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Abstract—The need for computer-assisted real-time anomaly
detection in engineering data used for condition monitoring
is apparent in various applications, including the oil and gas,
automotive industries and many other engineering domains. To
reduce the reliance on domain-specific experts’ knowledge, this
paper proposes a deep learning framework that can assist in
building a versatile anomaly detection tool needed for effective
condition monitoring.

The framework enables building a computational anomaly
detection model using different types of neural networks and
supervised learning. While building such a model, three types of
ANN units were compared: a recurrent neural network, a long
short-term memory network, and a gated recurrent unit. Each of
these units has been evaluated on two benchmark public datasets.
The experimental results of this comparative study revealed that
the LSTM network unit that uses the sigmoid activation function,
the Mean Absolute Error as the objective Loss function and the
Adam optimizer as the output layer showed the best performance
and attained the accuracy of over 77 % in detecting anomalous
values in the datasets.

Having determined the best performing combination of the
neural network components, a computational anomaly detection
model was built within the framework, which was successfully
evaluated on real-life engineering datasets comprising the time-
series datasets from an offshore installation in North Sea and
another dataset from the automotive industry, which enabled
exploring the anomaly classification capability of the proposed
framework.

Index Terms—Long short-term memory networks, deep learn-
ing framework, anomaly detection and classification, time series
analysis, engineering applications.

I. INTRODUCTION

Condition monitoring in general, and anomaly detection
in particular, is an essential component of many safety and
surveillance systems, because such monitoring is capable of
uncovering informative facts about the behaviour, character-
istics and properties of engineering systems used in various
technical and technological areas. The main purpose of con-
dition monitoring is undoubtedly to prevent the escalation
of undesirable effects on system operation and to minimize
losses caused by them [9]. This is critically important in
various engineering systems the authors worked with, such
as automobile engines, offshore installations, subsea hydraulic
control, and autonomous surveillance [23].

These complex systems share at least two characteristics:
a lack of mathematical model that accurately describes the
system behaviour and a large amount of monitoring data that
can be both historical and real-time. Therefore, for performing
effective anomaly detection, it is necessary to rely on data-
based approaches and on smart methods of condition moni-
toring that often use computational intelligence and machine
learning techniques [15]. The latter is especially important
when some constraints are present that cannot be satisfied by
human intervention with regard to decision making speed in
life threatening situations (e.g. automatic collision systems,
exploring hazardous environments,processing large volumes
of data). Because computer-assisted condition monitoring is
capable of processing large amounts of heterogeneous data
much faster and is not subject to the same level of fatigue
as humans, its use in many practical situations is preferable.
Furthermore, the integration of multiple data sources into a
unified system leads to data heterogeneity, often resulting into
difficulty, or even infeasibility, of human processing, especially
in real-time environments.

Computational Intelligence (CI) and Machine Learning
(ML) techniques have been successfully applied to problems
involving the automation of anomaly detection in the process
of condition monitoring [15], [17]. In particular, many studies
have shown that artificial neural networks (ANN) can be a
very effective classification tool to predict various anomalous
conditions, such as the corrosion of oil and gas pipelines,
turbine failure, and the like [8], [21], [25].

However, one of the most significant factors to consider
when performing engineering data analysis is a possible in-
terdependence of sensors’ readings. It is important therefore
to firstly identify the most significant features, or hyper-
parameters, in the dataset and to take temporal dependencies of
sensory data into consideration. A Long Short-Term Memory
(LSTM) network is a type of recurrent neural network (RNN),
specifically designed for sequence processing. It excelled in
many complex challenges such as handwriting recognition
[12], machine translation [26], and financial market prediction
[10]. LSTM networks contain gates to store and read out
information from linear units, called error carousels, that
retain information over long time intervals - something that



traditional RNNs fail to achieve. In recognition of speech and
hand writing, anomalies correspond to situations where the
order of words or symbols is incorrect; similar, in engineering
data analysis, the order and occurrence of certain data values
can identify unusual patterns that ultimately may lead to a
system failure.

Anomaly detection is an important data analysis task that
detects anomalous or abnormal data from a given dataset. It
has been widely studied in statistics and machine learning,
and generally defined as ”an observation which deviates so
much from other observations as to arouse suspicions that
it was generated by a different mechanism” [1]. Anomalies
are considered important because they indicate significant but
rare events and can prompt critical actions to be taken in a
wide range of application domains (for instance when the
generator’s rotor speed of a gas turbine goes below 3000 rpm).
By their nature, these events are rare and often not known
in advance - this makes it difficult for conventional machine
learning techniques, based on a generic ANN for instance, to
be trained and optimised in terms of performance [9]. A wide
variety of studies has been carried out to identify an optimised
ANN model by altering weights, number of hidden layers, fine
tuning hyper-parameters and altering activation functions [2],
[16], [27], [28].

Although all these studies provide a good and effective
approach in developing an accurate ANN model, they still
require human intervention to optimise its performance by
fine-tuning the ANN parameters mentioned above. Engineer-
ing data analysis in industries, such as oil and gas for example,
would often benefit from restricting, or even, eliminating
human intervention in detecting anomalies. Thus, this paper
proposes an approach to designing machine learning algo-
rithms that can automatically select required hyper-parameters
by using a generic LTSM network with a fixed activation layer
capable of detecting an anomaly or predicting system failure.

To the best of our knowledge, this study is the first to
evaluate a deep learning framework for real-time engineering
data analysis that fits an LSTM network into the process of
identification and classification of anomalous data. The rest
of the paper is organized as follows: Section II describes the
methodology of building a generic framework for anomaly
detection based on systematic data processing. Then two case
studies will be discussed that demonstrate the capabilities
of the proposed framework in detecting and classifying data
anomalies. The evaluation of the exemplified framework on
the datasets corresponding to the case studies is presented in
Section III, while Section IV draws conclusions and speculates
possible future work.

II. METHODOLOGY

In time series data anomalies can be categorized into:
outliers, unusual data points significantly dissimilar to the
remaining points in the data set, and anomaly patterns, which
group fractions of data together, which are different from the
majority of normal data. To deal with these categories, var-
ious anomaly detection algorithms have been developed that

are classified into five major groups: probabilistic, distance-
based, reconstruction-based, domain-based, and information-
theoretic-based [15]. Different types of algorithms are more
applicable in various scenarios of data analysis, which brings
to front the idea of a generic framework capable of combining
several analytic tools and approaches.

The idea of developing a framework of tools for anomaly
detection is not new - in particular, in [1] the authors proposed
a generic framework for network anomaly detection, focusing
on analyzing network traffic. We adopt a similar approach, but
with a prime interest in analyzing real-time engineering data
coming from condition monitoring sensors.

The proposed approach to developing an anomaly detection
framework segregates processing of the input data streams ac-
quired by physical sensors into three distinct phases. The Pre-
processing phase is when the data gets prepared to be passed
onto the anomaly detection algorithm by going through four
different stages of data cleaning, conversion, normalization and
reduction. The Modelling phase involves running a machine
learning algorithm on training data that results in defining,
fitting and evaluating a computational model, which will be
used later on to identify anomalous data. In the final Anomaly
Detection phase a new dataset gets tested with the purpose of
determining the accuracy of the developed model. Figure 1
illustrates this anomaly detection process and the following
subsections describe the stages of each phase.

A. Data Pre-Processing Phase

As was mentioned above, the Pre-processing phase consists
of four different stages: data cleaning, conversion, normal-
ization and reduction. During the data cleaning stage all
invalid and inaccurate sensor values are removed, and all the
qualitative values (i.e. texts and descriptions) are replaced
with an index number corresponding to each word in the
vocabularies used.

In general, time series data analysis can be viewed as a
supervised learning problem. The advantage of this view is that
re-framing time series data into supervised data frames enables
using both standard linear and nonlinear machine learning
algorithms. Therefore, at this stage of data pre-processing, all
time series variables get merged together and are converted
into supervised data frames through the approach adapted
from [3]. In order to be able to use the majority of activation
functions, including sigmoid, and also being able to plot the
acquired data, all data values are scaled down to the range
between 0 and 1 using a re-scaling function (see Algorithm 1.

Algorithm 1 summarizes the data cleaning process applied
to the pre-processed dataset and includes scaling and normal-
ization of the data so that it can be passed onto the next phase.

The final stage of data reduction is potentially one of
the most important steps of data pre-processing aimed at
avoiding over-fitting the analytic model that is going to be
built. Through data reduction we can eliminate all redundant
and non-informative features in the dataset, which will have
a direct impact on the evaluation accuracy of the model to be
developed.



Algorithm 1 Data Processing
1: dataProcessing (dataset)
2: unitToDrop← 25%
3: Parse dates to format
4: repeat
5: /*Parse dates to format*/
6: for i← 1, rows do
7: covert text or milliseconds to datetime
8: Covert qualitative values into quantitative ready
9: for LSTM

10: Frame multivariate time series as a
11: supervised learning dataset using lag time step (t-1)
12: Drop missing fields
13: Scale and transform
14: end for
15: until data is scaled and normalized
16: Split Training and Test based on UnitToDrop
17: repeat
18: Reshape Training Dataset
19: for i← 1, rows do
20: Reshape Training dataset to 3 Dimension
21: Reshape Test dataset to 3 Dimension
22: end for
23: until training and test datasets are reshaped
24: Return (trainingDataset, testDataset)

B. Data Modelling Phase

Some of the widely used Recurrent Neural Networks (RNN)
include Gated Recurrent Units (GRU), Hyperbolic Tangent
(tanh) units and Long Short-Term Memory units (LSTM).
However, the GRU and LSTM units proved to be more
superior to conventional tanh units [7]. Therefore, in this
study we are evaluating two closely related variants of the
LSTM and GRU units on two publicly available datasets of
Beijing PM2.5 [18] and Appliances Energy Prediction [19].
The PM2.5 dataset represents tiny particles or droplets in the
air related to the quantity of air pollutant that is a concern for
people’s health when its level is high. The dataset has being
recorded on an hourly basis from US Embassy in Beijing,
gathered over a 4-year period between 2010 and 2014. The
other dataset consists of temperature and humidity sensor
readings around a house, sampled every 10 minutes for about
4.5 months using a ZigBee wireless sensor network.

Three different data modelling approaches of using a simple
RNN unit, a GRU unit and an LSTM unit on both datasets
have been tested to determine which RNN unit outperforms
the others (see Table I).

As can be seen from Table I, the LSTM unit demonstrated
the best performance in terms of attaining the least validation
loss .Loss is a summation of the errors made for each iteration
of optimization on the training dataset batch.This value for test
dataset batch is referred to as Validation Loss. Other studies
also corroborate our finding that the LSTM approach applied
for data analysis tasks involving long time lags performs better

Fig. 1. Systematic Approach to Context Processing

than other RNN units [11].
The computational model developed using LSTM has been

tested and evaluated against such optimizers as Stochastic
Gradient Descent (SGD), Adam, Adamax and Nesterov-Adam
(Nadam). Amongst all those, the Adam optimiser outper-
formed the rest (see Table II).

Another important factor to consider while tuning the model
was the selection of an activation unit. Various activation
units, including softmax, exponential linear unit (ELU), scaled
exponential linear Unit (SELU), hyperbolic tangent (tanh) and
sigmoid, have been tested. The sigmoid unit generated the best
result and has been selected as the ultimate activation. Table

TABLE I
ALGORITHM COMPARISON

Dataset LSTM GRU RNN

Loss
Val.
Loss Loss

Val.
Loss Loss

Val.
Loss

Beijing
PM2.5 1.78% 1.70% 1.86% 1.76% 1.98% 1.89%
Appliances

energy
prediction 2.65% 4.18% 2.69% 4.20% 2.72% 4.21%



III lists the best recorded performance for all activation unit
evaluated in this study.

Moreover, several objective (loss) functions have been eval-
uated to find the optimal one for each dataset. These include
the Mean Squared Logarithmic Error (MSLE), Mean Squared
Error(MSE), Mean Absolute Error (MAE), Sparse Categorical
Crossentropy (SCC) and Cosine proximity (CP). As it is shown
in Table IV, the MAE function is the best in maintaining both
accuracy and validation accuracy inline whilst generating the
best result in terms of the smallest loss rate. In our further
discussions we will use the following performance measures:
(a) the Loss, which is the percentage of incorrectly classified
data points; (b) the Value Loss that indicates the percentage
of loss whilst training; (c) the Accuracy is the percentage of
accurately classified data points in the training dataset; and
(d) Accuracy Validation is the accuracy of the model on test
datasets.

For developing the proposed framework a wrapper library
Keras was used built around well-known python Neural Net-
work libraries such as Theano and Tensorflow. With the
help of all these libraries, a computation model for detecting
anomalies in in the datasets was developed. As it is shown in
Algorithm 2, the LSTM unit and Output layer with sigmoid
activation are added to the model. The model is then compiled
with the MAE loss function and the Adam optimiser, because
these led to the best performance shown in Tables III and IV.
The model is built by going through 50 training iterations (see
table V). Also, for the demonstration and knowledge sharing

TABLE II
OPTIMISER COMPARISON

Optimisers Loss Val. Loss
SGD 5.92 5.95%
Adam 1.70% 1.70&

Adamax 1.85 1.75
Nadam 1.78 1.75

TABLE III
ACTIVATION COMPARISON

Activations Loss Val. Loss
sigmoid 1.70% 1.70&
softmax 1.76% 2.34&

ELU 1.48% 2.42&
SELU 1.46 2.30
tanh 1.85 2.08

TABLE IV
LOSS FUNCTION COMPARISON

Loss Functions Loss Val. Loss
MSE 1.70% 1.70&
MAE 1.73% 1.75&
MSLE 2.32% 2.24&
SCC 1.8 5.4
CP 9.35 12.02

purposes the Jupyter Notebook interactive computational en-
vironment has been utilized.

TABLE V
MODEL PARAMETERS

Parameter Values
Optimiser Adam

Loss Function Mean Absolute Error (MAE)
Activation Sigmoid
Iterations 50

Algorithm 2 Master Algorithm
1: TrainAndValidate (trainingData, testData)
2: model← sequential()
3: cell← 0
4: activation← sigmoid
5: loss← mae
6: optimizer← Adam
7: epochs← 100
8: Get input shape from trainingData
9: Get number size of cell recurrent state

10: Create new LSTM unit
11: Assign cell and input shape
12: Add LSTM unit to model
13: Create new Dense Layer
14: Add Dense layer to model
15: Set activation for Dense layer
16: Compile model using Optimiser and Loss
17: repeat
18: /*Fit Model*/
19: for i← 1, epochs do
20: Evaluate Loss
21: Evaluate Validation Loss
22: Evaluate Accuracy
23: Evaluate Validation Accuracy
24: end for
25: until All epochs completed
26: Return (Loss, ValLoss, Acc, ValAcc)

It has been shown that a variant of the LSTM approach -
the stacked LSTM (SLSTM) network is able to learn higher
level temporal patterns without prior knowledge, and thus can
potentially outperform a single layer LSTM network [20].
Another alternative is to use Bidirectional LSTM (BLSTM)
networks, which can improve performance of the initial model
based on a single layer LSTM network [11]. Although the
initial model that operates with the sigmoid activation unit, the
MAE loss function and the Adam optimiser has been proven to
be effective and well performing, we have extended our study
further by also evaluating the BRNN and SLSTM variants of
RNN networks (see Table VI).

The comparative results of these evaluations demonstrate
that neither of those approaches can outperform a single layer
LSTM network. Instead, they introduce additional overheads
to the training process, which slow it down, and increase



memory requirement. Although the BRNN network can poten-
tially improve the performance on some occasions, our study
revealed no significant benefit of using the BRNN alternative
to the initially proposed one.

C. Anomaly Detection Phase

Having established the best performing composition of the
computational model that is going to be used for real-time
engineering data analysis, we were in the position to evaluate
the developed framework on three different datasets. These
datasets are described in the following subsections.

1) Identification of Anomalies: Compressor and Turbine
datasets: It is a common practice that most of the sensory
data acquired when monitoring the condition of an oil and gas
offshore platform are stored in a data historian system, such as
the PI system, which acts as a repository to store engineering
data gathered from one or multiple installation. In this study
we used the historical sensor data obtained from a gas turbine
and from a high pressure oil-flooded screw compressor that
operated on an offshore installation in the North Sea. This data
is transmitted onshore in in real-time via a satellite Internet
link.

Most of the turbine’s sensory data goes straight to
the connected High Frequency Machine Monitoring System
(HFMMS) as illustrated in Figure 2. This happens due to the
high volume of data generated every fraction of a seconds,
which makes it almost impossible for any other system to
handle such a volume. These sensor values are then passed
onto a Conditional Monitoring System (CMS) to carry out
the actual monitoring aimed at preventing failures of the
turbine. The CMS uses a variety of measures and thresholds
for assuring safety conditions and efficiency of the turbine.
The sensory data that is not essential for the operation of
CMS, but needed for controlling different units of the turbine,
is passed straight into the human machine interface (HMI)
system running the SCADA and OPC (OLE for Process
Control) Server software. The HMI system can read all sensor
values from both turbine and compressor, as well as being able
to send some feedback signals to certain activators for control
purposes. The OPC Server writes data to an OPC Client, which
in turn store the data on the historian.

We used the anomaly detection model described in the
previous section to identify anomalous values in the voltage
output of the gas turbine using data from 32 input sensors
acquired over a four-month period. The second data set used in

TABLE VI
UNIT COMPARISON

Dataset Basic LSTM Bidirectional Stacked LSTM

Loss
Val.
Loss Loss

Val.
Loss Loss

Val.
Loss

Beijing
PM2.5 1.78% 1.70% 1.77% 1.69% 1.84% 1.77%
Appliances

energy
prediction 2.65% 4.18% 2.68% 4.27% 2.69% 4.55%

Fig. 2. Data Monitoring Flow

this study represents a case when abnormal levels of compres-
sor discharge pressure need to be found using the data gathered
from 26 sensors over a two-week period. The developed
framework tries to identify anomalies in these datasets through
prediction of expected trends in output voltage trend for the
gas turbine (using a 15-day interval) and in discharge pressure
for the compressor (using a 7-day interval). The length of the
prediction interval is determined by the size of the dataset
used.

2) Classification of Anomalies: Interference Dataset: The
next dataset records the effect of an interference-suppression
capacitor in terms of noise reduction at different frequencies
when no capacitor is present, and when the capacitor is
connected to the bonding or to the engine cylinders [23].
Anomalies in interference voltage can be detected in any of
the three options of connecting the interference-suppression
capacitor when the noise level is changing too abruptly (Figure
3). The same anomaly detection computational model based on
the LSTM network built earlier is applied to this experimental
dataset.

In Figure 3, the small, medium and large diapasons of
frequency values are 10, 20 and 50 MHz respectively - these
are shown by the moving averages (MA) curves; the blue
(main) curve represent experimental data related to interfer-
ence voltage at different frequencies. Instead of using a single
value, the intervals of 1.25, 2.5 and 7.5 dBV are used to
compare between the actual and the modelled values. If the
differences are larger or smaller than the specified limits in at
least two of the three ranges of frequencies, then the value is
considered anomalous.

Figure 3 is derived using the data on the interference voltage
(y-axis) for frequencies above 65 MHz when interference-
suppression capacitor connected to the engine is used. As
shown, the anomalous frequency diapasons (x-axis) are 53-56,
133-150 and 177-180; this equates to the frequency ranges of
86.97-87.30, 96.25-98.34 and 101.76-102.15 MHz. As can be



Fig. 3. Possible anomalous interference

seen from Figure 3, five potential anomalies are identified. The
result coincides with the expert knowledge obtained and can
be attributed to excessive noise.

III. EXPERIMENTAL RESULTS

For each dataset described above different prediction period
has been tested depending on the number of items in the
dataset. One of the challenges faced during the framework
testing stage was data overfitting. In the scenarios when the
training dataset was over 80 percent of the total available
records in the dataset, an increasing accuracy of the model was
observed with each training iteration, whereas the validation
accuracy was gradually dropping. By keeping the training and
test proportion at around the 80:20 level, we could success-
fully predict future values, and as a consequence anomalous
readings, for all the datasets used in this study. In Figures 4
- 9 the x-axis represent the total number of iteration and the
y-axis represent either accuracy or loss percentages.

After going through the pre-processing phase to prepare
the data for building anomaly detection models, we could
train and test the models with exceptionally high accuracy and
with minimal effort. For the compressor dataset , the loss and
validation loss characteristics of nearly 0.01 were obtained, as
it is illustrated in Figure 4.

The same characteristics for the turbine dataset were even
closer to zero, being only 0.001 (see Figure 5).

Since the compressor dataset was smaller (covering the
sampling period of 2 weeks), we could successfully predict
the system operation for the next 7 days with the accuracy of
100 percent (see Figure 6).

On the other hand, for the turbine dataset covering the
period of over 4 months, the prediction of its operation in the
following 15 weeks was obtained with the validation accuracy
of 77.6 percent. Although the model accuracy was higher
(around 87 percent), in order to avoid data overfitting the

Fig. 4. Compressor Loss

Fig. 5. Turbine Loss

anomaly detection model could not be improved any further
(see Figure 7).

To evaluate the framework further and to test the classifi-
cation capability of the designed anomaly detection model in
classifying non time-series datasets, the electromagnetic inter-
ference dataset was used. In addition to detecting anomalies
in this case study, the task was to segregate them into three
classes corresponding to difference values of the interference-
suppression capacitance used. The Interference dataset was
not in the form of a time series, so during the conversion
stage of the data pre-processing phase the datasets was re-
framed to enable the use of the same anomaly detection model.
After training the model and testing it against the interference
voltage dataset, the resultant loss and validation loss of 0.0003
were obtained (see Figure 8); also, the accuracy characteristics
for the dataset attained 100 percent, as shown in Figure 9.

IV. CONCLUSION

In this paper a generic framework has been proposed aimed
at detecting anomalies in real-time engineering data acquired
in the process of condition monitoring. The framework enables
the utilization of various deep learning techniques in building a
generic anomaly detection model capable of not only identify-
ing the presence of anomalous values in the analyzed datasets,



Fig. 6. Compressor Accuracy

Fig. 7. Turbine Accuracy

but of classifying these values for more effective condition
monitoring.

When building such a model, three types of recurrent neural
network units were compared: a recurrent neural network
(RNN), a long short-term memory (LSTM) network, and a
gated recurrent unit (GRU). Each of these units has been
evaluated on two benchmark public datasets (Beijin’s air pollu-
tion and Appliances energy prediction datasets) in combination
with various objective functions, with different Output layers
(referred to as optimizers) that utilize a set of activation
functions. The experimental results of this comparative study
revealed that the LSTM network unit that uses the sigmoid
activation function, the Mean Absolute Error as the objective
Loss function and the Adam optimizer showed the best per-
formance and results in a high model accuracy of over 77 %
for the datasets it has been tested on.

Having determined the best performing combination of
the neural network components, a computational anomaly
detection model was built within the framework, which was
evaluated on real-life engineering datasets comprising the
time-series datasets from an offshore installation in North
Sea and another dataset from the automotive industry, which
enabled exploring the anomaly classification capability of the

Fig. 8. Interference Loss

Fig. 9. Interference Accuracy

proposed framework.
One possible direction of future research is to adapt the

framework for detecting anomalies in much larger datasets
coming from other application domains and acquired by using
modern instrumentation technologies, including Internet of
Things and wireless sensor networks.
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