
Generators for Synthesis of
QoS Adaptation in Distributed Real-Time

Embedded Systems

Sandeep Neema, Ted Bapty, Jeff Gray, Aniruddha Gokhale
Institute for Software Integrated Systems,

Vanderbilt University, Nashville
{sandeep|bapty|jgray|gokhale}@isis-server.vuse.vanderbilt.edu

Abstract.

This paper presents a model-driven approach for generating quality-of-service
(QoS) adaptation in Distributed Real-Time Embedded (DRE) Systems. The approach
involves the creation of high-level graphical models representing the QoS adaptation
policies. The models are constructed using a domain-specific modeling language - the
Adaptive Quality Modeling Language (AQML). Multiple generators have been devel-
oped using the Model-Integrated Computing (MIC) framework to create low-level ar-
tifacts for simulation and implementation of the adaptation policies that are captured
in the models. A simulation generator tool synthesizes artifacts for Matlab® Simu-
link®/Stateflow® (a popular commercial tool), providing the ability to simulate and
analyze the QoS adaptation policy. An implementation generator creates artifacts for
Quality Objects (QuO), a QoS adaptation software infrastructure developed at BBN,
for execution of QoS adaptation in DRE systems. A case study in applying this ap-
proach to an Unmanned Aerial Vehicle – Video Streaming application is presented.
This approach has goals that are similar to those specified in the OMG’s Model-
Driven Architecture initiative.

1. Introduction

Rapid advances in middleware technologies have given rise to a new generation of
highly complex, object-oriented Distributed Real-Time Embedded (DRE) systems
based on technologies such as RT-CORBA, COM+, RMI, among others. As ob-
served in [Schantz and Schmidt, 01], middleware solutions promote software reuse
resulting in better productivity. However, within the context of DRE systems, speci-
fying and satisfying quality-of-service (QoS) requirements demand ad-hoc, problem-
specific code optimizations. Such modifications go against the very principles of re-
use and portability.

There have been some attempts to improve this situation by introducing a pro-
grammable QoS adaptation layer on top of the middleware infrastructure. The key
idea behind the adaptation layer is to offer separation of concerns with respect to QoS
requirements. Such separation provides improved modularization for separating QoS

requirements from the functional parts of the software. Quality Objects (QuO), de-
veloped by BBN, is one such adaptation layer [Loyall et al., 01]. QuO provides an ex-
tension to the Object Management Group’s (OMG) Interface Definition Language
(IDL). This extension, known as the Contract Definition Language (CDL), supports
the specification of QoS requirements and adaptation policies. Contracts written in
CDL are compiled to create stubs that monitor and adapt the QoS parameters when
the system is operational. These stubs are integrated into the QuO kernel.

From a software engineering standpoint this approach works well, however, there
are a few drawbacks to using CDL alone:

1. The control-centric nature of the QoS adaptation extends beyond the software.
QoS parameters in a DRE system have a significant impact on the dynamics of the
overall physical system. Owing to the complex and non-linear dynamics, it is very
difficult to tune the QoS parameters in an ad-hoc manner without compromising
the stability of the underlying physical system. The QoS adaptation software is, in
effect, equivalent to a controller for a discrete, non-linear system. Therefore, so-
phisticated tools are needed to design, simulate, and analyze the QoS adaptation
software from a controls perspective.

2. For scalability reasons, the CDL offers a much lower level of abstraction (textual
code-based). Even for a moderately large system, the CDL specifications can grow
quite large. Instrumenting a small change to the adaptation policy requires making
several changes manually, while ensuring that all these changes are consistent in
the CDL specification.

In this paper, we present an approach based on the principles of Model-Integrated
Computing (MIC) [Lédeczi et al., 01], which addresses these issues. Our approach
involves creating a graphical modeling environment that allows a DRE system de-
signer to graphically model the DRE system and the QoS adaptation policy using
standardized notations, such as Statecharts [Harel, 87] and Dataflow. A generator
tool synthesizes artifacts for Matlab® Simulink®/Stateflow® (a popular commercial
tool) providing the ability to simulate and analyze the QoS adaptation policy. This
gives significant assurance that the system will perform as desired. A second genera-
tor tool creates CDL specifications from the QoS adaptation models. The generated
CDL is then compiled into executable artifacts. The approach described in this paper
has goals that are similar to those specified in the OMG’s Model-Driven Architecture
(MDA) [Bézivin, 01].

The rest of this paper is organized as follows. Section 2 presents the modeling en-
vironment and the modeling concepts required by our approach. Section 3 introduces
the generator that creates simulation artifacts from the models. Section 4 describes
another generator that creates CDL specifications from the models. A short case
study in applying the approach to a video streaming application, within the context of
an Unmanned Aerial Vehicle (UAV), is presented in section 5. The paper ends with
some concluding remarks in section 6.

2. Modeling Paradigm

The MIC infrastructure provides a unified software architecture and framework for
creating a Model-Integrated Program Synthesis (MIPS) environment [Lédeczi et al.,
01]. The core components of the MIC infrastructure are: a customizable Generic
Model Editor for creation of multiple-view, domain-specific models; Model Data-
bases for storage of the created models; and, a Model Interpretation technology that
assists in the creation of domain-specific, application-specific model interpreters for
transformation of models into executable/analyzable artifacts. The new environment
is domain-specific and includes tools and functionality to support the creation and
storage of system models, in addition to generation of executable/analyzable artifacts
from these models.

In the MIC technology, the modeling concepts to be instantiated in the MIPS envi-
ronment are specified in a meta-modeling language [Nordstrom et al., 99]. A meta-
model of the modeling paradigm is constructed that specifies the syntax, static seman-
tics, and the presentation semantics of the domain-specific modeling paradigm. The
metamodel uses a Unified Modeling Language (UML) class diagram to capture in-
formation about the objects that are needed to represent the system information and
the inter-relationships between different objects. The meta-modeling language also
provides for the specification of visual presentation of the objects in the graphical
model editor [Nordstrom et al., 99].

The Adaptive Quality Modeling Language (AQML) presented here models the fol-
lowing key aspects of a DRE system:

1. QoS Adaptation Modeling – In this first category, the adaptation of QoS proper-
ties of the DRE system is modeled. The designer can specify the different state
configurations of the QoS properties, the legal transitions between the different
state configurations, the conditions that enable these transitions (and the actions
that must be performed to enact the change in state configuration), the data vari-
ables that receive and updated QoS information, and the events that trigger the
transitions. These properties are modeled using an extended Finite-State Machine
(FSM) modeling formalism [Harel, 87].

2. Computation Modeling – In this category, the computational aspect of a DRE
system is modeled. A dataflow model is created in order to specify the various
computational components and their interaction. An extended dataflow modeling
formalism is employed.

3. Middleware Modeling – In this category, the middleware services, the system
monitors, and the tunable “knobs” (i.e., the parameters being provided by the mid-
dleware) are modeled.

The metamodel of each of these modeling categories and their interaction in the
AQML is described below.

QoS Adaptation Modeling

Stateflow models capture the QoS adaptive behavior of the system. A Discrete Finite
State Machine representation, extended with hierarchy and concurrency, is selected

for modeling the QoS adaptive behavior of the system. This representation has been
selected due to its scalability, universal acceptability, and ease-of-use in modeling.
Figure 1 illustrates the QoS adaptation aspect of the AQML.

Fig. 1. Metamodel of QoS Adaptation Modeling

The main concept in a finite state machine representation is a state. States define a
discretized configuration of QoS properties. Hierarchy is enabled in the representa-
tion by allowing States to contain other States. Attributes define the decomposition of
the State. The State may be an AND state (when the state machine contained within
the State is a concurrent state machine), or, the State can be an OR state (when the
state machine contained within the State is a sequential state machine). If the State
does not contain child States, then it is specified as a LEAF state. States are stereo-
typed as models in the MIC framework.

Transition objects are used to model a transition from one state to another. The at-
tributes of the transition object define the trigger, the guard condition, and the actions.
The trigger and guard are Boolean expressions. When these Boolean expressions are
satisfied, the transition is enabled and a state change (accompanied with the execution
of the actions) takes place. Transitions are stereotyped as a connection in the MIC
framework. To denote a transition between two States, a connection has to be made
from the source state to the destination state.

In addition to states and transitions, the FSM representation includes data and
events. These can be directly sampled external signals, complex computational re-
sults, or outputs from the state machine. In the modeling paradigm, Event objects
capture the Boolean event variables, and the Data objects capture arbitrary data vari-

ables. Both the Events and Data have a Scope attribute that indicates whether an
event (or data) is either local to the state machine or is an input/output of the state ma-
chine.

Computation Modeling

This modeling category is used to describe the computational architecture. A data-
flow representation, with extensions for hierarchy, has been selected for modeling
computations. This representation describes computations in terms of computational
components and their data interactions. To manage system complexity, the concept
of hierarchy is used to structure the computation definition. Figure 2 illustrates the
computation aspect of the AQML. The different objects and their inter-relationships
are described below.

Fig. 2. Metamodel of Computation Architecture Modeling

The computational structure is modeled with the following classes of objects:
Compounds and Primitives. These objects represent a computational component in a
dataflow representation. Ports are used to define the interface of these components
through which the components exchange information. Ports are specialized into In-
putPorts and OutputPorts.

A Primitive is a basic modeling element that represents an elementary component.
A Primitive maps directly to a processing component that will be implemented as a
software class object or a function. A Compound is a composite object that may con-
tain Primitives or other Compounds. These objects can be connected within the com-
pound to define the dataflow structure. Compounds provide the hierarchy in the
structural description that is necessary for managing the complexity of large designs.

An important concept relevant to QoS adaptive DRE systems is the notion of pa-
rameters. Parameters are the tunable “knobs” that are used by the adaptation mecha-

nism to tailor the behavior of the components such that desired QoS properties are
maintained. Parameters can be contained in Compounds and Primitives. The Type
attribute defines whether a Parameter is read-only, write-only, or read-write. The
DataType attribute defines the data type of the parameter.

Middleware Modeling

In this category, the components of the middleware are modeled. These components
include the services and the system conditions provided by the middleware. Exam-
ples of services include an Audio-Video Streaming service, Bandwidth reservation
service, Timing service, and Event service, among others. System conditions are
components that provide quantitative diagnostic information about the middleware.
Examples of these include observed throughput, bandwidth, latencies, and frame-
rates. Figure 3 illustrates the middleware modeling aspect of the AQML.

Fig. 3. Metamodel of Middleware Modeling

The Service object represents the services provided by the middleware. Services
can contain parameters that are the tunable knobs provided by the service. In addition
to being tunable “knobs,” parameters play a second role as instrumentation, or probes,
by providing some quantitative information about the service.

The SysCond object represents the system condition objects present in the middle-
ware layer. SysConds can also contain parameters.

Observe that we do not facilitate a detailed modeling of the middleware compo-
nents or the dataflow components. This is because the focus of AQML is on the QoS
adaptation. We model only those elements of the dataflow and middleware that facili-
tate the QoS adaptation (namely, the tunable and observable Parameters).

Interaction of QoS adaptation with Middleware and Computation Modeling

In this category, the interaction of the previous three modeling categories (illustrated
in Figure 4) is specified. As described earlier, the Data/Event objects within the

Stateflow model form the interface of the state machine. Within the Computation and
the Middleware models, Parameters form the control interfaces. The interaction of
the QoS adaptation (captured in Stateflow models), and the middleware and applica-
tion (modeled in the Middleware and Computation models), is through these inter-
faces. The interaction is modeled with the Control connection class, which connects
the Data object of a State model to a Parameter object of a Middleware or a Computa-
tion model.

Fig. 4. Metamodel of interaction of QoS adaptation with Middleware and Computation model-
ing

In the MIC framework, connections between objects that are not contained within
the same model are not supported. Therefore, we create references, which are equiva-
lent to a “reference” or a “pointer” in a programming language. These are contained
in the same context (model) such that a connection can be drawn between them. The
StateRef, ServiceRef, and the SysCondRef objects are the reference objects that are
contained in a Compound (Computation) Model.

4. Simulation Generator

One of the primary goals of our approach, as identified earlier, is to be able to provide
integration with tools that can analyze the QoS adaptation from a control-centric
viewpoint. Matlab® Simulink®/Stateflow® is an extremely popular commercial tool
that is routinely used by control engineers to design and simulate discrete controllers.
Simulink provides the ability to model hybrid systems (mixed continuous and discrete
dynamics) in a block-diagrammatic notation. Stateflow provides the ability to model
hierarchical parallel state machines in a Statechart like notation [Harel, 87]. A
Stateflow model can be inserted in a Simulink model as a block and the Simulink
blocks can provide input stimulus and receive outputs from the Stateflow block. The
Simulink/Stateflow model can be simulated within the Matlab framework for a de-
sired time period, which in effect steps through the state-machine for the given input
excitation. The responses from the state machine can be graphically plotted and the
trajectory of the state machine can be visually observed, as well as recorded, for post-

analysis. Additional analyses are possible in terms of the time spent in different
states, the latency from the time of a change in excitation, to the time of change in
outputs in the state machine, stability of the system, etc. Thus, the Matlab Simu-
link/Stateflow tool suite provides an extremely convenient and intuitive framework
for observing and verifying the behavior of the system.

We have implemented a generator, using our model interpretation technology, that
can translate the QoS adaptation specifications (modeled using the AQML) into a
Simulink/Stateflow model. Matlab provides an API that is available in the Matlab
scripting language (M-file), for procedurally creating and manipulating Simu-
link/Stateflow models. The simulation generator produces an M-file that uses the API
to create Simulink/Stateflow models.

Fig. 5. Top-level structure of the generated Simulink/Stateflow Model

The structure of the generated Simulink/Stateflow model is shown in Figure 5.
There are two main blocks in the generated Simulink model. A Stateflow block is
generated that represents the QoS adaptation engine (labeled Controller in Figure 5).
A Subsystem block is generated that represents the simulated middleware and the ap-
plication (labeled Network in Figure 5). Only the interface of this block is generated.
The user models the dynamics of the physical network, the middleware, and the ap-
plication composite, as mathematical equations created using Simulink blocks within
this Subsystem. The fidelity of this model is dependent upon the user. A variety of
models may be created, ranging from coarse and simple, to highly fine-grained and
extremely complex. It must be noted here that these models are dependent on the un-
derlying physical network, and not dependent on the controller itself. Thus, for a new

network, a user may have to create a new model; however, while simulating and veri-
fying the modeled controller, there is no need to recreate the network simulation
model every time there is a change in the controller.

The main work of the simulation generation algorithm is in synthesizing the
Stateflow block. The Stateflow representation within Matlab has almost a one-to-one
equivalence with the Stateflow representation within AQML. However, the represen-
tation of hierarchy is somewhat complicated in Matlab Stateflow. Although the
AQML hierarchy is established by an actual containment relationship over objects,
the Matlab hierarchy is enforced strictly through graphical containment. Thus, all the
rectangles representing child states are graphically bounded by the rectangle symbol-
izing the parent state. Any overlap is flagged as a syntax error by the Matlab
Stateflow simulator.

The Stateflow block generation is essentially a two-pass interpretation. The first-
pass calculates the bounding rectangles for each state according to the containment re-
lationships. The second-pass emits the API calls in the M-file to create states with
appropriate bounding rectangles. The second-pass also emits API calls for creating
data variables, event variables, and transitions.

An example of the generated M-file and the Simulink/Stateflow diagram created
upon executing the script is shown in the case study.

5. CDL Generator

Research at BBN on DRE systems and QoS adaptation resulted in the CDL – a do-
main-specific language (based on OMG IDL) for specifying QoS contracts. This re-
search also produced a CDL compiler and a QoS adaptation kernel that can process
specifications (contracts) expressed in CDL. The CDL compiler translates QoS con-
tracts into artifacts that can execute the adaptation specifications at run-time. CDL is
a textual language, and it has a state-machine like flavor (see [Loyall et al., 01] for de-
tails). Our research efforts build upon their work, and we utilize their infrastructure to
affect the adaptation specifications captured in the AQML models. That is, we gener-
ate CDL specifications from the AQML models and use the BBN QuO tools to actu-
ally instantiate these adaptation instructions at runtime.

Although the CDL has a state-machine like flavor and can implement hierarchical
finite state machines, it does not support the notion of parallelism in the state machine
description. To compensate, the AQML CDL generator procedurally explores the
state-space captured by the hierarchical, parallel, finite-state machines in the AQML,
and translates it into flat finite state machines. A simple algorithm to procedurally
explore the state-space captured by a hierarchical, parallel, finite state machine could
be exponential in complexity. Instead, we use an approach based on symbolic meth-
ods to explore the state-space. We use a variant of a prefix-based encoding scheme to
assign an encoding (a string of Boolean values) to each state in the state machine (see
[Neema, 01] for details). Given this encoding, each state can be represented as a Boo-
lean formula, and the complete state-space can be composed symbolically using these
Boolean formulae. The satisfying valuations of the Boolean formula represent the en-
tire state-space corresponding to a state in the flattened state machine representation.

Transitions in the flat finite-state machine representation can be determined proce-
durally by determining the constituent components of a satisfying valuation from the
encoding.

A second challenge in translating the AQML models to CDL is in the synthesis of
the transition triggers, guards, and actions. In AQML the triggers, guards, and ac-
tions, are written using a standard expression language (from Statecharts). Further,
the expressions involve the data and event variables declared within the state machine
description. In the CDL, however, the expressions are written in an IDL/C++ flavor.
The expressions involve method calls over the SysCond objects, which are passed as
arguments to the contract. Therefore, the CDL generator parses the trigger, guard,
and action expressions. The abstract syntax tree created by the parser is traversed by
the generator. During traversal, when data or event variables are referenced in the ex-
pression, the generator determines the middleware or application parameter that the
data variable is connected to and emits the equivalent of a get or set method call on
the parameter object (depending on the context of the reference). The exact name of
the method is available to the generator via the ReadMethod and WriteMethod attrib-
utes of the Parameter object in the Middleware and Computation Model (see Figure
2).

The CDL generator performs a multi-pass interpretation. The first pass parses the
trigger, guard, and action expressions of the transitions, and builds an individual ab-
stract syntax tree. A second pass creates a flat finite-state machine representation
from the hierarchical, parallel, finite-state machine representation. The final pass
traverses the flat finite-state machine representation, evaluates the abstract syntax tree
created for trigger, guard, and action expressions of the transitions, and emits CDL
specifications that represent an equivalent flat finite-state machine representation.

The CDL generation presented above is further illustrated with an example in the
following section.

6. Case Study

The case study presented in this section is based upon a video streaming applica-
tion for an Unmanned Aerial Vehicle (UAV) [Karr et al., 01]. There are several
things that make this a complex and challenging problem (i.e., the real-time require-
ments, resource constraints, and the distributed nature). Figure 6 shows a UAV video
application scenario. This is a navy application where a number of UAVs are simul-
taneously transmitting surveillance video from different regions in a battlefield. A
distributor node on a shipboard receives these video streams and sends it to different
receivers on the ship that are interested in monitoring those video streams and respon-
sible for making tactical decisions about deployment and guidance. Some of these re-
ceivers may be performing automatic target recognition while guiding other Un-
manned Combat Aerial Vehicles (UCAV) for weapon launching. There are a few
interesting observations to make: 1) the link between the UAV to the ship is a wire-
less link imposing some strict bandwidth restrictions; 2) there is a need for prioritiza-
tion between different video streams coming from different UAVs owing to the re-
gion of interest, nature of threat, etc; 3) latency is a higher concern than throughput

because it is important to get the latest changes in the threat scenario at the earliest
possible time; 4) there may be a wide-variety of computational resources (processors,
networks, switches) involved in the entire application; and 5) the scenario is highly
dynamic (i.e., UAVs frequently enter and leave the battle field). Given these complex
requirements, a QoS-enabled middleware solution has been proposed for this applica-
tion [Karr et al., 01], [Loyall et al., 01]. Due to the highly dynamic nature of the ap-
plication scenario, the adaptation of the QoS properties is mandatory.

Fig. 6. BBN UAV Video Streaming Application Scenario (reprinted from [Karr et al.,01], with
permission from BBN)

In this application, the goal of QoS adaptation is to minimize the latency on the
video transmission. When the communication resources are nominally loaded, it may
be possible to transmit the video stream at the full frame rate with a minimal basic
network delay. However, when the communication and computational resources are
loaded, the delays in transmission expand for the same frame rate resulting in in-
creased latencies. The adaptation scheme attempts to compensate for the increased
load by reducing the rate of transmission, thus improving the latency again. There are
several ways of reducing the transmission rate: a) reduce the frame rate by dropping
frames, b) reduce the image quality per frame, or c) reduce the frame size. Depending
on the actual scenario, one or more of these situations may apply. In the example of
this section, we consider dropping the frame rate only.

Figure 7 shows a QoS adaptation model of the UAV scenario in the AQML. The
three states NormalLoad, ExcessLoad, and HighLoad capture three different QoS
configurations of the system. A few data variables (actualFrameRate, frameRate,
timeInRegion) can also be seen in this figure. These data variables provide the state-
machine with sensory information about the network. At the same time, some other
data-variables may enact the adaptation actions that are being performed in the transi-
tions. Notice that the attribute window at the bottom-right corner of the figure shows
the trigger, guard, and action attributes of a transition. An example guard expression
is visible in the attribute window of the figure (i.e., “actualFrameRate < 27 and
actualFrameRate >= 8”). When this expression evaluates to true, the transition is
enabled and the DRE system enters the HighLoad state. An example action expres-
sion can be seen in this figure (i.e., “frameRate = 10”). This sets the frameRate data
variable to a value of 10. Figure 8 shows an exploration into the hierarchy of the

HighLoad state. A Duty and Test state are being depicted in this figure. The general
idea is that when the system enters a HighLoad state, the frame rate is reduced. How-
ever, the adaptation periodically probes the network by entering a Test state, which
bumps up the frame rate. If the transient load has disappeared, then the actualFram-
eRate variable goes up (indicating that the network can sustain the desired frame
rate). When this happens, the system switches into the NormalLoad state; otherwise,
it goes back into the Duty state of the HighLoad state.

Fig. 7. Model of QoS adaptation in AQML

Fig. 8. The HighLoad State Model

Figure 9 shows an M-file that was generated from the model in Figure 7. Figure 10
shows the generated Stateflow model, which in effect is equivalent to the state ma-
chine captured in the AQML models. Figure 11 illustrates a network simulation
model that is created by hand. It is a fairly simple mathematical model of the net-
work, and it artificially loads the network with a periodic sinusoidal load (modeled by
the sine-wave block in Simulink). Figure 12 and Figure 13 presents the results of the
simulation. The behavior of the adaptive system can be intuitively observed and un-
derstood from these plots. It can be seen that when the load crosses a threshold, the
adaptation engine causes the frame rate to reduce adaptively (thus minimizing the la-
tency). When the load vanishes, the frame rate is enhanced again. Some important
information about the adaptation (in terms of lead times, response times, and stability)
can be gathered from these plots. If the response is too quick, then the network may
enter into oscillations. The network may also get into oscillatory behavior if the
frame-rate reduction step is too high. On the other hand, if the frame-rate reduction
step is too low, the duration for which the latency of the network stays high may be
very large.

Fig. 9. Matlab M-file generated from UAV model

Fig. 10. Generated Matlab Stateflow model

Fig. 11. Simulation model of the network

Fig. 12. Simulation results – Actual Frame Rate

Fig. 13. Simulation results – Desired Frame Rate

Figure 14 illustrates a CDL file that was generated from the same model. This
CDL file is processed by the QuoGen compiler to generate runtime artifacts for the
QuO kernel.

7. Conclusions

This paper presented an approach based on Model-Integrated Computing for simulat-
ing and generating QoS adaptation software for Distributed Real-time Embedded sys-
tems. The key focus of the approach is on raising the level of abstraction in represent-

ing QoS adaptation policies, and providing a control-centric design for the representa-
tion and analysis of the adaptation software. Using a model-based representation and
employing generators to create low-level artifacts from the models, we have been
successful in raising the level of abstraction, and providing better tool support for ana-
lyzing the adaptation software. At the same time, our approach results in increased
productivity as we 1) shorten the design, test, and iterate cycle by providing early
simulation, and analysis capabilities, and 2) facilitate change maintenance as minimal
changes in the models can make large and consistent changes in the low-level (CDL)
specifications. This approach has similar goals to the OMG’s Model-Driven Archi-
tecture (MDA) initiative.

Fig. 14. CDL file generated from models

The presented approach has been tested and demonstrated on a UAV Video
Streaming application described as a case study in this paper. The case study de-
scribed a simple scenario; however, we have been able to model a much larger sce-
nario in the developed modeling environment, with a higher degree of variability and
adaptability. In our experience the simulation capabilities have been particularly
helpful in fine-tuning the adaptation mechanism - one simple instance being the tun-

ing of the duration of staying in the duty and the test state using the simulation results
in the presented case study.

The tool is still in the prototype state and several enhancements are planned. We
plan to integrate a symbolic model-checking tool (e.g. Symbolic Model Verifier) for
formal reasoning about the adaptation mechanism. With the aid of this tool we can
establish various properties such as liveness, safety, reachability, etc., about the state-
machine implementing the adaptation policy. We also plan to strengthen the compu-
tation and middleware modeling in order to facilitate analysis of the application and
middleware components.

Acknowledgments

This work is supported by DARPA under the Program Composition of Embedded
System (PCES) program within the Information Technology office (DARPA/ITO).

References

[Bézivin, 01] Jean Bézivin, “From Object Composition to Model Transformation with
the MDA,” Technology of Object-Oriented Languages and Systems (TOOLS), Santa Bar-
bara, California, August 2001.

[Harel, 87] David Harel, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming, June 1987, pp. 231-274.

[Karr et al., 01] David Karr, Craig Rodrigues, Joseph Loyall, Richard Schantz, Yamuna
Krishnamurthy, Irfan Pyarali, and Douglas Schmidt, “Application of the QuO Quality-of-
Service Framework to a Distributed Video Application,” International Symposium on Dis-
tributed Objects and Applications, Rome, Italy, September 2001.

[Lédeczi et al., 01] Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Peter Volgyesi, Greg Nord-
strom, Jonathan Sprinkle, and Gábor Karsai, “Composing Domain-Specific Design Envi-
ronments,” IEEE Computer, November 2001, pp. 44-51.

[Loyall et al., 01] Joseph Loyall, Richard Schantz, John Zinky, Partha Pal, Richard
Shapiro, Craig Rodrigues, Michael Atighetchi, David Karr, Jeanna Gossett, and Christopher
Gill, “Comparing and Contrasting Adaptive Middleware Support in Wide-Area and Embed-
ded Distributed Object Applications,” IEEE International Conference on Distributed Com-
puting Systems (ICDCS-21), April 2001, Phoenix, Arizona.

[Neema, 01] Sandeep Neema, “System-Level Synthesis of Adaptive Comput-
ing Systems,” Ph.D. Dissertation, Vanderbilt University, May 2001.

[Nordstrom et al., 99] Greg Nordstrom, Janos Sztipanovits, Gábor Karsai, and Ákos
Lédeczi, “Metamodeling - Rapid Design and Evolution of Domain-Specific Modeling Envi-
ronments,” International Conference on Engineering of Computer-Based Systems (ECBS),
Nashville, Tennessee, April 1999, pp. 68-74.

[Schantz and Schmidt, 01] Richard E. Schantz and Douglas C. Schmidt, “Middleware for
Distributed Systems: Evolving the Common Structure for Network-centric Applications,”
Encyclopedia of Software Engineering, Editors John Marciniak and George Telecki, Wiley
and Sons, New York, 2001.

