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Abstract

Transformers have been successful for many natu-

ral language processing tasks. However, applying

transformers to the video domain for tasks such

as long-term video generation and scene under-

standing has remained elusive due to the high

computational complexity and the lack of natural

tokenization. In this paper, we propose the Object-

Centric Video Transformer (OCVT) which uti-

lizes an object-centric approach for decomposing

scenes into tokens suitable for use in a generative

video transformer. By factoring the video into

objects, our fully unsupervised model is able to

learn complex spatio-temporal dynamics of mul-

tiple interacting objects in a scene and generate

future frames of the video. Our model is also

significantly more memory-efficient than pixel-

based models and thus able to train on videos

of length up to 70 frames with a single 48GB

GPU. We compare our model with previous RNN-

based approaches as well as other possible video

transformer baselines. We demonstrate OCVT

performs well when compared to baselines in gen-

erating future frames. OCVT also develops use-

ful representations for video reasoning, achieving

start-of-the-art performance on the CATER task.

1. Introduction

Recent advances in natural language processing (NLP) have

shown that models trained with an autoregressive language

modeling objective using large transformers (Vaswani et al.,

2017) can learn to generate realistic text passages (Rad-

ford, 2018; Radford et al., 2019; Brown et al., 2020). Fur-

thermore, the representations learned with these generative

pre-trained (GPT) models are effective at downstream tasks

such as question answering, machine translation, reading

comprehension, and summarization. While it is of primary
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interest to develop an analogous generative pre-training pro-

cedure for videos, the computational overhead in dealing

with videos has made this a difficult endeavor.

The main challenges in developing video transformers are

(1) how to tokenize a video and (2) how to serialize the

tokens because unlike text the ordered symbolic structure is

not naturally given in videos. Several previous attempts for

images (Chen et al., 2020; Parmar et al., 2018) and videos

(Weissenborn et al., 2020) operate at the pixel level, flatten-

ing out an image into a sequence of pixels. However, since

the memory and computation of the self-attention layers

used in transformers are quadratic in the input sequence

length, in order to train these models efficiently, these works

either lower the resolution of the image or use local attention

instead of global attention across the entire image or video.

In this paper, we investigate a potentially different approach

to tackling this quadratic cost. We leverage the inductive

bias that our world is made of objects and working at an

object-level granularity can be beneficial for many down-

stream tasks, especially in scenes where the objects inter-

act with each other. To this end, we investigate different

design choices for tokenizing and serializing a video and

propose the Object-Centric Video Transformer (OCVT).

In OCVT, we combine object-centric representations with

a transformer trained using an autoregressive object-level

next-frame prediction objective. Our model leverages a

class of object-centric latent representations (Eslami et al.,

2016; Crawford & Pineau, 2019b; Lin et al., 2020b;a) which

can learn structured representations without object-level la-

beling. The learned object representation includes explicit

location and size information about the objects in each video

frame. We use this to find a bipartite matching of objects be-

tween frames, allowing us to construct the object-wise loss

function. The use of an object-centric transformer allows

OCVT to learn spatial and long-term temporal interactions

between objects in a video.

We evaluate OCVT in a number of environments con-

structed to demonstrate the strengths and limitations of

the model. Given a number of initial ground-truth video

frames, OCVT is able to generate future predictions of a

video, even in scenarios where the dynamics of the objects

in the video depend on interactions made many frames in

the past. Lastly, the representations OCVT learns are also
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able to handle downstream video understanding tasks that

require long-term spatial-temporal reasoning, achieving re-

sults comparable with the state of the art on the CATER

(Girdhar & Ramanan, 2020) snitch localization task.

2. Related Works

Unsupervised Object-Centric Representation. Recent

advances in unsupervised object-centric representation

learning for images can be split into two approaches. Scene-

mixture models (Greff et al., 2017; Van Steenkiste et al.,

2018; Burgess et al., 2019; Greff et al., 2019; Engelcke

et al., 2019; Locatello et al., 2020) decompose a scene into

objects using a mixture of image-sized components that

are each generated by a distributed representation. Bound-

ing box methods (Eslami et al., 2016; Crawford & Pineau,

2019b) use spatial attention to explicitly obtain object po-

sition and size information. SPACE (Lin et al., 2020b)

combines these two approaches by obtaining both explicit

bounding boxes for objects as well as image-sized object

segmentation masks for parts of the image that cannot be

cleanly captured by bounding boxes. Previous works that

extend these models to videos utilize an RNN for temporal

modeling (Veerapaneni et al., 2019; Watters et al., 2019;

Kosiorek et al., 2018; Crawford & Pineau, 2019a; Jiang

et al., 2019; Lin et al., 2020a). Several of these models,

namely STOVE (Kossen et al., 2019) and GSWM (Lin et al.,

2020a), also model interactions among objects with a graph

neural network.

Transformers for Images & Videos. Several recent works

have applied transformer-based architectures to various

tasks for visual scenes. To handle the quadratic memory

and computation cost in the number of pixels of an image,

Parmar et al. (2018) restrict the self-attention mechanism to

attend to local neighborhoods instead of the entire image.

Weissenborn et al. (2020) extend this technique to videos.

Other attempts at solving this quadratic cost lower reduce

the resolution of the image (Chen et al., 2020), use approx-

imations of global attention (Child et al., 2019), restrict

self-attention along an axis (Ho et al., 2019; Wang et al.,

2020), or work with patches of the original image (Dosovit-

skiy et al., 2021). Other works operate in the latent space

instead of directly on the image pixels. DETR (Carion et al.,

2020) uses the convolutional feature map as input to the

transformer for effective object detection and Trackformer

(Sun et al., 2020) extends this technique to videos for object

tracking. Rakhimov et al. (2020) use a VQ-VAE (van den

Oord et al., 2017) to obtain discrete latent representations

before applying the transformer in the latent space.

Object-centric Approaches with Transformers. There

have also been several recent attempts at combining object-

centric representations with transformers. Hopper (Zhou

et al., 2021) uses object-centric representations obtained

by DETR (Carion et al., 2020) in a multi-hop transformer

for spatio-temporal reasoning and is applied to the CATER

snitch localization task. In addition to requiring supervised

object labels (bounding boxes) for the objects, Hopper also

uses several auxiliary losses that require knowing the first

and second movements of the snitch. AlignNet (Creswell

et al., 2020b;a) uses MONet (Burgess et al., 2019) for object-

centric representations and leverages a transformer’s atten-

tion matrix to align objects between frames to track objects

over a video. While AlignNet provides good performance

for tracking tasks that require modeling of object perma-

nence, it is not experimented on any tasks that require the

generation of future frames. Concurrent with our work,

Objects-Align-Transition (Creswell et al., 2021) extends

AlignNet by including a transition model to perform future

generation. Ding et al. (2020) also use MONet to obtain

object-centric representations and input the learned repre-

sentations into a transformer. In addition to the supervised

loss for the particular task, a self-supervised BERT-style

(Devlin et al., 2019) masked prediction loss is included.

While the self-supervised loss helps to improve the model’s

performance in downstream tasks, without autoregressive

modeling, this model cannot generate future frames.

3. Object-Centric Video Transformer

3.1. Key Ideas

3.1.1. DISCRETIZING VIDEO

To design a generative video transformer, we must first

decide how to appropriately tokenize a video into discrete

entities to use as input to a transformer. While the discrete

structure of words or sub-words provides a natural choice

for language modeling, it is not obvious what analogous

tokenization is for video.

One option is to consider each image as a token. However,

without a properly disentangled representation, this choice

may limit the ability of the transformer to model interactions

within an image. This would be analogous to sentence-level

tokenization in text, where the encoding of each sentence,

e.g. using an RNN, is used as input to the transformer. The

other extreme is to consider each pixel as a token. However,

the quadratic memory and computation cost of transformers

in sequence length would limit the ability of such a model

to work on long videos.

Therefore, we arrive at the following observations about the

proper tokenization to use for a generative video transformer:

the area for each visual discrete entity should (1) cover as

large of a pixel area as possible for computational efficiency,

but (2) without being too large as to prevent the modeling

of interactions between different parts of the image.

One possible approach to such a middle ground is to use con-
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volutional feature maps as a tokenization strategy for each

image of the video. In this work, we investigate an object-

centric approach, tokenizing an image into its constituent

object representations. We argue that this is a reasonable

choice for videos because in the physical world, the spa-

tiotemporal dynamics of a scene is governed mostly by the

causal interaction among the objects of the scene. It is also

true that an object may change its state rather independently

of other objects, e.g., clock hands or a walking person, but

the updated state would still be dependent on its previous

states. Thus, we hypothesize that accessing such historical

states at the individual object-level would also be beneficial

compared to doing it at pixel, image, or feature map levels

where the identity of the objects is not necessarily preserved

in the representation across frames.

3.1.2. SERIALIZING OBJECTS

Continuing the analogy with language modeling, if we con-

sider objects as visual words, we may consider an image to

be a visual sentence. However, unlike words in a sentence,

objects in an image do not have a natural order because they

consist of a set of object representations, not a sequence.

Therefore, unlike the serialization of words in text, we can-

not simply concatenate the object representations for use as

input to the transformer.

Suppose we were able to impose an artificial order for the

objects in the image, e.g. raster scan order based on ob-

ject positions. Then we would be able to concatenate the

sorted objects in a predefined way and predict each object

autoregressively. Since the generation of each object would

depend on previous objects in the scene, this results in a

flexible model capable of modeling dependencies within

objects in the scene. However, in dynamic scenes where the

object positions change over time with complex interactions,

predicting the correct object ordering may not be an easy

task to learn (Vinyals et al., 2015; Kosiorek et al., 2018).

Further, such a model would scale linearly with the number

of objects in an image and thus may not be practical for

scenes with many objects.

A different approach that we leverage in this work is to

predict the entire image at once by generating all the objects

in the image simultaneously given their previous states. The

autoregressive prediction objective in this case would be an

object-wise loss between subsequent video frames. Instead

of requiring the model to learn an arbitrary ordering of the

set of objects, we would only need to correctly align the

objects in adjacent frames so that the object-wise loss can

be applied. This alignment can be done based on object

location by leveraging object representations with explicit

position and size information of the objects, such as those

given by SPACE (Lin et al., 2020b). By generating an

entire image in one forward pass through the transformer,

generation time for each video frame is constant with respect

to the number of objects in a scene. Furthermore, this choice

also provides a natural objective for future prediction in

physical scenes as the object-wise loss forces the model to

learn the dynamics for how objects change over time.

3.2. Architecture

We now describe the overall architecture for our proposed

model, the Object-Centric Video Transformer (OCVT).

Given a length-T video x1:T = (x1, . . . ,xT ), we use an

encoder to produce a set of latents z1:T . This encoder is part

of a structured VAE designed so that z1:T are object-centric

representations of the scene with explicit bounding box in-

formation. These latents are used as input to a transformer

decoder to obtain ẑ2:T+1, the predicted latents at the next

timestep. In order to align the objects in ẑt with the objects

in zt, we obtain a permutation matrix Pt by leveraging the

Hungarian algorithm with a cost matrix that consists of the

pairwise matching cost between each object in zt and ẑt.

This permutation matrix is then multiplied with zt to pro-

duce z̃t, which is aligned with ẑt. After alignment, we can

then train our model with an object-wise loss between ẑt

and z̃t. To generate a reconstruction of the image, we input

ẑt into the decoder of the structured VAE to obtain x̂t. This

architecture is depicted in Figure 1a. We now describe each

of these components in more detail.

3.2.1. OBJECT-CENTRIC REPRESENTATIONS

As described earlier, in order to correctly align objects be-

tween frames, it is crucial for the object-centric represen-

tations in our model to contain explicit location and size

information. Thus, we leverage a structured VAE similar to

SPACE (Lin et al., 2020b). The encoder of the VAE consists

of a fully convolutional network that transforms the input

image to a grid of H ×W cells. The feature map of each

grid cell is then run through another fully convolutional

network to produce the latents z. Each latent variable z

consists of four components z = [zpres, zwhere, zdepth, zwhat].
z

pres ∈ {0, 1} is a binary random variable denoting the pres-

ence of an object, zwhere = [zh, zw, zx, zy] represents the

bounding box and center location of the object, zdepth ∈ R

specifies the depth of an object, and z
what is a representation

for everything else about the object (e.g., appearance).

We do this for each timestep t resulting in one latent repre-

sentation zt for each image in the video xt. Note that since

each grid cell produces a set of latents for an object, we are

able to detect up to H × W objects in one image. In our

experiments, we choose H ×W to be larger than the total

number of objects O and use z
pres to determine whether or

not a grid cell detects an object.

The decoder uses a series of deconvolutional layers to create

an image for each object. z
pres is used to determine the
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Figure 1. (a) Overview of model architecture. Object-centric representations of a video are used in a transformer to predict future frames

in the latent space. A alignment algorithm is used to ensure that an object-wise loss can be used between frames. (b) The alignment

algorithm uses the Hungarian algorithm obtain a permutation matrix, which is then multiplied by zt to obtained the aligned latents z̃t. (c)

The transformer’s causal self-attention mask allows objects within the same timestep to attend to each other.

transparency of the object. A low z
pres would result in an

object not appearing in the reconstructed image. A spatial

transformer (Jaderberg et al., 2015) is then used with z
where

to place each object onto the final reconstructed image. For

scenes with a background that cannot be completely cap-

tured by objects, we also train a fully convolutional back-

ground module to generate a background latent zg. In this

case, we also generate a foreground mask α that controls

the weighting between the foreground objects and the back-

ground in the final rendered image.

We pretrain the encoder and decoder networks on the video

frames and freeze the weights of the networks when the

transformer is being trained. Full implementation and train-

ing details can be found in the Supplementary Material.

3.2.2. OBJECT-CENTRIC TRANSFORMER

In order to model the dynamics of the objects over time, we

use a transformer decoder where the inputs are the object-

centric latents zt. Compared to using an RNN as is done

in other models (Kosiorek et al., 2018; Crawford & Pineau,

2019a; Jiang et al., 2019; Lin et al., 2020a), the transformer

can model both dynamics of an object over time as well as

interactions between objects without requiring a separate in-

teraction module. Moreover, while RNNs store information

from past states in their hidden state, transformers have di-

rect access to states in the past, allowing for better modeling

of long-term dependencies.

In addition to zt, we also use a sinusoidal encoding for the

timestep t, similar to the positional encoding in the original

transformer (Vaswani et al., 2017) as input to the transformer

decoder. Furthermore, we modify the causal attention mask

from the traditional transformer decoder so that the objects

within a timestep can attend to each other (Figure 1c).

After the final transformer block, we run the output through

a single hidden layer MLP to produce ẑt+1, the predicted ob-

ject representations for the next timestep. ẑwhat
t+1 , ẑ

depth
t+1 , and

ẑ
pres
t+1 are predicted directly as the output of the MLP, but for

the bounding box of the object ẑwhere
t+1 , we predict an update
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∆ẑ
where
t+1 . We then apply the following formula to obtain the

predicted bounding box: ẑwhere
t+1 = z

where
t + c · tanh(∆ẑ

where
t+1 ),

where c is a hyperparameter between 0 and 1 controlling the

maximum update in one timestep. This choice reflects the

fact that objects generally do not change size and location

significantly from one timestep to the next. Additionally,

since the cost matrix used for alignment (discussed in the

next section) is based on the distance between the predicted

bounding box and the actual bounding box, centering ẑ
where
t+1

around the previous bounding box z
where
t essentially initial-

izes the alignment to be between objects that are the closest

between two timesteps, which in most cases would be the

correct alignment. This facilities training early on before

the model has learned the correct dynamics of the objects.

3.2.3. OBJECT ALIGNMENT

As an object moves around in the image, it may end up being

detected by different grid cells at different time steps. This

means that the objects in one timestep may not be aligned

with the same objects at other timesteps. As discussed

earlier, alignment is necessary for our model because we

use an object-wise loss between frames. That is, we need

the objects in our VAE inferred latents zt to be in the same

order as the latents predicted by the transformer ẑt. It should

be noted that the input of the transformer does not need to

be aligned across timesteps because the object-wise self-

attention works on an order-less set of objects.

In order to align the objects between timesteps, we leverage

the Hungarian algorithm (Kuhn, 1955), which solves the bi-

partite matching problem given a cost matrix in polynomial

time. The explicit position and size information from the

latent zwhere makes it easy to define a position-based cost

function for the matching of objects in adjacent frames. Let

us denote zt,k as the latent corresponding to grid cell k at

timestep t. We construct a cost matrix that consists of the

pairwise matching cost Cmatch(ẑt,i, zt,j) between the trans-

former predicted latents ẑt,i and the VAE inferred latents

zt,j . Cmatch is defined as: Cmatch(ẑt,i, zt,j) =

||ẑwhere
t,i − z

where
t,j ||1 + ||ẑdepth

t,i − z
depth
t,j ||1

− (ẑpres
t,i )

z
pres

t,j (1− ẑ
pres
t,i )

1−z
pres

t,j .

To keep all the terms commensurate, we scale zwhere to be

between 0 and 1 and use a standard normal distribution for

the prior of zdepth. In scenes that are strictly 2D with no

occlusion, such as our bouncing ball experiments, we do not

include the depth term in this loss.

After applying the Hungarian algorithm with this cost ma-

trix, we obtain a permutation matrix Pt. We then left multi-

ply Pt with zt to obtain the aligned latents z̃t. This process

is depicted in Figure 1b. Note that since we pre-train the en-

coder and freeze the weights when training the transformer,

this alignment operation is not part of the computational

graph. Thus, we are able to leverage the non-differentiable

Hungarian algorithm to obtain the permutation matrix.

We should also mention that while we leverage the object

positions with the Hungarian algorithm in our architecture,

other alignment strategies, e.g. incorporating appearance

information and learning the permutation matrix, may be

used as well. We leave this investigation for future work.

3.2.4. OBJECT-WISE LOSS

After aligning the objects over all timesteps, we are then

able to train the transformer using the object-wise next-step

prediction loss: Lobject(ẑt,k, z̃t,k) =

||ẑwhat
t,k − z̃

what
t,k ||1 + βwhere||ẑ

where
t,k − z̃

where
t,k ||1

+ βdepth||ẑ
depth

t,k − z̃
depth

t,k ||1 − βpres[z̃
pres

t,k log(ẑpres

t,k )

+ (1− z̃
pres

t,k ) log(1− ẑ
pres

t,k )].

βwhere, βdepth, and βpres are hyperparameters used to control

the contribution of each loss term.

4. Experiments

Goal. In our experiments, we seek to answer the following

questions: (1) Can the model capture complex long-term

spatiotemporal dependencies of the scene? (2) Can the

model be effective at video generation? (3) Can the model

provide good representations to use in downstream tasks?

(4) How effective are our design choices (i.e., object-centric

representations, transformer for dynamics prediction, scene

prediction vs. autoregressive component prediction)?

Datasets. We evaluate OCVT on a series of bouncing ball

datasets designed to test jointly the long-term dependency,

object interaction dynamics, and generation aspect of our

model. We also evaluate on the CATER dataset (Girdhar

& Ramanan, 2020), a video-understanding benchmark that

requires long-term temporal reasoning.

Baselines. For the bouncing balls dataset, we compare our

model with GSWM, the previous RNN-based state-of-the-

art for generation in this dataset. We further test against the

following ablations of OCVT:

• LSTM+GNN: To test the effectiveness of using a

transformer for temporal and interaction modeling, we

replace the transformer in OCVT with an LSTM for

temporal modeling and a GNN for interaction mod-

eling. This model is conceptually similar to GSWM,

except the encoder and decoder are pre-trained.

• To test the effectiveness of object-level tokeniza-

tion, we replace the object-centric VAE with two

other choices. (1) Single-Vector Video Transformer

(SVVT): The latent here is a single distributed vector

representation for each image, tokenizing the video
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at the image level. (2) ConvVT: The latent here is

a 4x4 grid of convolutional feature map cells. The

grid is flattened and then used as input to the trans-

former. Similar to OCVT, we modify the transformer

decoder causal mask to allow cells at the same timestep

to attend to each other. The outputs of the transformer

would be the updated states for each input cell at the

next timestep. Note that we do not compare with a

pixel-level tokenization scheme because of the large

amount of compute required for such a model.

• OCVT-AR: To test our design decision of generating

an entire image in one forward pass of the transformer

and the importance of aligning objects between frames,

we sort the objects based on the position from the top

left of the image to the bottom right of the image and

then predict each object autoregressively in the sorted

order.

• ConvVT-AR: We use convolutional feature map cells

as input to the transformer and predict each cell au-

toregressively in raster scan order. The last cell of an

image predicts the first cell of the next image.

For CATER, we compare with Hopper (Zhou et al., 2021),

(Ding et al., 2020), and OPNet (Shamsian et al., 2020).

4.1. Bouncing Balls

In this dataset, four colored balls bounce around in a frame.

Balls bounce off the walls and each other upon interac-

tion. Each ball is one of five colors and each color k has

an associated ordinal number ik: iblue = 0, ired = 1,

iyellow = 2, iviolet = 3, icyan = 4. If we denote the color

of ball o at frame t by co,t, then when a ball hits the wall at

frame t, it changes color according to the following formula:

(co,t + co′,t′) mod 5. Here t′ is the timestep of a previous

interaction and o′ is the ball o interacted with at time t′. We

test 4 different settings for t′ in our experiments. The Mod1

dataset sets t′ to be the frame of the most recent interaction

for object o. The Mod2 and Mod3 datasets set t′ to be the

frame of the second and third most recent interaction of

object o, respectively. The Mod1234 dataset uses a different

t′ depending on the wall object o is interacting with at time

t. If the ball interacts with the left wall, t′ is set to be the

frame of the most recent interaction. If the ball interacts

with the top wall, t′ is set to be the frame from the second

most recent interaction, and so on.

Each of these datasets is progressively more difficult in that

they require longer-term and more complex (in the case of

Mod1234) dependencies to be able to accurately predict

future frames. In order for a model to do well on these

tasks, it needs to learn both the physical dynamics of the

bouncing balls as well as the pattern of the color changes,

which requires modeling of long-term dependencies, since

the interactions may happen many timesteps in the past. We

evaluate the models under three settings: next-step predic-

Table 1. Average next-step prediction color change accuracy

MOD1 MOD2 MOD3 MOD1234

GSWM 71.69 17.51 14.63 11.72
LSTM+GNN 73.64 69.08 22.30 51.38
SVVT 37.53 18.23 11.96 29.47
CONVVT 88.31 82.83 46.49 67.29
CONVVT-AR 8.70 4.20 3.25 6.10
OCVT-AR 78.70 76.99 54.49 64.97

OCVT (OURS) 89.61 88.18 82.70 78.43

tion, long-term generation, and forced generation.

Next-Step Prediction. In the next-step prediction setting,

we task the models with predicting the next frame of the

video given the history of ground truth frames. To measure

the accuracy of whether or not the models can correctly pre-

dict the color changes of the balls, we train a classifier that

takes as input a patch from the ground truth image around

each ball and predicts the color of that ball. During test time,

we use the reconstructed image and the ground truth posi-

tions to obtain a patch from the reconstructed image and use

this classifier to determine the predicted colors of the balls

for the different models. Since the balls usually maintain

their previous colors except for certain frames where they

interact with the walls, this metric only contains the states

where the color of the ball actually changes in the ground

truth video. Note that since we classify the patch of the

reconstructed image where the ground truth ball is, perform-

ing well on this metric requires good performance on both

ball dynamics prediction and ball color change prediction.

The results are shown in Table 1. We see that

OCVT achieves the highest accuracy across all four datasets.

ConvVT also performs well on the Mod1 dataset, but the

accuracy degrades on the other datasets that require longer-

term dependencies. This suggests the effectiveness of

using object-centric representations in modeling object-

level spatiotemporal interactions. Also, we notice a sim-

ilar performance degradation for the RNN-based models

(GSWM and LSTM+GNN), indicating the limitations of

using an RNN for modeling very long-term dependen-

cies. The models that autoregressively generate the scene

(OCVT-AR and ConvVT-AR) do not perform as well as

their non-autoregressive counterparts. ConvVT-AR , in par-

ticular, seems to not be able to correctly model this task at

all, achieving lower accuracy than random (0.2 with five col-

ors). This may be because the generation of a single image

in these models requires multiple passes through the trans-

former and any prediction errors may be compounded. Fur-

thermore, OCVT-AR requires the model to correctly learn

the ordering of the objects based on their positions, which

may not be an easy task.

Long-Term Generation. In the long-term generation set-
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Figure 2. Generation mean Euclidean distance.

Figure 3. Generation pixel mean squared error

ting, we provide a certain number of ground truth frames

and ask the models to autoregressively predict a number of

frames into the future. For Mod1, we train on 20 frames,

provide 10 ground truth frames, and ask the models to pre-

dict the next 90 frames. For Mod2 and Mod3, we train on 50

frames, provide 50 ground truth frames and ask the models

to predict the next 50 frames. For Mod1234, we train on 70

frames, provide 70 ground truth frames and ask the models

to predict the next 80 frames.

Measuring performance of long-term generation in this set-

ting is difficult since early errors compound and can lead to

prediction errors later in the trajectory. In order to obtain the

full picture of generation quality, we need to measure both

the physical trajectories of the balls as well as the accuracy

in the color change predictions of the balls. For the mod-

els that provide explicit object position information (OCVT,

OCVT-AR, LSTM+GNN, GSWM), we can evaluate the tra-

jectory by calculating the mean Euclidean distance between

the predicted ball positions and the ground truth positions

over time. For models that do not provide object position in-

formation (SVVT, ConvVT, ConvVT-AR), we can measure

the pixel mean-squared error between the reconstructed im-

age and the original image. However, the pixel MSE metric

can be misleading because low values may not necessarily

correlate with good predictions. For example, a model that

predicts balls in the wrong positions would lead to a higher

(worse) pixel MSE than a model that predicts a blank image,

even though the model that predicts the blank image would

be objectively incorrect. Nonetheless, this metric can still

provide information about generation quality, especially in

the early parts of the trajectory when the predictions are still

close to the ground truth.

The results are shown in Figures 2 and 3. To highlight the

early part of the trajectory, where pixel MSE is the most in-

formative, we plot the curves until they flatten out instead of

to the end of the trajectory. We notice that GSWM achieves

the best mean Euclidean distance and pixel MSE in this

setting. This is not surprising because GSWM’s object-

RNN encodes only the trajectory of a ball, isolated from

the dynamics of the other objects. Since the prediction of

the dynamics only depends on the last few timesteps, no

modeling of long-term dependencies is needed. Interaction

is dealt with by a separate graph neural network and is also

well separated from the trajectory modeling. OCVT, on the

other hand, needs to learn to perform the more complex

operation of factoring out its own trajectory while consid-

ering interaction as well. Moreover, because GSWM is

trained end-to-end, it can capture dynamics information in

its latent variables, which would help in making trajectory

predictions. Interestingly, we find that OCVT can still learn

the dynamics reasonably despite this, outperforming the

remaining baselines. Furthermore, we note that GSWM’s

training procedure requiring a curriculum makes it take four

times longer to converge than OCVT. This can also lead

to unstable training, especially for longer trajectories, as

evidenced by the Mod1234 experiment where GSWM does

not learn the dynamics well.

ConvVT performs similarly to OCVT in terms of pixel

MSE, although as we see in the qualitative results below, it

makes mistakes predicting the color change. We also see

that ConvVT-AR flattens out quickly to a lower value than

the other curves. This is actually a result of the poor genera-

tion when the model incorrectly remove balls from the scene

(see the qualitative results below). However, since the pixel

MSE between the ground truth and a blank image is around

0.06, this curve saturates at a lower value than the other
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Figure 4. Qualitative generation results for Mod1 dataset. Given the first 10 frames of the video, each model predicts the next 90 frames.

The first 20 predicted frames are shown.

curves. Lastly, we notice that OCVT-AR performs worse

than OCVT across all the datasets, implying that autoregres-

sive generation is not beneficial for of long-term generation.

As mentioned previously, this is likely due to the compound-

ing errors that result from autoregressive object generation

per image.

Qualitative Analysis. Figure 4 shows the long-term gener-

ation results for the different models on the Mod1 dataset

(see Supplementary for additional results). The first 20 pre-

dicted steps are shown in the figure. We see that GSWM

predicts the locations of the balls fairly close to the ground

truth, but makes several errors when predicting the color

change of the balls. For example, in frame 7, it incor-

rectly predicts that the violet ball should change color

to yellow instead of cyan. Similarly, LSTM+GNN and

ConvVT incorrectly predict the color of the ball (eg. the

violet ball at frame 10 for LSTM+GNN and the blue ball at

frame 10 for ConvVT ) while also having worse dynamics

prediction than GSWM. SVVT has even worse dynamics

than the other models and also makes predictions of balls

with mixed colors. ConvVT-AR predicts missing balls after

several frames resulting in a plateau at a lower pixel MSE

than other models, even though the generation is clearly

incorrect. OCVT-AR predicts color changes earlier than the

ground truth frames because of inaccurate dynamics as well

as incorrect color changes later in the trajectory (eg. violet

ball in frame 14).

OCVT’s dynamics prediction is relatively accurate com-

pared to the other models (except for GSWM), but the slight

difference in trajectory also causes the model to predict the

color change of the yellow ball in frame 14 earlier than in

the ground truth video. Note, however, that the color change

here is correct. The ball is previously cyan, which has an

ordinal value of 4, and following this ball earlier in the tra-

jectory, we see the last interaction was with the violet ball

in frame 4. The ordinal value of violet is 3, so the expected

color of the ball when it interacts with the wall at frame 14

is yellow, which has an ordinal value of 2. Therefore, even

though the color change occurred at an incorrect frame, the

color change prediction is actually correct given the pre-

dicted dynamics. This analysis also illustrates the difficulty

of measuring generation quality in this setting where errors

early in the trajectory compound.

Forced Generation. Since the trajectories of the balls in the

long-term generation setting may deviate from the ground

truth (and the deviation compounds over time), we cannot

easily evaluate whether or not the color change of the balls

is correct. To address this, we introduce a forced generation

setting where we can perform this measurement. For the

models that provide explicit location and size information

via the zwhere latent, we can force the balls to follow the

ground truth trajectories by directly manipulating zwhere

during prediction. That is, during the prediction of the next

frame, we manually set the zwhere to be equal to the ground

truth location and size of each ball. All other latents are

generated from the previous frame. This allows us to enforce

the ground truth trajectory of the balls and measure how

well the models learn the color change dynamics during

long-term generation.

We calculate the accuracy using the same classifier as

in the next-step prediction setting and plot the resulting

color change accuracy over time in Figure 5. We see that

OCVT outperforms all the other baselines in this setting,

indicating that our model is better able to learn the color

change dynamics of the videos. Even though GSWM is able

to predict future object positions well, we notice that it does

not perform well in this forced generation setting, with an ac-

curacy of around 0.2 for Mod2, Mod3, and Mod1234, which
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Figure 5. Forced Generation Accuracy

is around the same accuracy of random guessing. Similarly,

LSTM+GNN also performs poorly in this setting, suggest-

ing that the use of the transformer is beneficial for modeling

these long-term dependencies. While OCVT-AR achieves

higher accuracy than the RNN-based baselines, it does not

surpass OCVT. This may again be due to the compounding

errors from the autoregressive generation.

4.2. CATER Snitch Localization

CATER (Girdhar & Ramanan, 2020) is a 3D dataset that

consists of videos of objects moving around in a scene. The

objects lie on a 6x6 grid with the origin in the center of

the scene. The initial number and placement of objects

is chosen randomly and objects also move and potentially

cover other objects randomly as well. Objects that cover

other objects move together until they are uncovered. The

flagship task for this dataset is a snitch localization task, that

requires predicting the location of the golden snitch (one

of the objects that are present in all scenes) at the end of

the video. The snitch may be covered by another object

(which may also be covered by other objects, and so on) so

it may not be visible at the last frame and may have last been

visible many frames prior to the last frame. Therefore, this

task requires a model to understand the effect of different

actions in the environment and reason about them. The final

location is quantized into the 6x6 grid and the problem is

set up as a single label classification task.

In order to handle this task, we modify our model to in-

clude a CLS token with a learned embedding as input to the

transformer. An attention mask is added so that the latents

z cannot attend to the CLS token, but the CLS token can

attend to all the latents at all timesteps. The output of the

transformer corresponding to the CLS token is then used

in an MLP to predict the final snitch location and a cross-

entropy loss is used with the ground truth snitch locations.

We pre-train the transformer and then fine-tune the entire

model with the snitch localization objective.

Table 2 shows the results of our experiments. The Top 1 and

Top 5 accuracy, as well as the final L1 distance between the

prediction and the ground truth location, are reported. We

compare OCVT with several previous attempts to solving

this problem, including two approaches that also combine

Table 2. CATER results

TOP 1 ↑ TOP 5 ↑ L1 ↓

DING ET AL 70.6 93.0 0.53
DING ET AL W/ L1 74.0 94.0 0.44
HOPPER 73.2 93.8 0.85
OPNET 74.8 - 0.54

OCVT (OURS) 76.0 94.4 0.45
OCVT W/ L1 (OURS) 75.9 95.3 0.39

object-centric representations with transformers, Hopper

(Zhou et al., 2021) and (Ding et al., 2020). Hopper re-

quires several auxiliary losses to perform well on this task

including a loss that requires knowing the first and second

movements of the snitch. Ding et al. (2020) use a BERT-like

bidirectional masking scheme and achieves the best perfor-

mance by adding an L1 loss to the objective for the location

of the snitch. Our model outperforms these baselines in Top

1 and Top 5 accuracy without the use of any auxiliary losses.

With the addition of the L1 auxiliary loss, our model also

achieves the lowest L1 distance. This demonstrates that our

model can learn good representations of the scene to be used

in downstream tasks.

5. Conclusion

We proposed OCVT, a generative video transformer that

leverages the recent advances in unsupervised object-centric

representation learning. Our model is able to generate future

frames of videos with complex long-term dependencies and

learn representations that are useful in downstream tasks.

This study shows that given an appropriate representation,

using objects as visual words can be a reasonable induc-

tive bias for tokenizing a video. While our model uses

SPACE to obtain object representations and leverages the

explicit position information to align objects, future work

may involve improving the object-centric representations to

work for more complex, real-world scenes. Furthermore, it

would be interesting to investigate alignment strategies with

representations without explicit position latents.
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Figure 6. Qualitative generation results for Mod2 dataset. Given the first 50 frames of the video, each model predicts the next 50 frames.

The first 20 predicted frames are shown.

A. Additional Results

A.1. Qualitative Generation Results

Figures 6, 7, 8 show qualitative generation results for the

Mod2, Mod3, and Mod1234 datasets.

A.2. Attention Analysis

Figure 9 shows an example of the attention weights in the

transformer when predicting the last timestep of a sequence

in the Mod1 dataset. The right hand side shows the balls at

timestep t and the left hand side shows the balls for the 6

timesteps prior. The darker the shade of gray, the stronger

the weight. At this particular timestep, the color of the top

right ball changes from red to cyan. We see that the strongest

attention weights are to the same ball in the previous frames

as well as the violet ball several frames prior, which is the

ball that last interacted with this ball. This makes intuitive

sense because the positions of the same ball in the last few

frames are important in predicting to updated location of

the ball at the next timestep. In order to correctly predict

the color change of the ball, it must also attend to the ball

that it most recently interacted with.

A.3. End-to-End Training

We also evaluated OCVT in a setting where we train the

entire model end-to-end instead of freezing the parameters

of the encoder and decoder while training the transformer.

This is done under two settings: (a) training the model

completely from scratch end-to-end and (b) using a pre-

trained encoder and fine-tuning the model end-to-end. We

achieve a next-step change accuracy of 82.21% for (a) and

76.95% for (b) for the Mod1 dataset. While this end-to-end

training does not outperform our best pre-trained model,

end-to-end training may be beneficial in certain scenarios

since the encoder can incorporate temporal information from

the scene. We leave this investigation for future work.

B. Implementation Details

B.1. Model Architecture

For the foreground image encoder, we use a ResNet18 (He

et al., 2016). For (H,W ) = (4, 4), we apply an extra pair

of 3 × 3 convolutions with stride 1 to get the appropriate

dimensions per grid cell (see Hyperparameters in the next

section). For (H,W ) = (8, 8), we remove the last ResNet

block and then apply the pair of convolutions. To obtain zt,

each cell is run through a 3-layer fully convolutional net-

work with ReLU activation and group normalization (Wu &

He, 2018). After the final layer, we apply softplus to com-

pute standard deviations of the Gaussian distributions for

z
where
t , zwhat

t , z
depth
t . For z

pres
t , we apply the sigmoid function

and use the Gumbel-Softmax (Jang et al., 2016) relaxation

to model a Bernoulli random variable. For the foreground
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Figure 7. Qualitative generation results for Mod3 dataset. Given the first 50 frames of the video, each model predicts the next 50 frames.

The first 20 predicted frames are shown.

Figure 8. Qualitative generation results for Mod1234 dataset. Given the first 70 frames of the video, each model predicts the next 80

frames. The first 20 predicted frames are shown.
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Figure 9. Attention strength at 7th layer during color change.

image decoder, we use a 6-layer sub-pixel convolutional

network (Shi et al., 2016) with group normalization in the

intermediate layers.

For the background image encoder, we use a 4-layer convo-

lutional network with CELU activation (Barron, 2017) and

group normalization followed by a final linear layer. For

the background image decoder, we use a 6-layer convolu-

tional network, each consisting of 2D bilinear upsampling

followed by a convolution with leaky ReLU activation.

For the transformer, we use a linear layer to obtain the

desired dimensions for the transformer input (see Hyper-

parameters). The output of the transformer runs through a

single hidden layer MLP with ReLU activation to obtain the

next step predictions.

B.2. Hyperparameters

We provide the hyperparameters used in our experiments in

Tables 3 and 4.

C. Dataset and Experiment Details

C.1. Bouncing Balls

In all the bouncing ball datasets, we have 20,000 videos

for training, 200 videos for validation, and 200 videos for

testing. For the Mod1, Mod2, and Mod3 datasets, each

video has an episode length of 100 frames. For the Mod1234

dataset, each video has an episode length of 150 frames.

This longer episode length is to allow for a sufficient number

of interactions (up to 4 for this dataset) in the videos. We

choose the best model based on the change accuracy on the

Table 3. List of Hyperparameters for Bouncing Ball Datasets

Description Value

Image Size (64,64)

Grid size (H,W ) (4,4)

Dimension per grid cell 128

Dimension of zwhat 16

Dimension of zbg None

Foreground Variance 0.2

Background Variance None

Gumbel-Softmax Temp. for z
pres
t 0.01

βwhere 20

βdepth 0

βpres 1

βwhat 4

Dimension of transformer input 360

Feedforward dimension in transformer 256

Number of heads 8

Number of transformer layers 15

Table 4. List of Hyperparameters for CATER Datasets

Description Value

Image Size (64,64)

Grid size (H,W ) (8,8)

Dimension per grid cell 128

Dimension of zwhat 64

Dimension of zbg 64

Foreground Variance 0.05

Background Variance 0.2

Gumbel-Softmax Temp. for z
pres
t 0.01

βwhere 50

βdepth 1

βpres 1

βwhat 1

Dimension of transformer input 360

Feedforward dimension in transformer 256

Number of heads 6

Number of transformer layers 15

validation set and then use this model on the test set for

evaluation. All models are trained to convergence measured

by the plateauing of the change accuracy on the validation

set.

C.2. CATER

This dataset consists of 3,080 videos for the training set,

770 videos for the validation set, and 1650 videos for the

test set. Each video frame is reshaped to 64x64 pixels. Each

video originally has 300 frames and we randomly sample

50 frames for training. For validation and testing, we take
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every sixth frame for a total of 50 frames. We choose the

best model based on the best Top 5 Accuracy for the snitch

localization task on the validation set and then use this

model on the test set for evaluation.


