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INTRODUCTION 

"d t The notion of a "deterministic machine" or a e erministic language" 

(as opposed to their nondeterministic Counterparts) is one of the 

oldest and most investigated in the theory of computation and in formal 

language theory. One can however observe that whereas the notion of a 

deterministic machine is usually the natural one (in every situation 

there is at most one possible "move" the machine can make), the notion 

of a deterministic language is often not natural at all. In fact a 

deterministic language is almost always defined as a language which 

can be recognized by a deterministic machine, although in many cases 

the languages themselves are being defined by grammars rather than by 

machines. The typical situation is of the following kind: first a class 

of languages £ is defined by a class of grammars ~, then one finds an 

"equivalent" class of machines~, and then by considering ~ the deter- 

ministie subelass~ D of the class~one obtains the deterministic sub- 

class £D of the class £. What subclass of ~ generates £D is mostly not 

understood at all, or, in the best case, it is the "translation" of~ D 

into the subclass of~, which could neither be called natural nor give 

any insight into the nature of the deterministic restriction. The basic 

difficulty lies in the fact that the notion of a deterministic language 

is defined via recognizers whereas the languages themselves are often 

defined in terms of generative devices. 

In this paper we want to point out several classes of languages for 

which the notion of "generative determinism" (deterministic restriction 

defined in terms of grammars rather than recognizers) is not only a 

very natural one but it also lends itself to mathamatical treatment. 

The theory of L systems and languages originated with the work of 

1) This paper is based on pamt of this author's Ph.D. thesis. 
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Lindenmayer [59], [60]. Its purpose was to model the growth of 

filamentous organisms. From the formal language theory point of view, 

L systems are string rewriting systems. They have provided us with an 

alternative to the now standard Chomsky framework for defining lang- 

uages. Basically L systems differ from Chomsky grammars in the lack 

of nondeterminals and in the totally parallel manner of rewriting 

(meaning that in a single derivation step one must rewrite all 

occurrences of all the symbols in the string being rewritten). For 

more detailed discussion see, for example, [45] or [66]. In the theory 

of L systems the deterministic restriction arose for a number of 

natural and "practical" reasons. Its investigation has led to novel 

fields like growth functions (see [75] and its references) and to new 

research on rather established topics like the deterministic simulation 

of one kind of system by another (see, for example, [12]). This paper 

continues thestudy of the role determinism plays in various classes 

of L systems. 

A possible division line in the theory of L systems is the 

distinction between systems without interactions and systems with 

interactions. Accordingly the present paper is divided into two parts. 

In the first part we treat systems without interactions, while the 

second part is concerned with systems with interactions. 

PART I 

L systems without interactions 

In an L system without interactions, the rewriting of a letter in 

a string does not depend on the context in which the letter occurs 

(in other words, each occurrence of the same letter may be rewritten 

in the same way). 

1.1 T0L systems and languages. 

T0L systems and languages were divised to model special cases of 

development in which no cell interaction takes place but there is a 

finite number of possible environments. In different environments, 

the behaviour of the same cell may be different. T0L systems were 

introduced in [81]. Their formal definitions and basic properties can 

be found there. (TOL systems, or languages , abbreviates "table L 

systems, or languages, without interactions".) 
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A T0L system has the following components2): 

(i) A finite set of symbols Z, the alphabet. 

(ii) A finite set ~ of tables of productions. Each production in a 

table is usually written in the form a ~ ~, where a E Z and ~ E Z*. 

The meaning of a ~ ~ is that an occurrence of the letter a in a string 

may be replaced by ~ (where each replacement is "context-free"). In 

general, a table may contain several productions for each symbol. In 

every step of a derivation, all symbols in a string must be simul- 

taneously meplaced according to the production rules of one arbi- 

trarily chosen table. 

(iii) A starting string, o, the axiom. 

Thus a T0L system G is usually specified as G = < ~,~,o >. The 

language generated by G, denoted as L(G), consists of ~ and all 

strings which can be derived from q in a finite number of steps. A 

language L is called a T0L lansuase if there exists a T0L system G 

such that L = L(G). 

Example 1o Let G = < {a,b}, {{a ~ a 2 b ~ b 2} {a ~ a 3 b ~ b3}} 

ab >. Then 
2n.m ^n^m 

L(G) = {a" ~ b z s In,m > 0}. 

1.2. Deterministic T0L languages. A limit theorem. 

If we view T0L systems as models of development, then each table 

of the system represents a particular environment. A T0L system is 

called deterministic if in each environment there is only one choice 

for the next developmental step. This means that each next string in 

a derivation starting from the axiom is uniquely determined by the 

previous one and the table applied. 

Formally the deterministic restriction is defined as follows. 

Definition 1. A T0L system G = < Z,~,~ > is called deterministic 

if, for each P in P and each a in Z, there exists exactly one ~ in Z~ 

such that a ~ ~ is in P. A language L is called a deterministie T0L 

language if there exists a deterministic T0L system G such that 

L = L(G). 

It is not difficult to construct examples of languages which can 

2) Throughout this paper we shall use standard formal language 
notation, as for example in (Hopcroft & Ullman, Formal L alnguages 
and their Relation to Automata, Addison-Wesley, 1969). We use Ix l 

. . . . . . . . .  ~ " ' 'A. for the length of a strlng x and A for the cardmnallty of a set 
The empty string is denoted by the symbol A. If we write that L is 
a language over an alphabet ~, or just L C ~, then we also mean 
that each letter of ~ occurs in a word of L. 
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be generated by a nondeterministic T0L system but cannot be generated 

by deterministie T0L systems. One would like however to find a non- 

trivial (and hopefully interesting) property which would be inherent 

to the class of deterministic T0L languages. 

Investigating the set of words generated by a particular grammar 

is one of the most basic activities in formal language theory. It is 

however often interesting and well motivated physically to investigate 

the set of all subwords (subpatterns)generated by a particular gram- 

mar. Quite often one is interested in just the number of different 

subwords of a particular length encountered in a given language. 

It turns out that the ability to generate an arbitrary number of 

subwords of an arbitrary length is a property of a T0L system whieh 

disappears when the deterministic restriction is introduced. More 

precisely, if L is a deterministic T0L language over an alphabet 

containing at least two letters, then the ratio of the number of 

different subwords of a given length k occurring in the words of L to 

the number of all possible words of length k tends to zero as k 

increases. Formally this is stated as follows. 

Theorem 1. Let Z be a finite alphabet such that ~Z = n ~ 2. If L is 

a deterministic T0L language, L C N* then 

~k(L) 
lira -----~ : O, 
k-~ n 

where Zk(L) denotes the number of all subwords of length k occurring 

in the words of L. 

The proof of Theorem 1 appears in [ 171 • 

All other results presented in this paper have not yet been published 

before. 

Note that this result is not true if ~Z = 1 (the language 

2 n 
{a In ~ 1} is a deterministic T0L language). Neither is it true for 

nondeterministic T0L languages (Z~ is a T0L language for every 

alphabet ~). 

We believe that the above results is a fundamental one for charac- 

terizing deterministic T0L languages. It can be used, for example, in 

both intuitive and formal proofs that some languages are not deter- 

ministic T0L languages (an example of such an application is a proof 

that if ~ = {a,b} and F is a finite language over ~, then ~*-F is not 

in the class of deterministic T0L languages). 

One has however to be careful in understanding this result. Note 

for example that if Z = {al,...,an} for some n ~ 2, then the deter- 

ministic T0L system G = < ~,{P1,...,Pn_l},a n >, where 
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Pi = {an ~ anai} U {aj ~ ajll < j ~ n-l} for i < i ~ n-i is such that, 

for each k > 1, ~k(L(G)) > (n-l) k. The ramifications of Theorem 1 will 

be discussed in more detail below. 

1.3. Some subclasses of the class of T0L languages. 

We will explore now further the subword point of view of the deter- 

ministic restriction in TSL systems. In particular we will see that 

this way of viewing deterministic T0L systems and languages possesses 

one very pleasant and desirable feature. It is "very sensitive" to 

various structural changes imposed on the class of TSL systems. In 

fact we will be able to classify a number of subclasses of the class 

of T0L systems according to their subword generating efficiency. 

First we need some definitions. 

Definition 2. A T0L system G = < ~,~,~ > is called: 

1) a 0L system if ~$ = 1, 

2) propagatin$, if for every P in ~, P c ~ × N+, 

3) everywhere Stowing, if for every P in @ and every ~ in ~*, 

whenever a ~ ~ is in P (for arbitrary a in ~), then l~I > 1, 

4) uniform, if there exists an integer t > 1 such that, for every 

P in ~ and every ~ in ~*, if a ~ ~ is in P (for arbitrary a in ~), 

then I~l = to 

Definition 3. A T0L language L is called propagating, everywhere 

growing, uniform or a 0L language if L = L(G) for a propagating T0L 

system, everywhere growing T0L system, uniform TOL system or a OL 

system, respectively. 

We will use the letters P, G and U to denote the propagating , 

everywhere growing , and uniform restrictions respectively. Thus, for 

example, a UTOL system means a uniform T0L system and a deterministic 

G0L system means a deterministic everywhere growing 0L system. It 

should be obvious to the reader that a GTOL system (language) is also 

a PTOL system (language) and that each UTOL system (language) is also 

a GTOL system (language). 

Example 2. 

1) G = < {a},{{a ~ a, a ~ aa}},a > is a P0L system. It is not 

deterministic. Thus {a} + is a P0L language. 

2) The T0L system from Example 1 is a deterministic GTOL system. 

Thus {a2n3mb2n3mln,m ~ 0} is a deterministic GTOL language. 
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We would like to point out that the restrictions which have been 

defined in this section (propagating, 0L, etc.) were not introduced 

for the purpose of this paper; they have already been studied earlier 

in the theory of L systems. 

1.4. Everywhere growing deterministic T0L languages. 

As has been indicated at the end of section 1.1, even deterministic 

PTOL systems can generate "a lot" of subwords (say, for each k ~ 0, 

at least (n-l) k out of the total number n k of possible subwords of 

length k in an alphabet of size n ~ 2). The situation is however quite 

different for deterministic GTOL languages. 

Theorem 2. 

1) If L is a deterministic GTOL language, then there exist positive 

constants ~ and 6, such that, for every k > 0, ~k(L) ~ ~k 6. 

2) For every positive number ~, there exists a deterministic UTOL 

language L such that if ~,8 are positive constants such that, for 

every k > 0, ~k(L) ~ ~k 8 then 8 > Z 

1.5. Deterministic 0L languages. 

The class of deterministic 0L systems is one of the most important 

and most intensively studied classes of L systems (see, e.g., [45], 

[75], [82] and [95]). In this section we shall investigate the "sub- 

word complexity" of deterministic 0L languages as well as how various 

structural restrictions on the class of deterministic 0L systems 

influence the subword complexity of the corresponding classes of 

languages. 

As to the whole class of deterministic 0L languages we have the 

following result. 

Theorem 3. 

1) For every deterministic 0L language L there exists a constant ~L 

such that, for every k > 0, Wk(L) ~ ~L k2- 

2) For every positive number ~ there exists a deterministic P0L 

language L such that Wk(L) ~ Z.k 2 for infinitely many positive 

integers k. 

If we restrict ourselves to languages generated by deterministic 

OL systems in which each letter is rewritten as a word of length at 

least 2, then we get the following subword complexity class. 
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Theorem 4. 

1) For every deterministic G0L language L there exists a positive 

constant ~L such that ~, for every k > 0, ~k(L) < ~L.k.log k. 

2) For every positive number ~ there exists a deterministic G0L 

language L such that ~k(L) ~ ~.k.!og k for infinitely many 

positive integers k. 

Further restriction to deterministic uniform 0L systems yields us 

a class of generative devices with very limited ability of subword 

generation. 

Theorem 5. 

1) For every deterministic U0L language L there exists a positive 

constant ~L such that, for every k > 0, ~k(L) < ~L.k. 

2) For every positive number ~, there exists a deterministic U0L 

language L such that ~k(L) ~ ~.k for infinitely many positive 

integers k. 

PART II 

L systems withl interactions 

In an L system with interaction, the rewriting of a letter in a 

string depends on the context in which the letter occurs (in other 

words, two occurrences of the same letter may have to be rewritten 

in different ways if they are in different contexts). 

This part of the paper will be organized in more or less the same 

way as Part I so that the reader can more easily compare and contrast 

the results for L systems without interactions and those for L systems 

with interactions. 

11.1. TIL systems and languages. 

Whereas T0L systems attempt to model growth in different environ- 

ments but with no cell interactions, TIL systems also allow interac- 

tion among cells to take place in addition to environmental changes. 

They were introduced in (Lee & Rozenberg) 3), where the relevant formal 

definitions and basic properties can be found. (TIL systems, or lang, 

uages, abbreviates "table L systems, or languages, with interactions".) 

A TIL system G has four eomponents, G = < ~,@,o,g >, where 

(i) ~ is the alphabet, 
w 

3) Lee & Rozenberg: TIL systems and languages, submitted for publication. 
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(it) ~ is the axiom , as in the T0L case. 

(iii) The symbol g is a new symbol, called the environment symbol. 

It represents the environment and its usage will be clear from the 

following description of productions in G. 

(iv) ~ is a finite set of tables of productions. Each production is 

of the form < ~,a,~ > ~Y, where a E ~,~ E g*~*,fl C ~*g*,y E ~*. For 

each particular system G, there are numbers k,Z > 0 such that l~I = k ~ 

and lSI = ~ for all productions in G. The meaning of < ~,a,~ > ~ y is 

that an occurrence of the letter a in a word, with the string of 

letters ~ immediately to its left and the string of letters 6 immedi- 

ately to its right, may be replaced by the string y . ~ and 8 are 

thus the left and right contexts for a, respectively. Productions for 

letters at the edges of a string will have an appropriate number of 

environment symbols g in the context. A string x is said to derive a 

string y if the letters of x in gkxgZ can be rewritten in the above way 

to produce the string y, where all productions are from an arbitrarily 

chosen table. 

The language generated by a T!L system G, denoted as L(G), consists 

of 0 and all strings which can be derived from ~ in a finite number 

of steps. A Language L is called a TIL language if there exists a TIL 

system G such that L = L(G). 

Example 3. Let G = < {a},{{ < g,a,A > ~ a 3 ,< a,a,A > ~ a2}, 

{ < g,a,A >~ aS,< a,a,A >~ a3}},aS,g >. Then L(G) = {a2n3m-lln,m>~l}. 

Here the amount of left context is k = 1 and the amount of right 

context is Z = O. 

It should be noted that T0L systems can be identified with those 

TIL systems whose productions are of the form < A,a,A > ~ ~. 

ii.2. Deterministic TIL systems. 

A TIL system is called deterministic if for each particular environ- 

ment, a letter in a given context can be replaced by only one string. 

Formally, the deterministic restriction is defined for TIL systems as 

follows. 

Definition 4. A TIL system G = < ~,~,~,g > is called deterministic 

if the following condition holds: For each P E~, each a E ~, if 

< ~,a,6 > ~ YI and < ~,a,~ > ~ Y2 are productions for a in P in the 

context of e and B, then Y1 = Y2. A language L is called a 
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deterministic TIL language if there exists a deterministic TIL system 

G such that L = L(G). 

In the rest of Part II we shall look at the role determinism plays 

in TIL systems from the subword point of view. 

First we may remark that the analogue of Theorem 1 for deterministic 

TIL languages does not hold. It is an easy exercise to construct, for 

any alphabet ~ (with ~ = n), a deterministic TIL language L such that 

~k(L) -- n k for every k >~ 0; hence for this L, 

~k(L) 
lira -----~ = 1. 
k-~ n 

II.3. Some subclasses of the class of TIL languages. 

Analogous to the T0L case, we have the following definition. 

DefinitiOn 5. A TIL system G : < ~,P,~,g > is called 

1) an IL system if #~= 1. 

2) propagating if for every P e ~, P C g*~* × ~ × ~*g* × ~+. 

3) everywhere srowin@ if for every P e ~ and every y e ~ , whenever 

< ~,a,6 > ~ y is in P (for some a E ~, ~ E g*~*, B E ~'6"), then 
> 

4) uniform if there exists an integer t ~ 1 sueh that for every 

P E~ and y E N*, if < ~,a,6 > ~ y is in P (for some a E ~, ~ e g'E*, 

B e ~*~*) then IYI : t. 

Definition 6. A TIL language L is called propagating, everywhere 

growing, uniform or an IL llanguage if L = L(G) for a propagating TIL 

system, everywhere growing TIL system, uniform TIL system or an IL 

system G, respectively. 

We shall also use the letters P, G, and U to denote the propagating, 

everywhere growing and uniform restrictions respectively, as explained 

for the T0L case. 

Example 4. 

1) The TIL system G from Example 3 is a deterministic GTIL system. 

{a2n3ml 
Thus the language In,m ~ 1} is a deterministic GTIL language. 

2) Let G = < {a},{{ < A,a,g > ~ a 2 , < A,a,a > ~ a}},a,g >. Then G 

is a deterministic PIL system and so {a} + is a deterministic PIL 

language. 
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II.4. Everywhere growing deterministic TIL languages. 

At the end of section II.2, we have remarked that given any alpha- 

bet ~ a deterministic TIL system can be found generating all possible 

subwords over Z. The addition of the everywhere growing restriction 

reduces this subword generating ability as in the case of L systems 

without interactions. In fact the analogue of Theorem 2 (concerning 

deterministic GTOL languages) for deterministic GTIL languages holds. 

Theorem 6. 

I) If L is a deterministic GTIL language , then there exist positive 

constants ~ and 8, such that, for every k > 0, Zk(L) < ~k 8, 

2) For every positive number Z, there exists a deterministic UTIL 

language L such that if ~,~ and positive constants such that, for 

every k > 0, ~k(L) < ek E , then ~ > Z. 

II.5. Deterministic IL languages. 

Theorem 3 states that for a deterministic 0L language L, the number 

of subwords of length k is proportional to k 2 . Thus the subword 

generating ability of a 0L system is reduced from n k (where n is the 

cardinality of the alphabet) to k2by the addition of the deterministic 

restriction. The situation is different concerning iL languages. 

Vitanyi (personal communication) has a construction which, for any 

alphabet Z, produces a DIL system G with alphabet ~ U {a,b} (where a,b 

are new symbols) which generates all possible subwords over Z. Thus the 

foilowing theorem is true. 

Theorem 7. Given any integer n > 2, there exists a DIL language L 
k 

such that, for any k > 0, ~k(L) > (n-2) 

The above theorem says that the addition of determinism to IL systems 

(in general) reduces only slightly their subword generating ability. 

Despite this, we find that deterministic GIL and deterministic G0L 

systems, as well as deterministic UIL and deterministie U0L systems, 

have the same subword generating power. This can be seen from the 

following two theorems and Theorems 4 and 5. 

Theorem 8. 

1) For every deterministic GIL language L there exists a positive 

constant e L such that, for every k > 0, ~k(L) ~ ~L.k.10g k. 

2) For every positive number ~ there exists a deterministic GIL 

language such that ~k(L) ~ ~.k.10g k for infinitely many positive 

integers k. 
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Theorem 9. 

1) For every deterministic UIL language L there exists a positive 

constant ~L such that, for every k > 0, ~k(L) < ~L.k. 

2) For every positive number £, there exists a deterministic U!L 

language L such that ~k(L) > £.k for infinitely many positive 

integers k. 


