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GENERATORS OF AN ORTHOGONAL GROUP
OVER A FINITE FIELD

HiroYUKI IsHIBASHI, Sakado

(Received July 19, 1976)

In this paper we consider orthogonal groups over finite fields, and obtain a system
of generators which consists of some symmetries. The number of the generators
equals the dimension of the space on which the orthogonal group is defined. We shall
easily observe that this system is a minimal one when we consider symmetries as
generators.

1. INTRODUCTION

Let F be a finite field of characteristic not 2, Van n-dimensional vector space over F
with a symmetric bilinear form B and an associated quadratic map Q, i.e. Q(v) =
= B(v, v), v € V. We suppose that Vis non-singular, which means det {B(v;, v;)} % 0
for a basis {v;} of V. For subspaces U and Wof ¥, U L W means U @ W with
B(u, w) = 0 for all ue U and w e W. We know that V has an orthogonal basis {e;},
ie. V= 1L Fe, e;eV.

i=1

0,(V) is the orthogonal group on V, its elements are called isometries. A special
isometry which fixes a hyperspace of Vis called a symmetry and the set of all sym-
metries is denoted by S(V). It is well known that S(V) generates O,(V). However,
this system of generators seems to me rather large, in other words it is not necessary
to consider all symmetries to generate O,(V). In fact, we shall show that only n
symmetries generate O,(V), which is our main result. Further, we see that Oy (V)
is generated by n — 1 rotations. In particular, 05 (V) is cyclic.

The details will be stated in Theorems A and B in § 3, after we introduce the neces-
sary notation and prove some lemmas in § 2.
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2. PRELIMINARIES

Since F* = F — {0} is a multiplicative cyclic group, we can take a single generator
{ for F*. By the assumption that char F = 2, \Fl is odd and [F*l is even. Hence
|F*|(F*)?| = 2. This implies that any element of F* is 1 or { modulo (F*)*. Therefore
we can take an orthogonal basis for V in which each basis element represents 1 or {,
where we say that a vector v represents ¢ if Q(u) = ¢. If V has an orthogonal basis
{e,, e e,,} such that each e; represents a; € F, 1 < i < n, then we say that Vis of the
(ay, ..., a,)-type and denote it by

Vedladd.o L<ay
or simply

V~(ag .o a,).

We wish to investigate relations bztween these types. We know that ord { = lF *]
is even, so put ord { = 2m. Let S, = {{'|i is even} and S, = {{/|j is odd}, i..
So = (F*)* and S, = F* — (F*)’. Clearly

F=S,u{0} u{S,} (directsum).

Define a permutation @ on F by ¢(a) = a + 1,a€F.

Lemma 2.1. ¢(So) N S; =* 0.

Proof. Suppose ¢(So) N S; = 0. Then ¢(S,) < {0} U S,. Since ¢(0) = 1€ S,,
we have ¢({0} U Sp) = {0} U So. Hence ¢(S;) = S;. Take an element {/ in S;.
Then j is odd, 2m — j is also odd and {7/ = (*" 7/ is contained in S;. So we have

o) =0+ 1 =001+ (7) = Uo(l) =V o).

This is a contradiction. Indeed, ¢(S;) = S, implies that the left hand side of the above
equation belongs to S; while the right hand side belongs to S, as a product of two
elements of §,. QED

Lemma 2.2,

i) If V~(1,0), then V ~ (¢, 1).
i) If V~ (0, 0), then V ~ (1,1).
i) If V'~ (1,0), then Vo (1,1).

Proof. Let V = Fe, L Fe,. We suppose Qe,) = 1 and Q(e;) = { to prove i).
Then i) is obtained by permuting e, and e,. Now we shall prove ii). Let Q(e;) =
= Q(ez) = {. By the lemma, there exists a € F such that a®> + 1 belongs to S;.
Putting v = ge; + e,, we conclude that Q(v) = a®{ + { = (a® + 1) { is contained
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in Sg. So we put Q(v) = (*" and take the following new basis {e}, e;} which will be
the desired one:

ey ={""v and ) = {""(e, — ae,).
Indeed,
Qer) =7 Q@) =1,
0ey) = {72 Qey — aey) = {72 Qv) = 1
and

B(e;, ey} = B({" v, {7(eq — ae,)) =
= ("% Blae, + e,, e, — aey) = 0.

Hence V ~ (1, 1). Finally, iii) follows from the uniqueness of the discriminant dV/
of a quadratic space V. It is defined for any basis {e;} of ¥ by det B(e;, e;) modulo
(F*)?, which is independent of the choice of the basis. Therefore if ¥ ~ (1, {), then
dV = (. If V ~ (1. 1), then dV = 1. But clearly 1 % ¢ modulo (F*). Q.E.D.

Thus, according to the lemma there exist only two distinct types (1, 1) and (1, ()
for a binary space V. Consequently, applying the lemma successively, we have for
an n-dimensional space V the following

Lemma 2.3. V ~ (1, 1,...,1) or (1,1,...,1,0).
R _,1_./
n n—

3. STATEMENT OF THE THEOREMS

Theorem A. a) O(V) is generated by n symmetries.

b) If {z,,eS(V)|1 < i< n} are generators, then there are r,se{l,... n}
such that

O(y,) =1 and Q(y,) =( modulo (F*)?*.
¢) 1y, may be arbitrarily chosen in S(V).
d) 0,(V) is not generated by less than n symmetries.

Let ¢ be any isometry and M its matrix on a basis of ¥, then det M = +1. If
det M = 1, we call g a rotation and the set of rotations is denoted by 0, (V). ¢ is
called a reflexion, if det M = —1.

0,/ (V) is a normal subgroup of 0,(V) and IO,,(V)/O,T(V)I = 2.

Theorem B. For n = 2, 0, (V) is generated by n — 1 rotations.

In § 4 we shall prove Theorems A and B for n = 2. The general case of the theo-
rems will be treated in § 5 and § 6, respectively.
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4, PROOF OF THEOREMS A AND B FOR n =2

In this section we shall show that OZ(V) is generated by two symmetries and 05 (V)
is a cyclic group.

Put V = Fe, L Fe,. Then we know from the preceding section that ¥Vis of the type
(1, 1) or (1, £). So we put

Qe;) =1 and Qe;) =¢, e=1 or (.
Hence
Ve~ (1.

Now we shall try to express isometries by matrices with respect to the above fixed
basis {e;, e,}. Let ¢ € 0,(V) be an isometry.

Lemma 4.1, ¢ is a rotation if and only if its matrix is expressed as

<a —8b) with a®> +¢eb*> =1, a,beF.
a a

Proof. Let ¢ be a linear map on V defined by a matrix

()

Then
O(eey) = Q(ae, + bey) = a® + eb*> =1,
0(ces) = Q(—cebe, + ae,) = e?b? + ea® = &(eb? + a*) = ¢,
B(gey, 0e,) = B(ae, + be,, —ebe; + ae,) = —eab + eab =0
and

det (“ "*’b> =a+eb? =1,
b a
Hence ¢ is a rotation, i.e. g € O, (V).

Conversely, let ¢ be a rotation. Put ge, = a¢; + be,, a,be F. Then we have
B(ge;, —&be; + ae,) = 0 as above. This means that —ebe; + ae, is contained in
(Foe )" = Foe,. Consequently ge, belongs to F(—sbe; + ae,). Write

oe, = c(—ebe, + ae,) forsome ceF,

a —¢ebe
b ac)/’

The matrix of ¢ is given by
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Since g is a rotation,

1 = det (a NSbc) = a%c + eb%c =
b ac

= c(a® + &b®) = ¢ Qee,) = ¢ Qfey) =

i
o

Q.E.D.
From now we shall identify an isometry and its matrix with respect to the basis
{e1, e;) of V.
Remark. ¢ is a reflexion if and only if its matrix is

(a Sb) with a* + eb?> =1.
b —a

By an easy computation, we have ,
a —eb\(c —ed\ _ (ac — ebd —e(ad + be)\ _
b aJ\d ¢/ \ad+bc ac—ebd |

¢ —ed\[fa —eb
v_<d c)(b a)’ a,b,c,deF.

This shows that OF (V) is a finite abelian group.

Lemma 4.2. Let G be an abelian group and a an element which has the maximal
order in G. Then for any b in G, ord b divides ord a.

Proof. For 'any prime number p, let

orda =p'c, 024, plec
and
ordb=p*d, 0Zpu, ptd.

Then ord a?* = ¢ and ord b = p*. Hence we have ord a?*p® = p“c. Therefore by
the maximality of ord a,
phe < pic.

Hence p < A and so p*| p* This implies the lemma, since p is any prime number.
Q.E.D.
Now, let us start with the proofs of the theorems for n = 2. Let o be an element
in O3 (V) with the maximal order. We shall prove that o generates 0 (V), which is
Theorem B for n = 2. ’
Since —1 is in O3(V) and its order is 2, by the preceding lemma, ord ¢ is even.
So put
ordo = 2s.
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We shall show that |03 (V)| = 2s which yields the desired result, 03 (V) = <o>.
|03 (V)| 2 25 is clear, for o € O3 (V). Therefore it suffices to show 0 (V) < 2s.

Lemma 4.3. Let x, y be indeterminants and r a natural number. Introduce

X = (" 'Ey).
¥y X

Then there are polynomials h, k, h' and k' in two variables x* and y* such that

a 2 x 2 matrix

h  —exyk
2r ___
(4.1) X = <xyk b )
and
b1 _ xh' —eyk'
(4'2) X (yk' xhl ) .

The total degrees of h, xyk, h'" and k' in x, y are obviously equal to or less than 2r.
Proof. We prove the lemma by the induction on r. Since
x2 = (* —® 2 [(x? - ey? —2exy
“\y x/) " \2xy x? —ey?)’
we have

x% — ey? —2exy )(h —exyk

2(r+1) — 2yv2r _
X XX (ny x% — ey? [\ xyk h

_((* = ey h - 2ex?y*k —exy{2h + (x* — &y?) k}
C\xy{2h + (x* - ey k) (x* — ey?) h — 2ex?y?k |

This proves (4.1). Applying (4.1), we obtain
yret - (¥ e\ (b —exyk) _ x(h — ey*k) —ey(h-+ x%k)
vy x J\xyk h y(h + x*k)  x(h — ey’k) )’
which yields (4.2). Q.E.D.

In particular, we have the following

Corollary. For suitable polynomials f and g in two variables x and y, we can
write
f —sg)
X® = s
(g f
where s = % ord o.

Proof. If s is even, s = 2r, put f = h and g = xyk. If s is odd, s = 2r + 1,
put f = xh’ and g = yk'. Q.E. D.
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Let ¢ be any element in 03 (V) and let its matrix be

M=<a *€b>, a’ +eb*=1, a,beF
b a

according to Lemma 4.1.

Then, substituting a, b for x, y, we obtain by the corollary

= (e o)

By Lemma 4.2, 9> = 1 and so M** = 1,
Lemma 4.4, Let

N = (c —id) with ¢® +ed®=1.

IfN*=1,then N = +1.Sod = 0.

N? = ? —ed® ~2cd \_ (10
" \2cd ct—ed*) \01)°

we have ¢ — ed? = 1 and 2cd = 0. By the assumption ¢®> + &d® = 1. So we obtain
2¢* = 2. Since char F+2, ¢ =1 and ¢ = +1. Hence d = 0. Thus we have
N = +1. Q.E.D.

By the lemma we have in M*

Proof. Since

g(a,b) =0.

This means that (a, b) is a common solution in F x F of two polynomials x* +
+ ey* = 1 and g(x, y) = 0. Thus we conclude that any rotation in 0, (V) corre-
sponds to a common solution of these two polynomials. Let us put

t = the number of common solutions of
x*+ey?=1 and g(x,y)=0 in FxF.

Since distinct rotations correspond to distinct solutions of x* + &y? = 1 by Lemma
4.1, we have
jo; (V)| s 1.

We shall show ¢ £ 2s. First, if s is odd, s = 2r + 1, then Lemma 4.3 and the
identity x%> + &y? = 1 imply

g(x, y) = yk'(x*, y*) = yk'(1 — ey*, y*) and degyk' <'s.



Hence g has at most s roots in F when we regard g as a polynomial in y. Further,
for ye F, x* + gy®> = 1 implies x = + /(1 ~ &y?) in the algebraic closure F of F,
which means that one root y of g gives 2 common solutions (£ /(1 — &y?), y)
in F x F. Hence ¢, the number of common solutions (x, y) in F x Fisat most2s,i.e.

t < 2s.

Now if s is even, s = 2r, then

g(x, y) = xyk(x?, y*) = xyk(1 — ey?, y*)
and
deg xyk < 5.

So the common solution (a, b) is a common solution of
{x:O or {yk(lmyz,yz)zo, degyk <5 — 1
x2 + ey’ =1 x2 4+ ey =1.
The first system has at most 2 common solutions the second 2(s — 1), and so again
t<2+2s—1)=2s.
Thus we have proved ¢ < 2s for any s, i.e. we have proved that
0;(V) = (o).

Take any symmetry 7, in S(V). Then t,¢ O;(V). Further, we know that

IOZ(V)/O;(VN =2, Hence
0,(V) = {1, 03 (V) = {z,, o) .
Put 7, = 7,0. Then 7, is also a symmetry and
0,(V) = (1 1, .

Thus OZ(V) is generated by two symmetries, and one of them is arbitrarily chosen
in S(V). We shall conclude this section by the following lemma, which implies b)
of Theorem A.

Lemma 4.5. If 0,(V) = <z, 1,), then u represents 1 and v represents { modulo
(F*)?, or vice versa.

Proof." We suppose Q(u) = Q(v) = ¢ modulo (F*)?, ¢ =1 or {, and deduce

a contradiction. Since any symmetry ‘L'y is a product of an odd number of 7,, 7, and

72 = 12 = 1, we have

- -1 -1
T, = OT,0 or 91,0

for suitable a, ¢ in 0,(V). Hence

Ty = Tgy O Ty
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Since

Q(O'U) = Q(u) = ¢ and Q(gv) = Q(U) =g
it holds for any 7, e S(V),
Q(y) = & modulo (F*)?.

But this is impossible. Indeed, by Lemma 2.1 there exists a € F with a* + 1 € S,
i.e. a® + 1 = { modulo (F*)%. Hence if we take y = ae; + e,, then

’ Q(J)) =a% + g = (a2 + l)s = {¢ modulo (F*)Z _—

So & = (g(F*)?, which is a contradiction, for 1 ¢ {(F*). Q.E.D.

The lemma shows that we may take the generators 7,, and 1, of 0,(V) with
Q(u’) = 1 and Q(v') = {, by multiplying u, v by suitable scalars.

5. PROOF OF THEOREM A IN THE GENERAL CASE

In this section we shall prove Theorem A. First we prove a) and b) of the theorem,
which will be done by induction on the dimension n of V. If n = 2, then a) and b)
are true by § 4. Suppose n = 3. Take a vector v in ¥V with

(5.1) ov,) =1
such a vector actually exists by Lemma 2.3. We split
(5.2) V=Fv, LW.

The restrictions of B and Q to W make it a non-singular quadratic space. Hence by
the inductive hypothesis for W, 0,_,(W) is generated by n — 1 symmetries on W,
say {t,,|2 £ i < n}, i.e. we have

(5.3) 0, (W) =<1y .. 1,
and we assume by b) of Theorem A
(5.4) Ov;) = ¢ and Qvy) =1.

We divide the proof into the following two cases.
i) Wis anisotropic or |F| + 3.
ii) Wis isotropic and ]F] = 3.
Case i). We put

(5.5) H = Fvy L Fv, and J = Fp, 1 Fo,.
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Then by § 4 we have two symmetries t,, € S(H) and r,, € S(J) such that

(5.6) 0,(H) = <1, Tuy)
(5.7 0,(J) = {1y, T,

Definition. Let U be a non-singular subspace of V and ¢ in O(U). Then ¢ L 1. €
€ O(V) is called a natural extension of ¢ to V and throughout this paper we shall
denote it by ¢'. For example, we write 1,, for 7,, L 15,, i = 2. It might be desirable
to use the same notation for an isometry and its natural extension in order to simplify
the proof. However, we are afraid of confusion. For this reason we shall distinguish
them by the distinct notation as above.

Our purpose is to prove

.
(5.8) 0,(V) = {Tyys Thpr Tags Tows <+ s Ty s

which will directly yield a) of Theorem A. We note that we may write 1, for T,,
when we regard 7, as an isometry on a non-singular subspace of V.

Since 0,(V) = (S(V)), it suffices to show that any symmetry 7, € S(V) is expressed
by a product of some of the symmetries in (5.8). By (5.2) we write

(5.9) v=av, +w, aeF and weW.

Proposition. For v in (5.9) there exists ¢ in 03 (H) such that if we express
gv=udv,+w, deF and weW,
then Q(w') # 0.

Proof. If Q(w) # 0, then we can take ¢ = 1 in the expression (5.9), i.e. v =
= av; + w, and the proposition follows immediately. In particular, if W is anisotro-
pic, then the proposition is true. So we suppose that W is isotropic and Q(w) = 0.
Hence by (5.1)

Qv) = a®> Q(v;) + Q(w) = a”.

Since
Q(e'v) = (a')* Q(v)) + QW) = (a')* + Q(w')
and
Q(v) = Q(e')
we have

a* = (a')* + Q(w').

This shows that Q(w’) # 0 if and only if a® =% (a’). So we shall prove that such a ¢
actually exists in 05 (H). Split

W= Fv, LZ
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and write
w=>bv,+z2, beF and zeZ
Then
v=av, + bv, + z.

Let ¢ be a rotation in O,(H). Then ¢’ fixes z, since V = H L Z. Hence
o'v = g(av, + bv,) + z.

Since H is of the (1, ) type by (5.5), Lemma 4.1 yields that g is expressed as

(fz "Ed> with ¢ +¢d?> =1, ¢, deF

on the basis {v,, v,}. Hence

o'v = (vy, v5) (2 _Ed> (Z) + z = (ac — gbd) v, + (ad + bc) vy + z.
This implies a’ = ac — {bd. Therefore a® + (a’)? if and only if a® + (ac — {bd)?,
i.e. it suffices that (c, d) is a solution of

X+t =1
and
a’ # (ax — (by)*.

On the other hand a + 0, since v is anisotropic. Hence the number of common solu-
tions of the polynomials x* + {y* = 1 and a® = (ax — {by)® is at most 4. Thus
if x? 4+ ¢y? =1 has at least 5 solutions, then one of them does not satisfy a? =
= (ax — {by)?, and we obtain the desired ¢ € O3 (H). Moreover, we know that the
solutions of x® + {y* = 1 correspond one-to-one to the rotations of O3(H) by
Lemma 4.1. Hence x* + (y? = 1 has at least § solutions if and only if |0] (H)| 2 5.

Lemma 5.1.
|F| + 1 if H isanisotropic,
|F| =1 if H s isotropic.

05(H) - {

Proof. Since dim H = 2, reflexions are symmetries. Hence |07 (H)| = |S(H)|.
A symmetry is defined by an anisotropic line. So |S(H)| equals the number of aniso-
tropic lines of H. H has [F| + 1 lines {Fv,, F(v, + cv,) for all ce F} and a line is
isotropic if and only if Q(v,) + ¢* Q(v,) = 0. Hence H is isotropic if and only if H
has exactly 2 isotropic lines, otherwise H is anisotropic. Q.E.D.

By our assumption in the case i) [F] # 3 and throughout this paper char [Fl * 2.
So ]F’ # 2, 4. Therefore we have IF[ =5 1If {Fl > 6, then the lemma implies the
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desired result
03(k) = JF| ~ 12 5.

When IFI = 5, the result is given by the following lemma.

Lemma 5.2. If [F| = 5, then |0} (H)| = 6.

Proof. Since H is of the (1, {) type, the discriminant dV of H is {. On the other
hand, if H were isotropic, then H would be a hyperbolic plane and its discriminant
is —1. Hence

{=—1(F *)2 .
This implies that { has an exponent 2x odd number. But this is a contradiction,
since ord { = [F*] = |F [ — 1 = 4. Hence H is anisotropic. Therefore by Lemma
5.1 we have |05 (H)| =5 + 1 = 6. ‘ O.E.D.

Thus we have completed the proof of the proposition.
Now, let us return to the situation mentioned before the statement of the pro-

position.
Let ¢ € 03 (H) be the isometry in the Proposition, i.e.

dv=av, +w, ae€F, weW and QW) +0.

By Q(w') & 0, w’ represents 1 or { modulo (F*)*. By (5.4), for v,, v; € W we have
Q(v,) = ¢ and Q(v;) = 1. Hence taking a suitable o € O(W), ow’ is contained in Fv,
or Fuv, provided Q(w') = { or 1, respectively. As usual, ¢’ is a natural extension of o
to V. Then

G'I-Q’Tv(Q’)—I (0")“1 = Tope = To'aroi+w) = Tarwg+aw 10T o =1p, Lo.
Here by (5.5) and the choice of ¢
av, +oweH or J.
On the other hand, (5.6) and (5.7) imply
O(H) = (1,,, 7.,y and O(J) = {Tp> Tuy) -

Therefore we may conclude
’ ’

’
Tn’v1+o'wl € <Tlu! Tuzs Tu;> .

Hence

s

Ty = (Q’)wl (a’)_l Ta’v, +aw'0 €

is contained in <1, 7,,, 7,,, ¢, 0’>. However, ¢ belongs to 03 (H) and 03 (H) <
< 04(H) = <1,,, 7,,), hence ¢’ is contained in {1, 7,,>. So

(5.10) 7, € {Toys Tugs Tugs ') «
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Moreover, the choice of o together with (5.3) implies

ce O(W) =<t

va> Togs oo Top )
However, by (5.6) and (5.7) we conclude

‘Cv)z’ Tl}g € <T(‘1= Tuzv Tu3> .
Consequently

g€ <Tvp Tuzs Tuss Tv4a sy Iv,,> .
So by (5.10) we have the desired result
’ ’ ’ 7
Ty € {Thys Tuys Tugs Togr =<5 To) -

Thus we have proved that 0,(V) is generated by n symmetries, which is the assertion
a) of Theorem A. Since Q(v,) = 1 and by (5.6) O,(H) = (z,,, 7,,», it is obviously
O(u,) = { (F*)* by Lemma 4.5. Therefore we have obtained b) of Theorem A. We
have completed the proof of a) and b) in the case i). ‘

Case ii). Wis isotropic and |F| = 3.

Since |F| = 3, we have F = {0, £1} and (F*)* = {1}. By (5.2)

V="Fo, LW, Qv,)=1.
Take an isotropic vector u € Wand a hyperbolic plane H such that

ueH c W.
Split

H = Fe, L Fe, .

Then after multiplying e, e, by suitable scalars we may assume

u=e, + e;.
Clearly Q(e,) + 0 and Q(e;) + 0. Hence Qfe,) and Q(es) are 1 or —1 for F =
= {0, +1}.
Since

0 = Q(u) = Qe;) + Qles),

we have Q(e,) = +1and Q(e;) = F 1. Thus we can suppose without loss of general-
ity that ‘

Qe;) =1 and Qes) = —1.

Put
u, =v +u.
By (5.3),
O(W) = {Tyy Tup s Ty -
We denote

G = (T Thyr oo T, -

v3*
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We shall prove
O0(V) = {1;s G = {Tys Thyy -0y T0, )

which implies a) of Theorem A. To do this, it suffices to show S(V) = <z,,, G

Lemma 5.3.
Tu; +es € <Tup G> .

Proof. By the definition of symmetries,

Tue3 = €3 — 2B(ey, uy) Quy) ™" uy

= e3 + Bles, uy)u, (2= —1in F and Q(u;) = 1.

= ey + Bles, v, + u)uy (uy = vy + u.)

=e3+ Bles, vy + e, + e3)u;, (u=e, + ;)

= e; — Uy (B(es, v;) = Bles, e;) =0 and
Ofes) = —1.)

=, + €, .

Hence
T“xre3rux = Tt"l(’_l = TU] +02 .

So 1,4, is In {1,,, 7,,>. On the other hand e, € H < W, hence t,, € G. Therefore

Ty, 4y € {Tyypr GO Q.E.D.
Now, let 7, be any symmetry in S(V). We shall show that , is contained in (x,,, G
Write

v=av, +w, ac€F and weW.

If a = 0, then 7, is contained in G. So we assume a =+ 0. Since 7, = 1

a1y WE Ay
suppose a = 1. Then

0v) = Ovy) + O(w) =1 + Q(w).

Since Q(v) =+ 0, we have Q(w) = —1. So Q(w) = 0 or 1. Since for u, e, in W we have
O(u) = 0 and Q(e,) = 1, we have

Aw=u or e,
for some A in O(W). Hence
/Vrv(i,)‘l = Tyry = Ti’(v; +w) = Tog+iw = Tul or Tu;+c1 € <Tu|9 G> .
Hence 0,(V) = {z,,, G) = {1, Ty ..., T,,,)» Which was to be shown. Further, by
(5.4) we have Q(v,) = { and Q(v;) = 1, so the assertion b) of Theorem A holds.

Thus we have proved a) and b) of Theorem A in both cases i) and ii). Finally, we
prove ¢) and d) of Theorem A.
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Proof of c).

Suppose O,(V) = <t,,€ S(V)|1 £ i £ n) with Q(y,) = 1 and Q(y,) = {. Let 7,
be any symmetry in S(V). Then Q(x) = 1 or { modulo (F*)?. Hence for some
e 0, V) we have

WUy, or puy,eFx.
Therefore

t.e{t, |1 Si<n} and O(V) =<z, |1 <iZn).
This is nothing else but ¢).

Proof of d).

Suppose 0,(V) = (r,-| 1 <i=r)and r < n. We know that the fixed space of
a symmetry is a hyperspace of V. So the intersection of the fixed spaces of all
{7; | 1 £ i £ r} is not zero, since r < n = dim V. Hence a certain non-zero vector
is fixed by all {z;}, which is a contradiction because —1 € 0,(V) reverses all vectors
in V.

Thus Theorem A has been completely proved.

6. PROOF OF THEOREM B

Suppose O,(V) is generated by n symmetries, say S = {zy, ..., 7,}. Putting T =
= {t;r,| 1 £ i £ n — 1} we shall show O, (V) = (T), which gives the theorem.
Take any ¢ in O;( V). Then g is a product of an even number of elements of S.

So we can write .
finite

o= [] Aws. 4; and peS.
=1

On the other hand by 2 = 1, we have
Adhy = AT, T = Ai%(lr‘i%)_l e{T>.

Hence ¢ is contained in Tand so
07 (V) =<T>.

Thus the proof of Theorem B is complete.
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