self-supervised

learning method so that the detection task can be achieved

more accurately and efficiently. The proposed algorithm, called

S2-VAE, includes 2 stages: the first stage is a shallow network,

called SF -VAE, with a low resolution input. And the second

stage is a deep neural network, called SC-VAE, with a high

resolution input. The shallow network SF -VAE was designed

to filter out some palpable normal samples quickly, so that

the next stage network SC-VAE can learn a model from the

remaining samples more effectively and more efficiently.

Inspired by the Gaussian mixture model (GMM), we design

SF -VAE, a new Variational AutoEncoder (VAE) model, so that

the GMM-like distributions can be learned with SF -VAE for

the raw input data. In our experiments, this SF -VAE is used

to learn several latent variables to overcome the limitation of a

single latent variable in traditional VAE. The purpose of using

SF -VAE is to filter out some obvious normal samples from the

original samples, which can significantly reduce the training

and testing time in the next stage.

In the second stage of S2-VAE network, the remaining

samples are firstly enlarged, and the enlarged samples are

fed into SC-VAE. This SC -VAE, is a deep generative net-

work with skip-connection between downsampling layers and

upsampling layers. The convolutional operation in SC-VAE

can learn hierarchical features and a local relationship from

the input, which can not be achieved by the fully connected

layers in SF -VAE. This deep SC-VAE network can also

integrate low/mid/high level features, and therefore it has

stronger learning ability than shallow networks. Finally, from

the information theory, the fusion of low-level and high-

level information achieved by skip-connection can reduce the

information loss caused by the transmission across layers in

the generative network. From the feature representation per-

spective, the low-level feature can be treated as the auxiliary

feature to the high-level feature [5, 6].

We show how the proposed S2-VAE can be used for anoma-

ly detection in video data in the experiments. Four public

datasets are used to evaluate the algorithm’s effectiveness and

efficiency by comparing with state-of-the-art approaches. From

the experimental results, we find that our S2-VAE outperforms

the state-of-the-art algorithms consistently.
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The contributions of this paper are as follows:

• a shallow generative neural network built based on VAE,

called SF -VAE network is proposed. This network can

help to reduce unnecessary normal samples, which helps

to improve the speed of the anomaly detection.

• a deep generative network with more powerful learning

ability, called SC-VAE, is proposed to detect the abnor-

mal event from video data. This SC-VAE network has a

skipped encoder-decoder structure, with a build-in VAE.

The SC-VAE makes full use of the advantages of both

CNN and VAE. The network fuses the feature between

the encoder layer and the decoder layer, which helps to

reduce information loss due to the transmission across

layers.

• the proposed approach was evaluated by using four public

datasets. The results show that the proposed approach

outperforms state-of-the-art algorithms.

The rest of the paper is organized as follows. Section II

reviews the related work. Section III presents our S2-VAE.

The performance of S2-VAE is evaluated in Section IV. This

paper is concluded in Section V.

II. RELATED WORK

The state-of-the-art methods of the abnormal detection can

be categorized into: 1) motion based models, and 2) spatio-

temporal approaches combining motion with appearance in-

formation.

In the motion based models, the trajectory based method

was used to detect motions [7, 8], since such representations

can preserve the temporal structure of the abnormal events.

The computational cost rose significantly due to occlusion in

complex scenes. Thus, the no-tracking based methods were

favored. The descriptors such as quantized optical flow [9],

social model [10, 11], co-occurrence matrix based on frame

intensity [12, 13], sptiao-temporal context representations

[14, 15], etc had been proposed. For instance, an algorithm

monitoring optical flow in a set of fixed local spatial positions

was presented in paper [16]. The sum of squared differences

was transformed into a probability distribution. The likelihood

of observations respected to the probability distribution of

the observations was calculated, and the likelihood falling

below a preset threshold was detected as an alert. The sparse

reconstruction cost (SRC) model was introduced in paper [17]

over the multi-scale histogram of optical flow. Due to the

insufficient performance of huge training samples in paper

[17], the weighted orthogonal matching pursuit was adopted

in [18] to improve the ability of the model for handling

large samples. With suitable communication technology, the

anomaly detection method can used for application [19, 20].

The main limitation of the motion based approach is that it

cannot detect abnormal events with a sequence of similar nor-

mal actions, and it cannot distinguish among the appearance

characteristics.

The spatio-temporal approaches combining motion with

appearance [21] have been very successful in anomaly detec-

tion [22, 23]. These models provided a more comprehensive

representations than the motion based method. In paper [24]

the video was described by the nearby spatio-temporal inter-

est points (STIPs), then Gaussian process regression (GPR)

was adopted to cluster, learn, and infer the appearance and

position relationship of the STIPs, finally the abnormal event

was detected with competing performance while maintaining

lower space-time complexity. The mixture of dynamic textures

(MDT) was proposed in paper [25]. Moreover, a hierarchi-

cal mixture of dynamic textures (HMDT) was proposed for

handling the high computational cost of paper [25] later. The

events of low-probability were handled using discriminant

saliency. The high hierarchical levels and long-range dynamics

are important for event representation. Although several mod-

els have already been proposed, handcrafted features meet the

challenge of universality. The efficient and effective abnormal

event detection method consisting of a feature descriptor

with a suitable pattern classification method remains an open

problem.

The most recent research in this area is driven by deep

neural networks [26, 27], with some significant achievements

in abnormal event detection [28, 29]. The work in paper

[30] used both normal and abnormal events to construct the

training samples, and the spatio-temporal information had

been taken into account in a convolution neural network

in order to fuse the appearance and movement information

in video frames. The work in paper [28] first proposed a

fully-connected autoencoder with the handcrafted histograms

of gradients (HOG) and histograms of optical flows (HOF)

features as input. Then in consideration of feature represen-

tation, the video clips were used as input, in order to extract

features automatically by the fully convolutional autoencoder.

Despite the better performance that deep neural networks gain

compared with handcrafted features, the robustness of the

feature representation is still needed to be improved.

It is recognised that the deep neural network, especially the

generative models (e.g, VAE) can yield better performance for

abnormal event detection. We aim to design new generative

models to extract more robust features, so that the LAE

and GAE can be detected simultaneously by using the same

architecture.

III. MODEL ARCHITECTURE

This section presents our approach for abnormal event de-

tection from video sequences. Fig. 1 presents the workflow and

visualization of our approach, including Fully Convolutional

Neural network (FCN) [31] for foreground extraction and our

proposed abnormal detection of SF -VAE and SC-VAE. The

first row in Fig. 1 is our network, and the second row is the

samples and results from the network.

Suppose we have N + 1 video frames {Xi}
N+1
i=1 , the first

step in this model is to extract the foregrounds {Gi}
N+1
i=1 from

this N +1 frames by using FCN. The FCN used in this paper

is FCN-16s, which is built based on VGG-16 and pre-trained

on Pascal VOC 2012 [32]. Two consecutive foregrounds Gi

and Gi+1 are used to calculate motion feature with the optical

flow algorithm [33], which results in a set of N motion images

{Oi}
N
i=1 represented by the Munsell Color System [33]. Now,

both Gi and Oi will be used as input to SF -VAE. The SF -VAE
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Fig. 1: The architecture for anomaly detection with a fully convolutional network (FCN), SF -VAE and SC -VAE. This

architecture aims to detect LAE and GAE. For example, in LAE detection, it should be able to identify the abnormal objects.

will remove some unnecessary Gi and Oi, and the filtered Gi

and Oi, as shown in blue in Fig. 1, will be used as input to

SC-VAE for detection.

In S2-VAE, the SF -VAE network, a shallow neural network,

is designed to quickly filter some normal samples from the

input sequences. The reduction of the training samples will not

only decrease the training time of SC-VAE, but also improve

the robustness of the model. For the final stage, the SC-VAE

can extract abundant hierarchical features and allow the fusion

of low-level and high-level features. It provides a more precise

detection result.

A. The SF -VAE network

The proposed SF -VAE network is used to learn a Gaus-

sian mixture model. The study of VAE shows that a VAE

is a perfect combination of neural network and variational

inference [34]. From the neural network perspective, a VAE

is an encoder-decoder architecture and from the variational

inference perspective, it consists of an inference procedure

and a generation procedure.

Let x and z be the inputs, where x is the data input to VAE.

z as the latent representation of x, is learned by VAE. A VAE

can be used to learn a Gaussian model such that p(z|x) ∼
N(µ, σ2I) for approximating x. The loss function of VAE is

shown as follows:

L = −Ez∼pθ(z|x)[log qφ(x|z)] +KL(pθ(z|x)||p(z)), (1)

where θ and φ are the corresponding parameters to be trained

in the encoder and decoder in the network. The first term

is the reconstruction error between the input x and the output

decoded from z. The second term is the KL (Kullback-Leibler)

divergence measuring the similarity between the distribution

of z and a known distribution where Gaussian distribution is

mostly used.

Although VAE performs well in several applications, a VAE

network with single latent variable may have limited capacity.

Therefore, we propose to embed n latent variables in a VAE

network for abnormal event detection (shown in Fig. 2). The

solid boxes represent all of the neurons in the corresponding

layers, and the black dashed boxes represent the neurons of

z1 z2 z3

�1 �2 �3σ1 σ2 σ3

Input Cell

Hidden layer

p(zi)~N(�i,σi)

Subpart

Hidden layer

Output

Fig. 2: The architecture of SF -VAE in the first stage. The

appearance of the region of the interest is taken as the training

and testing samples in this figure. The motion based feature

can also be handled in the same architecture.

each subpart. The large gray dashed box represents n Gaussian

components p(zi|xi) ∼ N(µi, σ
2
i ) where 1 ≤ i ≤ n. We

define the loss function of the SF -VAE as:

L = −Ez∼pθ(z|x)[log qφ(x|z1, · · · , zn)]

+ 1
n

∑n

i=1 KL(pθ(zi|x)||p(zi)), (2)

where the first term is the log-likelihood of the data, or the

reconstruction error, and the second term is the average KL

divergence between the distribution of the encoded n-latent

variable and normal Gaussian distribution p(zi) ∼ N(0, 1).
Here, θ and φ are similar to the corresponding parameters in

the Eq. 1.

The proposed SF -VAE is inspired by the mixture of

several Gaussian distributions. According to the theory of

pattern recognition and machine learning, a simple Gaussian

distribution does not have the ability to describe complex

structures [35]. However, the mixture of Gaussian distribution

is more powerful to fit the distribution of actual data. We
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will demonstrate this proposed SF -VAE’s ability for modeling

data in our experiments. The shallow network SF -VAE was

designed to filter out some palpable normal samples, so that

the next stage network SC-VAE can learn a model from the

remaining samples more effectively and more efficiently.

B. The SC-VAE network

Despite the strength of Gaussian mixture like model in the

first stage, it can only filter some normal samples out of the

data samples. Since the SF -VAE is still a shallow network,

and the input is the direct flatten of the samples without

considering the position relationship of the pixels. Then in the

second stage of S2-VAE, we build a deep network to extract

more local relationship and hierarchical features from the

input. And at the same time, in order to reduce the information

loss across layers, we add a skip connection between low-level

features and high-level features by using the concatenation of

the feature map along the dimension of channel. Take the two

feature maps shown in Fig. 3 with size 20 × 16 × 16 as an

example. The two feature maps are in the encoder step and

decoder step. 20 and 16 are the height and width. The second

16 is the number of channels. After the skip connection which

is labeled as ‘M’, the new feature map is with size 20×16×32.

It is the output of the skip connection and is also the input

to the next decoder layer. The feature information is passed

across the layers in the end-to-end network. The reason for

adding the features from the encoder layer to the decoder layer

is that information loss is inevitable in the decoding process.

Therefore, it makes sense to combine the low-level features

and the high-level features to reduce information loss.

The SC-VAE network is built by combining U-net [36],

and VAE (shown in the green rectangle in Fig. 3). The SC -

VAE network can not only extract local relationship and latent

variables of the input data, but also integrate the feature

maps with same resolution in the downsampling layers and

upsampling layers, in order to obtain more accurate pixel-wise

reconstruction.

Since the SC-VAE network is to reconstruct the input data.

The loss function for SC-VAE for N training samples is

proposed as:

L=
1

N

N
∑

i=1

(

(xi − x̂i)
2
)

+KL (p(z|x)||p(z))+γ ∥w∥22, (3)

where the first term is the average reconstruction error of the

training samples. x is the input of the network, xi is the pixel

value of one sample, x̂i is the output of the network (the

reconstruction of xi). The second term limits the latent variable

distribution to be a Gaussian distribution. The last term is a

regularizer to avoid over-fit.

There are also other methods to reduce information loss

including highway network [37], ResNet network [38] and

so on. They are quite effective but they require very deep

architecture. Our network is effective but it is not as deep

as them [37], [38]. Therefore the skip connection proposed

in this paper is more efficient for training our network. In

addition, the built-in VAE network is not a general fully

connected network consisting of layers with the same number

of neurons, but is a reconstruction of its input. This is also

beneficial to reduce information loss. On the other hand, the

skip connection is an auxiliary feature added to the high-

level features. The SC -VAE network is a powerful generative

network with less information loss and we will demonstrate

its ability in the experiments.

C. Anomaly detection

After we use SF -VAE to process the input samples of Gi

and Oi, the output from the SF -VAE network will be resized

and the resized images will be the input to the SC-VAE

network. For example, if we have 16 × 12 images from SF -

VAE, we can resize them to 80 × 60, which is then fed to

the SC-VAE network. The convolution operation is similar to

VGGNet [39]. Here, we have an example of how the SC-VAE

network operates on a resized images:

I(80, 60, 3) → CC(80, 60, 64) → P (40, 30, 64) →
Z(40, 32, 64) → CC(40, 32, 32) → P (20, 16, 32) →
CC(20, 16, 16) → P (10, 8, 16) → CC(10, 8, 8) →
F (640) → FC(6) → FC(640) → R(10, 8, 8) →
U(20, 16, 8) → C(20, 16, 16) → M(20, 16, 32) →
CC(20, 16, 32) → U(40, 32, 32) → C(40, 32, 32) →
M(40, 32, 64) → CC(40, 32, 64) → C(40, 30, 64) →
U(80, 60, 64) → C(80, 60, 64) → M(80, 60, 128) →
CC(80, 60, 128) → C(80, 60, 3).

In this structure, I(i, j, k) is the input data, meaning that

k channels of i × j pixels; C is a convolution operation;

CC is to perform the same convolution operation twice. P is

max-Pooling; Z is Zero-padding; F is to flatten the feature

map after the convolution operation, FC represents fully-

connected; R is to reshape the output of the fully-connected

layer to a suitable format as input to the latter operation; U is

Upsampling; M is to concatenate additional link between the

downsampling layers and upsampling layers, as shown in the

red rectangle in Fig. 3. This operation concatenates the low-

level features and high-level features which have the same

resolution.

For accurate detection of an abnormal event, we use both

motion and appearance features of the samples. In order

to extract robust features, we train the network in every

stage twice, one for motion feature extraction, and one for

appearance feature extraction. The input samples are optical

flow and intensity of the pixels, respectively. After getting

the training samples, we then feed them into the S2-VAE to

represent both motion and appearance features. Since both of

the SF -VAE and SC-VAE are generative models, the abnormal

event is detected by the reconstruction error of the input

with a threshold set by the highest reconstruction cost during

training. The final decision is the union set of the motion and

appearance anomaly detection results.

IV. EXPERIMENTS

In this section, we conduct experiments to validate the

proposed networks. All the experiments are run on an NVIDIA

GTX-1080 GPU. We use four benchmark datasets: UCSD

[40], Avenue [15], UMN [41] and PETS [42].
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Fig. 3: The structure of the SC -VAE network in the second stage. C: Convolution. CC: Convolution twice. P: max-Pooling.

F: Flatten. R: Reshape. U: Upsampling. Z: Zero-padding. M: Merge link between the downsampling layers and upsampling

layers.

A. Pre-processing

For each video frame Xi, its foreground is extracted by

using FCN as shown in Fig. 1. Fig. 4 shows an example of

the foreground extraction for the original image.

For each foreground, blocks are extracted to cover every

area in the foreground. To do so, we suppose each block has

height bh and weight bw and each block contains cell units,

where the size of each cell unit is ch×cw. As such, one block

will have bh
ch

× bw
cw

cell units. For example, in Fig. 4, the size of

the foreground image is 158× 238. If the size of each cell is

16× 12, which is shown in the little red filled rectangle, then

we can get at most 9× 19 ( 15816 × 238
12 ) cell units in the block,

which covers all the pixels between (1, 1) and (16×9, 12×19).

In order to cover the remaining pixels, we shift the block

by a stride of 2 pixels to obtain different blocks so that all

the pixels will be covered by a set of blocks. For example, in

Fig. 4, the remaining pixels at the right and at the bottom are

10 pixels and 14 pixels respectively. We will shift the block

to the right by 2 pixels to cover the pixels between (1, 1+ 2)
and (16 × 9, 12 × 19 + 2), which results in a new block. By

continuing this shift to the right or to the bottom, we could

obtain 35 blocks in total, so that all the pixels will be covered

at least by one block.

In our experiments, we only keep the cells whose area

is covered at least 40% with the foreground. And, the size

of the cell is defined as 16 × 12 empirically so that it can

cover an action and at the same time reduce the scale of the

training samples. The extracted cells will then be used for

LAE detection.

B. Evaluation criteria

For abnormal event detection, the frame-level criterion is

commonly used to evaluate both GAE and LAE detections.

10 pixels

1
4

 p
ix

el
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2

3

4

5

6

7

8

9

Original Image Foreground Extraction

Cell

Fig. 4: The pre-processing for foreground detection and cell

extraction.

But this is not good enough for LAE evaluation. The pixel-

level criteria have been proposed for evaluating LAE detection

[25].

Frame-level Criterion: The frame-level criterion is the

accuracy of detecting abnormal events. A frame is classified as

abnormal if an abnormal event is found in this frame, and the

frame-level criterion only takes the whole frame into account.

For frame-level evaluation, the equal error rate (EER), a trade-

off between accuracy and recall, and the Receiver Operating

Characteristic (ROC) curve, will be used. It is defined as the

percentage of misclassified frames when the false positive rate

equals the false negative rate.

This frame-level criterion is not an accurate evaluation

method. For example, for an abnormal frame with a car on a

walkway street as the abnormal event, a model may correctly

classify this frame as abnormal but this decision was made

based on the wrong detection that classifies a walking person

as abnormal. Therefore, the frame-level is not accurate enough

to locate a local abnormal event. As a result, we need pixel-

level to fill this gap.

Pixel-level Criterion: This is to locate the abnormal events

in a frame, rather than just tell if the frame contains abnormal

events. In this case, a frame is classified as abnormal only if
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the detected abnormal events have more than 40% overlapping

with the pixel-level ground truth. So the pixel-level criterion

is a more accurate measure for evaluating the quality of the

algorithm.

For pixel-level evaluation, the ROC curve, Rate of Detection

(RD), and Area Under receiver operating characteristic Curve

(AUC) are used. The RD is defined as the detection rate

at equal error. The AUC is the area under the ROC curve.

Therefore, if an algorithm is robust enough, then it will have

low EER, high RD and high AUC.

C. Experimental results

In this section, we will introduce the procedure and per-

formance comparison of the experiment. The result estima-

tion includes the comparison between the performance of

networks with different architectures, and the comparison

between proposed S2-VAE network and state-of-the-art meth-

ods. In the SF -VAE, 3 latent variables are constructed. For

the network we propose, we make experiments on different

networks similar with the proposed networks, and compare the

results among them to make sure the proposed networks have

gained the best performance in the aspect of the network. For

comprehensive comparison, we compare our algorithm with

autoencoder based model such as Conv-AE [28], and other

state-of-the-art methods, such as Sparse [17], MDT [25], SF

[43], MPPCA [44], MPPCA+SF [25], Adam [16], Feng [45]

and so on. And this is to make sure the proposed algorithm

has outperformed others in the detection of abnormal event in

the aspect of algorithm.

1) The UCSD dataset: This is an LAE detection dataset,

containing sequences taken on a walkway street by a stationary

camera [40]. The density of the pedestrians varies from low to

high. Each sequence contains 200 frames, and the resolution of

each frame is 158× 238. The normal events used for training

are human walking, while the abnormal events are the frames

with moving bikes, cars, wheelchairs and so on.

For the UCSD PED1 dataset, we first extract the foreground

information by FCN network. Then we extract foreground

blocks based on the cell units with size 16×12 in each frame

and calculate their optical flow images. For each sequence in

the dataset, as there are 200 frames, optical flow of 199 frames

are extracted. We can get 9× 19× 199 = 34, 029 cells in the

block of one position. After foreground extraction, we can get

about 11,000 cells, including both normal and abnormal cells.

Then for each cell unit, their raw pixels and their optical flow

images are first fed to the SF -VAE network to filter out some

normal samples in the first stage, respectively. After SF -VAE,

we enlarge the height and weight of the remaining samples to

80 × 60, which are input into SC-VAE in the second stage.

The final decision is made based on the union of the motion

feature and the appearance feature. The activations used in

all of the neural network are Relu [46], and the optimizer is

Adam with learning rate of 1e−4. The results are shown in the

3D figures Fig. 5. In this dataset, each frame has 35 blocks,

meaning that a pixel will be contained in at most 35 cells. The

value for each pixel in Fig. 5 (e,f,g,h) is calculated based on

the number of cells which contains the pixel and are classified

TABLE I: The network comparison in the first stage. Com-

parison of our SF -VAE network with general VAE networks.

Stage 1 UCSD result

Filter rate
SF -VAE VAE

5.7778 % 1.1858 %

TABLE II: The network comparison in the second stage. Com-

parison of our SC -VAE network with other similar networks.

Stage 2 UCSD result

Pixel-level AUC
SC -VAE No skip FC

0.9425 0.7629 0.9303

as abnormal. It is obvious that pixels of the hikes in the 3D

figures are the objects which are identified as abnormal.

To show the advantage of using both SF -VAE and SC-VAE

networks, we do experiments to prove the effectiveness of the

proposed networks. The results are shown in Table I and II.

In Table I, we compare the performance on the proposed SF -

VAE with general VAE network by using the filter rate, where

the filter rate is the proportion of filtered normal samples in all

of the testing samples. We find that SF -VAE has higher filter

rate than the normal VAE. For stage 2, after using the SF -

VAE network for the first stage, we compare the performance

on the proposed SC-VAE with networks: 1) without the skip-

connection in SC-VAE; 2) without VAE, namely F (640) →
FC(640) → FC(640) in the architecture. The ROC of them

is shown in Fig. 6 and the AUC is shown in Table II. The pixel-

level AUC of the 3 networks is 0.9425, 0.7629, and 0.9303,

respectively, which proves the advantage of using the SC-VAE

network.

We also compare the proposed approach with the state-of-

the-art algorithms, shown in Fig. 7 for the ROC curve, in

Table III for EER, RD and AUC. Our approach has lower

EER, higher RD and higher AUC, compared to state-of-the-art
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Fig. 6: The network comparison in the second stage on the

UCSD dataset. Pixel-level ROC comparison between the SC-

VAE and other similar networks.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5: Examples of LAE detection via our proposed algorithm. The hikes in (e), (f), (g) and (h) indicate objects being identified

as abnormal. The values of the hikes are the number of times for a pixel being identified as abnormal in cells.

TABLE III: The algorithm comparison in our experiment.

Comparison of our method with state-of-the-art methods for

LAE of UCSD PED1 dataset. The best performances are

shown in bold font. The F and P in brackets represents that

the criterion is for the frame-level or the pixel-level.

Method
Evaluation Criteria

EER (F) RD (P) AUC (P)

Sparse [17] 19 % 46 % 46.1 %

Adam [16, 25] 38 % 24 % 13.3 %

MPPCA+SF[25] 32 % 27 % 21.3 %

SF [43] 31 % 21 % 17.9 %

MPPCA [25, 44] 40 % 18 % 20.5 %

MDT [25] 25 % 45 % 44.1 %

HOG+HOS [12] 27.02 % 78.87 % –

Conv-AE [28] 27.9 % – 81.0 %

Lu [15] – 59.1% 63.8%

sRNN [9] 12.5 % – 89.9 %

Feng [45] – 64.9 % 69.9 %

S2-VAE (ours) 14.3 % 87.4 % 94.25 %

methods. In the S2-VAE, on one hand, the SC -VAE exploits

robust feature extraction of CNN and data representation of

VAE; on the other hand, the skip connections designed in

the SC -VAE can reduce information loss to gain a finer

reconstruction of the input. Also, the first stage of SF -VAE

contributes to the detection of abnormal events by filtering out

some normal samples effectively and reduce the number of

input samples to the SC-VAE. Thus, the performance of SC -

VAE can be improved by training without unnecessary normal

samples.

2) The Avenue dataset: The Avenue dataset is an anomaly

detection dataset provided by Lu et al. [15]. Since the ground

truth of the Avenue dataset has been labeled by rectangles, it

can be treated as an LAE dataset. There are 16 video clips for

training, and 21 video clips for testing. The abnormal events
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Fig. 7: ROC comparisons of UCSD PED1 dataset. (a) Frame-

level ROC for UCSD dataset. (b) Pixel-level ROC for UCSD

dataset. The ROC of the compared algorithm is extracted from

[17, 25].
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TABLE IV: The algorithm comparison in our experiment.

Comparison of our method with state-of-the-art methods for

LAE of Avenue dataset. The best performance is shown in

bold font.

Method AUC

Conv-AE [28] 70.2 %

Lu [15] 80.5 %

sRNN [9] 81.71 %

Spatiotemporal-AE [47] 80.3 %

Feng [45] 75.4 %

S2-VAE (ours) 87.6 %

TABLE V: The algorithm comparison in our experiment.

Comparison of our method with state-of-the-art methods for

GAE of UMN dataset. The best performances are shown in

bold font.

Method
AUC

lawn indoor plaza

Social Force [43] 96 %

NN [17] 93 %

HOG+HOS [12] 97.02 %

SRC [17] 99.5 % 97.5 % 96.4 %

HOFO [9] 98.45 % 90.37 % 98.15 %

CLP [48] 98.72 % 95.21 % 99.34 %

S2-VAE (ours) 100 % 99.92 % 99.51 %

include running, abnormal direction and so on. The resolution

of each frame is 360 × 640. Compared with UCSD dataset,

the Avenue dataset has higher resolution. The comparison,

according to frame-level AUC, between our S2-VAE with

other algorithms is shown in Table IV. As can be found in

the table, our method has better results than state-of-the-art

methods.

3) The UMN dataset: This is a GAE detection dataset with

three scenes: lawn, indoor and plaza. The image resolution of

the dataset is 240× 320. The global frame is handled by the

proposed S2-VAE method. In this dataset, the normal scenes

are the events of people walking around, while abnormal

scenes are the events of people running.

For the UMN dataset, as the behaviors (people running) of

the abnormal events are similar in the scenes, we aim to train

a model only on the lawn scene and then transfer this model to

the indoor and plaza scenes. We show the experimental results

in Table V. From the results, we find that our approach gains

higher AUC, which also means our model is transferable.

4) The PETS dataset: This is a GAE detection dataset,

captured by multiple cameras. The image resolution of PETS

dataset is 576 × 768. This dataset has been applied to dif-

ferent tasks: event recognition, tracking, etc [42]. There are 2
different scenarios of abnormal events in this scene. In the first

scenario, the normal events are defined as people walking in

different directions, while the abnormal events are defined as

people gathering and walking ahead in the same direction. In

the second scenario, the normal events are defined as people

TABLE VI: The algorithm comparison in our experiment.

Comparison of our method with state-of-the-art methods for

GAE on the Time14-17 scene and the Time14-31 scene in the

PETS dataset.

Method
Detection accuracy

Time 1417 Time 1431

DT [49] 93.8 %

BoTG [49] 91.2 %

HOFO [9] 97.8 % 94.6 %

S2-VAE (ours) 99.3 % 98.8 %

walking in one queue, while the abnormal events are defined

as people leaving the queue.

For the PETS dataset, since the abnormal events are differ-

ent in different scenarios, we train the model by the normal

samples in each of the scenarios. Similar to UMN dataset, the

proposed algorithm also works well on the PETS dataset. The

results are shown in Table VI.

All of the experiments on different networks comparison

demonstrate the superiority of our proposed network. The

proposed network exploits the advantage of the robust feature

extraction of CNN, the data representation of VAE, and the

fusion of skip connections. This can reduce the information

loss and gain a finer reconstruction of the input. As a result,

the S2-VAE gains excellent performance on abnormal event

detection. And this superiority is also proved obviously by the

latter experiments of both the comparison among similar net-

works and the comparison among state-of-the-art algorithms

on the detection of LAE as well as GAE.

V. CONCLUSION

Abnormal event detection from video sequences remains

very challenging, due to the complexity of the video data. In

this paper, a 2-stage algorithm, i.e. S2-VAE, is proposed for

the detection of both local abnormal event and global abnormal

event. The proposed algorithm consists of 2 networks: SF -

VAE and SC-VAE. The SF -VAE network in the first stage

is a shallow generative network for the powerful description

of data distribution. It is used to filter out some unnecessary

normal samples quickly. Then the SC-VAE in the second

stage is a deep generative network for accurately locating

the abnormal events. The skip connection in SC-VAE is to

make the low-level features added to the high-level features as

auxiliary features. In addition, the skip connection can also be

viewed as the fusion of the information between the encoder

and decoder, which can reduce the information loss across

layers. And the VAE in the hidden layer also has the same

effect. Finally, we show the effectiveness and efficiency of our

proposed algorithm by the comparison on similar networks and

the experiments on four public datasets.
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