
Research Article

Generative Power and Closure Properties of
Watson-Crick Grammars

Nurul Liyana Mohamad Zulkufli, Sherzod Turaev, Mohd Izzuddin Mohd Tamrin,

and Azeddine Messikh

Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, 53100 Kuala Lumpur, Malaysia

Correspondence should be addressed to Nurul Liyana Mohamad Zulku�i; nurulliyanazulku�i@gmail.com

Received 27 November 2015; Revised 19 February 2016; Accepted 2 June 2016

Academic Editor: Ryotaro Kamimura

Copyright © 2016 Nurul Liyana Mohamad Zulku�i et al.
is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Wede�neWKlinear grammars, as an extension ofWKregular grammarswith linear grammar rules, andWKcontext-free grammars,
thus investigating their computational power and closure properties.We show thatWK linear grammars can generate some context-
sensitive languages. Moreover, we demonstrate that the family of WK regular languages is the proper subset of the family of WK
linear languages, but it is not comparable with the family of linear languages. We also establish that the Watson-Crick regular
grammars are closed under almost all of the main closure operations.

1. Introduction

DNAcomputing appears as a challenge to design new types of
computing devices, which di�er from classical counterparts
in fundamental way, to solve wide spectrum of computa-
tionally intractable problems. DNA (deoxyribonucleic acid)
is double-stranded chain of nucleotides, which di�er by their
chemical bases that are adenine (A), guanine (G), cytosine (C),
and thymine (T), and they are paired as A-T, C-G according to
theWatson-Crick complementary as it is illustrated in Figure 1
[1].
e massive parallelism, another fundamental feature of
DNAmolecules, allows performing millions of cut and paste
operations simultaneously on DNA strands until a complete
set of new DNA strands performing are generated.
ese two
features give high hope for the use of DNA molecules and
DNA based biooperations to develop powerful computing
paradigms and devices.

Since a DNA strand can be interpreted as a double strand
sequence of symbols, the DNA replication and synthesize
processes can be modeled using methods and techniques
of formal language theory. Watson-Crick (WK) automata
[2], one of the recent computational models abstracting
the properties of DNA molecules, are �nite automata with
two reading heads, working on complete double-stranded
sequences where characters on corresponding positions from

the two strands of the input are related by a complementarity
relation similar to the Watson-Crick complementarity of
DNA nucleotides.
e two strands of the input are separately
read from le to right by heads controlled by a common state.
Several variants have been introduced and studied in recent
papers [3–7].

WK regular grammars [8], a grammar counterpart of
WK automata, generate double-stranded strings related by
a complementarity relation as in a WK automaton but use
rules as in a regular grammar.
e approach of using formal
grammars in the study of biological and computational
properties of DNA molecules by formal grammars is a new
direction in the �eld of DNA computing: we can introduce
powerful variants of WK grammars, such as WK linear, WK
context-free, and WK regulated grammars, and use them in
the investigation of the properties of DNA structures and
also inDNA applications in food authentication, gene disease
detection, and so forth. In this paper, we introduce WK
linear grammars and study the generative capacity in the
relationship of Chomsky grammars.

Further, as a motivation, we show synthesis processes, for
instance, in DNA replication (Figure 2) can be simulated by
derivations inWK grammars.
e replication of DNA begins
at the origin(s).
e double strand then separated by proteins,
producing bubble-like shape(s).
e synthesis of new strands

Hindawi Publishing Corporation
Applied Computational Intelligence and So Computing
Volume 2016, Article ID 9481971, 12 pages
http://dx.doi.org/10.1155/2016/9481971

2 Applied Computational Intelligence and So Computing

N

N N-H

N

O

N-H

H

H-N

O

N

H

N

N-H

N

N

N

H

N

O

O

H-N

N

Adenine (A)

Guanine (G)

�ymine (T)

Cytosine (C)

CH3

Figure 1:
e structure of DNA strand.

Lagging strand

DNA pol I DNA ligaseDNA pol III

DNA pol III

Primer

Primase

Helicase

Parental DNA

Overview
Origin of replication

Lagging strand Leading strand
Leading strand

Parental
DNA

5
�

3
�

5
�

3
�

5
�

3
�5

�

3
�

5
�

3
�

Figure 2: Synthesis process in bacterial DNA replication.

using the parental strands as templates starts from the origins
and proceeds in the 5� to 3� direction of both strands [1].

is synthesis process in general can be seen as a string
generation.
e enzymes responsible for the synthesizing,
DNA polymerases, cannot initiate the process by themselves
but can only add nucleotides to an existing RNA chain.
is
chain is called primer which is produced by the enzyme
primase. From the grammar perspective, the primase can
be interpreted as the start symbol �. Aer the primer has
been connected to the parental strand, one of the synthesizing
enzymes, called DNA polymerase III, continues to add
nucleotides one by one to the primer and are complemented
with the parental strand.
e synthesis �nishes with replacing
RNA primer with DNA nucleotides using the enzyme DNA
polymerase I and joining with DNA ligase. Again, from the
grammar perspective, DNA polymerase I and polymerase III
act as production rules in the grammar, specially, DNA ligase
resembles to a terminal production (see Figure 3).

e paper is organized as follows. In Section 2, we give
some notions and de�nitions from the theories of formal
languages and DNA computing needed in the sequel. In
Section 3, we de�ne WK grammars and languages generated

AwS

Figure 3:
e simulation of a synthesis process with a derivation.

by these grammars. Section 4 is devoted to the study of
the generative capacity of WK regular and linear grammars.
In Section 5, we investigate the closure properties of WK
grammars. Furthermore, we show the application of WK
grammars in the analyses of DNA structures and program-
ming language structures in Section 6. As the conclusion, we
discuss open problems and interesting future research topics
related to WK grammars in Section 7.

2. Preliminaries

We assume readers are familiar with formal languages theory
and automata. Readers are referred to [3, 9–11].

Applied Computational Intelligence and So Computing 3

roughout this paper we use the following notations.
Let ∈ be the belonging relationship of an element to the
corresponding set and ∉ indicates its negation.
e symbol⊆ indicates the inclusion while ⊂ notes the proper inclusion.

e notations 0, |�|, and 2� denote the empty set, the
cardinality of a set �, and the power set of �, respectively.
When Σ is an alphabet (a �nite set of symbols), the set of
all �nite strings is denoted by Σ∗, while Σ+ shows similar
meaningwithout including empty strings (we use
 for empty
string).
e length of a string � ∈ Σ∗ is shown by |�|. A
language is a subset � ⊆ Σ∗.

Next we recall some terms regarding the closure proper-
ties of languages.
e union of two languages, �1 ∪ �2, is the
set of strings including the elements contained in both sets of�1 and �2.
e concatenation of two languages is yielded by
lining two strings from both languages which is shown by

�1�2 = {�� | � ∈ �1, � ∈ �2} . (1)

e Kleene-star closure is the closure under the Kleene ∗
operation, the set of all possible strings in � including the
empty string.
e mirror image of a word � = �1�2 ⋅ ⋅ ⋅ �� is�� = �� ⋅ ⋅ ⋅ �2�1. For language �, its mirror image is

�� = {�� | � ∈ �} . (2)

A substitution is a mapping � : Σ∗ → �∗ where �(
) =

and �(�1, �2) = �(�1)�(�2) for �1, �2 ∈ Σ∗.
e substitution
for a language � ⊆ Σ∗; that is, �(�) is the union of �(�), where� ∈ �. A substitution � is called �nite if its length |�(�)| is �nite
for each � ∈ Σ. Amorphism is a substitution where its length
is 1.

A Chomsky grammar is de�ned by � = (�, �, �, �)where� is the set ofnonterminal symbols and� is the set of terminal
symbols, and � ∩ � = 0. � ∈ � is the start symbol while� ⊆ (� ∪ �)∗�(� ∪ �)∗ × (� ∪ �)∗ is the set of production
rules. We write � → � indicating the rewriting process of the
strings based on the production rules (�, �) ∈ �.
e term �
directly derives � is written as � ⇒ � when

� = �1��2,
� = �1��2 (3)

for some production rules � → � ∈ �. A grammar generates
a language de�ned by

� (�) = {! ∈ �∗ : � "⇒∗!} . (4)

According to the forms of production rules, grammars are
classi�ed as follows. A grammar � = (�, �, �, �) is called

(i) context-sensitive if each production has the form#1�#2 → #1##2, where � ∈ �, #1, #2, ∈ (� ∪ �)∗,
and # ∈ (� ∪ �)+;

(ii) context-free if each production has the form � → #,
where � ∈ � and # ∈ (� ∪ �)∗;

(iii) linear if each production has the form � → #1$#2 or� → #, where �, $ ∈ � and #1, #2, # ∈ �∗;

(iv) right-linear if each production has the form � → #$
or � → #, where �, $ ∈ � and # ∈ �∗;

(v) le�-linear if each production has the form� → $# or� → #, where �, $ ∈ � and # ∈ �∗.
A right-linear and le-linear grammars are called regular.

e families of languages generated by these grammars

are REG, LIN, CF, and CS, respectively.
e families of
recursive enumerable languages are denoted by RE while the
families of �nite languages are denoted by FIN.
us the next
relation holds [11].

�eorem 1 (Chomsky hierarchy). Consider

%&� ⊂ '*� ⊂ �&� ⊂ +% ⊂ +� ⊂ '*. (5)

We recall the de�nition of a �nite automaton. A �nite
automaton (FA) is a quintuple- = (/,0, 10, %, 4), where /
is the set of states, 10 ∈ / is the initial state, and % ⊆ / is set
of �nal states. Meanwhile 0 is an alphabet and 4 : / × 0 →2� is called the transition function.
e set (language) of all
strings accepted by - is denoted by �(-). We denote the
family of languages accepted by �nite automata by FA.
en,
FA = REG (see [11]).

Next, we cite some basic de�nitions and results of
Watson-Crick automata.

e key feature of WK automata is the symmetric relation
on an alphabet 0; that is, 6 ⊆ 0 × 0. In this paper, for
simplicity, we use the form ⟨#/V⟩ to mention the elements(#, V) in the set of all pairs of strings 0×0 (which we choose
to write as [0/0]), and, instead of0∗×0∗, we write ⟨0∗/0∗⟩.

Watson-Crick domain is the set of well-formed double-
stranded strings (molecules)

WK� (0) = [00]
∗

�
= {[��] : �, � ∈ 0, (�, �) ∈ 6} . (6)

WK+�(0) holds the similar meaning without including
. We
write

[�1�1] [
�2�2] ⋅ ⋅ ⋅ [

����] ∈WK� (7)

as [#/V] where the upper strand is # = �1�2 ⋅ ⋅ ⋅ �� and the
lower strand is V = �1�2 ⋅ ⋅ ⋅ ��. Note that when the elements in
the upper strand are complemented and have the same length
with the lower strand,

⟨#
V

⟩ = [#
V

] . (8)

A Watson-Crick �nite automaton (WKFA) is 6-tuple

- = (/,0, 10, %, 4, 6) , (9)

4 Applied Computational Intelligence and So Computing

where /, 0, 10, and % are the same as a FA. Meanwhile the
transition function 4 is

4 : / × ⟨0∗0∗⟩ H→ 2�, (10)

where 4(1, ⟨#/V⟩) is not an empty set only for �nitely many
triples (1, #, V) ∈ /×0∗ ×0∗. Similar to FA, we can write the
relation in transition function 12 ∈ 4(11, ⟨#/V⟩) as a rewriting
rule in grammars; that is,

11 ⟨#
V

⟩ H→ ⟨#
V

⟩12. (11)

We describe the re�exive and transitive closure of→ as→∗.

e language accepted by a WKFA- is

� (-) = {# : [#
V

] ∈WK� (0) , 10 [#
V

]
H→∗ [#

V

] 1, where 1 ∈ %} .
(12)

e family of languages accepted is indicated by WKFA. It is
shown in [10, 12] that

REG ⊂WKFA ⊂ CS. (13)

3. Definitions

In this section we slightly modi�ed the de�nition of Watson-
Crick regular grammars introduced in [8] in order to extend
the concept to linear grammars and context-free grammars.

De�nition 2. A Watson-Crick (WK) grammar � = (�, �, �,�, 6) is called
(i) regular if each production has the form

� H→ ⟨#
V

⟩$
or � H→ ⟨#

V

⟩ ,
(14)

where �, $ ∈ � and ⟨#/V⟩ ∈ ⟨�∗/�∗⟩;
(ii) linear if each production has the form

� H→ ⟨#1
V1
⟩$⟨#2

V2
⟩

or � H→ ⟨#
V

⟩ ,
(15)

where �, $ ∈ � and ⟨#1/V1⟩, ⟨#2/V2⟩, ⟨#/V⟩ ∈⟨�∗/�∗⟩;
(iii) context-free if each production has the form

� H→ �, (16)

where � ∈ � and � ∈ (� ∪ (⟨�∗/�∗⟩))∗.

De�nition 3. Let� = (�, �, 6, �, �) be aWK linear grammar.
We say that � ∈ (� ∪ ⟨�∗/�∗⟩)∗ directly derives � ∈ (� ∪⟨�∗/�∗⟩)∗, denoted by � ⇒ �, i�

� = ⟨#1
V1
⟩�⟨#2

V2
⟩ ,

� = ⟨#1
V1
⟩⟨#3

V3
⟩$⟨#4

V4
⟩⟨#2

V2
⟩

or � = ⟨#1
V1
⟩⟨#

V

⟩⟨#2
V2
⟩ ,

(17)

where �, $ ∈ �, #	, V	 ∈ ⟨�∗/�∗⟩, I = 1, 2, 3, 4, and
� H→ ⟨#3

V3
⟩$⟨#4

V4
⟩ ,

� H→ ⟨#
V

⟩ ∈ �.
(18)

De�nition 4. Let � = (�, �, 6, �, �) be a WK context-free
grammar. We say that � ∈ (� ∪ ⟨�∗/�∗⟩)∗ directly derives� ∈ (� ∪ ⟨�∗/�∗⟩)∗, denoted by � ⇒ �, if and only if

� = ⟨#1
V1
⟩�⟨#2

V2
⟩ ,

� = ⟨#1
V1
⟩�⟨#2

V2
⟩ ,

(19)

where �, $ ∈ �, #	, V	 ∈ ⟨�∗/�∗⟩, I = 1, 2, 3, 4, and � → � ∈�.
Remark 5. We use a common notion “Watson-Crick gram-
mars” referring to any type of WK grammars.

De�nition 6.
e language generated by a WK grammar is a
quintuple � which is de�ned as

� (�) = {# : [#
V

] ∈WK� (�) , � "⇒∗ [#
V

]} . (20)

4. Generative Power of
Watson-Crick Grammars

In this section, we establish results regarding the computa-
tional power of WK grammars.

4.1. A Normal Form for Watson-Crick Linear Grammars.
Next, we de�ne 1-normal form for WK linear grammars
and show that, for every WK linear grammar �, there is an
equivalent WK linear grammar �� in the normal form; that
is, �(�) = �(��).
De�nition 7. A linearWK grammar� = (�, �, 6, �, �) is said
to be in the 1-normal form if each rule in � of the form

� H→ ⟨#1
V1
⟩$⟨#2

V2
⟩

or � H→ ⟨#1
V1
⟩ ,

(21)

where |#	| ≤ 1, |V	| ≤ 1, I = 1, 2, and �, $ ∈ �.

Applied Computational Intelligence and So Computing 5

Lemma 8. For every WK linear grammar �, there exists an
equivalent WK linear grammar �� in the 1-normal form.

Proof. Let � = (�, �, 6, �, �) be a WK linear grammar. Let

� H→ ⟨�11 ⋅ ⋅ ⋅ �1
1�11 ⋅ ⋅ ⋅ �1�1 ⟩$⟨
�2
2 ⋅ ⋅ ⋅ �21�2�2 ⋅ ⋅ ⋅ �21 ⟩ (22)

be a production in � where O1 > 1, O2 > 1, Q1 > 1, orQ2 > 1. Without loss of generality, we assume that O1 ≥ Q1
andO2 ≥ Q2.
en, we de�ne the following sequence of right-
linear and le-linear production rules:

� H→ ⟨�11�11⟩�
�
11,

��11 H→ ⟨�12�12⟩�
�
12

...
��1�1−1 H→ ⟨�1�1�1�1⟩�

�
1�1 ,

��1�1 H→ ⟨�1�1+1
 ⟩��1�1+1
...

��1
1−1 H→ ⟨�1
1
 ⟩��1
1 ,
��1
1 H→ ��21⟨�21�21⟩ ,

��21 H→ ��22⟨�22�22⟩
...

��1�2−1 H→ ��2�2 ⟨�2�2�2�2⟩,

��2�2 H→ ��2�2+1 ⟨�2�2+1
 ⟩
...

��2
2−1 H→ ⟨�2
2
 ⟩ ,

(23)

where ��1�, 1 ≤ S ≤ O1, and ��2�, 1 ≤ S ≤ O2 − 1, are new
nonterminals.

Let

T : � H→ ⟨�1�2 ⋅ ⋅ ⋅ �
�1�2 ⋅ ⋅ ⋅ �� ⟩ ∈ �, (24)

where O > 1 or Q > 1. Without loss of generality, we assume
that O ≥ Q.
en, we de�ne the following sequence of right-
linear production rules:

� H→ ⟨�1�1⟩�
�
1,

��1 H→ ⟨�2�2⟩�
�
2,

���−1 H→ ⟨����⟩�
�
�,

��� H→ ⟨��+1
 ⟩���+1
...

��
−1 H→ ⟨�

 ⟩ ,

(25)

where ��	 , 1 ≤ I ≤ O − 1, are new nonterminals.

We construct a WK linear grammar �� = (� ∪��, �, 6, �, � ∪ ��), where �� consists of productions de�ned
above for each � → ⟨#1/V1⟩$⟨#2/V2⟩ ∈ � with |#1| > 1,|V1| > 1, |#2| > 1, or |V2| > 1 and � → ⟨#/V⟩ ∈ � with|#| > 1 or |V| > 1.
en, it is not di�cult to see that, in every
derivation, productions in the form of (22) and (24) in � can
be replaced by the sequences of productions (23) and (25) in�� and vice versa.
us, �(�) = �(��).
4.2.�eGenerative Power.
e following results immediately
follow from the de�nition of WK grammars.

Lemma 9. �e following inclusions hold:

UV'*� ⊆ UV�&�,
�&� ⊆ UV�&�,
+% ⊆ UV+%.

(26)

Next, we show that WK grammars can generate non-
context-free languages:

{��W��� : Q ≥ 1} ,
{���
W�X
 : Q, O ≥ 1} ,
{!W! : ! ∈ {�, �}∗} .

(27)

6 Applied Computational Intelligence and So Computing

Example 10. Let �1 = ({�, �, $}, {�, �, W}, {(�, �), (�, �), (W, W)},�, �) be a WK linear grammar, where � consists of the rules
� H→ ⟨�
⟩�⟨�
⟩ ,
� H→ ⟨�
⟩�⟨�
⟩ ,
� H→ ⟨W�⟩�,
� H→ ⟨
W⟩$⟨
�⟩ ,
$ H→ ⟨
W⟩$⟨
�⟩ ,
$ H→ ⟨

⟩ .

(28)

In general, we have the derivation

� "⇒∗⟨��−1
 ⟩�⟨�
�−1

 ⟩
"⇒ ⟨��
 ⟩�⟨�

�

 ⟩
"⇒∗⟨��W��� ⟩�⟨�

�

 ⟩
"⇒ ⟨��W���W ⟩$⟨�

�

� ⟩
"⇒∗⟨��W���W�⟩$⟨�

�

��⟩
"⇒ [��W�����W���] .

(29)

us, �1 generates the language �(�1) = {��W��� : Q ≥ 1} ∈
CS − CF.
Example 11. Let

�2 = ({�, �, $, +,Y} , {�, �, W, X} ,
{(�, �) , (�, �) , (W, W) , (X, X)} , �, �) (30)

be a WK regular grammar, and � consists of the rules
� H→ ⟨�
⟩� | ⟨�
⟩�,
� H→ ⟨�
⟩� | ⟨�
⟩$,
$ H→ ⟨W�⟩$ | ⟨ W�⟩+,
+ H→ ⟨X�⟩+ | ⟨X�⟩Y,
Y H→ ⟨
W⟩Y | ⟨
X⟩Y | ⟨

⟩ .

(31)

en, we have the following derivation for Q,O ≥ 1:
� "⇒∗⟨��−1
 ⟩� "⇒ ⟨�

�

 ⟩�
"⇒∗⟨���
−1
 ⟩� "⇒ ⟨���

 ⟩$
"⇒∗⟨���
W�−1��−1 ⟩$ "⇒ ⟨�

��
W��� ⟩+
"⇒∗⟨���
W�X
−1���
−1 ⟩+ "⇒ ⟨���
W�X
���
 ⟩Y
"⇒∗⟨���
W�X
���
W� ⟩Y
"⇒∗⟨���
W�X
���
W�X
⟩Y
"⇒ [���
W�X
���
W�X
] .

(32)

Hence, �(�2) = {���
W�X
 : Q, O ≥ 1} ∈ CS − CF.
Example 12. Let �3 = ({�, �, $, +}, {�, �, W}, {(�, �), (�, �)},�, �) be a WK linear grammar with � consisting of the
following rules:

� H→ ⟨�
⟩� | ⟨ �
⟩� | ⟨ W
⟩�,
� H→ ⟨��⟩� | ⟨��⟩� | ⟨
W⟩$,
$ H→ ⟨
�⟩$ | ⟨
�⟩$ | ⟨

⟩ .

(33)

By rules � → ⟨�/
⟩ and � → ⟨�/
⟩, we obtain a sentential
form ⟨!/
⟩� where ! ∈ {�, �}∗.
e derivation is continued
by only possible rule � → ⟨W/
⟩� and we have ⟨!W/
⟩�.
Further, we can only apply rules � → ⟨�/�⟩� and � →⟨�/�⟩�. By the symmetric relation 6, the derivation results
in ⟨!W!/!⟩�.
en, we can only apply � → ⟨
/W⟩$
continuing with rules $ → ⟨
/�⟩$ and $ → ⟨
/�⟩$ and
obtain ⟨!W!/!W!⟩$. Finally, by rule $ → ⟨
/
⟩, we get[!W!/!W!]. Illustratively,

� "⇒∗ ⟨!
⟩� "⇒ ⟨!W
 ⟩�
"⇒∗ ⟨!W!! ⟩� "⇒ ⟨!W!!W ⟩$
"⇒∗ ⟨!W!!W!⟩$ "⇒ [!W!!W!] .

(34)

us, �(�3) = {!W! : ! ∈ {�, �}∗} ∈ CS − CF.

e following theorem follows from Lemma 9 and Exam-

ples 10, 11, and 12.

Applied Computational Intelligence and So Computing 7

�eorem 13. �e following inclusions hold:

�&� ⊊ UV�&�,
UV'*� − +% ̸= 0,
UV�&� − +% ̸= 0.

(35)

e following example shows that some WK linear
languages cannot be generated by WK regular grammars.

Lemma 14. �e following language is not a WK regular
language:

�1 = {���
�� : 2Q ≤ O ≤ 3Q}
∈ UV�&� −UV'*�. (36)

Proof.
e language�1 can be generated by the followingWK
linear grammar �4 = ({�, �, $}, {�, �}, {(�, �), (�, �)}, �, �),
where � consists of the rules:

� H→ ⟨�
⟩�⟨��⟩ | ⟨�
⟩�⟨��⟩ ,
� H→ ⟨��� ⟩� | ⟨���� ⟩� | ⟨
�⟩$,
$ H→ ⟨
�⟩$ | ⟨

⟩ .

(37)

It is not di�cult to see that

� "⇒∗⟨��−1
 ⟩�⟨�
�−1

��−1⟩ "⇒ ⟨�
�

 ⟩�⟨�
�

��⟩
"⇒∗⟨���
�� ⟩�⟨�

�

��⟩ "⇒ ⟨�
��
��� ⟩$⟨�

�

��⟩
"⇒∗⟨���
���
⟩$⟨ a���⟩ "⇒ [�

��
�����
��] ,
(38)

where 2Q ≤ O ≤ 3Q.
Next, we show that �1 ∉WKREG.
We suppose, by contradiction, that�1 can be generated by

a WK regular grammar �� = (�, {�, �}, 6, �, �). Without loss
of generality, we assume that �� is in 1-normal form.
en,
for each rule # → V in �, we have # ∈ � and

V ∈ {⟨�
⟩ ,⟨
�⟩ ,⟨��⟩ ,⟨�
⟩ ,⟨
�⟩ ,⟨��⟩ ,⟨��⟩ ,
⟨��⟩} (� ∪ {
}) .

(39)

Let ! = ����� be a string in �1 such that T > |�|.
en, the
double-stranded sequence [�����/�����] is generated by the
grammar ��.
Case 1. In any derivation for this string, �rst � can occur in
the upper (or lower) strand if �� has already been generated

in the upper (or lower) strand.
us, we obtain two possible
successful derivations:

� "⇒∗⟨����� ⟩
or � "⇒∗⟨������⟩ ,

(40)

where ` ≤ T. In the latter derivation in (40), we cannot control
the number of occurrences of �; that is, the derivation may
not be successful. In the former derivation in (40), using the
second strand, we can generate �:

� "⇒∗⟨����� ⟩"⇒∗⟨�
������⟩ , a ≤ �. (41)

Equation (41) is continued by generating �’s in the �rst strand
and we can use the second strand to control their number.
Consider

� "⇒∗⟨����� ⟩"⇒∗⟨�
������⟩"⇒∗⟨�

���	�����⟩, (42)

and I is related to �. Since 2T ≤ � ≤ 3T, generally, I is not the
same as T for all derivations.
Case 2.We can control the number of �’s aer �’s by using the
second strand for �’s before �’s. In this case, the number of �’s
cannot be related to the number of �’s:

� "⇒∗⟨�������� ⟩. (43)

In both cases, we cannot control the number of �’s and the
number of �’s aer �’s at the same time using WK regular
rules.

Since strings ���
�� are palindrome strings for evenO’s,
the language {!!� : ! ∈ {�, �}∗} is not in WKREG; that is,
we have the following.

Corollary 15. �e following holds:

�&� −UV'*� ̸= 0. (44)

4.3. Hierarchy of the Families of Watson-Crick Languages.
Combining the results above, we obtain the following theo-
rem.

�eorem 16. �e relations in Figure 4 hold; the dotted lines
denote incomparability of the language families and the arrows
denote proper inclusions of the lower families into the upper
families, while the dotted arrows denote inclusions.

5. Closure Properties

In this section, we establish results regarding the closure
properties of WK grammars.
e families of WK languages
are shown to be higher in the hierarchy than their respective
Chomsky language families; thus it is interesting to see how

8 Applied Computational Intelligence and So Computing

RE

WKCF

WKLIN

WKREG

REG

CS

CF

LIN

Figure 4:
e hierarchy of WK and Chomsky language families.

WKgrammarswork in terms of closure properties as the ones
for the Chomsky languages. Moreover, researching closure
properties ofWKgrammars ensure the safety and correctness
of the results yielded when performing operations on the sets
of DNA molecules generated by some WK grammars.

5.1. Watson-Crick Regular Grammars. Let �1, �2 ∈WKREG,
and �1 = (�1, �, �1, �1, 6), �2 = (�2, �, �2, �2, 6) be Watson-
Crick regular grammars generating languages �1 and �2,
respectively; that is, �1 = �(�1) and �2 = �(�2). Without
loss of generality, we can assume that�1 ∩�2 ̸= 0 and �1 and�2 do not appear on the right-hand side of any production
rule.

Lemma 17 (union). UV'*� is closed under union.

Proof. De�ne� = (�, �, �, �, 6) by setting� = �1 ∪�2 ∪{�}
with � ∉ �1 ∪ �2, and

� = �1 ∪ �2 ∪ {� H→ �1} ∪ {� H→ �2} . (45)

en it is not di�cult to see that �(�) = �1 ∪ �2.
Lemma 18 (concatenation). UV'*� is closed under concate-
nation.

Proof. De�ne � = (�, �, �, �, 6), where � = �1 ∪ �2 and� = �1. We de�ne

� = �2 ∪ (�1 − {� H→ ⟨#
V

⟩ ∈ �1})
∪ {� H→ ⟨#

V

⟩�2 | � H→ ⟨#
V

⟩ ∈ �1} .
(46)

en it is obvious that �(�) = �1 ⋅ �2.
Lemma 19 (Kleene-star). UV'*� is closed under Kleene-
star operation.

Proof. De�ne the WK regular grammar � = (�1, �1, �, �1, 6)
with

�1 = (�1 − ��) ∪ �� ∪ {�1 H→
} , (47)

where

�� = {� H→ ⟨#
V

⟩ ∈ � : ⟨#
V

⟩ ∈ ⟨�∗�∗⟩} ,
�� = {� H→ ⟨#

V

⟩�1 | � H→ ⟨#
V

⟩ ∈ ��} .
(48)

en, �(�) = �∗1.
Lemma 20 (�nite substitution and homomorphism).UV'*� is closed under �nite substitution and homomor-
phism.

Proof. We show that the �nite substitution (homomorphism)
of �1 is also in WKREG. Let � : �∗ → Σ∗ be a �nite
substitution (homomorphism).De�ne� = (�1, �1, �1, �, 61),
where �(�) = �(�1). Without loss of generality, we assume
that �1 is in the 1-normal form.
en, �1 can contain
production rules of the forms

� H→ ⟨��⟩$,
� H→ ⟨��⟩ ,
� H→ ⟨�
⟩$,
� H→ ⟨�
⟩ ,
� H→ ⟨
�⟩$,
� H→ ⟨
�⟩ ,
� H→ ⟨

⟩ .

(49)

We de�ne � as the set of production rules of the forms

� H→ ⟨� (�)� (�)⟩$,
� H→ ⟨� (�)� (�)⟩ ,
� H→ ⟨� (�)
 ⟩$,
� H→ ⟨� (�)
 ⟩ ,
� H→ ⟨
� (�)⟩$,

Applied Computational Intelligence and So Computing 9

� H→ ⟨
� (�)⟩ ,
� H→ ⟨

⟩ .

(50)

Since the substitution/homomorphism � is �nite, � is a
�nite set too; that is, � is a WK regular grammar, and �(�) =�(�1).
Lemma 21 (mirror image). UV'*� is closed under mirror
image.

Proof. We show that ��1 ∈ WKREG. De�ne � = (�1 ∪{�}, �1, �, �, 61) generating the language ��1 , where � is a new
nonterminal and � consists of production rules de�ned as
follows:

(i) � → $⟨#/V⟩, where � → ⟨#/V⟩$ ∈ �1,
(ii) � → ⟨#/V⟩, where � → ⟨#/V⟩ ∈ �1.

e results obtained from the lemmas above are summa-
rized in the following theorem.

�eorem 22. �e family of Watson-Crick regular languages is
closed under union, concatenation, Kleene-star, �nite substitu-
tion, homomorphism, and mirror image.

is shows thatWK regular grammars preserve almost all
of the closure properties of regular grammars. Other closure
properties ofWK regular grammars are le for future studies.

5.2. Watson-Crick Linear Grammars. Similar to the subsec-
tion above, a Watson-Crick linear grammar � is constructed
for the purpose of investigating the closure properties of
WKLIN.

Let �1, �2 ∈WKLIN, and

�1 = (�1, �, �1, �1, 6) ,
�2 = (�2, �, �2, �2, 6) (51)

be Watson-Crick linear grammars generating �1 and �2,
respectively; that is, �1 = �(�1) and �2 = �(�2). Without
loss of generality, we can assume that�1 ∪ �2 ̸= 0.
Lemma 23 (union). UV�&� is closed under union.

Proof. De�ne � = (�, �, �, �, 6), where � = �1 ∪ �2 ∪ {�}
with � ∉ �1 ∪ �2 and

� = �1 ∪ �2 ∪ {� H→ �1} ∪ {� H→ �2} . (52)

en, �(�) = �1 ∪ �2.
Lemma 24 (homomorphism). UV�&� is closed under
homomorphism.

Proof. De�ne � = (�1, �, �1, �, 6), where �(�) = ℎ(�1). We
show that the homomorphism of �1 is also in WKLIN. Letℎ : �∗ → Σ∗ be a homomorphism.Without loss of generality,
we assume that �1 is in the 1-normal form. For each rule

T : � H→ ⟨#1
V1
⟩$⟨#2

V2
⟩ ∈ �1, (53)

where #1, V1, #2, V2 ∈ � ∪ {
}, we construct
ℎ (T) : � H→ ⟨ℎ (#1)ℎ (V1)⟩$⟨

ℎ (#2)ℎ (V2)⟩ (54)

in �.
In every successful derivation of �1 generating [!/!] ∈[�/�]∗, we replace production rule T ∈ �1 with the

production rule ℎ(T) ∈ � and obtain the string [ℎ(!)/ℎ(!)] ∈[Σ/Σ]∗.
us, ℎ(!) ∈ ℎ(�1).
�eorem 25. �e family of Watson-Crick linear languages is
closed under union and homomorphism.

It is compelling to prove if the concatenation of two WK
linear grammars is still included in WKLIN or not.
is
also decides whether WK linear grammars are unique from
linear grammars or not, as linear grammars are not closed
under concatenation and thus not closed under Kleene-star
operation.

5.3. Watson-Crick Context-Free Grammars. Let �1, �2, � ∈
WKCF, and �1 = (�1, �, �1, �1, 6), �2 = (�2, �, �2, �2, 6) be
Watson-Crick context-free grammars generating �1 and �2,
respectively; that is, �1 = �(�1) and �2 = �(�2). Without
loss of generality, we can assume that�1 ∪ �2 ̸= 0.
Lemma 26 (union). UV+% is closed under union operation.

Proof. De�ne the WK context-free grammar � =(�, �, �, �, 6), where � = �1 ∪ �2 ∪ {�} with � ∉ �1 ∩ �2,
and

� = �1 ∪ �2 ∪ {� H→ �1} ∪ {� H→ �2} . (55)

en it is obvious that �(�) = �1 ∪ �2.
Lemma 27 (concatenation). UV+% is closed under concate-
nation.

Proof. De�ne � = (�1 ∪ �2 ∪ {�}, �1 ∪ �2, �, �, 6) where � ∉(�1 ∪ �2), and
� = �1 ∪ �2 ∪ {� H→ �1�2} . (56)

en, �(�) ∈WKCF.

Lemma 28 (Kleene-star). UV+% is closed under Kleene-star
operation.

Proof. De�ne � = (�1 ∪ {�}, �1, �, �, 6) ∈WKCF setting

� = �1 ∪ {� H→ �1� |
} . (57)

en it is not di�cult to see that �(�) ∈WKCF.

10 Applied Computational Intelligence and So Computing

Lemma 29 (homomorphism). UV+% is closed under homo-
morphism.

Proof. De�ne � = (�1, �, �1, �, 6), where �(�) = ℎ(�1). We
show that the homomorphism of �1 is also in WKCF. Let � :�∗ → Σ∗ be a homomorphism. �1 contains production rules
of the form

T : �
H→ ⟨#1

V1
⟩$1⟨#2

V2
⟩$2 ⋅ ⋅ ⋅ ⟨#�

V�
⟩$�⟨#�+1

V�+1
⟩ , (58)

where ` ≥ 0.
For each rule T ∈ �, we construct

ℎ (T) : � H→ ⟨ℎ (#1)ℎ (V1)⟩$1⟨
ℎ (#2)ℎ (V2)⟩$2

⋅ ⋅ ⋅⟨ℎ (#�)ℎ (V�)⟩$�⟨
ℎ (#�+1)ℎ (V�+1)⟩ ,

(59)

where ` ≥ 0.
In every successful derivation of �1 generating [!/!] ∈[�/�]∗, we replace production rule T ∈ �1 with the

production rule ℎ(T) ∈ � and obtain the string [ℎ(!)/ℎ(!)] ∈[Σ/Σ]∗.
us, ℎ(!) ∈ ℎ(�1).
With the lemmas provided above in this subsection, the

next theorem follows.

�eorem 30. �e family of Watson-Crick context-free lan-
guages is closed under union, concatenation, Kleene-star, and
homomorphism.

Closure of WKCF under complement and intersection
depends on the generative capacity ofWKCF.
enonclosure
of context-free (CF) grammars for intersection was shown
with the famous example that the intersection of two CF
languages results in a string that cannot be generated by a CF
grammars. If one can provide some examples of strings that
cannot be generated byWK context-free grammars, then the
nonclosure of WKCF can be proven.

6. Applications of Watson-Crick Grammars

In this section, we consider two examples of the applications
ofWatson-Crick grammars in the analyses of DNA structures
and programming language structures.

6.1. DNA Structure Analysis. Since Watson-Crick grammars
are developed based on the structure and recombinant behav-
ior of DNA molecules, they can suitably be implemented in
the study of DNA related problems.

e analysis of DNA strings provides useful information:
for instance, the �nding of a speci�c pattern in a DNA
string and the identi�cation of the repeats of a pattern are
very important for detecting mutation. One of the diseases
caused by mutation is Huntington disease, resulting from
trinucleotide repeat disorders [13–15]. It is discovered that

the number of repeats of the trinucleotide +��/+�� in the
patient’s DNA with Huntington disease is not normal.
e
repeats are also useful for �nding the origin of replication of
microorganisms [16].

In this section, we show thatWatson-Crick grammars can
be used for analyzing the repeats in DNA strings. We use the
DNA of a breed of pig, Sus scrofa breed mixed chromosome
1, Sscrofa10.2 provided by the
e National Center for
Biotechnology Information (NCBI) database (NCBI Refer-
ence Sequence: NC 010443.4) [17].

Consider a part of the upper strand of the DNA from the
breed stated above with the length of 100 nucleotides:

��aWf�WfWW �W�WfcagfW cagaaWWf�f ctgW�actgf f�WctgWaWW
�a�actg��f fW��aWctgf �aWcagff�a afW�WctgWW aaWaWaWWa�. (60)

In this example, the pattern Waf is being repeated for six
times in the direct strand (upper strand) and two times in the
reverse strand (lower strand) which can be seen as W�f in the
upper strand. Focusing on the repeats of Waf pattern, a DNA
string containing such a pattern can be expressed as

({�, a, W, f}∗ Waf {�, a, W, f}∗)∗ . (61)

We now construct a simple Watson-Crick regular gram-
mar � to generate the above language.

Let � = (�, �, �, �, 6), where � = {�, a, W, f}, 6 ={(�, a), (W, f)}, and � consists of the following productions:
� H→ ⟨�a ⟩ � | ⟨ a�⟩ � | ⟨fW ⟩ � | ⟨ Wf⟩�,
� H→ ⟨ Wf⟩� | ⟨�a ⟩ � | ⟨fW ⟩ � | ⟨ a�⟩$,
$ H→ ⟨ Wf⟩� | ⟨�a ⟩ � | ⟨ a�⟩ � | ⟨fW ⟩+,
+
H→ ⟨�a ⟩+ | ⟨ a�⟩+ | ⟨fW ⟩+ | ⟨ Wf⟩� | ⟨

⟩ .

(62)

For instance, a derivation resulting in six repeats of Waf
pattern can be obtained as follows:

� "⇒∗⟨��⟩� "⇒ ⟨�W�f⟩� "⇒ ⟨ �Wa�f�⟩$
"⇒ ⟨ �Waf�f�W⟩+
"⇒∗⟨�Waf��f�W�⟩� "⇒ ⟨ �Waf�W�f�W�f⟩�
"⇒ ⟨ �Waf�Wa�f�W�f�⟩$
"⇒ ⟨ �Waf�Waf�f�W�f�W⟩+"⇒∗⟨ �Waf�Waf��f�W�f�W�⟩+
"⇒∗ [�Waf�Waf�Waf�Waf�Waf�Waf��f�W�f�W�f�W�g�W�f�W�f�W�] ,

(63)

Applied Computational Intelligence and So Computing 11

where � ∈ {�, a, f}∗ and � is their complementarity symbols
based on 6, respectively.

ough, in this example, the functionality of WK regular
grammars is not used to the fullest, the DNA structures can
be naturally and e�ectively analyzed with WK grammars.

6.2. Programming Language Structure Analysis.
e abil-
ity to di�erentiate between parentheses that are correctly
balanced and those that are unbalanced is an important
part of recognizing many programming language structures.
Balanced parentheses mean that each opening symbol has a
corresponding closing symbol and the pairs of parentheses
are properly nested.

eparsing algorithms of compilers and interpreters have
to check the correctness of balanced parentheses in the blocks
of codes including algebraic and arithmetic expressions.

Although context-free grammars are used to develop
parsers for programming languages, many programming
language structures are context-sensitive.
us, it is of interest
to develop parsers based on grammars which are able to
analyze non-context-free language structures.

Further, we show an example of balanced parentheses that
can be generated by WK regular grammars but cannot be
generated by context-free grammars. One can see that just by
incorporating the concept of double-stranded string bonded
with Watson-Crick complementarity, even WK grammars
that are based of just regular rules can enhance the power of
the parsing techniques.

To avoid confusion, we denote “(” as the open parenthesis
terminal symbol and “)” as the close parenthesis terminal
symbol in bold font.

Example 31. Let �5 = ({�, �, $}, {(,)}, {((,))}, �, �5) be a WK
regular grammar. �5 consists of the rules

� H→ ⟨ (
⟩�
� H→ ⟨ (
⟩�,
� H→ ⟨)

(
⟩�

� H→ ⟨)

(
⟩$

$ H→ ⟨ (

)
⟩$

$ H→ ⟨

)
⟩$

$ H→ ⟨

⟩
$ H→ �.

(64)

From this, we obtain the derivation

� "⇒ ⟨ (
⟩�"⇒∗⟨ (�
 ⟩�

"⇒ ⟨ (�)

(
⟩�"⇒∗⟨ (�)�

(�
⟩$

"⇒ ⟨ (�)�

(�)
⟩$"⇒∗⟨ (�)�

(�)�
⟩$

"⇒ ⟨ (�)�(

(�)�
⟩$"⇒∗⟨ (�)�(�

(�)�
⟩�

"⇒ ⟨ (�)�(�)

(�)�
⟩�"⇒∗⟨ (�)�(�)�

(�)�
⟩$

"⇒∗ ⋅ ⋅ ⋅ "⇒∗ [((�)�)�((�)�)�] ,
(65)

where ` ≥ 1. Hence, the language obtained is

�5 = {((�)�)� : Q, ` ≥ 1} ∈WKREG − CF. (66)

7. Conclusion

In this paper, we de�ned Watson-Crick regular grammars,
Watson-Crick linear grammars, and Watson-Crick context-
free grammars. Further, we investigated their computational
power and closure properties. We showed that

(1) WK linear grammars can generate some context-
sensitive languages;

(2) the families of linear languages and WK regular
languages are strictly included in the family of WK
linear grammars;

(3) the families of WK regular languages and linear
languages are not comparable;

(4) the family of WK linear languages is not comparable
with the family of context-free languages;

(5) WK regular grammars preserves the closure proper-
ties similar to the ones of regular languages.

e following problems related to the topic remain open:

(1) Are the family of context-free languages proper subset
of the family of WK linear languages or are they not
comparable?

(2) What is the generative capacity of Watson-Crick
context-free grammars?

(3) What are the remaining closure properties ofWatson-
Crick (regular, linear, and context-free) grammars?

ese depend on their generative capacity.

Moreover, there are many interesting topics for further
research; for instance, we can de�ne WK context-free and
regulated WK context-free grammars and use them in the
study of DNA properties and in the DNA based applications
such as food authentication and disease gene detection.

12 Applied Computational Intelligence and So Computing

Competing Interests

e authors declare that they have no competing interests.

Acknowledgments

is work has been supported through International Islamic
University Endowment B research Grant EDW B14-136-1021
and Fundamental ResearchGrant Scheme FRGS13-066-0307,
Ministry of Education, Malaysia.
e �rst author would like
to thank both organizations for the scholarship through the
IIUM fellowship program.

References

[1] J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, P.
V. Minorsky, and R. B. Jackson, Campbell Biology, Pearson
Education, 10th edition, 2011.

[2] R. Freund, G. Paun, G. Rozernberg, and A. Salomaa, Watson-
Crick Finite Automata, vol. 48 of DIMACS Series in Discrete
Mathematics and �eoretical Computer Science, 1999.

[3] E. Czeizler, “A short survey on watson-crick automata,” Bulletin
of the EATCS, vol. 88, no. 3, pp. 104–119, 2006.

[4] L. Kari, S. Seki, and P. Sosik, “DNA computing—foundations
and implications,” in Handbook of Natural Computing, G.
Rozenberg, T. Bäck, and J. N. Kok, Eds., pp. 1073–1127, 2012.

[5] P. Leupold and B. Nagy, “5k → 3kWatson-Crick automata with
several runs,” Fundamenta Informaticae, vol. 104, no. 1-2, pp. 71–
91, 2010.

[6] M. I. Mohd Tamrin, S. Turaev, and T. M. Tengku Sembok,
“Weighted watson-crick automata,” in Proceedings of the 21st
National Symposium on Methematical Sciences, vol. 1605 of AIP
Conference Proceedings, p. 302, Penang, Malaysia, November
2013.

[7] K. G. Subramanian, I. Venkat, and K. Mahalingam, “Context-
free systems with a complementarity relation,” in Proceedings
of the 6th International Conference on Bio-Inspired Computing:
�eories and Applications (BIC-TA ’11), pp. 194–198, Penang,
Malaysia, September 2011.

[8] K. G. Subramanian, S. Hemalatha, and I. Venkat, “On Watson-
Crick automata,” in Proceedings of the 2nd International Confer-
ence on Computer Science, Science, Engineering and Information
Technology (CCSEIT ’12), pp. 151–156, Coimbatore, India, 2012.

[9] P. Linz, An Introduction to Formal Languages and Automata,
Jones and Bartlett, 2006.

[10] G. Păun, G. Rozenberg, and A. Salomaa,DNA Computing, New
Computing Paradigms, Springer, Berlin, Germany, 1998.

[11] G. Rozenberg and A. Salomaa, Handbook of Formal Languages,
vol. 1–3, Springer, 1997.

[12] S. Okawa and S. Hirose, “
e relations among Watson-Crick
automata and their relations with context-free languages,”
IEICE Transactions on Information and Systems, vol. E89, no. 10,
pp. 2591–2599, 2006.

[13] M. E. MacDonald, C. M. Ambrose, M. P. Duyao et al., “A novel
gene containing a trinucleotide repeat that is expanded and
unstable on Huntington’s disease chromosomes,” Cell, vol. 72,
no. 6, pp. 971–983, 1993.

[14] H. T. Orr and H. Y. Zoghbi, “Trinucleotide repeat disorders,”
Annual Review of Neuroscience, vol. 30, pp. 575–621, 2007.

[15] J. Petruska, M. J. Hartenstine, and M. F. Goodman, “Analysis of
strand slippage in DNA polymerase expansions of CAG/CTG
triplet repeats associated with neurodegenerative disease,” �e
Journal of Biological Chemistry, vol. 273, no. 9, pp. 5204–5210,
1998.

[16] N. C. Jones and P. Pevzner, An Introduction to Bioinformatics
Algorithms, MIT Press, Boston, Mass, USA, 2004.

[17] M. A. M. Groenen, A. L. Archibald, H. Uenishi et al., “Analyses
of pig genomes provide insight into porcine demography and
evolution,” Nature, vol. 491, no. 7424, pp. 393–398, 2012.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

