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ABSTRACT

The object of this paper is to find necessary and sufficient
conditions for an affine space-curve C with parametric equations
X = tn'; y = tnz, z= tn3 (nl,nz,n3 positive integers with
g.c.d.(n],n2,63) = 1) to be an ideal theoretic complete intersection.

In Chapter | we study algebraic varieties, whose coordinate
ring is the semigroup ring k[S], where k is an algebraically closed
field, and S désignates a geometric semigroup, A semigroup S is
said to be a geometric semigroup if S is a finitely generated
subsemigroup with 0 element of a finitely generated free abelian

n n n
group. The curve € = {(t Vot 2 ¢ 3)/ tek} is a special case of

these varieties. We prove the theorem that if R is an integral
domain, S a semigroup of integers, and S$' any finitely generated
semigroup, then R[S] TR[S'] implies S T s'.

in Chapter Il we give a new proof of the fact that each
finitelilgengrated abel ian semigroup is finitely presented.
Moreover,dhe show that if S is a geometric. semigroup with no
invertible elements, then the number of relations defining S is
greater than or equal to the least number of generators of § minus
the rank of the associated group of S. |If equality holds, we say
that S is a complete,intersectfon. We close this chapter by proving
that S is a comﬁlete intersection if and only if the variety
belonging to k[S] is an ideal theoretic complete intersection,

Chapter 11l is devoted to the study of Sylvester-semigroups and

their semigroup rings. We call a subsemigroup of the natural



numbers a Sylvester-semigroup if there exists an integer m such
~ that zeS if and only m-2¢S, for all integers z. We show that-a
semigroup S is a Sylvester=-semigroup if and only if the localization
Og of the semigroup ring k[S] at the origin is a Gorenstein .ring.
It turns out that the ideal theory of Sylvester-semigroups is
similar to the ideal theory of Gorenstein rings, Using a result
of Serre we conclude that a semiéroup of natural numbers generated
by 3 elements is a complete intersection if and only if S is a
Sylvester-semigroup.

in Chapfer IV a direct proof of this theorem is given. -We

also give two other equivalent conditions for a semigroup of natural

numbers generated by 3 elements to be a complete intersection,



INTRODUCTION

This study will present‘necessary and sufficient conditions
for a certain class of rational varieties to be ideal-theoretic
complete intersections, The beginning of the investigation will
- be a classical example of a curve in the.affine 3-space, which is
not an ideal-theoretic compiete intersection: this curve is given

by the parametric representation
C = {(t3,tu,t5) € k3/ tek}

where k is an algebraically closed field. The cobrdinate ring of
C is k[T3,T4,T5] where T is an indeterminate, The ring k[T3,T4,T5]

may be considered as a semigroup ring k[S] where S is the semi-

group generated by {3,4,5]}. This point of view suggests the

following generalization: Let S be a finitely generaéed subsemi-

group (with 0 element) of a finitely generated free abelian group. Such

a semigroup will be called a geometric semigroup. Let lS be the

kernel of the canonical epimorphism
k[Xl,...,Xn] - k[S], the xi's being mapped onto the generators
of S. Let Vg be the affine variety in the affine n-space An(k)

defined by | In other words:

sa
Vg = {xeAn(k) / F(x) = 0 for gll Fels}

We call V. the monomial variety defined by S, These are actually"

S
the varieties we are interested in; the curve C is a special case

of them,

vi



In the first section of Chapter | we summarize some geometric
properties of monomial varieties and turn, in the following section,
to the question: (f § and S' are geometric semigroups and VS’ VS'

their affine varieties over k respectively, can VS and V., be bi-

sl
regularly equivalent with S and §' non-isomorphic?
Concerning this question, we prove that if R is an integral

domain, S a subsemigroup of the natural numbers, and S' any ~

finitely generated semigroup, then
R[S] @ R[S'] implies that S = S'

The proof of this theorem was indicated to the author by,E.-D; Davis.
In Chapter || we describe the ideai Is in detail. |t turns out

that the generators of | are essentially given by the generators

S
of the semigroup S. This fact will enable us to give a simple
proof of the theorem that each_finitely»generated commutative semi-
group is finitely presented, - (cf L. -Redei, [4]). In fact, by our.
method, this is a special case of Hilbert's basis theorem.

At this point, the question of how many relations are: necessary
to define a given semigroup arises.-.-We prove that if S is a
geometric semigrqup, then the léast number of elements of a set of
defining relations for S is greater or equal to the least number of

generators of S minus the rank of the associated group Sofs. If

equality holds, we say that S is a complete intersection, We

......conclude this section by pfoving thét if S is a geometric semigroup

with no invertible elements, then Vs fs an ideal-theoretic complete

intersection if and only if S is a complete intersection, This

vii
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theorem reduces the question of complete intersections for monomial-
variet}es to the similar question for the defining semigroups, More-
over, we obtain as a corollary that vs is an ideal-theoretic complete
intersection if and only if Vg is locally an ideal~theoretic

complete intersection,

| These results are still somewhat unsatisfactory, because, in
general, it i§ a hard problem to decide whether a given geometric
semigroup is a complete intersection or not. Even if Qe are .-
dealing only with subsemigroups of the nafural numbers (i.e.
numerical semigroups), this problem is so far unsolved. However, it
is easier to determine those numerical semigroups whose semigroup
ring k[S] is contained in a larger class of rings which are locally
Gorensteinrings. .

In Chapter 111 we investigate the special case where S is a
numerical semigroup., |In the first section we compile some known
facts about numerical semigroups and introduce the notion of
Sylvester-semigroups.. We say that a cancellative semigroup S is
a Sylvester-semigroup if there exists an element x € g (§ is the
associated group of S) such that for all elements s ¢ S the
following holds: |

(*) s €S if and only if x-s £ S
(S is understood to be embedded in é)
This notion was introduced by R. Apery - in his paper [1 ].

He calls a semigroup with the above peoperty ''symmetric', According

Cwvili



to L. Rédei, Sylvester proved that each numerical semigroup which is
generated by two relatively prime elements has the property (*).
Since the term "symmetric' is already used in semigroup theory in
other contexts, we prefer to call such a Qemigroup a Sylvestef—
semigroup. In the‘following sect ion of Chapter 111, we show that |
the local ization at the origin of the semigroup'ring'k[S], where k
is a field and S a numerical semigroup, is a Gorensteinring if”’
and only ifls is a Sylvester-semigroup. This theorem suggests
that the ideal theory of a Sylvester-semigrodp should be similar
to the ideal theory of a Gorensteinring. We show that this is

the case. .With the aid of this theorem and a result of Serre [5],
we conclude: A numerical semigroup of rank 3 ié a complete infer-
section if and only if it is.a Sylvester-semigroup.

In Chapter IV we prove this theorem directly and give .some
equivalent conditions for numerical semigroups of rank 3 to be
complete intersections. The main tool of the proof will be the
notion of a minimal relation. Finally, we show by examples that
many of our results do not hold for semigroups generatéd by more than

3. elements,

ix



NOTATIONAL CONVENTIONS

The positive integers will be denoted by N; the positive

integers together with 0 by No; and the integers by Z, |If E
. n .
is a set, E" will always denote 1 Ei where Ei»= E for
i=l
i=1,...,n. 1f R[S] is a semigroup ring then the elements

of the natural basis of R[S] over R will be denoted by Xg, S€S.



CHAPTER |

Monomial Varieties

1.1. Basic definitions and some geometric properties of monomial

varieties,
As indicated in the introduction we will study a certain class of

rational varieties. To describe them we need some definitions,

Definition 1.1.1.: S is a geometric semigroup if S is a finitely

generated subsemigroup with 0 element of a finitely generated free
abelian group. |

The reason why we call such a semigroup a geometric semigroup,
is that the reader may visualize it as a subsemigroup of the group§
of lattice points of Rn, n suitably chosen,

Let k be an algebraically closed field,

Definition 1.1.2.: An algebraic variety V& Am(k) is called a
monomial variety, if its coordinate ring k[V] = k[XI, "’Xm]/l(V) ,
1(v) = {fe k[X‘,...,Xm]/f(x) = 0 for all x € V} is isomorphic to
the semigroup'!ring k[S]'over k of a geometric semigroup S,

For a geometric semigroup S there is a canonical construction of a
g ° The associated group g of S is a finitely

generated, free abelian group and, since S is cancellative, we have

monomial variety V

an embedding S8. We will identify S with its image in 3. Also,
since'g is-a finitely generated free abelian group, we may identify

Q. n . tat .
S with Z for .some positive integer n. Thus we may assume that



2
n 4 _.n ' n :
S22 and $=2". Let {vl,...,vm} & 2 be a minimal set of generators

of S. Ssay v, = ('zi ), i=1,...,mJ=1,...,n, zijez. Let k be an

J
algebraically closed field, 'Let'Tl,.. ,Tn be indeterminates and
V. n zijA
T'=n Tn , i=1,...,m. It is clear that the semigroup ring
j=1

, v v
kI'Ss] is isomorphic to k[T I, ..,T ™ . We have an epimorphism £ from
the polynomial ring k[x],...,xm] in m-variables onto the ring

.VI A

k(T

v .
...T ™ defined by : £(X;) = T ', i=l,...,m . Let I be the

kernel of £ . We define:

Vg = V(ig)
(V(lg) = {x e A (k)/f(x) =0 for all f e I})

We should keep in mind that the definitiaon of VS depends on the
‘identifications we just made,

From the definition of Vg fol lows:

a) Vg € Am( k)

b) The coordinate ring of V

\ A
g is KT LT

c) The function field of Vg is k(TI""’Tn)

d) VS is. an irreducible rational variety

. — = 4
e) dim VS =n rankz S
Let H,, i = 1,...,m be the hyperplanes in Am(k) defined by the
equat‘onsn {Xi = 0}i=l,¢--,m

The following theorem summarizes some properties of monomial

varieties:



Theorem 1.1,3.: With the above assumptions we have:

. v v
1) If xe Vg N C(HIU...UHm) then x is of the form x = (tAl...,t ™)

vi n z, :
where t =1 tj J for | = 1,,..,m and with Fj‘k for j =1,...,n.

: m) .
2) The singular locus of Vg s contained in

Vg N (Hyv ...uHm)

3) The origin Is a point of Vo If and only If S has no invertible
elements,
k) 1f m>n and If the origin Is a point of Vg, then it is a

- singular point,

Proof: 1.) Let x € Vg C(Hlu ...L)Hm). To x corresponds a
k-algebra homomorphism

v
e, + KT

"V

LT ™=k

v

_ v
Let R = k[T ],...,T m]{Tv} be the quotient ring of

VES
vy v : :
kT °,...,T ™ with respect to the multiplicatively closed set

v
{T }VGS then
R=k[Ty,...,T J¢v ,
1? n? {T }vezn
This is a speéial.case of a general fact:

Lemma 1.1.4,: If R is an unitary ring, S a commutative semigroup,

N S8 the natural morphism of S into its associated group S and

RCw] | ,
R(s] "= R[g] the ring homomorphism induced by 1, then R[S] is
isomorphic to R[S]{s}, the.quotient ring of R[S] with respéﬁt to

{s} and R[®] is the natural mapping of R[S] into its quotient ring



R[S]{S] .
Since x k H] u...u Hm we can lift @ to

~

@, * R = k such that the diagram

‘pX
VI \"
k[T ',.0,T™ -k

is commutative.

Say E&(Ti) =t;, t; € k then wx(ij) = tvj for j =1,...,m, since
~ | Vi v
©, =0 v v In other words: x = (tv.,...,t" ).
X x/k[T l’ T m]_ . . s L v

2.)  Let the kernel of 0, be m and the kernel of $x be%. It is

. . v V-
obvious that k[T ',.;;,T ™ R_ . ButR_ is a quotient ring

My WK ~M&

~
=

of a polynomial ring and hence regular, This proves assertion 2.)

3.) If S has invertible elements, then there exists an equation

m v. V. .

r (T |) ' = 1, v, 2 0, v, integers, So the origin cannot be a
i=1 l ' :

point of VS' Conversely, if S has no invertible elements, then
vy Vo SV VY

(T ',...T") is a maximal ideal in k[R ',...T "] corresponding

to the origin,

L) 1f m>n then I_ is generated by pblynomials of the form

S
(.
m vi m “i m m :
T X, - Xi with & v, > 1 and 2 M, > 1. (We will prove
i=1 i=1 i=] i=1

this in the next chapter). If we take this for granted, then it

is clear that the Jacobian of V. vanishes at the origin, so that

S
in fact the origin is a singular point.



With the same assumptions we get:

Corollary 1,1.5.: Vs has outside of HI u...u Hm the parametric

representation

Vl v
{(t ',...,t Me ALK/t €k, t #0,1=1,..n}

Let S be a numerical semigroup, (i.e. S is a subsemigroup of No).
Say S is generated by n,,,..,n, € N éndv{n],...,nz} is a minimal

system of generators of S. Then we obtain as a special case:

Corollary 1.1.6.: Vg is a curve in Az(k) passing through the

origin and having there its only singular point. Moreover, we

have for V. the parametric representation

S
n

™ 4
Ve = {(t ',...,t e A (k) / t €kl
Remark: The parametric representation doesn't hold in general

globally,

Example: Let S be generated by v, = (,n, vV, = (1,2), vy = (1,3)
then
-— . -2=
Vg = {(x‘,xz,x3) € A3(k) / X X3=%) 0}.
Therefore (1,0,0)¢ Vg, but

(1,0,0) ¢ {(t]-tz, t]-tg, tl'tg) / t],té € k}

1.2. An isomorphism theorem

Before we turn to the intersection problem we are going to pfove
a theorem, which is of a certain interest in this context.

Let S, S' be geometric semigroups and Vg, V' their affine varieties
over-k. Can Vg and Vg, be birégilarly équivalent for .non-isomorphic

S, §$'? More generally the question



can be stated: |f R Is an arbitrary commutative, unitary ring,
and S,S' arbitrary commutative semigroups with 0 element, does
an R-~isomorphism of the semigroup rings R[S], R(S'] imply that
S and S! are isomorphic? |

Before proving the main theorem, we show:

Proposition 1.2.1.: For. an abelian semigroup S the following

conditions are equivalent:
a.) S is a geométric sem{group
b.) 1.) S is finitely generated and has a 0 element
2,) S is cancellative
3.) Whenever ns, =n s, for ﬁ € Nand s ,s, €S
then 5) =S,

c.) 1.) S is finitely generated and has a 0 element

2.) If R is an integral domain then R[S] is an integral domain,

Proof: a.) implies b.) is trivial and a.) implies c.) is clear,
since R[S] can be considered as subring of -a polynomial ring

R[X],...,Xn]T, localized with res%ect to T = {x'}. n'(Lemma i.l.h.).
veN
0

b.) implies a.): Denote the associated group of S by‘g. There
is a canonical homomorphism 7 : S -3, By assumption S fs
cahcellative, therefore ## is an embedding., Since §-is finitely |
generated, S is also finitely generated, It remains to show that
S is free or equivalenfly;'g is torsion free, |
Consider the equation ne = 0 with neN and 3¢S, We have to
A

show that § = 0. 3 can be written: S = W(s]) - ﬂ(sz) where

s., s,€S. Therefore 0 = m(ns,) - w(ns,), thus w(ns,) = w(ns,).
1° 52 17 = MRSyl thus mns, 2



7

Since. 7 is injective this implies that ns, = ns, and by condition
3.) S| = s,, therefore T =0.
c.) implies b,) : We only have to check 2,) and 3,).

2.) Assume S is not cancellative, then there exist $,5),5,€S

sy # s, such that s, + s = s,+s. Then (xsl- xsz)xs = XSI+S-XSZ+S= 0
but x_ = x_ # 0 and x_# 0, a contradiction.

) s2 ] , /
3.) Assume there exist S +5,€S such that s]# s, and ' -

n=1
ns, = ns, for some neN. Then (x_ = .x_)( x )=x__=x__ =0
1 2 51 Sy yal (n-v)s]+vs2 ns, "ns,
n=1

but xsl— xsz# 0 and VE] X(U'V)5|+V52 # 0, a contradiction,

Theorem 1.2.2.: Let R be an integral domain, S a numerical

semigroup, and S' any finitely generated semigroup with 0 element.

Then R[S] = R[S'] implies that § = §',
R

Proof: Let k be the quotient field of R then also k[S] = k[s'] .
Since k[S] is an integral domain, so is k[S'] and by proposition

1.2,1, S' must be a geometric semigroup. Since dim k[S] =1

??';

also dim k[S'] = 1. In section 1.1., we showed that dim k[S']= rank,

: hence, 3! = Z and therefore S' < Z. Assume S'
has invertible elements, then §' = Z and the elements xsek[sﬂ,
s€S', are units in.kE§]; whereas the units of the ring k[S] are
just the elements of k, different from zero, a contradiction.

Thus S!' is isomorphic to some numerical semigroup,



Theorem 1.2.2 is therefore reduced to the special case

(E. D. Davis):

If k is a field and S, S' are numerical semigroups such that

k[S] = k[s'], then s ='s',

Proof:1)1f S = N then k[S] is isomorphic to the polynomial ring
in one variable k[T] and therefore k[$] = k[T].
Assume S' is a proper subsemigroup of N. Say S' is generated

~ n} n'
by_{ni,-né,...,nb}, ni € N. Then k[s'] = k[T I ...,T 4] and we

ni n'

R | z] is a non-regular local ring.

know that K[T n ny
(T ..., T7)

However all localizations of the polynomial ring with respect to
prime ideals are regular local rings, therefore k[S] cannot be
isomorphic to S', unless S' is also jsomorphic to N.

2.) We may suppose that both S and S' are proper subsemigroups

of N Say S is generated by {nl,;..,nz}, n,eN. We may assume

0
that the greatest common divisor of LITLPPRRLP) is 1, because
‘ N e - MM )
ifvs= gcd(n],nz,;;.,n ) then S, generated by {;—, V_""’V_} ,
is isomorphic to S. Let S' be generated by {hi,...,n& , nieN .

We also assume that gcd(ni,...,nk)'= i. We get
1 nl

n n n
KT, T TSI SIS IS KT .., T M.
: n, N, - n; nk‘ '
Let @ : k[T ,...,T7] = k[T ',...,T "] be this isomorphism. Let
nl

" ey My
ﬁ’= (T ',...,T7) andg= (T ',...,T ") be the maximal ideals in
P n, ni . nk ;
k[T ',...,T 7] and k[T °,...,T "] belonging to the origin, so
<p(?) = ,g', since the ideals Qﬁand g’/’define the only singular
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points of the corresponding varieties, The integral closure of

nl

" )
,eris T 7] is k[T]. Therefore

n
KT ',...,T %] as well as of K[T

@ induces an automorphism @ : k[T] = k[T] such that the diagram

1) & i)
T - ar - ,Tn‘}‘]
)
is commutative, ‘
By Liiroth's theor't;n We get O(T) = o + BT with a, Bek and B # 0,
Since (p(A(f) = 'f’ we obtain @(T) =..$(/gk[T])= rg'k[T] = (T), so that in

our case o must be zero, Thus @(T) = BT with Rek, B # 0. Since ¢

n n
is the restriction of @ to k[T I,...,T.E], we have @(T°) = 8°T° for

all seS, thereby proying that § ='§',

Corollary 1.2.3.: I1f k is a field and S a numerical semigroup

f_:/*

then Aut, (K[S1, K[51) ¥ K",

Remarks: The proof of Theorem 1.2.2, cannot be generalized to
arbitrary geometric semigroups, because the integral closure of
k[Sj need not to be a polynomial ring, Even if this is so, things
are much more complicated, since the automorphism group is in
gevneral not as trivial as in the case of corollary 1,2,3,

Example: We define an automorphism

2 2 2 24
@ k[T,)7, Ty, 7,71 = kIT) %, TyT,, T,7] by

2 2 2
o(T,%) = T,” + 4T,T, +-472

" -t 2. 2
(p(T]Tz_) Tl T, + 2'!'2

2y _ .2 _ 2




CHAPTER 11

Connections between semigroups and

their associated semigroup rings

2.1. The defining relations of a semigroup and its semigroup ring.

‘First of all we introduce some notations and definitions and

recalllsome well~-known lemmas,

Definition 2,1,1,: S is a free semigroup of rank n if there exist

n n.
s],...,snes such that any equation & v,s, =X vi'si with vi,'vicN,
i=1" i=1

i=1,...,nyields v, = v;! for all i=1,...,n.
Free semigroups have the following universal mapping property:
Let F be a free semigroup of rank n and S a commutative semigroup.
Assume F is generated by {el,...,en}. Pick any elements sl,...,snes.
Then there exists exactly one morphism¢ : F = S such that«p(ei) = s,
for i=1,...,n.
As corollariés we get:
1.) Any two free semigroups of the same rank are isomorphic,
2.) Any finitely genefated commutative semigroup is an epimorphic
image of a free semigroup,
Now let S be a finitely generated commutative semigroup with O
element. Then‘there exists ah epimorphism b*: F—S, where F is a
free commutative semigroup, The morphism ﬁ* defines a (binary)

relation on F:

p=[(v,W) €FxF / p (v) = p (w))

10
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Obviously p is an equivalence relation and moreover has the
following compatibility property € : If (v,v') ep and weF then

(v+w,vf+w).ep, According to Rédei we define:

Definition 2.1.2.: A subset p = FxF is called a congruence on

F if 1.).p is an equivalence relation 2.) p has the property C.
1f.p is a congruence on f, then the set of equivalence classes
F/p can be given a semigroup structure in an obvious way and

there is a natural epimorphism b* : F - F/p.

Lemma: {f F and S are finitely generated commutative semigroups,
F is free,\p? : F= S an epimorphism and.p = FxF the congruence
p= {(v,w).kFxF /,p*(v) = b*(w)} then F/p is isomorphic to S,

Hence any finitely generated commutative semigroup can be
written as a free semigroup modulo a ééngruence.

The trivial congruence on F is i = {(v,v) €FxF/veF} and
}élearly F/i = F. For any relation p on F we put.p-]= {(v,w)eFxF/
'.(W,v)ep}. It is‘rathef obvious that for an arbitrary relation
P on F there is a smaliest congruence 0 containing p, namely
the intersection of all congrugnces,cohtaining pP. Thefe {s an
explicit cbnstruction of p :

1. Step: Putp =puv p-]v i, then.'po is reflexive and
symmetric and p ¢ P, |
2. Step: Put.p. = {v+w, v'¥w)chF/(v,v')€po weF}, then p, is

reflexive, symmetric and satisfies condition C and PEP,= Py
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3. Step: (Transitive closure) Define (v,w)eFxF to be an element of
p if there exist vo,v',r..,vst, v, = v’ vy =W with.(vi, vi+1)ep,

for all i.=0,1,...,48-1.

A simple verification shows that-ﬁ is in fact the desired congruence,

Definition 2 1.3.: A congruence p on F is said to be finitely

generated if there exists a finite subset 0 ¢ p such that. o = p.
For a finitely generated commutative semigroup S we define:

Definition 2.1.4.: S is finitely presented if $ = F/p, where F is

a free semigroup and p a finitely generated congruence.
We now prove a representation theorem for semigroup rings and
introduce for this purpose some nOtations:'Any free semigroup F

of rank n is isomorphic to

Non = {(v],...,vn)./ v eN i=1,...,n}

0’
with addition componentwise, and any commutative -semigroup S of

rank n is an epimorphic imageuﬁ" : N" =S and S ;'Noq/p, where

0
%
p is the congruence determined by p .

Let R be a commutative, unitary ring and R[Xl,...,xn] be the

),

polynomial ring in n variables over R. If veN n’ v = (v],...,vn

Vv,
%, ' . R[X
l'

we define X' = .,Xn] is isomorphic to

l.,.-

[t

R[Non] by xv - X, The epimorphism ﬁ*: Non - S induces an
_ : %

R(p"] o ve

- R[s], where R[p J(X") = x "

epiﬁo;phiém R[Xl,...,Xn]
- p (v)
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We may consider R[XI,...Xn] as an S-graded ring in the following
sense: A polynomiai FeR[Xl,. ..,Xn] is said to be-homogeneous of

degree s, seS if F =X nfy XV with ‘p*(v) = s for all s such that
' veN '
0

ry # 0. Also R[S] is in a trivial way an S-graded ring. From the
definition of R[p*] foliows, that R[p*] is a homogeneous homo-
morphism of degree 0. We denote the kernel of R[p*] by g and for
Aep, A = (v,w), v,weNon we put

\
Fa X X

Theorem 2.1,5: ([F }

adnep!

In othe.r words: R[S] = R[Non/b] [N ]/({F }Aep

Proof: Let J = ({FA} )

Aep

1.) J g, clearly by the definition of R[p']
2,) Observe that 'S is a homogeneous ideal in the S-graded ring
R[X XyseweoX ] Therefore it suffices to prove: If Felg and F is

homogeneous, then Fe€J. Choose Fel., F homogeneous of degree s,

S’
m vi % m
F=2XZ r X withp(v;,) =s fori=l,...,mand Zr =0.

i=1 Vi i=1 Vi

m=1 Vo - m=] '
F= 2 ry (X F_x ™ = 3 ry FA , where A, = (vi,v:) for

i=1" Vi, i=] "
i_=l,.;'..,m'-l... Since p’(yi) = p’(vm) for all i=l,,..,m-1, we get

that Aiep for i=1,...,m=1, thus FeJ .

Remark: This theorem can easily be generalized to commutative

semigroups S, which are not necessarily finitely generated.
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With the same assumptions as for Theorem 2.1.5 we have the following:

{

Proposition 2.1.6.: Let 0 = {A ,Am}, where A.ep for i=l,

Then the following conditions are equivalent:
1.) o=p

2.) | =(FA',...,FAm)

Proof: 1.) implies 2.):

S

Aepo (FAI,...,FAm). This is

a.) Letp0=0ucr]u i, then ({F}

trivial, because. if. Aecr-], then A =.Ai - for some i=1,,..,m and

F, = F _,= =F,, = 0.
ATt A

and if Aei then FA

b.) Let p = {(viw, v'4u)/(v,v')ep,, weN,"} then ({F,A}Ae_p') =

({F ' . i : . n n
A}({FA}.AepO)’ because if Aepl then there exists weN0 and A'ep0

| ' .

such that FA = X FAu.

c.) Let Aep, A = (v,w). By assumption 0 = p, and we know that O

is the transitive closure of Py - Therefore there exist BO,...,Bkep],

B, = (v w) such that v =v,, w=w, and v =W, for i =0,...,k-1 .

i 0’ k i+1
Hence . Fp-= D F . a.), b.) and c.) together establish our assertion,

2,) implies l.):

' n
We know already that (F, ,...,F, ) = ({F } Let S =‘N0/5' and
. l m
k3 . n - P
o : Ny S' be the canonical epimorphism then, since i ({FA}Aeo)

0-°(F ) -‘R[X‘,...,X]REOJR[S]—'O is exact. By

’...’ A
| .
assumption | = (FA veeesFp ) = lgy . Therefore, if Aep, A= (v,w),
. 1 m ' ‘
then R[o J(F,) = x - X % %

Lo ( A) | .a*(v) 0*(w) = 0, Hence .o (v) =0 (w), or

equivalently Ao .-
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Corollary 2,1,7.: A finitely generated commutative semigroup is

finitely presented,

Proof: An easy consequence of 2,1.5., 2,1,6. and Hilbert's Baslis

Theorem,

Remarks: Rédei proved this fact in his book [4] and the proof also

appears in [3].

2.2, Complete intersections,

~In this sectfon we prove a theorem on the number of relations
for geometric semigroups and introduce the notion of '"complete
intersections'! for semigroups.
Let S be a geometric ;emigroup.

Definition 2.2.1.: dim$S = : rank, s.

The following fact gives a justification of this definition: |If k
is a field then | i

(Krull) dim k[S] = dim S (See Chapter {).
The next two definitions refer»fo arbitrary finitely generated

semigroups S,

[

Definition 2.2.2.: The rank of S is the number of element§ of a

‘minimal system of generators of S,
If pc F Is a congruence we define:

Definitlion 2,2.3.: The rank of p Is the Humber of elements of a

minimal system of generators of p,

Theorem 2.2.4,: Let S be a geometric semigroup and represent S as :

S = F/p, where F is free and p is a congruence, Then
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rank p 2 rank S - dim S,

Proof: We make use of the following theorem: If k is a field,

k[Xl,,..,Xn] the polynomial ring in n-variables over k,

M= ({F

[re-eoF.3) an ideal in‘k[X],...,'X.n] and A = k[X ..o X Iy 50

then
rn-~-dimA.
fn our. case we have:

dim S = dim k[S] = dim (k[F]/({F _)) . If rank p = r then there

alaep
éxist Ap,...,A €p such that ({FA}Aep) = ({F ‘,...,FA }), see 2.1.6.

r
We get therefore:

1l

rank p = r = dim k[F] - dim k[S]
= dim F - dim §
2 rank S - dim S, since rank S < dim F. This proves

our theorem,

Let S be a geometric semigroup.

Definition 2.2,5.: S is a complete intersection if S can be

represented as § ;'F/p, where F is free and.p is a congruence, such
that rank.p = rank § - dim S,

As a straightforward application of the next theorem we will find
that a geometric semigroup with no invertible elements is a complete

intersection if and only if the monomial variety V. defined by § is

S
an ideal theoretic complete intersection,
Let R = G}Rs be an S-graded ring, where S is a geometric semigroup,
S€S _
From now on we will assume that S has no invertible elements then
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P= sg-% ‘Rs becomes an ideal in R, IfM cR is an arbitrary

s#0
finitely generated ideal in R, we define the rank of ¢ to be the

least number of generators of 4t .

Theorem 2.2.6.: Assume Ry is an integral domain. Let4L be a

finitely generated homogeneous ideal in R and assume that Al is
generated by the homogeneous elements {a] ,...,ah} and rank4#l = m,

Then there exist Ay 5eee,@y ~€{al,...,an} such that
1 m

m = (ai 9o e ,ai ) .
, 1 m
In other words: We can find.a minimal system of generators of AV

in a set of homogeneous generators of AL,

Proof: The ideal P = @Rs is a prime ideal in R, since Ry is an
seS :
s#0

integral domain, By assumption rank4lL = m, therefore we can choose

A, ,...,4,
1 y i

efa,,...,a_} such that pLR_ = (a, ,...,a, ), where the
i m ] n P F i

m

;i 's are the images of the a, 's inR This can be done, since

| P -
in a local ring one can select a minimal system of generators of an

ideal from any system of generators, We show now that {ai TERFLE }
1 m
is a global system of generators of 41 ,

‘Since Al is homogeneneous wecaniy have to.prove:. If a e ahd a is

homogeneous then a,e(al.,_...:.,ai ). We can'certainly find ry € R,
' 1 n ' N

. m .
i =0, 1,.,.,m; ro € P such that roa =2 r.i a; . We may assume
j=1 J
. . . ’ m
' € P. Therefore, a=r 'a+Z r, a,

thaf‘r"= l-f ,r
o 0’0 Pt Rt
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For an element reR we denote the homogeneous component of degree
s of r by h (r) The element a |s assumed to be homogeneous. Say,

deg a=s, Then a=h (r 'a) + h ( E r53; ), but hs(ro'a) =0,
j=1 J
since r.'eP, Therefore a = h ( E r, a, )
0 = 3

However, the ideal (ai SEPLE ) is homogeneous so that the last
1 Coom

equation yields ae(é% ye .,ai“)

] Tm
Let S be a geometric semigroup with no invertible elements,
Represent S as F/p and let IS be the kernel of R[pﬁJ:R[Xl,...,XnJ‘ﬂ
R[S]T.

-As a corollary of 2.2.6 we get:

Corollary 2.2.7.: rank p = rank |S

Proof: Obviously rank p = rank I, (see 2,1.6). For the converse
remember that R[X],.,.,Xn] is an S-graded ring in the sense of
section 2.1, and I = ({EA}A ) is a homogeneous ideal in

R[XI,.. ,X ] generated by the homogeneous elements {F }i The -

AlAep .
inequality rank p < rank I follows now from 2.2.6 and 2,1.6.

Corollary 2.2.8.: Let S be a geometric semigroup with no invertible

elements. The following conditions are equivalent:

a.) S is a complete intersecfion.

b.) Vs.is an ideal theoretic compléte'intersection.

c.) Vs is locally an ideal theoretic complete intersection,

d.) Vs is locally at the origin an ideal theoretic complete intersection.
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Proof: It is trivial that a.) implies b.), b.) implies c.) and
c.) implies.d.). We only have to show that d.) implies a.); but
this is a simple consequence of 2,2,7 and 2,1.6,
Let 's* = {deg F, /-Aep}. Obviously |S* is an ideal inS. IfS
is a geometric semigroup with no invertible elements, whose rank °

is m and dimension is n, then we get the following necessary

condition for VS to be an ideal theoretic complete intersection,

Corollary 2.2.9.: If V. is an ideal theoretic complete intersection,

S

%
then rank lS .€m-=-n,

Proof: If V. is an ideal theoretic complete intersection, then

)
rank p.#»":m-n for a suitable representation F/p of S. Obviously

rank 'S* < rank |s . But rank IS = rank p (2.2,7), therefore

N
v

rank |s < m=n.

Example: Vg = {(t3,th,t5)/tek} is not an ideal theoretic complete

intersection. (S is the semigroup generated by {3,4,5)). In’fact,

S
We will show later, that the condition given in 2.2.9, is also

(. is generated by {8,9,10}.

sufficient for numerical semigroups of rank 3.



CHAPTER |11}

Sylvester-semigroups

3.1. Properties of Sylvester~semigroups.

| For numerical semigroups we do not have to require thafvthey
are finitely generated, because this property is common to all of
them. In this section we will assume that the generators of a
numerical semigroup S have greatest common divisor 1.. Because if
S is generated by {"I’"Z""’nz} and gcd (n],...,nz) = d, then
we obtain a numerical semigroup S' which is isomorphic to S and
whose greatest common divisor of its generators is 1. We let S!
be the semigroup-generated by { gl ,...,:Z} .

It is obvious that if S is such a numerical semigroup then

there exists se€S such that s+veS for all v=0,1,2,... . Hence
for a numerical semigroup S there exists a greatest integer m

not belonging to S. |In special cases we can compute m, according

to the following theorem,

Theorem 3..1.1: Let c],, zeN such that gcd(c j) = 1 for all

iJ=1,...,4, i #]. Letn, = # , for i =1,2,,..,4, Then

j=1
#l
the semigroup S generated by {n],,..,nz}has the following

property: There exists an element meZ such that for all zeZ

we have: 2€S if and only m=z £ S,

Moreover: = (4=1) # c, - E 14 c.
' j=t 4 = gt
J#i

20
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Remark: From the definition of m it follows that m is uniquely

determined. Namely m is the greatest integer not belonging to S.

Proof of the Theorem: -

: - y/
a.) We first show that if we have an equation 23rini =0, riez
. i=)
then re is a multiple of ¢, for i=1,...,4.
) ) ) o )
- Proof: Zr, mc,= Zr.n, =0, Therefore, r, 1 c, =0 mod c,
—_— T ey 0 fe v J i
i=l  j=1 i=1 Jj=1
j#Ei ; . Jj#i
for all i=1,...,4. But "?i# 0 mod € since the ci's are
j=] .
J#i

assumed to be mutually prime. Hence r. =0 mod < for all i

i=1,...,4. This is what we-claimed,
: £ N Y 3
b.) Let m= (£-1) @c, - L mc, .
j=1 4 =t j=1d
j#i

We show that m has the required properties stated in the theorem,

1.) Assume meS then there exist r],...,rzeNO such that
. ,
m = Z?rini (*).

Ci=l Ty L2 el s

. Now.m = (L=1).m .cj.,..-...._E.ni‘.s. cmec.n, =% n, and therefore (%)
j=1 i=1

=1 J

yie,lds.,Z)(riH-ci)n.i +'(rb+l)n£ = 0, Since-r£+l > 0, there exists

i=1 ' i=1
1=

ie{l,...,£-1} such that r.+l=c, <0. By a.) r.+l-c. must be

divisible by c;- Therefore ri+l is divisible by c.. But

0 <_ri+l.< c,, a contradiction, - Therefore mgS.

2.) We now prove the converse: |f sgS. then m-seS.
. 2

Let seZ, sé€S, s = & rong, ri€Z.

_ i=]
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For i,j = 1,...,2£ we have the relations cn; = cjnj. Say

'<C.

=ac, +r t a,.r
i » 9 ] !

171 |
2

Then s = 2 r
=]

ez and 0 < r

- a,c,n, + a,cn

TR R B 122

i

L
+ Z?rini .

o= [ ]
AU (r2+alc2)n Z

2

By the relation cny = c3n3 we make, in a similar way, the

coefficient of n, less than c, and greater or equal to 0, We can

2

proceea in this way until i = £~1. Hence we may assume from the
z. .
beginning that s = Z r.n

and 0 < re < c; for i=1,...,28~1. Since
i=1 '

s£S, ry must then be less than zero, Therefore

4~1 ‘ _
m~s = 2 (ci-l-ri)ni + (l-rz)nz is an element of S, since

ci--l-ri = 0 and l-rz 2 0:'
This theorem gives rise to a general definition. Let S be a

cancellative semigroup with 0 element.

Definition 2.1.2,:. S is a Sylvester~semigroup if there exists

meg'such that for all seg; seS if and only m~sé€S.

Remarks: We call canceliative semigroups with the aboJe’property
Sylvester-~semigroups, because Sylvester proved Theorem 3.1.1, in
the case £=2. Some authors call these semigroups symmetric
semigroups; however, the term 'symmetric" is also used more
cqmmonly fo describe semigroups in a different sense.

0f course, Theorem 2.1.] does not. determipe all possible

numerical semigroups, which are Sylvester-semigroups, As an
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example, consider the semigroup. S generated by {4,5,6} . S is a
Sylvester-semigroup, but is not of the type as described in 3.1.1.
1f S is a numerical semigroup then we let M be the maximal ideal

M=§ - {0} and M be the set M = {zeZ / z+M €8} .

Theorem 3.1.3.: Let S be a numerical semigroup then the following

conditions are equivalent:

a.) S is a Sylvester-semigroup.

b.) M = {m} v S, where m is the greatest integer not'belongfng
to S, |
c.) Each proper principal ideal is irreducibfe, (i.e.,: If s€S,
s # 0, then the ideal (s) cannot bé written as the intersection of
two ideals in S, which both properly contain (s)).

d.) There exists a proper principal ideal, which is irreducible,

Proof: a.) implies b.) : Let zeM . |If zeS, then there is nothing
to show. Assume z€S. |f z # m, then m-zeM, since S is a
Sylvester-semigroup and therefore z + M &S, since m¢S. Thus 2
must be equal to m. Obviously, meM .

b.) implies a.) : Assume‘s is not symmetric. Then there exists

a greatest integer m]¢S such that m-mltS.

We clain: M 2 {m,m}vs.

Proof: We only have to show, that mler . Assumevm‘tM-, then
there exists seM such that ml+sé5. By the definition of m, it
follows that m=mrsesS. Therefore m-m, = (m-ml-s)+s is an element

of S, a contradiction,
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a.) implies c.): Let (s) be a principal ideal and sles such that

slt(s), then s+m e(s]).

Proof: Since slé(s), it.follows that s,-séS. Therefore
m-(s'-s)es, since S is a Sylvester-semigroup. |n other words:
(m+s)ési € Srgdorlequivalently'm+§é(s]).

c.) follows now easily, Assume (s) is reducible then there
exists s,,5,€S, sl,szt (s) such that (sl)(\ (52) c (s). However,
from the considerations above, it follows that s+m e(sl) N (52),.
whereas s+m £(s), a contradiction.

It is trivial that c.) implies &.)

d.) implies a.) : We show, if S.is not a Sylvester-semigroup,

then each principal ideal is reducible,.

Claim: |f (s) is a proper principal ideal then (s) = (s,s+m)n
(s,s+mi),where m is the greatest integer not belonging to S and

m; the greatest integer not belonging to § such that m-m; € S.

Remark: By the definition of m and m it follows that s+meS

'I’

and s+m,eS. Also (s,s+m) and (s,s+ml)'both contain (s) properly.

i

Thus, once we have proved the claim our assertion follows,

Proof of the claim: It is sufficient to show that (s+m) N (s+m|)s(s).

Let s'e(s+m) N (s+mi) then. 5' = s+mks, = s+m +s,, 5;,5,€S. Assume

1
s; =0, then'm-mles, a contradiction, Therefore 5 > 0 and this

implies that m+s]£S. Hence s'e(s).

3.2. The semigroup ring of a Sylvester-semigroup,

Let S be a numerical semigroup generated by {n',...,nz} and let k

n2

~ o _ N n
be a field. We know that k[S] = k[T ],T yeorsd z]. T an
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indeterminate, Let#be the maximal ideal (T ',...,T 7) in k[S],
K the quotient field of k[S] and Os,the local ring k[S]VMyith
maximal ideal®\ =4mk[51%~ . We are interesteéd:initheilength of
the module Wﬁ)/os and denote this length by L(?ﬂijlos). Remember,
if R is an integral domain with quotient field K and 4L = R is

an ideal, one defines:

-1
A = {xeK/xOLcR}

0f course, Anf] is an R-module and contains R. Hence one can
form the R-module AU /R,
The following theorem is of the type as 3.1.3., however

on the ring level.

Theroem 3.2.1.: The following conditions are equivalent:

a.) S is a Sylvester-semigroup.
b ) Z(Uﬂj/os) =1 |
c.) Each proper principal ideal in Os-ié irreducible,
d ) There exists a proper principal ideal in OS’ which is irreducible
Proof: a.) implies b.)
1.) We first show that A(Av;l/k[S]) = 1 and this follows at once as soon
as we proyed, that |
! = H s k[S], where.u is the greatest integer
not belonging to S .

Let xs4~5', then x =-§%¥% ,'f(T), g(Dek[T] .
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n
We may assume that gcd (f(T), g(T)) = 1. We have gg—;— T Iek[S],

since xe/m;'. Therefore g(T) = nTv,‘ ek, 0 S Y < n,, because

] »
gcd(a(T),f(T)) = 1. Assume that ¥ > 0, then f(T) must be of the

form f(T) = %'+..., where %'ek, »' # 0. Hence we get

: n, -y , ,
1 I :

m%—— = ;’:— 1! 4., isan element of k[S] . But this can

only happen, if.p = ny - If S is generated by just one element,

i.e, n, = 1, then our assertion follows at once. Therefore we

may assume, that S is generated by more than one element. |In
S=n
1 PR
this case, there exists se€S, with s-n]'g‘S. Hence x Ts = l’:— T ]+...
is not an element of k[S] . Thus V¥ must be zero and g(T) is a

constant, Therefore 'Wlt-_lck[T]f Now let f(T)e 415] and assume
that f(T) =..:uTu+..., uek and vV a posit‘ive integer not belonging
to S. We show that y must be equal to u, thereb9 proving 1.).
..Assume .Y..#.14,. then yg-p > 0 and B-veS, since S is a Sylvester-

sémigroUp." 'Thereforé'T“-uem, but ‘f('T)Tu—u = u.T”+ |s rib‘% an
element of k[S], a contradiction. On the other hand, if

£(T) = xt™ h(T), h(T)ek[S], then f(T) is certainly an element

of 4%-]

2.) We want to show that L(.m]/0s) =1, This follows immediately

from the fact that m-]= MX'IOS and\ 1.), because
] =1 ® 0
0S/0 M /k[S] k[s] S . Let us prove that
S

W'y, = W
sv

’525‘(':] =,WCIO' It is trivial that m-lf'-"wd) . Conversely

S e ‘ - S ° | ’

if xe m-' then xmgos . Therefore x M0, 0.
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Hence xThieos for i =1,.,..,4 , Therefore there exist CLITLPYRRY
€k[S] such that x‘fni ='£l for i = 1,.. ,£. This means, however,
that txe4~£l and thus xezﬂijos .
b) implies c.): This is a general fact: If (R, W) is a one
dimensional local domain, then the conditions b.) and c.) are
equivalent. A proof of this theorem is in [2].
It is trivial that c.) implies d.)
d.) implies a.): Assume S is not-a Sylvester-semigroup. Let y,
be the greatest positiveyinteger such‘thatmults.andmueu‘fs .
Let (c) be any proper. principal .ideal .in Os.ffwe may .assumé that
cekES].1uByuthe.definitionnof.ymandwu], it follows that
cT“é(c) and cTulé(c). Moreover cT® and cT‘I“l are elements in
k[S]. We claim that (c) =‘(c;cful)r\ (clcTu). This shows that
(c) is reducfble. | ,
Proof of the claim: Let ag(c,c#?l)f\ (c,cth .
There exist al’aZ’bl’bZ € 0S such that
: K i
az=, ac + a2cT = blc + b2cT' .
. ST L -
Hence a2cT = byecT" = b]c-a]c. ~Multiplying this. equation by the
product of the denominators of ai,aé,b‘,bz, we may assume that
al’aZ’bl’bZ are already elements in k[S] ..
: n n,,
Llet a, =+ a,', xek, az'e(T I{...,T z) and b, = n'.+b2',
n n ‘

wek, byle(T ',..:,T Y.

L v -
that az'T ]ek[S]~and b2'Tuek[S] . Therefore the above equation

o

By the definition of.u and.y,, it follows

L
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K K
yields. xcT l-.n'dﬂu = dc, dek[S]. In fact, d = bl-al-az'T l-bz“ﬂ‘.

Hence we obtain in k[T] that xT l-‘xffg = d. Since dek[S] , it

\‘A ”
follows that % =%' = 0. In other words: azT l and sz“ are

elements in k[S] . Therefore E-a= (bl + bZT“)c, € a unit in O

and b, + sz“tk[S]. Hence ae(c).

Remarks: (f S is a Sylvester-semigroup, then it does not follow
in general that each principal ideal in k[S] is irreducible.
Example: Let S be generated by {2,3}.. The ideal (T +T3)

3 3ty

reducible in k[Tz,T3]. ‘In fact, (T +T3) (T +T 'r) (T +T +T

Theorem 3.2.1 is related to a general concept: A noetherian local
ring (R, w) is said to be a Gorenstein ring if
1.) (R,ﬂwa is a Cohen Macauley ring.
2.) ‘Each ideal in (R,W) generated by é parameter
system is irreducible.
lAs a special case it follows easily that:- A one dimensional
noetherian local domain is a Gorenstein ring if and only if each

proper principal ideal is irreducible,

Corollary 3.2.2.: 0, is a Gorenstein ring if and only if S is a

Sylvester-semigroup.
It is known, that-a noethenian-localiring (R,Mm) which is:a.complete

intersection is_a Gorenstein ring,

Caorollary 3.2:3:.. 1f:a numerical semigroup §.is a complete intersection

then S Is a Sylvester-semigroup,
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The converse is not true, as we show by an exahple in Chapter 1V,
However, there is a stronger result: Serre proved in [5] the
following: Let-k be-an algebraically closed field, C a curve in
the aff ine 3-space A3(k5,uPe$C a point of C and~k[C]P the. local
ring of P on C. Then the following conditions are equivalent:
a.). k[C]P is a complete intersection

b.) k[C]P is a Gorenstein ring.

" corollary 3.2.4.: If S is a numerical semigroup of rank 3, then

S is a complete intersection if and only if S is a Sylvester=-

semi group.

In Chapter IV we will prove 3.2.4 directly and give some other
equivalent conditions for a numerical semigroup of rank 3 to be

" a complete intersection.



CHAPTER IV

Numerical Semigroups of Rank 3

4,1, The minimal relations of numerical semigroups of rank 3.

Preliminary remarks: Let S be a finitely generated cancellative

n
semigroup, say S = NO/p . To a relation Aep, A = (v,v') we

assign a vector “h in 2" in the following way:

- = -y!
A “h V=V

It is easily verified that the set
. _oN

Mp(S) {w,e2"/Aep)
is a subgroup of " .
We call Mp(S) the relation module of § (with respect to p). |f we
are given Mp(s) we can recover p. To show this;mwewintn04qcevsbme~w~~
notions: Let v,-v'eZ™; v = (2;), v' = (z;'). - Ve define -

vvv' = (max(zi,zi')), vav! = (min(zi,ziﬁ))
+ - n + -
and v =vv0, v = (-v)v 0., For any veZ we have v=v =-v ,
We define the set of reduced relations of p to be
p. = {Aep / A=(v,w), vaw =0} . It isclear that p=p_ . In fact
p = {(V+W, V!"'W) / WGZn-, (V,V')Gpr} ¢

Therefore p is completely determined by P, There 'is a bijection

between the elements of P, and the elements of Mp(S), which is

established in the following way:

30
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(e S

Mo (S)(m—>p,
+ =
W (W ,w ) = A,

Wy = v-v'g—————— o (v,v') =A,

The above considerations show how to obtain.p from Mp(s) . There-
fore S is completely determined by Mp(S) .

We say that VisesosV) eMp.(S) generate p if the relations
+

'Avi = ‘(Vi ’

is a minimal system of generators of p, then the relations Ai are

v;-). i=1,...,k generate p. |f {Ai = (vi’vi')/i=]""’k}

reduced, since S is cancellative, ' Therefore to find a minimal
system of generators of p is equivalent to finding vl,...,vkeMp(S),

k minimal, such that ViseersVy generate p .

The minimal relations:

Let us return to the case where $ is a numerical semigroup of rank 3.
Say, S is generated by {nl,nz,n3}, neN .

Let e, = (v,0,0), e, = (0,1,0), ey = (0,0,1). We have an epimorphism
¥ 3 N3

P :va - S, where p*(ei) =n, for i =1,2,3, Hence S = 0 /p ,

p= {(v,v'.)/p*(v) = p'(v')} and

: . 3
Mp(S) ={(zl,22,23)523/=§ z;n, =0} .

]
Ifv G'Mp-(S),-v #0, vs= (z] ,22,23), then there is one component of v,
say the i - component, such that either:

1,) z, >0 and~zj <0 for j#i

or 2,) zi<Oandzj20forj#i.



32

We say in this case, that v is of type i and define:

Definition 4.1.1: v € Mp(S) is a mimimal relation of type 1 if

for all relationsﬂv\ch(S) of type i, v' = (z}), we have

|2, |2z, -
A relation is said to be minimal if it is minimal of any type.

We denote the set of minimal relations of Mp(S)'by WUL.

Remark: The minimal relations of type | are obtained in the
following way: Take the Smallest multiple c, oé " such the?e
exist r,, rse Ng with ¢;n; = r2n2+r3n3. Theﬁ v = (-c',rz,rB) is a
minimal relation of type 1. Similarly one finds the minimal relations
of type 2 and type 3. From this description follows immediately that
ﬁdlis finite.
Let {vl,vz,...,vk} G;Mp(s) be any minimal set of generators of .p,
We will prove later that {VI’VZ’.""vk}g‘ L. This shows that it
is worthwhile to study the minimal relations of Mp(S).
Let us chobse Vi:VgsV3 eva,

vi = (Fearny ) |

v, = (r

2 21° -'02: l'23) ’ ci> 0 for i = 1,2,3

V3 = (r3', r'32, '03) and rijz 0 for i, j=],2,3 .

We will distinguish two cases:

Case |:- rij # 0 for all i,j =1,2,3,

Case 11: There exists i,je{1,2,3} such that ryy=0.

J
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First we consider Case |:

Proposition 4.1.3,: In case | we have,

VEvpdy, 4 V3 =-0 .
Proof: Assume v # 0 and say-v is of type 1. |If the first
component of vvislless than zero, then "Gyt ryy rél <0,
However, since 4 is m?nimal for relations of type |, we have that
+r i < -é] , a contradiction, since r,, >0 and r_, > 0,

2 3 21 31
If the first component of v is positive, then -C, + Fa + r31 >0 .

-c, +r
°|

And again, since < is minimal we have ety t r3‘ z ¢ . But

then either roy = € or r3I 2 < Say a1 zc, then

= - - c.., - c, 2
vy + v, (r21 €1 Fyg = Cp» Fi3* r23), where r,, . ¢, =0 and
13 + r23 >0, Hepce My ~ c2,< 0 and therefore vyt Vv, is a
relation of type 2, But c_ is minimal for relations of type 2,

2 |
therefore r , = ¢, < -c,, or equivalently r,, 0. This is again

a contradiction, since‘r] > 0 by assumption., .

2
The proof works similarly, if we assume that v is of type 2 or
type 3.

Proposition 4.1.3.: In case | we have

m= {:E V]’ ivz:'iv3} .
. | = (= 1 ' : " '
Proof: Let v, ( s r]l2 'y M3 ) be an element of L. 1f Fi3'= 0,
then Vl"vl'= (0, rlz'-rlz,fr]3) is a relation of type 3.  Therefore

2 c,. We know, however, by 4,1.2 that Fi13 = €3 ~Fp3 and hence.

13 % ¢3-
13 < C3s since Fa3 > 0, a contradiction, Similarly it can be shown

oy
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that r12 # 0. Thus we may restrict our attention to the case where

vy ' = (-cl,rlz',r]31)~with 2P

L4L.,1,2, and obtain that v '+v2+v3 =0, Therefore v"= -(v 3) = v.

Similarly it is shown that 2 and v

' > 0 and r]3' > 0. VWe apply again

3 are uniquely determined. This

proves 4.1.3,

Next we consider case ||

Proposition L 1.4: In case || either

‘a-) (0’-c2'c3) € mor
~<B.) - (€),0, ~c3) el or
‘)’-) ‘ ('c] aczto) € m
Proof: We may assume without loss of generality that r,, = 0,

‘21

9 = (o, -cz,r23). I f Fa3 = €3 > then our assertion

follows. Thus we may assume that r,, > c,, since c, is minimal,

23 ¥ 3
2 ¥ V3 =.(r3], F3a -<’:2,‘r23-c3 .- Since F3y.2 0 and
> 0, we get : F327C3 < 0. This implies, that F327C, s -c,,
32 32 2 0, therefore F3g = 0 -and r3 zc,.

=Cy, then our assertion follows again. Thus, let us

Therefore, v

Consider v

Fan=C

23 73

hence r_,, < 0, However, r

| f r31

assume that r., > c Now v, + v, = (r

317 C1 17 V3= Ay 12713 "¢y s 2
relation of type 3, since F317C > 0 and Mg 2 0. Therefore

"Cl, r

S -C

-c, < 0, By the minimality of c, this means that r 37

1373 3 | 1373
hence F13 = 0. Thus v, = (-cl,r,2,0) and rlé 2 c,. . This Is,

however, a contradiction, since

v +v2+v3 (r3|-c|,r'2-c2,r23-c3) isia relation with r317¢1> o,

rlz-c2 =0 and r23 3 > 0. Therefore r

which proves our proposition,

= ¢, &nd vy = (c],o’-c

31 3)
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In the following proposition we describe explicitely the set
of minimal relations in case 11. If x is a real number, we define

[x] to be the greatest integer less than or equal to x,

Proposition 4.,1,5,: In case || the set of minimal relations is

either:

a-)m= {*(0. -CZ’CB)' + (d(ol ‘CZ,C3) + (-cl’r|2'r|3))}'

where deZ and -[ ] <ds [ I2] r., 20,
‘3

c, M12° "3
or ﬁ-)m= {:h(c]~’0’-c3)’ & (d(c] ’o’--CB) + (r21.’-c2'r23))};

where deZ and - [ ] sds [—== 23] Fa12723 =20

'Ol' ‘y-)m= {:l: ('c|9c2’0): + (d('claczoo) + (I‘3I,C32,"C3))},

where deZ and -[ J sds [ 3']

, F.. 20,
c, "310 "32

Proof: Referring to 4.1.4 we may assume that (0 =¢,,¢ )6136Z

Lét i ® (Cl. 12’r13’), v, = (0,-c2,c3) and'Zt,=_{i vy i(dv2+vl)}.

[ ]sds[”'] We show.thatm=n.
2

It is clear thatﬁﬁkzq&b. Conversely, assume we are given a minimal

: (- (- ' =
relation v, (r2] , cz,r23') of type 2. |If r23' = ¢3, then
vz'-yz = (r2|',0,0). therefore rzl' = 0., In other words v2' =V,
N ' oy = v l;
and thus vy G.YR,. I f F23 # c3, then vo'-v, (r21 ,O,r23 c3)

a minimal relation of type 3. Since r2]' 2 0 we have r23'-c3 <0,
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Then r '.-c3.s -y because.of the minimality of C3. So that in this

23
'= = - -
case ry,' 0. Hence v,' (r21', cz,O). Now v +v,' = (r2' ~C1aT127C2: M) 3)
is a relation of fype 2, since r2|'-c|.z 0 and 13 2 0, Therefore
ripg=Cp < 0. If rlz-c2 = 0, then r2“ = c|,<and rs = 0. Hence ‘
I = - - q
Vo v and thus vz'edtu I f r12 c, < 0, then Fip=Cy S =Cy. But

. . . = = - ta =
this implies that r 0, so that Vi ( cl,O,rl3). Now v +v,'-v,

12
.- - . ] '- -
(r2| cl,O,r]3 cy) Is a relation with r,,'=c, = 0 and Fl37¢3 = 0.
Hence r2]' = ¢ and r]3 = c3 and.vz' = VomVy.

In any case we get that v 'e?ﬂ, Similarly it is shown that any

minimal relatlon v3' of type 3 is an element of'XL

e (Fc],rlz',rIB') is any minimal relation of type ), then
1o = e e = . -

vi'ev (O,rlzl 122713 r]3) dv,, where deZ. The side conditions

for d are obvious. Hence v,' = v +dv, and our proposition follows,

Our next aim is, to prove that the minimal relations generate p.

Let R be a commutative ring with 1, If v € Mp(S), we define

V-

Fy € REXI!X2’X3] to be F_ = xV*- x As an immediate consequence

of 2.1.5. we obtain,

R[X], x3]

P

Inr order to show that the minimal relations generate p we only have

to prove, according to 2.1.6., that ({FV}V€Z$L) ({F }veM (S)) (*) .
We»deflne on S an ordering : |f sf,szes, then 5| 2 Sy if.sl'52€s
and we say that s, > Sy ifs = §2 gnd s) # S,

4
~
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It Is clear that:

1.) I1fs 5,€S, then s, 2 s,., s.2 Sp» if and only ifs, = s

1? 1 2’ "2 1 2°

2.) If {si}i=l,2,...§‘.s such that s, , s, for all i =1,2,...,

then there existS'i0 such that for all i 2 io, Sip1 = Sy -

In Chapter || we introduced on RfXI,XZ,X3] an S-graduation, |If
FeR[XI,XZ,X3] is a homogeneous polynomial, then we denote its
homogeneous degree by deg (F) and for two homogeneous polynomials

F, G, we mean by deg (F) < deg(G), that deg (F) is less than deg (G)
with respect to the ordering on S. Now (*) will.be a simple

consequence of the following proposition,

Proposition 4,1,6. Let v ¢ Mp(S). - Then F_ can be written as

= F! !
F, = F' +.QF , where F'e ({Fv}ve

) v e Mp(S), Qe R[x],xz,x3J
and deg (F ) < deg (F ).

Proof: Case |: ZXL= {ivl, ivz, iv3}, where vi= (¢

1F120T13) s

v,= (rZI’-CZ"rZB)"’V3;= (r3',r32,-c3) and for all i,j =1,2,3,

"ij > 0.

Let v ¢ Mp(S). Ifve ZUZ, then the assertion is trivial. Other-

wise we may assume without loss of generality that
a,-c
= - . - ] ] -
v = ( al,az,a3), a >¢,a,20, a; 2 0. We get F_- X, FvI

‘min(az,rlz) . min(a3,r13) |

Xy 3 .

Fop?

where
az-min(az,rlz) " a3.-min(a:,‘,r13)mx a,-c, rlz-min(az.rlz)

Fu = % 3 1 Xa

w 2

r|3-m§n(a3,r]3)

X3 . Of‘course we Mp(s) and
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a,~c min(a,,r,,) min(a,,r;.):
deg (F ) = deg (F -X, ' '-Fvl) - deg (X, 2’712 Xy 3 13)
min(a,,r,) min(a,,ry.)
= deg (Fv) - deg (X2 2' 127, x3 3°°13 ).
It cannot be that (az,a3) = (0,0). Therefore

: | min(az,rlz) min(aB,fl3)
deg (X, © Xy ) > 0. Hence deg (F ) < deg (F,).

This proves our assertion in case |,

Case |1: We may restrict our attention to considering only || a.),

()

r,.° r
- 21 sds )
3 - 2

{i.vz, + (dvy2+vl)}, v, = (-cl,rlz,rl3), v, = (0,-c2,c3) and

1.) Letvs= (-a],aé,a3) be a relation of type 1. Hence a2 ¢,

=0, a3 20. Ifa =c then our assertion is trivial,

and a :

2

Therefore we may assume that a >»c|. We get similarly as in Case |,

a. -c .min(a,,r,,) min(a,,r,.)
VT LA 22y "N

v v~ %2 . F,with we Mp(S).

I f a, >0 andza3 > 0 then deg Fw < deg Fv and the proposition follows.

. Now assume that a, = 0. If F13 > 0, then again deg Fu < dgg Fyr

. - ’ LI =
since a, > 0. |If 13 = 0, then F1g 2 € and vy Vi+Y,

3

(-c],rlz-cz,c3) is a minimal of type 1, whose third component is
' ay-c min(az,Cs)
5 e =x 373 F L,

greater than zero. Thgrgfore Fv = X v'" "3 W

w! ¢ Mp(S) and deg Fw,‘<~deg FQ, since min,(a3,c3)'> 0. The proof

works similarly if we assume that a; = 0.
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2,)) letve= (a',-az,aB) be a relation of type 2, We may assume
that a, > ¢,, otherwise there is nothing to prove. |If a3 = 0,

then v is also a relation of type | and this case is already
az_CZ. m'n(a3,C3). .

sz = 3 w?

treated inl, |f ag > 0, then Fv - X2

where w ¢ Mp(S) and deg F < deg F , since min(a3,c3)‘> 0, The
case that v ¢ Mp(S) is a relation of type 3 is similarly proved

as the case above. This completes the proof.

" As a corollary of 4.1.6 we get ¢

Theorem 4.1,7: The minimal relations of Mp(S) generate p.

Theorem-h.l.8;:

Incase | : S is not a complete intersection,

In casell:: S is a complete intersection.

Proof: Case | : Ig = (FVI,FVZ,FVB), where

Fv] =X, X3 - X,
U
v 21,23 _ 2
sz =X, X3 X2
r r c
- 31 32 3 P o
Fv3 = XI X2 X3 and rij >0 for i,j 1,2,3.

Assume we have an equation
¢ FvI - QZ sz * QB Fv

This equation yields~

c r r c
- ! = 0. 21 23 _= 3
Q X, Q, X, X3 Q, X3 mod X,, where

3 R QiER[Xr,Xz,X3], i=1,23,

Qi = Qi mod Xz, i=1,2,3,
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Since r.. > 0 we have dla X, « P with PeR[X],XZJ . On the other

23 3
hand: al =Q - X, + Twith TGR[XI,XZ,X3] . Hence Q; = X,T + XsP .

Therefore Ql e(XI,XZ,X3). The ideal Is is contained in (XI’XZ’X3)'

Let1g'be a prime ideal in R[xl'XZ’XBJ containing (XI’XZ’XB)’ then
Q; is a non-unit in the local ring R£X|,X2,X3]Ig . Similarly,

, Q.,F =Q,F
2 37 3V Y 3
leads to the conclusion that.Qz,Q3 are non-units in-R[XI,XZ,X3] .

starting with equations QZFV = Qva + Q3Fv + Q2Fv
' 1

Therefore rank (lS R[X],XZ,X3]2?’) = 3 and S cannot be a complete

intersection,
Case Il: We may assume that ,
W = (200, - cpuey), * (d(0,7cye5) + (=eq,F 5, )] with

= (0, -cz,c3) qﬁd

' r r
- deZ and -E—%éjs'd < [Elz] . Let Vo

3 2
r r -
= (= 133, - - =13 s (~c..F. . F
V) (=¢1»7y + [ c3]c2, Fl3 c3] c3) ( cl’rIZ’rl3).’
Then for any ve'UULwe have either v = & vz or v'= i(dv2+v]),

' 13 "2
d= 0"’2"°,"[T3.] + [—E-z'] . \p.le claim: I = (FVI’FVZ) .

Proof: Let ve'ﬁKL, v = dv2+v', d >0, thenv = (-cl,rlz-dcz,r13+dc3)

r,,-dc T, +dc c,
and Fv = x2 12 772 x3 13 3. XIl .  Obviously there exists a
polynomial QeR[XI,XZ,XB] such that F, = QF .
, 2 2

Fo=dc, T © ry,=dc, T
12 772 13 - 12 "2 13
Then X2 X3 QFv +Fv X2 X3 de + Fv
2 I, 2 1
Fo.=dc, T dc dc r r c
L, 12 772 13 3 2 12 ,13_ , 1y
= X2 ' X3 (X3 X2 Y) * (X2 X3 Xl )
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ry,=dc, r,.+dc r r r r c
_ 1279 fagtees N2 i3 N2 s 6
X, o S Xy C X3 # Xyt XgZ = X
r.a=dc, T, +dc c |
ax 124283y o E | This proves the claim and

2 3 I

completes the proof,

Corollary 4.1.9.: In any case rank p-< 3,

In the following section we give some equivalent conditions for a

numerical semigroup to be a complete intersection,

4,2, Equivalent conditions for complete intersections,

Let S be a nﬁmerical'semigroup of rank 3 generated by

{nl,nz,n3},-nie N and let ﬁ* : Ng - S be the canonical epimorphism,

3
ot

defined as in h.1. Ve define | = {seS/ There exist ¥, , W, eN:

S
such that p(MT) = P('ﬂé)= s}

*
l N

. %
g Is an ideal in S. In fact Ig = ({d?g;Fv}veMp(S)) . For veMp(S)

we let s(V)”axﬁ*(v+) = *(v-) and put -y = min {s(vl)+s(v2)}-nl-n2-n3,
| 'VI »VZGNP(S)

vlﬁzv zeZ

2’

Theorem 4,2.1,: The following conditions are equivalent:

a.) S is a complete intersection,

| Lok
b.) ls
c.) BES.

is generated by 2 elements,

d.) S is a Sylvester-semigroup.
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Proof: We have proved already that a.) implies b.), see 2,2.9.
_ b.,) implies a,): If S is not a complete intersection then we know
that'maza.{i Vs & V,, & v3] with

Yy = (-cl’ r»IZ’ r|3)

V2 =2 (r2|9 'Cz, "'.23)

2 =(r3|, r3g -c3) and Fi >0 for i,j =1,2,3. |
I: is certainly generated by {s(vi); s(v2), s(v3)}. We only have to
show that for i,j = 1,2,3, i # j, s(vi)-s(vj) £ S. We may assume that
i=2and j =1, The other cases are proved similar,

Assume s(vz) - s(v])eS. Then there exist al,az,a3eN0 such that

n, = €N =a,n, + an, + axn Hence (c2-a2)n2 + (-c'-a!)n] - a,n=0,

€2"2 7“1 3"3° 3"3
Since -ag < 0 and -c,-8, < 0, we have c,ma, > 0. This implies that
c,"a, 2 Cye Theréfore a, = 0. Thus we obtain the relation

v = (-cl-al, °2’a3)’ which is minimal of type 2. 'Therefore'v = -v,.

21 = a] + c] P cl. However r21 = C

a contradiction,

Hence r T3 <cp suﬁce r ) ¥ 0,

1 3

a.) ihplies c.) : We may assume that we have the minimal relations
Vi ='(é;l,r‘2,r]3) and v, = (0,-c2,c3) .
| Obviously, u = My + Cahy = M=ny=ng.
| = € Ny + €3Ny = ny=ny-ng .
We have to show that ué S.v Assume there exist ay,a,,a3 eNo, such

that u = ajn) + agn, + azng . Then (a]+l-c])n| + (az-l-l)n2 f (a3+l-c3)n3=0.
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Using relatlonv2 we may assume that O S-a3 < C3. Hence az+l >0
and a_+l-c, = 0 and therefore a‘+l-cl < 0, This implies that

3 3
a|+l-cl s =c; . Therefore a; <0, a contradiction,

c.) implies a,) : If S is not a complete intersection then
m= {:!:vl, v, , :!:v3} with
Tl SUTRPYILITY
Vp = (Fypr =S5 Ta3)

V3 © (rBI’ 322 ic3) and r., >0 for i,j = 1,2,3. We want to

. ij
show that .y € S. Without loss of generality we may assume that
:s(vl) < s(v2)< s(v3). Then

K= S(VI) + $(V2) =n =M + c,n,=n =n,-n

17273 22" "3

n, + r,,n, + r n

1373

= rlz +I"23 3" n.]-nz-nB
= (rZI-l)nl + (rlz-l)n2 + (c3-l)n3. The last equality follows from

Vi t v, vy = 0. Since o >0, 12 >0 and c3.> 0, u €S,

a,) implies d.) : We may assume that we have the minimal relations
vy = (¢ rygs r|3),and Vo = (o, -cz,c3). In order to show that S
is a Sylvester-semigroup we prove: |f z € Z, then z ¢ S if and only
u-z ¢ S.

One difection is clear, since we know already that if S is a complete
intersection then y ¢ S.

fo prove the converse, assume z € Z and [~z £ S, We want to show
that z ¢ S.

Assume z€S,z= a;m 2 o+ agn aeZ. Using the relations VisV

3 2
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we may assume that 0 < a, <c, and 0 < a, <c, and therefore a, < 0,

2 3
since z ¢ S, Therefore U-z = (-a3-l)n3 + (cl-l-a])nl + (cl-lfaz)n2
and -a; - 120, cl-l-a‘ 20 and cz-l-a2 2 0, hence pu-z ¢ S,
a contradiction,
d,) Ilmplies a,) : Assume S is not a complete intersection,
Then Wl= {+ Vi, & Vo, & v3] with

v = (=epy Figs Ty3)

= (r,., =C

2 5 |
-c3)‘and rij >0 for i,j =1,2,3. We clain that

Vo 21"

v3 = (r3p, T3z

S is not a Sylvester-semigroup. Let us first prove a simple lemma,
If S is a Sylvester-semigroup (numerical) and z € Z, z ¢ S, then there
exists s € S, s # 0, such that z+s £ S, or z is the greatest integer

not belonging to S.

Proof of the Lemma: Let m be the greatest integer not belonging to S.
We may assume that z # m, therefore z <m, since z ¢ S, Since S is
a Sylvester-semigroup, we have m-z ¢ S, Therefore z'+ (m=2) = m is

not an element of S and also m~z # 0O,

Proof of the claim:

Let-ul =cyny + C,ny = n]fn21n3-r‘2n2 and By = cyny + c2n2-n]-n2-n3-r2]n]
Claim: 1: B £S, i =1,2,
Proof: Assume T S. Then there exist al,az,a3 eNo such ?hat

.n] = alq‘ + aznz-b a3n3 . Nowvu‘ = c]n] + cznz-n]-nz--nB-r]zn2 =

(c]-l)nl + (r32-l)n2-n3. 'For the last equality we qsed v‘+v2fv = 0,

3

We may assume that 0 < ag < c3 and it follows that

(c]-l-é‘)n‘ 4'(r3z-l-a2)n2 + (-I-as).n3 =0,
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3z-l-az > 0, This implies that

+ l‘32

Assume cl-l-aI <0, then r

ro,~l=a, 2 ¢ Since r

32 2 2° 12
< 0, a contradiction,

= ¢, we get -l-a2 2r,> 0, hence

89

Assume r32-l-a2 < 0, then cl-l-a] > 0 and therefore

c,~1-a; 2 c,, hence a, <0, a contradiction,

We have, therefore, that cl-?l-aI >0andr -l-a2 > 0 hence

_ 32
-l-a3 < =C3e It cannot be that l-a3 < -c3, since by assumption
0= ag < Cge On the other hand, assuming that -I-a3 = Cg, then

(c]-l-al, r32-|-a2, -l-a3)‘= Vs Therefore r32-l-a2 =y
Hence.a3 = =], a contradiction. In the same way it is shown that
My £S.

Claim 2: u, + se¢S for all seS, s # 0, i=1,2,

Proof: We show this only for'ul. Similar arguments work foriyz,

It is enough to.prove that.u] + hies for i =1,2,3.

Ky £ 0y =gy ik Conymnymna=h Ny

' = (cz-l)n2 + (r‘3-l)n3
Hence p, + n,es, sincg c2-l 2 0 and rlz-l =0,
LT B L B AP A L R P ALY
= (ry=ln +.(c3-I)n3
Hence.,pl + n2€$, since rZI-I 2 0 and C3-| 20,
«.J3u|.+.h3 = €y + CyNy=n =N, N,
= (cl-l)n] + (r32-j)n2 .

Hence By + ng

€S snn;e;c]-l = 0 and r32-l = 0.
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NowAagsume-théf S Is a-Sylvester-semlgrohp and m the.greatest
‘Jnteger not belonging to S.. -We apply cur lemma and it follows
that 4, = m and-y, = m, Therefore, .u, = u, and, hence,

P10 .2 F12™ which is a contradiction, since 0 < F1g <€ .

Corollary 4,2,2,: |If S is a numerical semigroup generated by

{n|,62,n3}.and S is a Sylves;er-semigroup then

M# = min {S(vl) + s(vz)}-nl-nz-n3 is the greatest

vy Ve (s)
v'# 2V, zeZ
integer not belonging to S,

Conjecture: Referring to the pfoof-of L,2,1, the author conjectures

that.max@ul,pz) is the greatest integer not belonging to S.

For the sake of completehess we show by examples that most of the
equivalent statements of Theorem 4,2.1 are no longer equivalent if

the rank of the semigroup is greater than 3,

Example A: Let S be the semigroup generated by {5,6,7,8}. S is a

%

Sylvester-semigroup but is not a complete intersection, because IS

: . %
Is generated by.[12,13,lh,15}'and hence rank |s = L4, However,
rank Ig s hould be 3.. A reasonable definition of the number .4
for numerical semigroups S of rank h,‘ggnerated by {"I’"Z’"3'"h} s

would be .4 = min {s(vl) + s(vz) * s(v3)}-n|-n2-n3-n4 .
V) 2¥gaV3eMo(S)

v',vz,v3 linearly independent,
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I f we take this as definition of Y, then in our.case.y = 13, hence -
.MeS. Therefore, if S. is a Sylvester-semigroup then it does not

follow in general that ués.

Example B: Let S be the numerical semigroup generated by
{6,8,9,10}. In this case rank | = 3. In fact |§ is generated by
{16,18,20},  We show, however, that S is not a complete intersection,

We have relations

16

VI = (l: -2, 1, 0) ’ S(V])'

v, = (0, 1, =2, 1) , s(vz) 18

L = (=3, 1, 0, 1) , s(v3) =18
vh.=-(-3, 0, 2, 0) , s(vh) =18
Vg = (2, 1, 0, -2) . s(vs) = 20

and so on, |If veMp(é) and v # v, for i =1,2,3,4,5 then s(v) > 20,

We see that F, =F - F .
» V3 Vi
_ %3 =
Assume»Fv3 Q]Fvl+ Q2Fv3’ Q € R[Xl’ 29 3’X4] then X, =0

Xu), a contradiction, . Assume F, = Qva + Q. F

mod(X:
2 2 3 V3

2’X3_’

Q eR[X Xu] then -X.2 = 0 mod (Xf,XZ,Xé), a contradiction,

]a 23 3, 3
Theréfore, if S were a complete intersection then |S would have to be

generated by {F_ , F , F. }. ButF € (F ,F ,F ), since
Vit vyt vy Vg vt vy g

S(VS) --s(vi)'éS for i = 1,2,3,
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Question: Let S be a numerical semigroup generated by
{nl,nz,n3,...,nz} and define

# = min {s(v,) *.0.5(v, 1)} = np=ng-iiieng,

v],...,vz_'eMp(s)

VireresVyny linearly independent.

Are the following conditions equivalent?

1.) S is a complete intersection.

2,) pés.
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