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Abstract

Multi-strain pandemics have emerged as a major concern. We introduce a new model for

assessing the connection between multi-strain pandemics and mortality rate, basic repro-

duction number, and maximum infected individuals. The proposed model provides a general

mathematical approach for representing multi-strain pandemics, generalizing for an arbi-

trary number of strains. We show that the proposed model fits well with epidemiological his-

torical world health data over a long time period. From a theoretical point of view, we show

that the increasing number of strains increases logarithmically the maximum number of

infected individuals and the mean mortality rate. Moreover, the mean basic reproduction

number is statistically identical to the single, most aggressive pandemic strain for multi-

strain pandemics.

1 Introduction and related work

Over the centuries, humanity has experienced multiple types of disasters [1–4]. One of them is

pandemics (local and global) that cause significant mortality [5]. Moreover, recent studies

show that the occurrence rate of new pandemics has increased in the last century, resulting in

an increased number of pandemics and their influence [6]. Some of these pandemics exert a

global influence such as HIV/AIDS that killed 680 thousand individuals only in 2020 accord-

ing to the World Health Organization (WHO) or the COVID-19 pandemic that killed 4.5

million individuals and infected around 440 million individuals worldwide during its first

18-months starting in early 2019 [7]. As a result, the need for policymakers to be able to con-

trol the spread of a pandemic is becoming more relevant by the day [8].

Moreover, due to multiple socioeconomic processes, there is an increase in the speed at

which new infections are spread [9]. To be exact, globalization has facilitated strain spread

among countries through the growth of trade and travel [10]. Diseases are usually caused by

pathogenic agents, including viruses and bacteria, which can be denoted as multiple variants,

generally named strains. The emergence of a multi-strain pathogen imposes a new challenge

to control the spread of disease [11]. Since new strains occur as it reproduces in new hosts, the

large population of infected individuals offers a fertile ground for new strains to appear [12,
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13]. For example, in the case of COVID-19, already in the first year and a half of the pandemic,

four (globally common) strains were detected [7].

Most diseases have several pathogenic strains, which can make it difficult to fight the disease

and lead to complex dynamics. However, their dynamic properties have not been adequately

studied [11]. Hence, a better understanding of future pandemics with several strains is a neces-

sary step to ensure the ability of the global community in handling the next pandemic. One

approach to tackle this challenge is using epidemiological-mathematical models, which allows

us to simulate and investigate multiple scenarios in a safe, cheap, and manageable environ-

ment. A large portion of these epidemiological models are based on the Susceptible-Infectious-

Removed (SIR) model [14]. Over the years, researchers have introduced different extensions to

the SIR model in order to obtain a more accurate model for biological [15], economic [16, 17]

spatial [18–20], and pandemic management [8, 21, 22] properties of a particular disease or

socio-epidemiological scenario. These extensions are natural as the SIR disease transmission

model is derived assuming multiple strong assumptions. For example, the SIR model assumes

that the population is large and dense or that the infection rate is constant [14]. The authors

extend this basic model in many directions by relaxing some assumptions. As such, the mathe-

matical analysis quickly becomes significantly more sophisticated [23].

Cooper et al. [24] used the SIR model on the COVID-19 pandemic while relaxing the

assumption that the population is mixing homogeneously and that the total population is con-

stant in time. The authors show that the model has a fair fitting on six countries (China, South

Korea, India, Australia, USA, Italy).

Another extension of the SIR model for the Polio pandemic is proposed by Agarwal and

Bhadauria [25]. The authors introduced the fourth stage—vaccinated individuals, resulting in

a SIRV model. The numerical simulation of the model results in a promising outcome. None-

theless, the evaluation is limited to a small size (up to a few hundred individuals), and the gen-

eralization to larger populations can be less accurate due to the increased chance that a strain

occurs during the pandemic and changes its dynamics [13].

Similarly, Bunimovich-Mendrazitsky and Stone [26] proposed a two-age group, extension

(adults and children), for the Polio pandemic spread. Using the model in [26], the extraordi-

nary jump in the number of paralytic polio cases that emerged at the beginning of the 20th

century can be explained. The model does not take into consideration some strains of Polio

[27] which results in an increased divergence from the actual dynamics over time.

In addition, one of the main extensions of the SIR model is the SIRD (D-Dead) model, as

this model is able to represent the reinfection process and the death of individuals due to the

pandemic [28–30]. This model better represents the biological-clinical dynamics in human

populations as the long-term immunity memory is reduced over time making the individual

susceptible again [31, 32]. We based our model on this extension as it allows reinfection in sev-

eral strains of the original strain.

The mentioned models and other models that extend the SIR model can fairly fit and pre-

dict the course of a pandemic’s spread [33, 34]. However, the models are not fitted to capture

sharp changes in the dynamics due to pandemic modifications. One reason is the lack of mod-

elization in multi-strain pandemics.

Indeed, the occurrence of pandemics with multiple mutations is common. For example,

Minayev and Ferguson [35] investigate the interaction between epidemiological and evolu-

tionary dynamics for antigenically variable pathogens. The authors proposed a set of relatively

simple deterministic models of the transmission dynamics of multi-strain pathogens which

provide increased biological realism. However, these models assume clinical-epidemiological

dynamics that hold only for a subset of pathogens with cross-immunity of less than 0.4 [35]. In

a similar manner, Dang et al. [36] developed a multi-scale immuno-epidemiological model of
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influenza viruses including direct and environmental transmission. The authors showed how

two time-since-infection structural variables outperform classical SIR models of influenza.

During the modelization, they used a within-host model that holds only for the influenza pan-

demic. In addition, Gordo et al. [12] proposed a SIRS model with reinfection and selection

with two strains. The authors used a metapopulation of individuals where each individual is

depicted as a vector in the metapopulation. This model has been validated on the influenza

pandemic in the State of New York (USA), based on the genetic diversity of influenza gathered

between 1993 and 2006, showing superior results compared to other SIR-based models [12].

Nonetheless, the sophistication of the model is both in its strength and shortcoming, from an

analytical point of view, due to its stochastic and chaotic nature.

Moreover, the usage of multi-strain models that are used for specific pathogens is not

restricted to influenza. Marquioni and de Aguiar [37] proposed a model where a pandemic

starts with a single strain and the other strains occur in a stochastic manner as a by-product of

the infection. The authors fitted their model onto the COVID-19 pandemic in China showing

improved results when strain dynamics are taken into consideration compared to the other

case [37]. Likewise, Khayar and Allali [38] proposed a SEIR (E-exposed) model for the

COVID-19 pandemic with two strains. The authors analyzed the influence of the delay

between exposure and becoming infectious on several epidemiological properties. Further-

more, they proposed an extension to the model (in the Single and two mutations model S1

Appendix) for multi-strain dynamics. In their model, an individual can be infected only once

and develop immunity to all strains [38]. In our model, we relax this assumption, allowing

individuals to be infected once by each strain. Comparably, Gubar et al. [39] proposed an

extended SIR model with two strains with different infection and recovery rates. The authors

considered a group of latent individuals who are already infected but do not have any clinical

symptoms.

In addition, Arruda et al. [40] proposed an SEIR model with an arbitrary number of muta-

tions and reinfection of the same strain dynamics. The authors proposed an optimal control

for the non-pharmacological lockdown policy and validated their model (with and without

mitigation) on the COVID-19 pandemic for both England and the state of Amazonas, Brazil.

The authors showed that their model can derive optimal mitigation strategies for any number

of viral strains, whilst also evaluating the effect of distinct mitigation costs on the infection lev-

els. On the one hand, Arruda et al.’s model takes into consideration an exposed phase (which

is commonly found in multiple pandemics [38, 41]) and reinfection of the same strain after

some period of time which are not included in our model. On the other hand, their model

does not take into consideration the order of infection by different strains which is one of the

main contributions of our model.

Furthermore, Fudolig et al. [42] proposed a multi-strain SIR based model with selective

immunity by vaccination. The authors examined the influence of the introduction of a new

strain. In particular, the authors examined the case where a new strain emerges in the popula-

tion while the preexisting strain is near to extinction or reached a global equilibrium. The

emergence of strains during the pandemic rather at the beginning, as suggested by the pro-

posed model, is more realistic. However, it is not in the scope of the proposed model which

aims to study the properties of a static number of strains.

Correspondingly, Aleta et al. [43] extended the SIRS model on a metapopulation where

individuals are distributed in sub-populations connected via a network of mobility flows. They

show that spatial fragmentation and mobility play a key role in the persistence of the disease

the maximum of which is reached at intermediate mobility values. Their model assumes a

fixed number of locations (using a graph-based model) such that each location has a unique

strain-like simulation. Furthermore, Di Giamberardino et al. [44] proposed a multi-group
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model formed by interconnected SEIR-like structures which include asymptomatic infected

individuals. The authors fitted the data to the COVID-19 pandemic in Italy to study the influ-

ence of different IPs on the pandemic spread. The interconnection between the groups in the

model is represented by the mobility of individuals between them. The model somewhat repre-

sents multi-strains as each group has different epidemiological parameter values and the trans-

formation between them. However, the authors do not handle the case where an individual

has been infected by one strain and later infected by others which are known from multiple

clinical and biological studies [45–48]. Khyar and Allali [38] studied the global stability of the

two-strain epidemic model, extending the SEIR with two types of exposed and infected indi-

viduals, with two general incidence functions. The authors investigate the basic reproduction

number of each strain separately and its effect on the disease-free equilibrium. Roche et al.

[49] proposed a stochastic individual-based model for avian influenza viruses, implemented

using the agent-based approach. The authors show that their model extends the stochastic SIR

model for multi-strain pandemics. Nevertheless, this approach is stochastic in nature, which

makes the analytical investigation difficult for multiple pandemic parameters, such as stability

and bifurcation.

In this research, we developed an extension of the SIRD-based model which allows an arbi-

trary number of strains |M| that originated from a single strain and is generic for any type of

pathogen. The model allows each strain to have its unique epidemiological properties. In addi-

tion, we developed a computer simulation that provides an in silico tool for evaluating several

epidemiological properties such as the mortality rate, max infections, and average basic repro-

duction number of a pandemic. The proposed model allows for a more accurate investigation

of the epidemiological dynamics while keeping the data required to use the model relatively

low. The main contribution of the proposed model compared to other SIR-based multi-strain

models is two-fold: the proposed model does not assume any pathogen-specific properties

keeping it as generic as possible by the standard SIR model and the order of infection from dif-

ferent strains is taken into consideration.

This paper is organized as follows: In Section 2, we introduce our multi-strain epidemiolog-

ical model. Based on the model, we present a numerical analysis of three epidemiological prop-

erties as a function of the number of strains (|M|). In Section 3, we present the implementation

of the model for the case of two strains (|M| = 2) and provide an analytical analysis of the stable

equilibria states of the model and a basic reproduction number analysis. Afterward, we show

the ability of the model to fit historical epidemiological data known to have two strains. In Sec-

tion 4, we discuss the main advantages and limitations of the model and propose future work.

2 Multi-strain model

The multi-strain epidemiological model considers a constant population with a fixed number

of individuals N. We assume a pandemic has M≔ {1, . . ., m} strains. Moreover, two options

are possible: a) strains [2, . . .m] are mutations arising from one pathogen as a result of the

mutation process; b) the disease is characterized by the emergence of m pathogenic strains but

an individual cannot be infected by more than one strain of the virus at a time.

Each individual belongs to one of the three groups: 1) Infectious with strain i 2M and his-

tory of recoveries J 2 P(M) (the power set of the strain and its strain set) represented by RJIi,
which maps to the infection (I) state in the SIRD model; 2) Recovered with history J 2 P(M)

represented by RJ, which maps to the recovered (R) state in the SIRD model; and 3) Dead (D)

such that

N ¼ SJ2PðMnfigÞ;i2MðRJIiðtÞÞ þ SJ2PðMÞðRJðtÞÞ þ DðtÞ; ð1Þ
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where i 2M is the index of a strain and J 2 P(M) is the set of strains an individual already suf-

fered from. For example, R; is the group of individuals that do not have a recovery history and

are susceptible to all |M| strains which is a private case of RJ where J = ;, which is isomorphic

to the susceptible (S) state in the SIRD model. The proposed model for |M| = 1 is isomorphic

to the SIRD model (the proof is provided in the Section 2 in S1 Appendix). A schematic transi-

tion between disease stages of an individual is shown in Fig 1.

Individuals in the Recovered (RJ) group have immunity for the strains k 2 J and are suscep-

tible to the infection strains MnJ. When an individual in this group is exposed to a strain i 2
MnJ, the individual is transferred to the Infectious with history of recoveries group (RJIi) at a

rate βJ,i. The individual stays in this group on average γJ,i days, after which the individual is

transferred to the Recovered group (RJ [ {i}) or the Dead group (D). Therefore, at a rate of (1 −
ϕJni), of infection by strain i with a history of recoveries from strains J, individuals remain seri-

ously ill or die while others recover. The recovered are again healthy, no longer contagious,

and immune from future infection of the same strain. The epidemiological dynamics are

described in Eqs (2)–(4).

In Eq (2),
dRJ IiðtÞ

dt is the dynamical amount of individuals that recovered from a group of

strains J and are infected with a strain i over time. It is affected by the following two terms.

First, individuals who recovered from group J of strains become infected with strain i, with

rate βJ,i. These individuals can be infected by any individual with a strain i who has recovered

from any group K of strains so that i =2 K. Second, individuals recover from strains J [ {i} with

rate γJ,i. For each strain i, the group i can be any subgroup of the group M, so that i =2 J.

dRJIiðtÞ
dt

¼ � gJ;iRJIiðtÞ þ bJ;iRJðtÞ
X

K2PðMÞ;i=2K

RKIiðtÞ: ð2Þ

Fig 1. Schematic view of transition between disease stages. The red arrows indicates that individuals from the source stage can be transferred to the dead stage.

Individuals in RJIi stages are necessarily transferred to the respective RJ[i stages (or dead stage), while individuals in the RJ stages move to RJIl stage if they are infected

by an individual that is infectious in strain l 2M.

https://doi.org/10.1371/journal.pone.0260683.g001
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In Eq (3),
dRJ ðtÞ
dt is the dynamical amount of individuals that recovered from a group of strains

J 2 P(M) over time. It is affected by the following two terms. First, for each strain i 2 J, an indi-

vidual who has recovered from group Jn{i} of strains and is infected with strain i, recovers at

rate γJn{i},i with probability of ϕJn{i},i. Second, individuals infected by strain i with rate βJ,i.
These individuals can be infected by any individual with a strain i who has recovered from any

group K of strains, so that i =2 K.

dRJðtÞ
dt
¼
X

i2J

gJnfig;i�Jnfig;iRJnfigIiðtÞ
� �

�
X

i2MnJ

bJ;iRJðtÞ
X

K2PðMÞ;i=2K

RKIiðtÞ

 !

: ð3Þ

In Eq (4),
dDðtÞ
dt is the dynamical amount of dead individuals over time. For each strain i, and

for each group Jn{i}, infected individuals that do not recover are dying at rate γJn{i},i with the

complete probability (1 − ϕJn{i},i).

dDðtÞ
dt
¼

X

i2M;J2PðMÞ

gJnfig;ið1 � �Jnfig;iÞRJnfigIiðtÞ: ð4Þ

The dynamics of Eqs (2)–(4) are summarized in Eq (5).

dRJIiðtÞ
dt

¼ � gJ;iRJIiðtÞ þ bJ;iRJðtÞ
P

K2PðMÞ;i2KRKIiðtÞ;

dRJðtÞ
dt

¼
X

i2J
ðgJnfig;i�Jnfig;iRJnfigIiðtÞÞ �

P
i2MnJðbJ;iRJðtÞ

P
K2PðMÞ;i2KRKIiðtÞÞ;

dDðtÞ
dt

¼
P

i2M;J2PðMÞgJnfig;ið1 � �Jnfig;iÞRJnfigIiðtÞ;

ð5Þ

The initial conditions of Eq (5) are defined for the beginning of a pandemic as follows:

R�ð0Þ ¼ N � m; 8i 2 M : R�Iið0Þ ¼ 1; 8J 2 PðMÞn� ^ i 2 MnJ : RJð0Þ ¼ RJIið0Þ ¼ 0; Dð0Þ ¼ 0: ð6Þ

2.1 Epidemiological properties

Based on the proposed model, and since for all the cases where |M| > 2 it is extremely hard (or

even impossible) to obtain an analytical result, we evaluated three important epidemiological

properties to see the influence of the number of strains on the pandemic spread: mean basic

reproduction number [50], mortality rate [51, 52], and a maximum number of the infectious

[16, 53]. Formally, these properties can be defined as follows.

First, the mean basic reproduction number is the mean of the basic reproduction number

over time during the course of the pandemic. Therefore, it takes the form:

E½R0ðtÞ�≔E 8J 2 PðMÞ : Si2M

RJIiðt þ 1Þ � RJIiðtÞ
RJ;iðt þ 1Þ � RJ;iðtÞ

 !" #

:

Second, the mortality rate is defined as the number of deaths due to the pandemic divided

by the number of infections at some period of time. If not stated otherwise, we assume the

mortality rate refers to the entire duration of the pandemic. Hence, it takes the form:

mortality rateðt0; t1Þ≔
Dðt1Þ � Dðt0Þ

SJ2PðMÞjJj � ðRJðt1Þ � RJðt0Þ
:

Finally, the maximum number of infectious refers to the cumulative number of infections that
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occur during the pandemic. Thus, it takes the form:

maximum number of infectiousðt0; t1Þ≔max
t2½t0 ;t1 �

ð8J 2 PðMÞ : Si2MðRJIiðtÞÞÞ:

In addition, we define the most aggressive strain using the following metric: a strain k is con-

sidered more aggressive than strain l if and only if:

jj½8J 2 PðMÞ : ðbJ;k; 1 � gJ;k; 1 � �J;kÞ�jj > jj½8J 2 PðMÞ : ðbJ;l; 1 � gJ;l; 1 � �J;lÞ�jj;

using the L3 norm. The motivation of this metric is that a higher infection rate, longer recovery

rate, and higher death rate are associated with a more aggressive strain. However, due to the

complexity of the pandemic’s spread dynamics, it is not straightforward which one of these

properties is more important if any, and therefore the comparison between two strains is per-

formed on the three properties simultaneously.

2.2 Numerical simulation

Using numerical simulation we aim to study the connection between the number of strains

|M| and the proposed epidemiological properties. We numerically solved the model presented

in Eq (5) for the case where |M|2 [1, . . ., 10] using the fourth-order Runge-Kutta algorithm

[54]. The model parameters are generated randomly as follows. The infection rates βJ,i are uni-

formly distributed in [0.01, 0.10]; the recovery rates γJ,i are uniformly distributed in [0.03,

0.33]; and the recovery probabilities ϕJ,i are uniformly distributed in [0.90, 0.99] for each

strain. The ranges were picked to simulate a large space of possible pandemics, without taking

into consideration biological properties associated with cross-immunity between strains. In

addition, we assume the population size is 10 million individuals to approximate (in order of

magnitude) a European metropolitan area. The simulation begins with one person getting

infected by each strain. In addition, it is assumed that no individuals have recovered or died at

the beginning of the pandemic. Formally, the initial conditions take the form:

R�ð0Þ ¼ N � jMj; 8i 2 M : R�Iið0Þ ¼ 1; Dð0Þ ¼ 0; 8J 2 PðMÞn�; i 2 M : RJIi ¼ RJ ¼ 0:

Moreover, due to the stochastic nature of the simulation originating in the large ranges of

values allocated to the model parameters, the simulation is repeated 1000 times, and the

mean ± standard division is presented. Using this generation we compute the connection

between |M| and the mean basic reproduction number, max infected individuals, and mean

mortality rate.

The mean basic reproduction number (E[R0]) has been evaluated for each simulation,

divided into two cases: the case where each strain has unique parameter values and the case

where the parameters of these strains are replaced with the parameter value of the most aggres-

sive strain, defined in Section 2.1, as shown in Fig 2.

The maximum number of infected individuals as a function of the number of strains (|M|)

has been computed and shown in Fig 3. The solid (black) line with the dots represents the

numerically calculated values with one standard deviation. Moreover, the fitting function is

calculated using the least mean square (LMS) method [55] and shown as the dashed (blue)

line. In order to use the LMS method, one needs to define the family function approximating a

function. The family function that has been chosen is f(m) = p1 log(m)+ p2, resulting in

E½R0�ðmÞ ¼ 0:103logðmÞ þ 0:068: ð7Þ

The fitting function was obtained with a coefficient of determination R2 = 0.79.
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Fig 2. The mean base reproduction number (E[R0(t)]) as a function of the number of strains (|M|). The black (with

circle markers) line indicates the baseline dynamics of the simulation where each strain has unique parameter values.

On the other hand, the red (with triangle markers) line indicates the case where all the strain parameters values have

been replaced with one of the most aggressive strains. The results are mean ± standard division for n = 1000

repetitions.

https://doi.org/10.1371/journal.pone.0260683.g002

Fig 3. Maximum number of infectious individuals at the same time as a function of the number of strains (|M|).

The results are mean ± standard division for n = 1000 repetitions.

https://doi.org/10.1371/journal.pone.0260683.g003
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The mean mortality rate as a function of the number of strains has been computed and pre-

sented in Fig 4. Similarly, the dots are the calculated values from the simulator and the dotted

line is a fitting function that is computed using the LMS with the family function f(m) =

p1log(m) + p2, resulting in

E½R0�ðmÞ ¼ 0:0341logðmÞ þ 0:0124: ð8Þ

The fitting function was obtained with a coefficient of determination R2 = 0.89.

3 Two strain model

The two strain epidemiological model considers a constant population with a fixed number of

individuals N. We assume a pandemic has two strains M = {1, 2}. We define a system of eight

ordinary differential equations (ODEs) corresponding to eight possible epidemiological states:

susceptible (R;), infected by strain 1 (R;I1), infected by strain 2 (R;I2), recovered from strain 1

(R{1}), recovered from strain 2 (R{2}), recovered from strain 1 and infected by strain 2 (R{1}I2),

recovered from strain 2 and infected by strain 1 (R{2}I1), recovered from both strains (R{1,2}),

and dead (D). The full explanation of how one obtains the model is provided in the Section 1

in S1 Appendix. A schematic transition between disease stages of an individual for the case of

|M| = 2 is shown in Fig 5. Thus, the model for two strains is described by eight equations as

Fig 4. Mortality rate as function of the number of strains (|M|). The results are mean ± standard division for

n = 1000 repetitions.

https://doi.org/10.1371/journal.pone.0260683.g004
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follows.

dR;I1ðtÞ
dt

¼ b;;1ðR;I1ðtÞ þ Rf2gI1ðtÞÞR;ðtÞ � g;;1R;I1ðtÞ;

dRf2gI1ðtÞ
dt

¼ bf2g;1ðRf2gI1ðtÞ þ R;I1ðtÞÞRf2gðtÞ � gf2g;1Rf2gI1ðtÞ;

dR;I2ðtÞ
dt

¼ b;;2ðR;I2ðtÞ þ Rf1gI2ðtÞÞR;ðtÞ � g;;2R;I2ðtÞ;

dRf1gI2ðtÞ
dt

¼ bf1g;2ðRf1gI2ðtÞ þ R;I2ðtÞÞRf1gðtÞ � gf1g;2Rf1gI2ðtÞ;

dR;ðtÞ
dt
¼ � R;ðtÞðb;;1ðR;I1ðtÞ þ Rf2gI1ðtÞÞ þ b;;2ðR;I2ðtÞ þ Rf1gI2ðtÞÞÞ;

dRf1gðtÞ
dt

¼ g;;1�;;1R;I1ðtÞ � bf1g;2ðRf1gI2ðtÞ þ R;I2ðtÞÞRf1gðtÞ;

dRf2gðtÞ
dt

¼ g;;2�;;2R;I2ðtÞ � bf2g;1ðRf2gI1ðtÞ þ R;I1ðtÞÞRf2gðtÞ;

dRf1;2gðtÞ
dt

¼ gf2g;1�f2g;1Rf2gI1ðtÞ þ gf1g;2�f1g;2Rf1gI2ðtÞ;

dDðtÞ
dt
¼ g;;1ð1 � �;;1ÞR;I1ðtÞ þ gf2g;1ð1 � �f2g;1ÞRf2gI1ðtÞ

þ g;;2ð1 � �;;2ÞR;I2ðtÞ þ gf1g;2ð1 � �f1g;2ÞRf1gI2ðtÞ:

ð9Þ

The initial conditions of Eq (9) are defined for the beginning of a pandemic as follows:

R�ð0Þ ¼ N � 2; R�I1ð0Þ ¼ 1; R�I2ð0Þ ¼ 1;

Dð0Þ ¼ Rf1gð0Þ ¼ Rf2gð0Þ ¼ Rf1;2gð0Þ ¼ Rf1gI2ð0Þ ¼ Rf2gI1ð0Þ ¼ 0
ð10Þ

Fig 5. Schematic view of transition between disease stages in the case where |M| = 2.

https://doi.org/10.1371/journal.pone.0260683.g005
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Moreover,

N ¼ R� þ R�I1 þ R�I2 þ Rf1gI2 þ Rf2gI1 þ Rf1g þ Rf2g þ Rf1;2g þ D: ð11Þ

We use a model that does not allow temporary cross-immunity and without increased suscep-

tibility to the second infection.

For |M| = 2, we are interested in the equilibrium states of the model, especially stable states

in which a pandemic can persist for a long time. In addition, we investigate the basic reproduc-

tion number (R0), as it is an indicator of a pandemic outbreak (R0 > 1), and is considered the

main characteristic of a pandemic.

3.1 Equilibria

The equilibrium state of the model is the state in which the gradient is equal to zero [56].

Hence, Eq (12) takes the form:

� R;ðb;;1ðR;I1 þ Rf2gI1Þ þ b;;2ðR;I2 þ Rf1gI2ÞÞ ¼ 0;

b;;1ðR;I1 þ Rf2gI1ÞR; � g;;1R;I1 ¼ 0;

b;;2ðR;I2 þ Rf1gI2ÞR; � g;;2R;I2 ¼ 0;

g;;1�;;1R;I1 � bf1g;2ðRf1gI2 þ R;I2ÞRf1g ¼ 0;

g;;2�;;2R;I2 � bf2g;1ðRf2gI1 þ R;I1ÞRf2g ¼ 0;

bf1g;2ðRf1gI2 þ R;I2ÞRf1g � gf1g;2Rf1gI2 ¼ 0;

bf2g;1ðRf2gI1 þ R;I1ÞRf2g � gf2g;1Rf2gI1 ¼ 0;

gf2g;1�f2g;1Rf2gI1 þ gf1g;2�f1g;2Rf1gI2 ¼ 0;

g;;1ð1 � �;;1ÞR;I1 þ gf2g;1ð1 � �f2g;1ÞRf2gI1

þg;;2ð1 � �;;2ÞR;I2 þ gf1g;2ð1 � �f1g;2ÞRf1gI2 ¼ 0:

ð12Þ

From Eq (12), the pandemic-free equilibria is obtained where

R�I�1 ¼ R�I�2 ¼ Rf1gI�2 ¼ Rf2gI�1 ¼ 0;

since there are no more infected individuals in this state, which means all strains have gone

extinct. Therefore, the equilibria states take the form:

R�
�
¼ m1; R�f1g ¼ m2; R�f2g ¼ m3; R�1;2 ¼ m4; D� ¼ N � S4

i¼1
mi: ð13Þ

According to [56], this set of states (Eq (13)) is the only asymptotically stable equilibria of the

model. Nonetheless, the equilibria states where strain i = 1 is over are obtained where

R�I�1 ¼ Rf2gI�1 ¼ 0:

These equilibria states are epidemiologically interesting as the extinction of one of two strains

can be a turning point in multiple pandemic management policies. Thus, it is assumed (with-

out loss of generality) that i = 1. Hence, from the fourth and sixth equations, one obtains that

RI�
2
¼ Rf1gI�2 ¼ 0:

Accordingly, the system converges to the pandemic-free equilibria.

In addition, while other equilibria states theoretically exist (by relaxing the previous

assumptions), from an epidemiological point of view, the unstable equilibria are obtained in

the middle of the pandemic. It is possible to see that it is enough that an individual may recover
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in order to diverge from each one of these equilibria states. As such, these equilibria obtained,

if any, do not provide a meaningful point in the pandemic’s dynamics.

3.2 Basic reproduction number

The basic reproduction number, R0, is defined as the expected number of secondary cases pro-

duced by a single (typical) infection in a completely susceptible population [57]. In the case of

a SIR-based model, the basic reproduction number indicates an epidemic outbreak if R0 > 1

or not if R0 < 1.

To find the basic reproduction number for two strains, we use the Next Generation Matrix

(NGM) approach [58]. First, we compute the new infections matrix

F ¼

b�;1R� 0 bf2g;1R� 0

0 b�;2R� 0 bf1g;2R�

bf2g;1Rf2g 0 bf2g;1Rf2g 0

0 bf1g;2Rf1g 0 bf1g;2Rf1g

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

: ð14Þ

Afterward, we compute the transfers of infections from one compartment to another matrix

V ¼

g�;1 0 0 0

0 g�;2 0 0

0 0 gf1g;2 0

0 0 0 gf2g;1

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

! V� 1 ¼

1=g�;1 0 0 0

0 1=g�;2 0 0

0 0 1=gf1g;2 0

0 0 0 1=gf2g;1

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

: ð15Þ

Now, R0 is the dominant eigenvalue of the matrix [58].

G ¼ FV� 1 ¼

b�;1R�

g�;1

0
bf2g;1R�

gf1g;2
0

0
b�;2R�

g�;2

0
bf1g;2R�

gf2g;1

bf2g;1Rf2g
g�;1

0
bf2g;1Rf2g
gf1g;2

0

0
bf1g;2Rf1g
g�;2

0
bf1g;2Rf1g
gf2g;1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

ð16Þ
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which is obtained from the root of the representative polynomial:

0 ¼ l
4
� l

3
bf2g;1

gf1g;2
þ
bf1g;2

gf2g;1
þ
b�;1

g�;1

 !

þ

l
2

2
b�;2

g�;2

bf2g;1

gf1g;2
�
b�;2

g�;2

þ
bf1g;2

gf2g;1

b�;2

g�;2

�
bf1g;2

gf2g;1

bf1g;2

g�;2

þ
bf2g;1

gf1g;2

b�;1

g�;1

þ
bf1g;2

gf2g;1

b�;1

g�;1

�
bf2g;1

gf1g;2

 !

þ

l �
b�;2

g�;2

2 bf2g;1

gf1g;2
þ
bf1g;2

gf2g;1

bf1g;2

g�;2

bf2g;1

gf1g;2
� 2

b�;1

g�;1

b�;2

g�;2

bf2g;1

gf1g;2
þ
b�;1

g�;1

b�;2

g�;2

�
b�;1

g�;1

b�;2

g�;2

bf1g;2

gf2g;1
þ

 

b�;1

g�;1

bf1g;2

gf2g;1

bf1g;2

g�;2

þ
bf1g;2

gf2g;1

bf2g;1

gf1g;2
þ
b�;2

g�;2

bf2g;1

gf1g;2

!

þ

b�;1

g�;1

b�;2

g�;2

2 bf2g;1

gf1g;2
�
b�;1

g�;1

bf1g;2

gf2g;1

bf1g;2

g�;2

bf2g;1

gf1g;2
�
b�;2

g�;2

bf1g;2

gf2g;1
þ
bf2g;1

g�;1

bf2g;1

gf1g;2

bf1g;2

gf2g;1

bf1g;2

g�;2

:

ð17Þ

Using Matlab’s (version 2021b) symbolic programming, one is able to obtain the R0. Just find

the roots of the polynomial shown in Eq (17) and take the biggest one. This approach cannot

be generalized for more than two strains |M|> 2 as the NGM will be of size k × k where

k ¼ SjMji¼1
nx. Namely, the size of the NGM is larger than four and according to Galois theory

[59] and based on the Abel–Ruffini theorem [60], the roots of the representative polynomial of

the NGM cannot be obtained using radicals. This means one cannot provide a closed-form

formula for the eigenvalues of the NGM which are used to obtain R0.

3.3 Model validation

The model validation is divided into two phases: parameter estimation and historical fitting.

The parameter estimation method allows us to use of the proposed model on a specific pan-

demic and the historical fitting shows the ability of the proposed model to approximate real

pandemic spread dynamics given the obtained parameters.

3.3.1 Parameter estimation. The proposed epidemiological model parameter for the case

|M| = 2 is obtained by fitting the proposed model onto the historical data from April 1 (2020)

to December 1 (2020) of the UK by WHO [7], using the fourth-order Runge-Kutta [54] and

gradient descent [61] algorithms. These dates are picked as the population in the UK during

this period had not been vaccinated against the COVID-19 disease yet and a second strain (i.e.,

the COVID-19 UK Variant—B.1.1.7) appeared according to [62], which based their analysis

on clinical testing and later reverse engineering of the mutation’s appearance [63]. Both point

to the same period even though there is no full agreement on the specific dates of the appear-

ance of the mutation. Specifically, we randomly guess the values of the model’s parameters,

solving the system of ODEs using the fourth-order Runge-Kutta method and computing the

Gaussian (L2) distance from the historical data. In particular, we used the daily number of

infection, recovered, and deceased individuals. As such, the fitness function takes the form:

FðH; PÞ
½t0 ;tf �

≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S
tf
t¼t0ððH½S�ðtÞ � P½S�ðtÞÞ2 þ ðH½R�ðtÞ � P½R�ðtÞÞ2 þ ðH½I�ðtÞ � P½I�ðtÞÞ2Þ

q

; ð18Þ

where H[X](t) is the historical size of the population at the epidemiological state X at time t
and P[X](t) is the model’s prediction size of the population at the epidemiological state X at

time t. The model’s P[I] and P[R] refer to all states for the form RjIi and Rj, respectively.
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Afterward, we repeated this process while modifying the value of a single parameter by

some pre-defined value δ = 0.01, obtaining a numerical gradient. At this stage, we used the gra-

dient descent algorithm in order to find the values that minimize the model’s L2 distance from

the historical data using Eq (18). The process is stopped once the gradient’s (L1) norm is

smaller than some pre-defined threshold value � = 0.1. The entire process is repeated r = 100

times and the parameter values that are obtained most often are decided to be the model’s

parameter value. The values for (δ, �, r) are manually picked. A schematic view of the fitting

method is presented in Fig 6.

3.3.2 Historical fitting. In order to numerically evaluate the ability of the proposed model

to fit real epidemiological data, we decided to simulate the COVID-19 pandemic in the United

Kingdom (UK). This case is chosen due to the availability of epidemiological data and since a

COVID-19 strain is known to originate in the UK [7, 64]. Therefore, we computed the param-

eter values, assuming the initial conditions taking the form:

R�ð0Þ ¼ 67200000; R�I1ð0Þ ¼ 100; R�I2ð0Þ ¼ 1; Dð0Þ ¼ 0

Rf1gð0Þ ¼ Rf2gð0Þ ¼ Rf1;2gð0Þ ¼ Rf1gI2ð0Þ ¼ Rf2gI1ð0Þ ¼ 0:

ð19Þ

where R;(0) = 67200000 to represent the size of the UK population in the beginning of the pan-

demic. A summary of the obtained parameter values is shown in Table 1, such that 27% of the

random parameter value initial conditions converged to the values with dL2
¼ 0:089. Namely,

the model has a daily mean square error of 8.9%.

One needs to be cautious with this historical fitting of COVID-19 data due to historical

error in COVID-19 related death classification, undersampling of infected individuals, and

errors associated in identifying the strain individuals are infected with [65, 66]. These errors

may result in off representation of the epidemiological dynamics and as such wrong parameter

values. Nonetheless, COVID-19 is the most documented pandemic in history [67] and there-

fore it is the best candidate to use despite the problems associated with it.

A fitting dynamics between the historical data (circle, black) and the model’s prediction

(axes, blue) is shown in Fig 7, where the x-axis describes the time from September 1 (2020) to

December 1 (2020), and the y-axis describes the daily basic reproduction number (R0). The

historical basic reproduction number (R0) from WHO is computed using the following for-

mula R0ðtÞ≔
Iðtþ1Þ� IðtÞ
Rðtþ1Þ� RðtÞ :.

4 Discussion

We have developed a mathematical model and a computer simulation aiming at establishing

the connections between the number of pandemic disease strains and the pandemic’s spread

Fig 6. A schematic view of the fitting method.

https://doi.org/10.1371/journal.pone.0260683.g006
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in the population for any pathogen, under the epidemiological SIRD model. Unlike the previ-

ous modeling approaches [12, 38, 40], we have extended the strain diversity for any arbitrary

number (m) and did not introduce any pathogen-specific attributes, keeping the model as

generic as possible.

We have shown that for the case of only two strains (e.g., |M| = 2), the only stable equilibria

states are when the pandemic is over for both strains (R;I�1 ¼ R;I�2 ¼ Rf1gI�2 ¼ Rf2gI�1 ¼ 0), as

shown in Section 3.3.2. The result of the equilibrium analysis is that the pandemic-free states

Fig 7. Daily R0 in UK between September 1 and December 1 (2020) comparison between the historical data

(specifically, the daily number of infected, recovered, and dead individuals) and the proposed model predictions

(for |M| = 2). The gray horizontal line indicates R0 = 1. The model’s parameter values are shown in Table 1.

https://doi.org/10.1371/journal.pone.0260683.g007

Table 1. A summary of the model parameters and values for the case of |M| = 2, obtained from the fitting process

to the historical WHO COVID-19 data from April 1 (2020) to December 1 (2020).

Parameter Definition Symbol Value

Infection rate of the strain (i = 1) [1] β;,1 0.04

Infection rate of the strain (i = 2) [1] β;,2 0.07

Infection rate of the strain (i = 2), after recovery from the strain (i = 1) [1] β{1},2 0.01

Infection rate of the strain (i = 1), after recovery from the strain (i = 2) [1] β{2},1 0.02

The average duration that it takes for an individual to recover from the strain (i = 1) in days [t−1] γ;,1 0.08

The average duration that it takes for an individual to recover from the strain (i = 2) in days [t−1] γ;,2 0.06

The average duration that it takes for an individual to recover from the strain (i = 1) after

recovering from the strain (i = 2) in days [t−1]

γ{2},1 0.21

The average duration that it takes for an individual to recover from the strain (i = 2) after

recovering from the strain (i = 1) in days [t−1]

γ{1},2 0.17

The probability an infected individual will recover from the strain (i = 1) [1] ϕ;,1 0.98

The probability an infected individual will recover from the strain (i = 2) [1] ϕ;,2 0.96

The probability an infected individual will recover from the strain (i = 2) after recovering from the

strain (i = 2) [1]

ϕ{1},2 0.99

The probability an infected individual will recover from the strain (i = 3) after recovering from the

strain (i = 1) [1]

ϕ{2},1 0.99

https://doi.org/10.1371/journal.pone.0260683.t001
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are stable only when the epidemics of the two strains cease; that is, after the end of the general

pandemic (Eq (13)).

Moreover, an analytical computation of the basic reproduction number (R0) requires

information on infections between individuals with different strains, which is not realistically

available. Therefore, an immediate result of the model is that once a pandemic developed sec-

ondary strains, a numerical and statistical approximation of R0 is left to be the only feasible

approach.

In addition, the proposed model is evaluated on the COVID-19 pandemic (for the case of

the UK) and has shown promising ability to fit a long period of multi-strain historical data

(eight months, 8.9% daily mean square error). A prediction of the last two months of this

period is shown in Fig 7, based on the obtained model’s parameter values which are presented

in Table 1. Strain i = 1 is mapped to the original strain of COVID-19. Since at the beginning of

the pandemic, this was only a single strain, the measured epidemiological values are necessarily

associated with this strain. This is not the case for measurements of periods where two or

more strains existed. The proposed model captures a general trend of decreasing R0 during

this period while not matching the data closely as it intentionally does not take into consider-

ation other social and epidemiological dynamics, allowing analytical analysis to be considered.

However, future extensions of the proposed model should be able to predict more closely his-

torical pandemic events.

According to Voinsky et al. [68], the average recovery rate of strain (i = 1) is 0.0714 while

the model predicted γ;,1 = 0.08 (where the approximation size is δ = 0.01), as presented in

Table 1. In addition, according to WHO [7], the average mortality rate of this period

is� 0.0138 while the model predicted that the average mortality rate from this strain is 1 − ϕ;,1
= 0.02. Thus, while the model is simple, it is able to capture the biological and epidemiological

properties of the pandemic.

Furthermore, we evaluated the influence of the number of strains on the mean basic repro-

duction number (E[R0]), mortality rate, and a maximum number of infected individuals, as

shown in Figs 2, 4 and 3, respectively. We show that the basic reproduction number is upper

bounded by taking into consideration only the most aggressive strain. Formally, we computed

a one-sided confidence interval between the baseline and the most aggressive strain dynamics

and found that 0 is not included in the confidence interval (α = 0.05). Hence, we conclude that

the two dynamics are different and that the most aggressive strain dynamic is an upper bound

of the baseline dynamics. This result agrees with the one obtained by [40] for arbitrary number

of mutations and [42] for the case of |M| = 2. In particular, [42] has shown that analytically the

most aggressive strain and the baseline dynamic converge which is shown in Fig 2. The slight

difference in the mean value is associated with the stochastic nature of the numerical computa-

tion method. An immediate outcome is that the proposed model is upper bounded by the

SIRD model with the slight modification that each individual can be infected up to |M| times.

This means one can get a statistically similar result (on average) to a pandemic with |M| strains

by using a simpler model that requires less biological and epidemiological data compared to

the proposed model. These results agree with the analysis performed by Dang et al. [36] on a

multi-strain model for influenza.

Based on Eq (7), the maximum number of infected individuals is growing in a logarithmic

manner to the number of strains when the latter occurs simultaneously. In a similar manner,

based on Eq (8), the mortality rate is growing in a logarithmic manner to the number of strains

when the latter occur simultaneously. We numerically show in Figs 3 and 4 that the epidemio-

logical properties which indicate the severity of the pandemic in a well-mixed population grow

in a logarithmic manner as a function of the number of strains (|M|). This connection indicates

that the first few strains make a relatively large contribution to the mortality and pandemic
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spread dynamics, but as the number of strains grows, each strain contributes less to these num-

bers. Policymakers can take advantage of this link when planning intervention policies to con-

tain the spread of a pandemic, given that new strains can emerge during pathogen mutation.

The code developed for this model is publicly available as open-source.

Several possible future research directions emerge from the proposed initial modeling.

First, one can introduce a fixed delay parameter to the occurrence of strains, investigating the

influence of this parameter on the epidemiological spread similar to the model proposed by

Arruda et al. [40]. Second, one can take into consideration more detailed biological settings,

assuming the stochastic occurrence of the strains from some distribution. Third, one can allow

reinfection of the same strain, extending the proposed model to a SIRS-based model. These

directions aim to better represent a real pandemic where several strains do not exist from the

beginning of the pandemic. Moreover, one can introduce a similarity matrix between the

strains as they are mutations of an original strain, which are reflected by the immunity

response to reinfection of different strains or a cross-immunity response as proposed by [69].

In the same direction, adding an Exposed state would make the proposed model more biologi-

cally accurate, since most strains have an incubation period before the host becomes infectious.

The multi-strain model is a theoretical platform that will help guide the decision-making pro-

cess in the event of a pandemic crisis while providing the forecast of the results of the selected

course of action.
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