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Abstract

The subject of this thesis is a security property of hash functions, called chosen-target-
forced-prefix preimage (CTFP) resistance and the generic attack on this property, called
the herding attack. The study of CTFP resistance started when Kelsey-Kohno introduced
a new data structure, called a diamond structure, in order to show the strength of a CTFP

resistance property of a hash function.

In this thesis, we concentrate on the complexity of the diamond structure and its appli-
cation in the herding attack. We review the analysis done by Kelsey and Kohno and point
out a subtle flaw in their analysis. We propose a correction of their analysis and based on
our revised analysis, calculate the message complexity and the computational complexity
of the generic attacks that are based on the diamond structure. As an application of the
diamond structure on generic attacks, we propose a multiple herding attack on a special
generalization of iterated hash functions, proposed by Nandi-Stinson.
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Chapter 1

Introduction

1.1 Cryptographic hash functions and attacks

In their seminal paper that gave a new orientation to cryptography, Diffie and Hellman [19]
commented,

“Not only must a meddler be prevented from injecting totally new, authentic
messages into a channel, but he must be prevented from creating apparently
authentic messages by combining, or merely repeating, old messages which he
has copied in the past. A cryptographic system intended to guarantee privacy
will not, in general, prevent this latter form of mischief.”

This introduced the requirement of authentication in cryptographic protocols. At that
time, cryptography concentrated mainly on the privacy of the data and authentication was
considered as a subproblem, in the sense that protection of authenticity would follow au-
tomatically from privacy protection. The work by Diffie and Hellman showed a separation
between the concept of privacy and authentication.

In this thesis, we study a special cryptographic primitive, known as a hash function, that
has been long used in providing authentication of the data in the cryptographic protocols.
A hash function is an easily computable function that maps an arbitrary-length input to
a fixed-length output. A hash function with this property has application in wide areas,
like in the construction of caches, managing databases (for example, in mining association
rules [62]), construction of efficient data structures (for example, Bloom filters [48]) and
efficient algorithms (for example, Rabin-Karp algorithm for string matching [41]).

In cryptography, we require a little more than just the property of mapping a long-
length message to a shorter-length output. These additional properties are the so called
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security properties of the hash functions, and a hash function that has the desired security
properties is termed a cryptographic hash function. In this thesis, whenever we use the
term “hash function”, we implicitly mean a cryptographic hash function.

Different protocols use different security properties of a hash function, depending upon
the application of the hash function. One of the main reasons to use hash functions as a
primitive in these protocols is that the output can be considered as compact and it is a
one way transformation of the message. The term “compact” refers to the fact that for
any finite length message, the output size of a hash function is fixed. So we do not need
to care about variable-length messages when designing other primitives as we can use the
hash function as a preprocessor. Another important aspect of a hash function is that it is
not desirable that, from the output of a hash computation one can predict the input. This
property is termed as “one-way”.

In Section 1.2, we give an informal discussion of the security properties that are desirable
for a hash function, the security properties that an adversary will try to attack, and some
known methods of attacks. In Section 1.3, we give a brief exposition of the application
of the hash functions at a very high level. In Section 1.4, we give a motivation for the
problem that we study in this thesis and give the layout and the organization of the thesis.

1.2 Cryptographic hash functions and attacks

In this section, we will briefly discuss the security properties that are desired in a hash
function if it is to have any cryptographic applications. We will also review some known
methods of attacks, citing a few of the known attacks.

1.2.1 Security requirements

Security properties are motivated by the applications of hash functions, which we discuss
later in this chapter. However, whenever one designs a hash function, say H that maps a
set of all messages, X to a set Y , it is often the case that the following three properties
should hold:

1. Preimage resistance: Given an image y ∈ Y , it should be difficult to find a preimage,
x ∈ X , such that H(x) = y.

2. Second preimage resistance: Given a message x ∈ X , it should be difficult to find
another message x′ ∈ X , such that H(x′) = H(x).

3. Collision resistance: It should be difficult to find two distinct messages, x and x′ in
the set X , such that H(x) = H(x′).

2



In this thesis we study a variant of the preimage resistance property of a hash functions,
termed as chosen-target-forced-prefix (CTFP) preimage resistance. Introduced in 2006 by
Kelsey and Kohno [43], the CTFP resistance property has been discussed only informally
in the literature. We do not aim to give a formal defintion. We work with the existing
definition, which we include here, and use it in the same manner throughout the thesis.

CTFP resistance can be defined as a three-phase game between an adversary and a
challenger.

1. In the first phase, the adversary performs some precomputation and commits to a
hash output; which is her “chosen target”.

2. In the second phase, the challenger selects a challenge and gives it to the adversary;
the challenge is the “forced prefix”.

3. In the third phase, in order to win the game, the adversary has to find a suffix, which
when concatenated with forced prefix, yields the chosen target after hashing.

If the attacker is unable to find such a suffix, the hash function is CTFP resistant. In this
thesis, we call the first phase the offline phase and the second phase and the third phase
the online phase.

In this thesis, we also deal with the case of multiple second preimage resistance and
multiple CTFP resistance properties of hash functions. We informally state them now
and give a more formal version in Section 2.2.1. For any integer r ≥ 1, r-way second
preimage resistance requires that for any given message x ∈ X , it should be difficult to
find r distinct messages x1, . . . , xr ∈ X , different from x, such that H(xi) = H(x) for
all 1 ≤ i ≤ r. Similarly, r-way collision resistance requires that it should be difficult to
find r distinct messages x1, . . . , xr ∈ X , such that H(xi) = H(xj) for all 1 ≤ i, j ≤ r.
We alternatively term r-way collision resistance as r-multicollision resistance. For r-way
CTFP resistance, we require that it should be difficult for the adversary to find r distinct
suffixes, such that the hash computation of message formed by concatenation of any suffix
with the forced prefix evaluates to the chosen target.

1.2.2 Known models of attack

In this section, we will briefly discuss some known model of attacks. We broadly divide
them into two classes as follows:

(a) Attacks independent of the hash function construction.

(b) Attacks on a specific hash function construction.

3



The attacks that are independent of the hash function construction are more commonly
known as generic attacks, while the attacks that are based on specific hash functions exploit
the internal construction of the hash functions. We will discuss a few generic attacks that
are relevant to the work of this thesis in more detail in Chapter 3.

Attacks independent of hash function construction

This class of attacks, which we from now on call generic attacks, are independent of the
specific hash construction, and depend only on the size of the range of the hash function.
The running time of such attacks is measured in terms of the number of calls made to the
hash function; i.e., we treat the hash function as a black box or an oracle.

In the remainder of this thesis, we denote H : X → Y as the hash function and restrict
our attention to the case when X and Y are finite sets. The basic assumption made in this
type of attack is that the function is uniformly distributed, i.e., every element of the range
has the same number of preimages. If this is not the case, then all the attack methods
listed below will be more effective.

• Random attack: In a random attack against preimage resistance and second preimage
resistance, the adversary randomly picks a message and hope that it maps to the
given hash value. If the hash function in question exhibits the random behavior, the
probability with which the attacker succeeds is 1/|Y|. This is the best that one can
hope for a generic attack against preimage resistance and second preimage resistance.

• Birthday attack: The basic idea behind the birthday attack against collision resis-
tance is that if we randomly sample 23 people, then the probability with which two
of them share the same birthday is at least 1/2. This is much less than the number of
days in a year, which is the total number of birthdays. For this reason, this attack is
also termed as the “birthday paradox”. This result assumes that birthdays are ran-
domly distributed over the year; if this is not the case, the probability will be even
higher. Translating the above in terms of a regular function, i.e., a function whose
output is uniformly distributed, with the range size |Y|, one needs to do about

√

|Y|
computations of the function to obtain a collision with an appreciable probability.
Therefore, it is common to call a hash function collision resistant if the minimum
number of hash computations one needs to perform is of the order of square root of
the size of the range of the hash function.

The above two attack methods form the basis of many generic attacks on hash functions [39,
44]. We will take up this matter in more detail in Chapter 3.
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Attacks on specific hash function constructions

There are attacks on specific constructions of hash functions, like MD4 [76, 81], MD5 [78],
SHA-0 [6, 79], and SHA-1 [77]. The attacks use some specific weakness in the internal
construction of the hash functions, or some specific tools, which we now discuss briefly.
In the following attack methods, a specific construction methodology of hash functions,
known as iterated hash functions, is exploited. Readers may refer to Section 2.3 for the
detailed description of the construction. We include a very informal description here for
the sake of completeness.

In an iterated hash construction, we first define a compression function that acts on
a small domain, and use this function iteratively to extend the domain size. The input
message is first broken in to fixed-length blocks so that the blocks are of the size required
by the compression function. The input to the compression function is a message block
and the output from the previous iteration. The intermediate outputs are called chaining
values and the final hash value is the output at the end of all the iterations.

In the informal discussion below, we omit the details of the attacks because it is not the
main focus of this thesis. We refer the readers to the references cited for a more detailed
exposition.

• Meet in the middle attack: This attack is a variation on the birthday attack, but
instead of the hash value, intermediate chaining variables are compared. The attack
enables an opponent to construct a message with a prespecified hash value, which is
not possible in case of a simple birthday attack. For details and variations, we refer
the reader to [60].

• Correcting block attack: This attack consists of substituting all blocks of the messages
except for one block. This block is then calculated such that the hash function takes
on a certain value. When one applies this method to the last block, then the attack
is called a correcting last block attack. It should be noted that there are certain
strengthening of hash constructions; such as Merkle-Damg̊ard strengthening, which
we will discuss in Chapter 2, that resist such an attack. However, they do not provide
any security when this attack is applied to the first block or to some blocks in the
middle. Hash functions based on modular arithmetic are especially sensitive to this
attack.

• Fixed point attack: Dean used this attack in the case of the iterated hash function
construction in his PhD thesis [17]. The idea of this attack is to find a chaining value,
h, and a message, x, such that when the compression function applied to h and x
gives h as an output.
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• Differential attacks: Differential cryptanalysis [8] is based on the study of the relation
between input and output differences. The attack is statistical as one searches for
input differences that are likely to cause a certain output difference. If one is looking
for collisions, we look for output differences that equal zero.

• Boomerang attacks: This is a refinement of differential cryptanalysis, introduced by
Wagner [75] for the cryptanalysis of block ciphers. Later, it was also used in the
cryptanalysis of hash functions.

There have been lot of attacks on specific hash construction using one or the other
methods listed above, like the multi-block differential collision finding tool [13, 77, 79],
which uses the differential attack considering multiple blocks at a time, and the Boomerang
attack [40, 49]. In addition to the methods listed above, these attacks sometimes also
use generic methods to perform certain other attacks. For example, an efficient generic
multicollision attack by Joux [39] is used to generate second preimages for hash values
in [47]. The same method has been used to find multicollisions for other specific hash
functions like MD4, HAVAL, and Blender [47, 82]. Biham et al. [7] found collisions on
SHA-0 and reduced SHA-1 by using near collisions in order to find collisions. Recently
Guo et al. [31] constructed an attack on Tiger, MD4, and reduced SHA-2 using the meet-
in-the-middle framework.

1.3 Motivation for security: applications

Hash functions are one of the most important primitives in the cryptography. They have
a wide range of applications, mostly in digital signature [5, 15, 20, 27, 30, 33, 38], digital
time-stamps [32], and message authentication codes [4, 63, 80]. It is not possible to include
all the applications of hash functions. We just enumerate a few of them to give a general
overview of how hash functions are applied. These applications are in no way complete,
and we just aim to give an idea of the way in which hash functions are used as a primitives.
We remark that there is additional sophistication involved in the actual construction of
protocols that use hash functions.

1.3.1 Extending the domain

Hash functions are used as an underlying subroutine in extending the domain of a crypto-
graphic protocol, mostly in the scenario when the protocol is an expensive process. The
most important example is that of digital signature.
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Digital Signatures

Historically, digital signatures were the first application of hash functions. The domain
extension methodology for digital signatures is more commonly known as “hash then sign”
paradigm. In such constructions, the user first hashes the message that he wishes to sign
and then applies the standard digital signature algorithm on the hash output. This serves
the purpose of extending the domain of messages that one can sign. However, this comes
at the price that the scheme’s security depends on the security of the underlying hash
function.

The hash-then-sign paradigm can be also treated as an optimized digital signature,
because signing a message is computationally more expensive process than hashing the
same message. Also, it is easier to construct a digital signature scheme on a fixed-length
input. Note that we require the hash function to be collision resistant in this type of
construction. This is because signatures corresponding to colliding messages are the same,
and hence a collision can be used to construct a forgery.

1.3.2 Authentication protocols

As mentioned earlier, hash functions are used for authentication in many cryptographic
protocols. We just mention the most widely used application, which is in a message
authentication code.

Message authentication codes

Consider the scenario where Alice and Bob share a secret key that identifies a hash function
from a set of possible hash functions1 and suppose that Alice wants to send a message,
such that Bob can authenticate that the message was sent by Alice. Alice uses the hash
function, indexed by the secret key, and computes the hash of the message using that hash
function. She then sends the message and the hash value to Bob. Bob can authenticate
the message by hashing the message with the hash function indexed by the secret key.
This is called a message authentication code (MAC) and it is one of the most important
applications of hash functions. Note that Alice and Bob can securely transmit information
over an insecure channel if they are using cryptographic hash functions in this way.

1We are being very vague here in absence of proper definition of keyed hash family, which we define
formally in Section 2.2. For the time being, we can consider a keyed hash family as a collection of hash
functions, all of which map the same domain to the same range, and which are indexed in a certain way.
A key can be that index or a way to find that index.
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1.3.3 Applications

Identity based protocols

Identity based protocols were introduced by Shamir [69]. They have the property that a
user’s public key is an easily calculated function of his identity, while a user’s private key
can be calculated for him by a trusted authority, called the private key generator.

Hash functions are used in identity based schemes that use bilinear pairings. Let
e : G1 × G2 → GT be a bilinear pairing2, where G1, G2, and GT are properly chosen
groups. The protocol uses a hash function whose range is the group, G1, and uses this
hash function to map the user’s identity to an element of a group. The user can now
use the normal group operations. It is easy to see that we require collision-resistant hash
functions in identity based protocols.

Commitment schemes

A commitment scheme is a two-phase scheme: the commit phase and the reveal phase.
For commitment schemes, the scheme allows the first party to commit to a value while
keeping it hidden from the second party in the commit phase, with the ability to reveal the
committed value later in the reveal phase. The basic commitment scheme has the following
cryptographic requirements:

1. In the commit phase, the committing party should be unable to reveal any value
other than the one committed to in the commit phase, and

2. The second party should be unable to gain any information about the committed
value before the reveal phase.

Commitment schemes are very useful primitive in many cryptographic protocols. We
give an informal description of a commitment scheme. For example, consider a simple
electronic auction scheme in which the bidders commit to their bids and provide the com-
mitment to the auctioneer. Once all the bids are collected, the auctioner asks for the
commitments to be revealed which the bidders provide. The auctioneer then simply out-
puts the highest bid.

Hash functions are often suggested as a computationally efficient way of constructing
commitment schemes: a commitment to x is H(x), where H is a secure hash function. A
security argument may go along the following lines: IfH is one way, recovering x fromH(x)
is infeasible, which implies the hiding property; if H is collision resistant, the commitment
can only be opened to x (otherwise the cheating party is able to find a collision).

2A bilinear pairing is a non-degenerate bilinear mapping that is efficiently computable.
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1.4 Related works and motivation for this work

In principle, a hash function takes an arbitrary-length input and produces a fixed-length
output. In practice, this is done by first constructing a function that works on a fixed-size
domain, such that the size of the domain is strictly greater than the size of the range. Such a
function is termed a compression function. We then propose a rule to use the compression
function so as to extend the domain to an arbitrary length. The rule that extends the
domain is called a combining rule. The most common combining rule is iterative use of
the underlying compression function.

In this thesis, we survey the weakness in this design principle and we present new ways
to exploit the weakness, concentrating mainly on CTFP resistance.

The study of CTFP resistance started when Kelsey and Kohno introduced a new data
structure, called the diamond structure, in order to show the strength of a CTFP resistance
property of a hash function. They termed the attack against CTFP resistance as a herding
attack. On a superficial level, CTFP seemed to be just another variant of the preimage
resistance property of a hash function. Kelsey and Kohno [43] showed that at least in
the case of iterated hash functions, the CTFP resistance property is ultimately limited
by the collision resistance property of the compression function. We will make this point
more clear in Chapter 4 and Chapter 5. Later it was shown that diamond structures have
applications in other attacks where the known attack methods have failed [2, 3].

Prior to this, Joux [39] found a very efficient way of finding multicollisions on iterated
hash functions. Kelsey and Scheneir [44] used Joux’s idea to find second preimages on
long messages. These works opened a new domain of research in the construction of hash
functions. Since the use of simple iteration as the combining rule was shown susceptible
to these attacks, attention was concentrated on the combining rule and using message
blocks more than once. Liskov [50] used every block of the message twice, the second
time in reverse order and proved the security in the indifferentiability model [51]. Hoch
and Shamir [37] proposed an XOR-construction and showed that even in the powerful
adversarial scenario in which collisions for the underlying compression functions can be
found faster than the birthday attack, collisions in the concatenated hash cannot be created
using less than 2n/2 work, where the n is the bit length of hash outputs. Lehmann and
Fisclin [24] also proposed a new combining rule that amplifies the security of the underlying
compression functions. Recently, Numayama and Tanaka [61] generalized the model of
Hoch and Shamir to provide a new combining rule.

Apart from this idealized setting, there has been work in the complexity-theoretic
treatment of the amplification of collision resistance. Canetti et al. [12] proposed two
methods of amplification of collision resistance: by using concatenation and by using codes.
It is important to note that among all the above constructions, only Liskov’s construction,

9



more commonly known as Zipper hash, is susceptible to the multicollision attack [36, 59].
Andreeva et al. [2] showed that this construction is susceptible to a variant of the herding
attack, in which the challenger provides the suffix and the adversary has to find the prefix.
They argued informally that in the case of Zipper hash, the herding attack as proposed by
Kelsey and Kohno is as hard as finding a second preimage.

Under these recent developments of the desire for amplification of the collision-resistance
property of the combining rule, and the herding attack of Andreeva et al. [2], it is desirable
to analyze the CTFP resistance property of these constructions. Also, it is natural to ask
whether the attack of Andreeva et al. translates to a more general class of hash functions.
In this thesis, we will try to answer the second question. We will mainly deal with hash
function constructions that use certain types of combining rules. We aim to analyze the
security of a generalized family of hash functions against CTFP attack using recent data
structures proposed for generic attacks. We perform the complexity analysis of our attack
and prove bounds to determine when our attack is successful. For this, we need a more
rigorous complexity analysis of the construction of the diamond structure, because it is the
basic data structure used in our attacks.

1.5 Organization of thesis

This thesis consists of the following chapters.

1. Chapter 2 covers the notation that we use throughout the thesis, the basics of hash
functions and their security definitions. We also give a brief discussion of the basics
of sequences and partial orders to the level required to understand this thesis.

2. In Chapter 3, we review the previous generic attacks that have been proposed in the
literature and which are used in our work.

3. In Chapter 4, we revisit the complexity analysis of the diamond structure. Using
the concept of random graphs, we show that there is a gap in the analysis given by
Kelsey and Kohno. We give a rigorous analysis to show that the message complexity
of the construction is actually

√
k times the estimate of Kelsey and Kohno, where

k is the parameter that defines the size of the diamond structure. We also perform
an analysis of computational complexity and substantiate the claim that it is also
important parameter and should be taken into account when performing an analysis
of any attack. To show the differences that arise from our new analysis, we compare
the analysis of the attack done on other hash functions with an analysis done by us,
taking into the account the above gap.
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4. In Chapter 5, we propose a variant of the diamond structure, which we call a kite
structure. We use this structure to herd multiple messages for a generalized family
of hash functions, defined by Nandi and Stinson [59]. In our analysis, we use the
bound of Hoch and Shamir [36] to find the minimum block length of the message for
a successful attack. We define the adversary model in which the adversary has the
freedom to permute the sequence on which the hash function is based.
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Chapter 2

Preliminaries

2.1 Mathematical background

In this section, we give the mathematical notations that we use in this thesis. We also re-
view some mathematical objects that are crucial to our study, like partial orders, sequences,
and graph theory.

2.1.1 Notation

We let N denote the set of all natural numbers and Z denote the set of integers. For any
integer k ∈ N, we denote {1, 2, . . . , k} by [k], and its binary representation by 〈k〉. Let
n ∈ N, then {0, 1}n denotes all the n-bit strings. We denote the set of all finite strings by
{0, 1}∗. For any x ∈ {0, 1}∗, we denote the length of x by |x|. We denote the concatenation
of two strings x and y by x‖y or simply as xy. We denote the message blocks of any message
M by M1‖M2‖ · · · ‖Mℓ, where ℓ denotes the number of message blocks.

If X is a finite set, then x
R← X denotes that we pick x uniformly at random from the

set X . For any set X and Y , X ∩ Y denotes the usual set intersection, X ∪ Y denotes the
usual set union, X \ Y denotes the set that contains all those elements of X that are not
in Y , and X × Y denotes the cartesian product.

We use the following asymptotic notation. If f : N → R and g : N → R are two
functions such that g(n) > 0 for n sufficiently large, then we write:

f ≪ g if f(n)/g(n)→ 0 as n→∞
f ≫ g if f(n)/g(n)→∞ as n→∞.
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We use some complexity-theoretic notations, namely, O(·), Ω(·), Θ(·). Let f, g : N→ N

be two functions. We write:

f(n) ∈ O(g(n)) if ∃c, n0 > 0 such that f(n) ≤ cg(n), for all n ≥ n0

f(n) ∈ Ω(g(n)) if ∃c, n0 > 0 such that f(n) ≥ cg(n), for all n ≥ n0

f(n) ∈ Θ(g(n)) if f(n) ∈ O(g(n)) and g(n) ∈ O(f(n)).

See [14] for more details.

We write log n for the logarithm of n to the base 2 and lnn for the natural logarithm
of n.

We now give a brief overview of sequences, partial orders, and graph theory to the level
of generality required to understand this thesis.

2.1.2 A note on sequences

We require a little understanding of sequences and terminology associated with it. For
more details, we refer the reader to reference [1].

We start with some basic definitions.

Definition 2.1. A sequence ψ is a finite or infinite list of elements from some finite set S.
If a sequence ψ can be written as xyz (where y is a non-empty sequence and x and/or z can
be empty sequences), then y is called a factor of ψ. A sequence ψ is called square-free if no
factor of ψ can be represented in the form yy for any non-empty sequence y. A sequence
ψ is said to be periodic with period p > 0 if it satisfies ψi = ψi+np for n = 1, 2, . . ..

For the rest of this thesis, we reserve the Greek letter ψ to denote a sequence, and
denote the ith element of the sequence ψ by ψ(i).

It is easy to see that all square-free sequences are non-periodic. Rivest [64] used a
generalization of the square-free sequences called an abelian square-free sequence, which we
define next.

Definition 2.2. A sequence ψ is said to be abelian square free if it cannot be written in
the form ψ = xyy′z, where y is a non-empty sequence and y′ is a permutation of y (x
and/or z can be an empty sequence).

We illustrate the difference between the square-free sequences and abelian square-free
sequences with the help of following example.

Example. abcacb is square-free, but not abelian square-free, as abc is followed by acb,
which is a permutation of abc.
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There are many known sequences that are abelian square-free or just simply square-free.
A natural requirement is to get an intuitive understanding of such sequences, specially from
an algorithmic point of view where we are required to generate such sequences online. The
picture is intuitively more clear for finite sequence but not so clear for infinite sequences.

In fact, the two sequences used in Rivest’s construction are infinite sequences. One
requires some measure to understand such sequences and to answer questions like how
easy it is to construct the sequence, or how high is the periodicity of the sequence, or
do all subsequences occur infinitely many times in the sequence, etc. Such questions can
be partially answered by studying the finite subsequences of such infinite sequences and
answering questions like, how many distinct factors of length n are there? The measure
for the growth of the number of distinct subsequences of a specified length n is called the
complexity of the sequence. For a sequence ψ, we let Factψ(n) denote the complexity of
the sequence ψ, where n is the parameter that defines the length of the factors we are
interested in.

In this whole thesis, for a sequence ψ, we denote the set on which the sequence depends
by alph(ψ); this is the alphabet set of the sequence. For any set Y ⊆ alph(ψ), we denote
by ψ|Y the sequence obtained by restricting ψ to the set Y and then replacing all the
consecutive occurrences of any symbol in the resulting sequence by a single occurrence of
the symbol. In the context of a finite sequence and the alphabet set that defines the (finite
or infinite) sequence, we let | · | denote the number of symbols in the sequence and the
cardinality of the alphabet set, respectively.

We give an example to make the above-defined notations more clear.

Example. Let ψ = (2, 3, 1, 3, 2, 2, 3, 4, 2, 3), then X = alph(ψ) = {1, 2, 3, 4}. Let Y =
{2, 3} ⊆ X , then we obtain ψ′ = {2, 3, 3, 2, 2, 3, 2, 3} by restricting the sequence to alphabet
set Y , and ψ|Y = {2, 3, 2, 3, 2, 3} by removing the consecutive occurrences of all symbols
in ψ′. Also, |ψ| = 10 and |alph(ψ)| = 4.

2.1.3 A note on partial orders

We will need some basic notions of partial orders to understand Chapter 5. We give some
basic definitions. For more details, we refer the reader to [71].

Definition 2.3. A binary relation ≺ on a set X is a partial order if it is anti-symmetric,
reflexive, and transitive. Then we call (X ,≺) a partially ordered set. The elements
x, y ∈ X are called incomparable elements if neither x ≺ y nor y ≺ x holds. A set
{x1, . . . , xn} ⊆ X is called an anti-chain if all the elements are mutually incomparable. A
set {x1, . . . , xn} ⊆ X is called a chain if xi ≺ xj for 1 ≤ i < j ≤ n. We say that n is the
chain-length.
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Some examples of partially ordered set are:

1. The real numbers ordered by the standard less-than-or-equal relation, i.e., (R,≤).

2. The set of natural numbers equipped with the relation of divisibility.

3. The set of subsets of a given set (its power set) ordered by inclusion (⊆).

4. The set of subspaces of a vector space ordered by inclusion (⊆).

2.1.4 A note on graph theory

In this section, we give some basic definitions from graph theory (for more information,
see a standard textbook such as Bondy and Murty [11] or Diestel [18]).

We start with the definition of a graph.

Definition 2.4. A graph G = (V , E) consists of a finite set of vertices (or nodes), V, and
a finite set of edges, E, where an edge joins two distinct vertices. The edge joining two
vertices u and v is denoted by the pair (u, v) or (v, u), and the vertices u and v are called
adjacent vertices.

Associated with any two vertices in a graph, a natural question that arises is whether
it is possible to reach one vertex from the other vertex by tracing any set of edges. This
leads to the definition of a path and connectivity of the graph.

Definition 2.5. A path is a finite sequence of vertices (v1, . . . , vk), such that vi and vi+1

are adjacent for 1 ≤ i ≤ k−1. If it is possible to reach any vertex from any other vertex in
the graph via some finite path, then the graph is connected. A maximal connected subgraph
of a graph is called a connected component.

In this thesis, we will be interested in finding whether a graph has certain characteristics,
like is there a set of edges such that every vertex of the graph is incident to at least one
edge of the set, or is there a set of vertices such that each edge of the graph is incident to
at least one vertex of the set? These properties are called an edge cover and a vertex cover
of the graph. We follow up with a formal definition.

Definition 2.6. An edge cover of a graph is a set of edges such that every vertex of the
graph is incident with at least one edge of the set. If an edge cover has an additional
property that no two edges share a vertex, then such edge cover is called a perfect matching
or a one-factor. On the other hand, if there exists a set of vertices such that each edge
of the graph is incident with at least one vertex of the set, then the set of such vertices is
called a vertex cover of the graph.
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Remark 2.7. An alternate definition of a perfect matching is from the concept of a match-
ing. If there exists a set of edges, no two of which share a vertex, then the set of edges
is called a matching. M is a maximum matching in the graph G if no matching in G
contains more edges than M does. If a matching M contains every vertex of G, then M is
called a perfect matching or a one-factor. One can easily verify the equivalence of the two
definitions.

All the above-defined characteristics of graph are preserved under any relabelling of the
vertices. We term such a characteristics of a graph as a property. More formally, we have
the following definition.

Definition 2.8. A graph property is defined to be a predicate that is preserved under all
possible isomorphisms of a graph. A property of a graph is monotone if the property is
preserved by addition of arbitrary new edges to the graph.

Many natural properties of graphs are monotone properties, e.g., being connected, being
two-connected, containing a Hamiltonian cycle, containing a perfect matching, containing
a triangle, etc. However, not all natural properties are monotone properties. For eg, being
a bipartite graph, being a perfect graph, etc.

2.2 Hash function basics

Hash functions have been defined in two settings: as an unkeyed hash function and as a
keyed hash family. We start by giving a formal definition of a keyed hash family.

Definition 2.9. For a finite key space K, a space of messages X , and a finite space
of possible outputs called message digests, Y, we define a keyed hash family as a set of
functions,

Hk : X → Y ,
for every k ∈ K. We denote the set as H := {Hk : k ∈ K}.

There is a notational point to be made clear for the above definition. A key K ∈ K
acts as an index which defines which hash function is chosen from the family. We usually
drop the subscript for the hash function, Hk(·) for k ∈ K, when the function is clear from
the context, or sometimes we use the key as a parameter to the hash function and write
H(k, ·) for Hk(·). Also, X can be a finite or infinite set. If X is finite, then a hash function
is sometimes called a compression function. In this thesis, we restrict our attention to the
case when X is finite.
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An unkeyed hash function is a function H : X → Y , where X and Y have the same
meaning as in Definition 2.9. In a sense, we can treat an unkeyed hash function as a keyed
hash family with |K| = 1.

Equipped with the formal definition of a keyed hash family, we can formalize the security
definition stated in Section 1.2.1. The security of a cryptographic hash function is usually
defined in the so-called random oracle model. So, before giving a formal definition of the
desirable security properties of a hash function, we give a brief introduction of the random
oracle model.

Random oracle model

The random oracle model aims at capturing the idea of an “ideal” hash function. In this
model, a hash function is randomly chosen from the keyed hash family, and we are given
only oracle access to the hash function. This means that we do not have an access to the
actual implementation of the hash function, but have an access to an interface through
which we feed input and get the output. Therefore, the only way to compute the hash
value is to query the oracle. Another important property of the random oracle is that if
we query the same value multiple times, we get the same output each time.

In the random oracle model, we assume that each query takes constant time. Thus
the security of the hash function is measured in relation with the number of queries made
to the oracle, which we call the message complexity. From now on, we assume that hash
computation of a messsage takes unit time, viewing the hash function in the random oracle
model.

2.2.1 Security definitions

We gave an informal definition of the security properties of cryptographic hash functions
in Section 1.2.1. Let H := {Hk : k ∈ K} be a keyed hash family of functions from a
set X to a set Y . A keyed hash family is often required to have three basic security
properties [42, 53, 70, 72]: collision resistance, preimage resistance, and second preimage
resistance. We formally define them as follows:

1. For a keyed hash family, H, the advantage of an adversary A in finding a collision is
a real number that measures the probability with which A finds a collision in Hk if
a random key k is provided to it. Mathematically,

AdvCollH (A) := Pr[k
R← K; {M1,M2} ← A(k) : Hk(M1) = Hk(M2) ∧M1 6= M2].
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In the above expression, a random key k is chosen from the key space K, and A is
required to find two distinct messages, M1 and M2, such that Hk(M1) = Hk(M2).
The advantage ofA, denoted by AdvCollH (A), is the probability with whichA wins this
game, where the probability is over the random choice of the key and the adversary’s
randomness.

2. For a keyed hash family, H, the advantage of an adversary A in finding a preimage
is a real number

AdvpreimageH (A) := Pr[k
R← K;h

R← Y ;M ← A(k, h) : Hk(M) = h]

that measures the probability with which A finds the preimage for a random hash
value if the hash function is chosen randomly from the hash family.

3. For a keyed hash family, H, the advantage of an adversary A in finding a second
preimage is a real number

AdvsecondH (A) := Pr[k
R← K;M1

R← X ;M2 ← A(k,M1) : (M1 6= M2)∧(Hk(M1) = Hk(M2))].

In this experiment, a random key k is chosen and a message M1 is chosen randomly
from the domain of the hash family. AdvsecondH (A) measures the probability with
which A finds a message M2, different from M1, such that Hk(M1) = Hk(M2).

Informally, if a hash function with a hash result of bit-length n resists all such attacks
that finds a second preimage (and a preimage respectively) with less than 2n hash computa-
tions on average, then the hash function is called second-preimage resistant (and preimage
resistant respectively). A hash function that is preimage resistant is called a one-way hash
function (OWHF)1. Recall that by the birthday paradox, we can always find a collision
for any hash function with about 2n/2 hash computations. If a hash function resists all
attacks that finds a collision in less than c × 2n/2 hash computations for some small con-
stant c, then the hash function is called collision resistant. Though it seems reasonable to
say that collision resistance implies preimage and second-preimage resistance, this is not
always true. A toy example is an identity function on a fixed length input. This is trivially
collision resistant but not preimage resistant.

Remark 2.10. It should be noted that in cryptographic practice, a collision resistant hash
function maps arbitrary length strings to fixed length ones; it is a single function. However,
in theory, a collision resistant hash function is always keyed; it is a hash family [66]. This
discrepancy arises because any function, H : {0, 1}∗ → {0, 1}n always admits an efficient

1Some authors as in [63] term a hash function OWHF if it is preimage resistant as well as second
preimage resistant.
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collision finding adversary. Now, as we have seen in Section 1.3, hash functions are usually
used as a subroutine in cryptographic protocols. Conventionally, the security of a protocol
Π using a hash function H is proven by a reduction which captures the idea that existence of
an effective adversary against Π implies existence of an effective adversary against H. For
an unkeyed version of collision resistance, this won’t work, as there is always an effective
adversary against H.

Apart from the above security properties, there are certain other security properties
defined in the literature. Rogaway and Shrimpton [65] coined seven basic security prop-
erties of hash functions and showed the relationships between them. The properties are
the collision resistance, three variants of the preimage resistance, and three variants of the
second-preimage resistance. The three variants of the preimage resistance are traditional
preimage resistance, where challenger can choose the key and the message randomly, ev-
erywhere preimage resistance, where the challenger can choose only the key randomly, and
always preimage resistance, in which the challenger can only choose the message randomly.
The adversary is required to find the preimage of the range point. Analagously, they de-
fined the three variants of second-preimage resistance. For more detail, we refer the reader
to [65].

Kelsey and Kohno [43] proposed a new security property, chosen-target-forced-prefix
(CTFP) resistance, which is the primary interest of this thesis. CTFP resistance has not
been studied in the keyed version in the literature. We therefore just present the informal
definition, which is the same as defined in the Section 1.2.

Definition 2.11. (Chosen-Target-Forced-Prefix resistance). Let H be a hash function.
For an adversary A, chosen-target-forced-prefix (CTFP) resistance can be defined as a
three-phase game between A and a challenger.

1. In the first phase, A commits to a hash output; which is her “chosen target”.

2. In the second phase, the challenger selects a challenge and gives it to A; the challenge
is the “forced prefix”.

3. In the third phase, in order to win the game, A has to find a suffix, which when
concatenated with forced prefix, yields the chosen target after hashing.

If the attacker is unable to find such a suffix, the hash function is CTFP resistant. An
attack on CTFP is more commonly called a herding attack.

From the above definition of CTFP resistance, it is tempting to say that CTFP resistance
is as hard as the second preimage resistance. However, Kelsey and Kohno [43] showed that
at least in the case of iterated hash functions, the CTFP resistance property is ultimately
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limited by the collision resistance property of the compression function. They proposed an
attack, which they called herding attack, to show this reduction. We give a brief overview
of their method in Section 3.4.

In this thesis, we propose multiple second preimage attacks and multiple herding attacks
on a certain class of hash functions. Therefore, we next generalize the notion of the second
preimage resistance and CTFP resistance to the case of multiple second preimage resistance
and multiple CTFP resistance, analogous to the notion of multicollision resistance.

Definition 2.12. (s-way second preimage resistance). Extending the concept of the second
preimage resistance, we define s-way second preimage as the following game:

Advs−SPH (A) := Pr





k
R← K,M R← X ; M 6= Mi ∀i ∈ Zs

: Mi 6= Mj∀1 ≤ i, j ≤ s, i 6= j
{M1,M2, . . . ,Ms} ← A(k,M) Hk(M) = Hk(Mi) ∀i ∈ Zs





In this experiment, a random key k is chosen and a message M is chosen randomly from
the domain of the hash family. Advs−SPH (A) measures the probability with which A finds s
distinct messages, all different from M , such that every message has the same hash output
as M .

Definition 2.13. (s-way Chosen-Target-Forced-Prefix resistance). For an adversary A,
s-way CTFP resistance can be defined as a three-phase game between A and a challenger.

1. In the first phase, A commits to a hash output; which is her “chosen target”.

2. In the second phase, the challenger selects a challenge and gives it to A; the challenge
is the “forced prefix”.

3. In the third phase, in order to win the game, A has to find s-distinct suffixes, which
when concatenated with forced prefix, yields the chosen target after hashing.

If the attacker is unable to find such suffixes, the hash function is s-way CTFP resistant.

In the remainder of this thesis, we consider unkeyed hash functions only.

2.3 Design of iterated hash functions

From the mathematical definition of a hash function, a hash function maps an arbitrary-
length input to a fixed-length output. However, in practice, it is not convenient to directly
construct a function that takes an arbitrary length input. The hash function is therefore
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constructed in two steps. We first design a compression function, f on a small domain.
Then we use the compression function to extend the domain to get the final hash function,
H. The domain extension consists of the following two operations, which can be regarded
as the preprocessing steps.

1. Padding Rule: We pad the message with a certain number of bits so that the bit
length of the resulting message is a multiple of some fixed constant m. We then
divide the message into blocks of bit length m.

2. Combining rule: We use the compression function to combine different blocks of the
message.

We require that the padding rule and combining rule preserves the basic underlying prop-
erties of the compression function. One of the most widely used combining rules is the one
in which the compression function is used iteratively. In this thesis, we deal with the hash
constructions that use iteration as the combining rule.

It should be noted that without padding, iterated hash functions are susceptible to an
extension attack2. This is especially a concern when hash functions are used in MACs.
Also, improper padding can lead to an easy collision attack (see Nandi [58] for details).
Merkle [54] and Damg̊ard [16] proved the sufficient condition for the padding rule that
preserves the collision resistance property of the compression function when we use iteration
as the combining rule. Recently, Nandi [58] gave a characterization of collision-preserving
padding rules. In this thesis, we deal with the padding rule, introduced independently by
Merkle and Damg̊ard, and define it next.

2.3.1 Merkle-Damg̊ard construction

We define the simplified version of Merkle-Damg̊ard domain extension algorithm for the
compression function, f : {0, 1}n × {0, 1}m → {0, 1}n. Let M be a message such that
|M | < 2m, and with a little abuse of notation, let 〈M〉 be the binary representation of |M |.
Let i > 0 be the smallest integer such that |M |+ |〈M〉|+ i+ 1 is a multiple of m. We pad
the message M with 10i‖〈M〉. This padding method is known as MD-strengthening. We
write M‖10i‖〈M〉 = M1‖ . . . ‖Mℓ for some positive integer ℓ and |Mj| = m for all j ∈ [ℓ].
We fix h0 = IV , where IV is publicly known hash value, and define Hf (IV,M) as follows:

• hj = f(hj−1,Mj), for all j ∈ [ℓ],

2In an extension attack, given H(M), and |M |, but not M , by choosing a suitable M ′, an attacker can
calculate H(M‖M ′).
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• Hf (IV,M) = hℓ.

The intermediate hash values h0, h1, . . . , hℓ−1 are called chaining values. Figure 2.1 shows
the simple iterated hash construction, with the message padded in accordance with the
MD-strengthening.

M1

h0
f

M2

h1 f

M3

h2 f · · ·

Mℓ

hℓ−1

f hℓ

Figure 2.1: A simple iterated hash function

The superscript denotes the underlying compression function. We drop the superscript
when it is clear from context. The input parameters are the initial hash value and the
message. When viewing an iterated hash function as a function from some keyed hash
family, IV can be seen as a publicly known key.

For the remainder of this thesis, we denote the message by M and the blocks of the
padded message by M1,M2, . . . ,Mℓ.

Many other variants of iterated hash functions have been proposed in the literature.
In this thesis, we will deal with three famous variants: the dithered hash construction, the
hash twice construction, and the concatenated hash construction. We briefly define them
next. In Chapter 5, we propose an attack on a generalized family of hash functions. We
give the formal description of this generalized family of hash functions in Section 2.3.2.

Hash twice construction

In the hash twice construction, one hashes two consecutive copies of the message M . For-
mally, for a hash function H as defined above, it is defined as

HT := H(H(IV,M),M),

where IV is the publicly known initial hash value. Figure 2.2 shows the construction of
the hash twice hash function.

Concatenated hash function construction

In the concatenated hash function construction, one hashes two copies of the message
M . Formally, for hash functions H and G, where H and G may be based on different

22



M1

h0 = IV f

M2

h1 f

M3

h2 f · · ·

Mℓ

hℓ−1
f

M1

hℓ f

M2

hℓ+1 f · · ·

Mℓ

h2ℓ−1
f h2ℓ

Figure 2.2: The hash twice construction

compression functions, it is defined as

CH := H(IV,M)‖G(IV ′,M),

where IV and IV ′ are the publicly known initial hash values. Figure 2.3 shows the hash
twice construction.

M1

h0 = IV f

M2

h1 f

M3

h2 f · · ·

Mℓ

hℓ−1
f H(M)

M1

h′0 = IV ′
g

M2

h′1 g

M3

h′2 g · · ·

Mℓ

h′ℓ−1
g G(M)

Figure 2.3: The concatenated hash construction
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Dithered hash function construction

Let ψ = {ψ(i)}∞i=0 be any abelian square-free sequence. Then the construction of Rivest [64],
also known as the dithered hash function construction3, is

hj = f(hj−1,Mj‖ψ(j)) for all j ∈ [ℓ],

where |Mj|+ |ψ(j)| = m, h0 = IV is some publicly known value, and DHf,ψ(IV,M) := hℓ.

Example. Let f : {0, 1}n × {0, 1}m → {0, 1}n be a compression function. Let us consider
a sequence over the alphabet, {0, 1, 2} as follow:

ψ = (2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, . . .).

This sequence is called the Thue sequence4 and is square-free sequence (for details, refer
to [1]). Let M ′ be the message after padding, such that the bitlength of M ′ is a multiple of
m − 2. We break the message as M ′ = M ′

1‖M ′
2‖ · · · ‖M ′

ℓ. Further, writing the symbols of
the sequence in the binary form (2 7→ 10, 1 7→ 01, 0 7→ 00), we dither the message with the
sequence and write M = M ′

1‖10‖M ′
2‖01‖M ′

3‖00‖ · · · ‖M ′
ℓ‖〈ψ(ℓ)〉. Let Mi = M ′

i‖〈ψ(i)〉 for
1 ≤ i ≤ ℓ. Then the dithered hash function based on dithering sequence ψ is then defined
as,

• hj = f(hj−1,Mj), for all j ∈ [ℓ],

• DHf,ψ(IV,M) = hℓ.

In the subsequent presentation, we often drop IV as one of the parameters, and denote
by H(M), any hash computation of the form H(IV,M).

2.3.2 Generalized sequential hash function

Definition 2.14. Let ψ = (ψ(i))
λ
i=1 be a sequence that consist of elements from [ℓ], such

that each element occurs at most twice and at least once5. Let Hf (·, ·) be an n-bit hash
function based on the compression function f . For a message M = M1‖M2‖ . . . ‖Mℓ, we
define an iterated hash function, Hf,ψ, based on ψ as follows:

3Rivest adapted the word “dithering” from image processing to refer to the process of adding an
additional dithering input to a sequence of processing steps, to prevent an adversary from causing and
exploiting simple repetitive patterns in the input.

4We use the Thue sequence [74], which is not abelian square-free just for an example. In the actual
construction, Rivest advocated to use the Kernänen sequence [45, 46], which is abelian square-free.

5Throughout this thesis, we will implicitly require that each message block is used at least once in the
computation of the hash function.
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• hi = f(hi−1,Mψ(i)
), for all 1 ≤ i ≤ λ,

• Hf,ψ = hλ.

Figure 2.4 shows the generalized sequential hash function defined on the sequence ψ.

ψ = (ψ1, ψ2 . . . , ψλ)

Mψ1

h0
f

Mψ2

h1 f

Mψ3

h2 f · · ·

Mψλ

hψλ−1

f hλ

Figure 2.4: A generalized hash function construction

We denote (ψ(i), ψ(i+1), . . . , ψ(j)) ⊆ ψ as ψ[i, j] and any permutation π of the subse-
quence ψ[i, j] by π(ψ[i, j]).

Example. The hash twice construction uses ψ = (1, 2, . . . , ℓ, 1, 2, . . . , ℓ) and the Zipper
hash construction uses ψ = (1, 2, . . . , ℓ, ℓ, ℓ− 1, . . . , 1).
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Chapter 3

Related work

In this chapter, we perform a detailed literature review of some known generic attacks. We
only cover those attacks that are used in this thesis.

3.1 Two important data structures

Before performing the literature survey, we give an overview of two important data struc-
tures that are used in generic attacks on the second preimage resistance and CTFP resis-
tance of simple iterated hash functions and its variants.

3.1.1 Expandable message

Unlike what the term suggests, an expandable message is not a single message but a set
of messages with different block lengths. This set is paramaterized by a variable ℓ, which
defines the upper and lower bound on the block length of the messages in the set.

For functions f1, f2 : N → N, an (f1(ℓ), f2(ℓ))-expandable message is a set that has
messages of every block length ranging from f1(ℓ)-blocks to f2(ℓ)-blocks. In addition, an
(f1(ℓ), f2(ℓ))-expandable message is a set of multicollisions for a publicly known fixed initial
hash value and a fixed hash function. We give an explicit construction of an (ℓ, ℓ+2ℓ− 1)-
expandable message in Section 3.3.1.

3.1.2 Diamond structure

A diamond structure is parameterized by a variable k, which defines the size of the diamond
structure and the complexity of the construction of such a diamond structure.
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A 2k-diamond structure is a complete binary tree structure, with the nodes labelled by
a hash value. At any level ℓ for 0 ≤ ℓ ≤ k, there are 2k−ℓ nodes. The nodes at the level 0
of the diamond structure are called the leaves, and the node at the level k is called the root
node. There is a single node which is connected to all the leaves, called the source node.

The edges of a diamond structure are labelled by a string. For an edge, e, let σ(e) be
its labelling, and let the label of the source node be IV . Then we label the nodes of the
diamond structure in the following manner. Let (e0, e1, . . . eℓ) be a path from the source
node to a node ν at level ℓ. We label the node ν as,

h(ν) = H(IV, σ(e0)‖σ(e1)‖ . . . ‖σ(eℓ))

The diamond structure is constructed in such a way that all paths leading to a given node
N yield the same value h(N), so h(N) will be well-defined.

At any level ℓ of the structure there are 2k−ℓ hash values. These must be paired up in
such a way that, when the next message blocks are appended, 2k−ℓ−1 collisions occur. Thus
there are 2k−ℓ−1 hash values at the next level, which is level ℓ + 1. The entire structure
yields a set of 2k-multicollisions, but it has other uses, as well.

Figure 3.1 shows a 23-diamond structure. In this figure, h0 is the source node, h3 is the
root node, and there are eight leaf nodes.

h0

h1
0

h2
0

h3
0

h4
0

h5
0

h6
0

h7
0

h8
0

h1
1

h2
1

h3
1

h4
1

h1
2

h2
2

h3

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ1,1

σ1,2

σ1,3

σ1,4

σ1,5

σ1,6

σ1,7

σ1,8

σ2,1

σ2,2

σ2,3

σ2,4

σ3,1

σ3,2

Figure 3.1: A 23 diamond structure
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h0 h1 h2 h3 h4 hr−1 hr

m0

m∗
0

m1

m∗
1

m2

m∗
2

m3

m∗
3

mr−1

m∗
r−1

• • •

Figure 3.2: A 2r-way collision

We next do a survey of recent generic attacks that have been proposed in the literature,
and used in this thesis.

3.2 Multicollision attacks

Recall from Section 1.2.1 that a collision on any function f : X → Y is a pair of distinct
elements {X1, X2} ⊆ X , such that f(X1) = f(X2). The generalization of the concept of
collision is an s-way collision. An s-way collision (or s-multicollisions) is a set of s distinct
elements, {X1, . . . , Xs} ⊆ X such that f(X1) = f(X2) = . . . = f(Xs).

Any function that maps a larger set to a smaller set is susceptible to the birthday
attack, and hash functions are no exception. Assuming the computation of the underlying
function takes constant time, the computational complexity of the basic birthday attack
for finding an s-way collision on any random function is Θ(s × |Y|(s−1)/s) [73]. However,
Joux [39] showed that it is very easy to construct a 2r-way collision on an iterated hash
function. We next describe Joux’s multicollision attack.

3.2.1 Joux’s multicollision

Joux’s multicollision attack [39] is a 2r-way collision attack on the Merkle-Damg̊ard con-
struction. Let f be the underlying compression function. Let C be a collision finding oracle,
which when given the chaining value h as an input, outputs two messages m and m∗, such
that f(h,m) = f(h,m∗). The idea of Joux is that by r calls to C, we get r pairs of mes-
sages, {(m1,m

∗
1), (m2,m

∗
2), . . . , (mr,m

∗
r)}. Note that any message M = M1‖M2‖ . . . ‖Mr,

where each Mi is either of mi or m∗
i , yields the same hash value. Hence, the adversary can

construct a 2r-way collision using r calls to C.
Assuming that the hash function behaves as a random oracle, Joux stated the following

theorem.

Theorem 3.1. [39] For an iterated hash function, the complexity of finding a 2r-way
collision on an n-bit hash function is O(r × 2n/2).
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Using the above attack, Joux also found a collision on concatenated hash constructions
with exponentially fewer queries to the compression function as compared to the basic
birthday attack. Let CH = F (M)‖G(M) be a concatenated hash function and assume
that F outputs an nf -bit hash value and G outputs an ng-bit hash value. Joux proposed
the following collision attack. Without loss of generality, let nf ≥ ng. First, construct
a 2nf/2-way collision on G. Since nf ≥ ng, we can perform a direct application of the
birthday attack on this set of 2nf/2 messages, and expect that a collision occurs in the
function F with reasonable probability. The messages that collide for the function G form
the required collision. It is easy to verify that the complexity of the attack is of the order
nf × 2ng/2 + 2nf/2, which is exponentially less than 2(nf+ng)/2.

Using the same method, Joux’s attack extends to finding collisions on various hash
constructions, like Schneier’s construction1 [67] and the hash twice construction.

However, Joux’s multicollision attack fails when we reuse any message block. This was
the main idea behind Liskov’s Zipper hash construction [50]. In the Zipper hash, each
message block is used twice in the following way. Let the message be M = M1‖ . . . ‖Mℓ;
then we first use the iterated hash function with IV as initial hash value, and M as message
to get h. Once we have h, we use h as the initial hash value and use the iterated hash
function with M ′ = Mℓ‖ . . . ‖M1 as the message. The output is the hash value obtained at
the end of the second iteration.

Within a year of Liskov’s construction, Nandi and Stinson [59] found a multicollision
attack on a generalized family of iterated hash functions of which Liskov’s construction
is a special case. They generalized the construction of hash functions (Definition 2.14) so
that the hash function uses any message block at most twice and in any order, and showed
that even under this generalization, we can have a Joux-type multicollision attack. We
next give a brief overview of their attack.

3.2.2 Nandi and Stinson’s attack

For any sequence ψ, define a partial order (ψ,≺) in the following manner: a ≺ b if every
occurence of a in the sequence precedes any occurrence of b in the sequence. Nandi and
Stinson [59] observed that for ψ = (ψ(i))

λ
i=1 in which every symbol is repeated at most

twice and |alph(ψ)| ≥ uv, one of the following holds:

1. The length of the maximal chain of (ψ,≺) is at least u, or

1Schneier’s construction is a variant of the concatenated hash construction and is of the form
F (IV,G(IV ′,M)‖M), where F and G can be based on the same or different compression functions and
IV and IV ′ are the same or different publicly known initial hash values.
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2. There exists a w < λ, such that ψ[1, w] has at least v elements that occur just once
in ψ[1, w].

Let C be a collision-finding oracle. They proved the following two theorems,

Theorem 3.2. For any sequence ψ, if the maximal chain of (ψ,≺) has a length is greater
than r, then it is possible to find a 2r-way collision for Hf,ψ by using |ψ| queries to C.
Theorem 3.3. For any sequence ψ in which no element is repeated more than twice, if
there exists an initial subsequence with at least tr elements that occur exactly once in the
subsequence, then it is possible to find a 2r-way collision by using O(r(n+ ln r)) queries to
C, where

t =
n+ 1

2
+

ln ln 2r

2r
,

and n is the length of hash output.

It is easy to see that by choosing ℓ = tr2, we can find a 2r-way collision on a generalized
class of hash function as defined in Definition 2.14. Since the Zipper hash and hash twice
are specific cases of the generalized family of hash functions, they are also susceptible to
this attack.

The attack of Nandi and Stinson is constructive in the sense that it is possible to
construct a 2r-way collision from the proof of Theorem 3.2 and Theorem 3.3. The only
thing that they did not discuss is how to differentiate the two cases for any given sequence.
This can be easily done as the two cases covers all the possibilities. The procedure followed
is to find the maximal chain of the sequence. If it is at least u, then we use the steps stated
in the proof of Theorem 3.2, otherwise we use the steps in the proof of Theorem 3.3. Finding
a maximal chain of the subsequence can be done by computing the longest subsequence [68]
which can be done by a standard dynamic programming technique.

Hoch and Shamir [36] extended the work of Nandi and Stinson for the case when any
symbol is repeated at most q times. However, for large values of q, the attack is mainly
of theoretical interest as the complexity of the attack is a super-exponential function of
q [34].

3.2.3 Hoch and Shamir’s attack

Hoch and Shamir [36] generalized the attack proposed by [59] by considering the case when
any element that occurs in the sequence is repeated at most q times. We first present a
high-level description of the attack. In this thesis, whenever we use the phrase “q successive
permutations” for a sequence ψ, we mean that we can rewrite the sequence ψ in the form
ψ = ψ1‖ψ2 . . . ‖ψq, such that ψi is a permutation of ψj for all 1 ≤ i, j ≤ q. For a sequence
ψ, the attack has following steps:
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1. For any sequence ψ, such that Z = alph(ψ), there exists a Y ⊆ Z, such that ψ|Y is
in the form of (up to) q successive permutations.

2. If we can find a 2r-way collision for a hash function based on ψ|Y , then we can find
a 2r-way collision for the hash function based on ψ.

3. If Y is a reasonably large set, then we can find a 2r-way collision on q successive
permutations.

We now give a more detailed description of the attack. Throughout this section, we
will consider the message in the form of blocks. We denote the set of the first ℓ integers
by L = [ℓ]. The number of collisions to be found is 2r.

• Step 1 of the attack: Lower bound on the size of the alphabet set of a

sequence to allow successive permutation.

Hoch and Shamir proved that any arbitrary sequence based on a certain alphabet
size can be reduced to the case of successive permutations. This is the first step of
the attack.

Lemma 3.4. Let ψ be a sequence such that any element from L occurs in ψ at most
q times. For large enough L, and for any integer x, we can find a subset of indices
Y, such that |Y| ≥ x, and ψ|Y is in the form of up to q successive permutations over
the same set of indices Y.

Recently, Halunen et al. [34] corrected the lower bound on the size of the alphabet
set. We state the correct bound in Theorem 3.7.

• Step 2 of the attack: Finding a 2r-way collision on ψ, given a 2r-way

collision on ψ|Y . We state the extension of the attack from ψ|Y to ψ for any subset
Y ⊆ alph(ψ) in the form of the following lemma:

Lemma 3.5. If we can construct a 2r-way collision on a hash function based on
sequence ψ|Y , we can construct a 2r-way collision on a hash function based on ψ.

• Step 3 of the attack: Finding a 2r-way collision in the case of successive

permutations. The final step of the attack uses a very nice result on the permuta-
tion of any finite set, which we state next:

Lemma 3.6. Let B and C be two permutations of L. Divide both permutations into
k consecutive groups of size σ = ℓ

k
(say {Bi}i∈[σ] and {Ci}i∈[σ]). Then for x ≥ 0,

such that ℓ ≥ k3x, and for every group Bi, we can find a Cj such that |Bi ∩Cj| ≥ x.
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The proof of the lemma follows from Hall’s theorem and some basic counting princi-
ples.

Using the above-stated lemmas, we can construct a 2r-way collision when the se-
quence is in the form of successive permutations. Let ψ be a sequence defined on
sufficiently large alphabet set. Let Y ′ be a subset of alph(ψ) as defined in Lemma 3.4,
such that |Y ′| = ℓ for ℓ ≥ r3n3(q−3)+2. Let ψ|Y ′ = π1‖ . . . ‖πq be the factoring of ψ|Y ′

in the form of q successive permutations. The procedure is as follows:

1. Divide πq and πq−1 into r equal-length intervals. Since ℓ ≥ r3n3(q−3)+2 = r3x,
from Lemma 3.6, we can find an intersection set of size n3(q−3)+2. Let the disjoint
union of the indices from all the intersections be denoted by Y . We modify this
set iteratively, and call it the active indices.

2. Construct ψ1 = ψ|Y .

3. Take πq−1 and πq−2, and divide them into rn equal length intervals. Follow steps
1 and 2. Since in this case ℓ ≥ (rn)3n3(q−4)+2, we have an intersection of size
n3(q−4)+2.

4. Continue the above procedure until we reach π3 and π2 after q − 2 iterations,
where the number of active indices is n2 for each rnq−3 segments. Let Y be the
smallest set of indices formed in the last step of the iteration.

5. Construct 2k Joux multicollisions on ψ|Y , as in Lemma 3.5.

Halunen et al. [34] calculated the query complexity of the attack by Hoch and Shamir.
They gave the following result:

Theorem 3.7. [34] Let m,n, and q be positive integers such that m > n and q ≥ 2,
and let f : {0, 1}n × {0, 1}m → {0, 1}n be a compression function on which the iterated
hash function is based. Let ψ be a sequence such that alph(ψ) = [ℓ]. Then there exists a
probabilistic algorithm, which, given any r ∈ N, constructs a 2r-way collision set on the
generalized iterated hash function so that the number of queries made to f in the attack of
[36] is O(Cqn

(q2−4q+5)Dq), where Cq and Dq are defined recursively as,

Cq = (q × Cq−1)
Dq+1 , C1 = 1,

and
Dq = D2

q−1 + 1, D1 = 1.

It is straightforward to see that Cq = Θ(22q−1
) and Dq = Θ(222q

). Due to this super-
exponential complexity (in terms of q), the attack is mainly of theoretical interest.
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3.3 Second preimage attacks

In this section we will discuss few generic second preimage attacks. One constraint with
all the attacks is that they are feasible only when the message is “long”. In this thesis, in
order to make the equations simpler, we assume that the second preimage attack has been
carried on a message which is L = 2ℓ blocks long, an exact power of 2. However, similar
analysis can be carried out for different values of L.

We will discuss the recent progress in chronological order:

1. Attack on iterated hash functions [44].

2. Attack on the dithered hash construction [3].

3. Attack on the hash twice construction [2].

3.3.1 Attack on an iterated hash function

In 2005, Kelsey and Schneier [44] extended the idea of Joux’s multicollision attack to
find second preimages on a long message. They introduced the concept of an expandable
message, which formed the basis of many subsequent second preimage attack. We give a
brief overview of their attack.

Let Mc be the challenge message, which is 2ℓ-blocks long. Let the hash function be
based on the compression function f . Let C be a collision finding oracle, which on being
queried with a hash value h and an integer t, produces two colliding messages, M and M∗,
with block lengths 1 and t respectively, and h′ = H(h,M) = H(h,M∗).

Construction of an expandable message.

The attack uses C to construct an (ℓ, ℓ + 2ℓ − 1)-expandable message. Let h0 be the
initial hash value. The adversary runs C in each iteration of ℓ rounds. In iteration i,
for 0 ≤ i ≤ ℓ − 1, the adversary queries C with hi−1 and 1 + 2i. C returns a pair of
messages, Mi and M∗

i , where Mi is one-block long and M∗
i is 1 + 2i blocks long, and

hi = H(hi−1,Mi) = H(hi−1,M
∗
i ). At the end of all rounds of iterations, we have two lists

of messages.

Constructing an (ℓ, ℓ+2ℓ−1)-expandable message requires concatenation of the elements
of the two lists together, in an appropriate way.

Now the question arises that from the two lists, how can the adversary construct a
set of messages which have block lengths ranging from ℓ to ℓ + 2ℓ − 1? The answer is
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simple: suppose we want to find a message of block length i + ℓ. We compute the binary
representation of i = 〈i1, . . . , iℓ〉. If ij = 1, then set mj = M∗

j , else pick mj = Mj. It can
be easily verified that the resulting message m = m1‖ . . . ‖mℓ is a message of the required
block length.

The attack can be now summed up in the following steps:

• Find an (ℓ, ℓ+2ℓ−1)-expandable message, and find a linking message, m∗, that links
the hash value of the expandable message set2 to one of the chaining values of the
hash computation of Mc. In more detail, let h be the hash value of the expandable
message. m∗ is a linking message if f(h,m∗) is one of the chaining value in the
computation of Mc. m

∗ is found by random selection.

• Using the expandable message set, find a message of the required length so that the
length of the original message and the second preimage is the same. This step is to
overcome the MD-strengthening.

Figure 3.3 shows the attack. In the figure, series of solid vertical lines denotes the
message blocks, while the curve line denotes the linking message block.

M ∈ (ℓ, ℓ+ 2ℓ − 1)-expandable message

2ℓ − i0 − 1

m∗

i0
2ℓ

Mc

Figure 3.3: Second Preimage attack of Kelsey-Schenier

Kelsey and Schenier calculated the complexity of the attack as O(2n−ℓ + ℓ× 2n/2).

Subsequently, various hash constructions were proposed to resist the expandable mes-
sage attack. Rivest proposed a construction that is based on dithering the messages with
a sequence to prevent such an attack. However, using the diamond structure, Andreeva
et al. showed that Rivest’s construction is still susceptible to such an attack. Halevi and

2Note that the expandable message is by construction, a multicollision set.
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Krawczyk [33] proposed a randomized hash construction that resists such attacks. Gau-
ravaram et al. [28] proposed a new construction which they called 3C construction to resist
this attack. However, this construction was shown susceptible to an easy collision attack
that uses the internal construction of 3C construction [26].

3.3.2 Attack on the dithered hash function

Andreeva et al [3] found an attack on the dithered hash function using a diamond structure.
The expandable message attack fails because the adversary has to match the dithering
sequence that are used in the message and its second preimage. The attack by [3] utilizes
the flexibility one has when choosing the prefix. For this, the adversary constructs a
2k-diamond structure based on a subsequence of the original sequence. Let ψ be the
dithering sequence used in the dithered hash function. Since the edge of the diamond
structure is labelled by message block(s), one also requires the specification as to how the
dithering sequence is used for the edge labelling of the diamond structure. Let ω (written
ω(0), . . . , ω(k)) be one of the most frequently occuring factor of ψ. The attack then uses
ω as the dithering sequence for the edges of the diamond structure by dithering all the
messages on the edges that joins the nodes at level i to level i + 1 by ω(i). The steps of
attack can now be described as:

1. Choose arbitrarily3 the most frequent factor of ψ of length k + 1 as ω.

2. Build a 2k-diamond structure by dithering the edge labelling with the sequence, ω.
Let the hash value at the root be hT .

3. Find a linking block m∗, such that f(hT ,m
∗) = hi, i ≥ k+2, and ψ[i−k− 1, i] = ω.

4. Let j = i− k − 1. Find a prefix of the required length using the dithering sequence
ψ[1, j].

Recall that Factψ(ℓ) denote the number of factors of size k in the sequence ψ. Andreeva
et al made a crucial observation that, although the sequence used in Rivest’s construction
is non-periodic, Factψ(k) = O(k). Using this fact, they calculated the message complexity
to be

O(Factψ(k)× 2n−ℓ + 2n−k + 2(n+k)/2) = O(k × 2n−ℓ + 2n−k + 2(n+k)/2).

Later, [9] corrected the analysis by noting a correction in the analysis of diamond structure
and proved the following:

3There can be more than one factor that have same frequency and same length.
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Theorem 3.8. [9] Assuming that hash computation takes unit time, the message complexity
of the attack on dithered hash construction is,

O
(√

k × 2(n+k)/2 + 2n−k + k × 2n−ℓ
)

,

and the computational complexity is,

O
(

k × 2n−k + k × ℓ× 2n−ℓ + n×
√
k × 2(n+k)/2

)

.

3.3.3 Attack on the hash twice construction

The original attack [2] uses an expandable message to find a second preimage on the
hash twice construction. In this thesis, we give a different attack that uses the diamond
structure. However, for the sake of completion, we first present the attack of [2].

Using expandable message

In the second preimage attack on the hash twice construction based on the compression
function f , the attack of Andreeva et al [2] uses the following steps in the offline phase:

1. Generate an (ℓ, 2ℓ + l − 1)-expandable message, starting from the initial hash value
yielding a chaining value ha.

2. Starting from ha, generate a set of multicollisions, M that yields a chaining value
hb. Denote the first n− k blocks ofM byM1 and the remaining blocks byM2.

3. Randomly choose 2k random hash values as the labelling of the leaf nodes, and using
the messages fromM2 as the messages on the edge, construct a diamond structure,
D2. It yields a chaining value hd.

In the online phase, given a message M of block length 2ℓ, the attacker follows the
following steps:

1. Find a linking message m, such that f(hd,m) equals to a chaining value hi appearing
in the second pass of the hashing of M .

2. Find a message of appropriate length from the (ℓ, 2ℓ + l − 1)-expandable message.
Let the message be m0.
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3. Compute i′ = i−2ℓ. Let M ′ = Mi′+1‖ . . . ‖M2ℓ . Compute h2,1 = f(hb,M
′‖m0). Now,

using the messages fromM1, find a linking message m∗ that links h2,1 to one of the
leaf nodes of the diamond structure.

4. Find the path inside the diamond structure to the root of D2.

The second preimage is the message formed by appending the message blocks in the proper
order.

Using diamond structure

We next present our variation of the above attack. In the attack that uses diamond struc-
ture instead of an expandable message, the attacker constructs two diamond structures,
one on each pass. The first diamond structure is a simple diamond structure while the
second diamond structure is a diamond structure based on a set of multicollisions4. The
steps followed in the offline phase are as follows:

1. Randomly choose 2k hash values as the labelling of the leaf nodes, and construct a
diamond structure D1 using these hash values as the leaf nodes. Let the hash value
of the root node be h1,1.

2. Starting from h1,1, generate a set of multicollisions, M that yields a chaining value
h1,2. Denote the first n− k blocks ofM byM1 and the remaining blocks byM2.

3. Randomly choose 2k random hash values as the labelling of the leaf nodes, and using
the messages fromM2 as the messages on the edge, construct a diamond structure,
D2. Let the hash value of the root node be h2,2.

The diamond structure Di is constructed for the ith pass.

The online phase remains the same as in [2], except that instead of finding a message
from the (ℓ, 2ℓ + l− 1)-expandable message, the attacker finds a linking message of appro-
priate length that links the initial hash value to one of the leaf nodes of D1. Figure 3.4
shows the attack. In the figure, series of solid vertical lines denotes the message blocks,
the curve line denotes the single message block, the series of closed curve denotes the set
of multicollisions. A diamond structure is shown by a triangle and a series of zig-zag lines
denotes the messages which are found in the online stage. We will use this notation of
figure to draw different structure in the remainder of this thesis.

4The edges on the diamond structure are the messages from the set of multicollisions.
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Figure 3.4: Second preimage on the hash twice construction
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3.4 Herding attack

3.4.1 Herding attack on an iterated hash function

The herding attack [43] is an attack on the CTFP resistance property of a hash function.
Recall that CTFP resistance requires that it should be hard for an adversary to win the
following two round game: in the first round, the adversary commits to a hash value h,
whereupon she is challenged by a prefix P . In the second round, in order to win the game,
the adversary has to produce a suffix S, such that H(P‖S) = h.

In the attack that Kelsey and Kohno proposed, in the offline phase, the adversary
constructs a diamond structure and commits to hash value at the root node.

In the online phase, the adversary is challenged with a prefix P . The adversary com-
putesH(P ), and finds a string σ(e0) such thatH(P‖σ(e0)) is one of the intermediate nodes,
ν, of the diamond structure. The adversary then finds the unique path P = (e1, e2, . . . , ek)
from ν to the root node, and outputs the suffix S = σ(e0)‖σ(e1)‖ . . . ‖σ(ek).

Kelsey and Kohno computed the message complexity of the herding attack to be
O(2(n+k)/2 + 2n−k). Recently, using the idea from the random graph theory, [9] corrected
their analysis of a diamond structure. We provided a concrete method to construct the
diamond structure and proved the following:

Theorem 3.9. [9] Assuming that a hash computation of every message takes unit time,
the message complexity required to construct a 2k-diamond structure using Kelsey-Kohno’s
algorithm is Θ(

√
k× 2(n+k)/2) and the time complexity is O(n×

√
k× 2(n+k)/2). Therefore,

for a successful herding attack on an iterated hash function, the message complexity is
Θ(
√
k × 2(n+k)/2 + 2n−k) and the time complexity is O(n×

√
k × 2(n+k)/2 + k × 2n−k).

By the above theorem, the optimal choice of k is approximately n/3 up to a constant
factor. We discuss the correct analysis in detail in Chapter 4.

3.4.2 Herding attack on variants of iterated hash function

Andreeva et al. [2] showed that the diamond structure can be used for the herding attack on
some specific hash function constructions, like the concatenated hash and the hash twice.

In the offline phase, the adversary constructs two diamond structures and multicollisions
in the similar manner as in the second preimage attack on the hash twice constructions. The
adversary commits to the hash value of the root node of the second diamond structure. Let
the hash values of the root nodes of the two diamond structure be h1,1 and h2,2 respectively,
and the common hash value of the multicollisions be h1,2.
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The only difference between the herding attack on the hash twice and concatenated
hash is the chosen-target. In the case of a concatenated hash function, the adversary
commits to h1,2‖h2,2. In the case of hash twice, she commits to h2,2.

In the online phase, once the adversary is given a prefix P , she follows the following
steps:

1. Find the linking message m, that links H(IV, P ) to one of the leaf nodes of D1.

2. Find the path through D1. Let the string formed by concatenating the edge labellings
of the path be σ1.

3. Compute h2,1 = H(h1,2, P‖m‖σ1).

4. Using the messages from M1, she tries to find a linking message m∗, that links h2,1

to one of the leaf nodes of D2.

5. Find the path through D2. Let the string formed by concatenating the edge labellings
of the path be σ2.

The adversary outputs the suffix asm‖σ1‖m∗‖σ2. Figure 3.5 shows the attack. D1,D2,M1,
andM2 are as in Section 3.3.3.

P

m D∞
h1,2

h1,1

h2,1

m∗

D2
h2,2

M1 M2

j k + 1 n− k r(k)

Figure 3.5: Herding attack on the hash twice construction
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Chapter 4

Complexity of diamond structure

and its impact

In this chapter, we revisit the construction of the diamond structure [43], which is central
to many generic attacks [2, 3, 43], and led to the construction of various new iterated
hash functions like [50, 52]. Basically, a diamond structure is a structure to produce
multicollisions, though more expensive than the Joux multicollisions. However, at the
expense of some overhead in constructing multicollisions, the adversary achieves enough
flexibility to find a herding message much faster than a naive approach would suggest.
In subsequent years after Kelsey and Kohno proposed the diamond structure, it has been
used in the second preimage attacks on certain hash constructions that resisted Kelsey-
Schneier’s expandable message attack, and in the herding attacks on certain variants of
iterated hash functions.

The diamond structure is a directed complete binary tree (Section 3.1.2), with the nodes
labelled by a hash value and edges by messages1. The hash value of any node ν, except
for the leaf nodes, is the hash value obtained by applying the compression function on the
hash value of either of the child nodes and using the labelling of the edge connecting that
child node to ν as the message block. The diamond structure is constructed in such a way
that all paths leading to a given node N yield the same value hash value h(N), so h(N)
will be well defined. This allows the adversary to commit to the hash value corresponding
to the root node. When the adversary is challenged by any prefix, she tries to link the
hash of the prefix to one of the intermediate node of the diamond structure, and then find
the path leading to the root.

Apart from the herding attack, the diamond structure has many applications. Kelsey
and Kohno have enumerated a few applications in [43]. For example, there is a simple

1The message can be a single block or multiple blocks.
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attack on commitment schemes based on hash functions. In the commit phase, the adver-
sary commits to the hash value of the root node. In the reveal phase, she can reveal a
message different from the message that she originally committed to in the commit phase.
Apart from this, the diamond structure has been used in many generic attacks on the
hash constructions that were constructed specifically to resist the existing generic attacks.
Therefore, it is very important to analyse the complexity of the construction of the dia-
mond structure. In the literature, only the message complexity of the construction of the
diamond structure has been studied. There has been no work to compute its computa-
tional complexity, which is also an important parameter if the attack is actually put in to
practice.

In this chapter, we revisit the analysis of the construction of the diamond structure
and show that there is a gap between the message complexity and the computational
complexity of the construction. We first state the analysis of the diamond structure done
by Kelsey and Kohno [43] and point out the problem in their analysis. We follow up with
a more detailed analysis. Based on our analysis, we calculate the message complexity and
the computational complexity of the construction of the diamond structure and existing
attacks based on the diamond structure.

Organization of the chapter

In this chapter, we revisit the earlier analysis done for the construction of the diamond
structure. We first present the analysis given by Kelsey and Kohno, which is intuitive
but not complete. We prove that it is highly unlikely to construct the diamond structure
with the message complexity claimed in [43]. We substantiate our claim by reducing the
problem of constructing the diamond structure to a problem of constructing a random
graph with a certain property, say P . We then give the bound on the message complexity
by finding the number of hash computations required to get the desired probability of
collision, which in turn gives the edge probability of a random graph with the property
P . Building upon the idea we develop for computing the message complexity, we give the
asymptotic bound on the computational complexity of the construction. We observe that
the message complexity and the computational complexity of the construction of diamond
structure are not equal. In fact, asymptotically, the message complexity differs from the
computational complexity by a multiplicative factor of the bit-size of the hash output.

We substantiate our claim regarding the importance of our detailed analysis in Sec-
tion 4.3 when we analyse the recent attacks based on the diamond structure. We also
perform an analysis of the computational complexity of the attacks, and note that it is not
the same as the message complexity in most of the cases.

We first quote the analysis of Kelsey and Kohno, which gives us an intuitive idea for
the construction of the diamond structure. We give a brief overview of random graphs
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in Section 4.1. Using the concepts from the theory of random graphs and the analysis
of Kelsey and Kohno, we give a revised and rigorous analysis of the construction of the
diamond structure in Section 4.2 and study the impact of the revised analysis in Section 4.3.

Analysis of Kelsey and Kohno

We begin by recalling the analysis provided by Kelsey and Kohno [43]. They gave some
intuition to compute the message complexity of the construction of the diamond structure.
Before we begin, we note that this analysis implies that n > k. Kelsey and Kohno argued
as follows:

The work done to build the diamond structure is based on how many messages
must be tried from each of 2k starting values, before each has collided with at
least one other value. Intuitively, we can make the following argument, which
matches experimental data for small parameters: When we try 2n/2+k/2+1/2

messages spread out from 2k starting hash values (lines), we get 2n/2+k/2+1/2−k

messages per line, and thus between any pair of these starting hash values, we
expect about (2n/2+k/2+1/2−k)2×2−n = 2n+k+1−2k−n = 2−k+1 collisions. We thus
expect about 2−k+k+1 = 2 other hash values to collide with any given starting
hash value.

We claim that this line of reasoning does not guarantee the diamond structure. In
particular, we show that by using the given number of messages, we do not have the
guarantee that 2k nodes can be paired up to give 2k−1 collisions. We view the diamond
structure in the graph theoretic setting. We translate the problem of constructing diamond
structure to the problem of having a random graph with certain properties.

To continue further, we first give a brief exposition of the theory of random graph that
is required to understand our approach. We refer the readers to standard references such
as [10] for details.

4.1 Random Graph Model

A random graph G(ν, p) is a graph on ν labelled vertices obtained by selecting each pair of
vertices to be an edge randomly and independently with a fixed probability p. This model
is commonly known as the Erdös-Rényi model. An alternate model is a random graph,
G(ν, E). In the G(ν, E) model, a graph is chosen uniformly at random from the collection
of all graphs which have ν nodes and E edges. The behavior of random graphs is usually
studied in the case when ν tends to infinity. p and E can be fixed or some function of ν.
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It is easy to show that the two models are closely related [10]. In our analysis, we will use
the G(ν, p) model.

The probability p has a very important role, as it can be seen as a parameter which
determines the sparsity or density of the graph. As p ranges from 0 to 1, the graph
becomes more and more dense on average. Moreover, many natural monotone graph-
theoretic properties become true within a very small range of values of p. More precisely,
given a monotone graph-theoretic property, there is typically a value of p (which will be
a function of ν, the number of vertices) called the threshold function. The given property
holds in the model G(ν, p) with probability close to 0 for p less than the threshold, and the
property holds with probability close to 1 for p greater than the threshold. Formally, the
notion of a threshold function is defined as follows:

Definition 4.1. A function t(ν) is a threshold function for a monotone property P if,
whenever p≪ t(ν), then G(ν, p) does not satisfy P almost always, and whenever p≫ t(ν),
then G(ν, p) satisfies P almost always.

In random graph theory, threshold functions play a very important role. However, it
should be noted that a threshold function is not unique for a particular graph property.
For example, 1/ν + 1/ν2 and 1010ν−1 are both threshold functions for the property of
containing a triangle.

We next show how we can reduce the problem of constructing a diamond structure to
a problem of constructing a random graph with certain properties.

Reduction to a random graph

We construct a graph, G, corresponding to a 2k-diamond structure. The graph G has k
components, G1, . . . ,Gk, where component Gi corresponds to a level (k− i) of the diamond
structure. We only show how to construct the component corresponding to the level (k−ℓ).

Suppose we label the nodes at the level (k − ℓ) as 1, 2, . . . , 2ℓ. We construct a com-
ponent, Gℓ = (Vℓ, Eℓ) of graph G = (V , E) in the following manner. The vertex set is
Vℓ = {v1, . . . , v2ℓ} and (vi, vj) ∈ Eℓ if the nodes i and j collide at the next level of the
diamond structure. It is easy to see that for the construction of the diamond structure,
each component should have a perfect matching.

To summarise, we require the graph to have following two properties:

• The graph consists of k components, where component i contains 2i vertices.

• Each component has a perfect matching.
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Note that the second property implies that the graph G has a perfect matching.

For reference, Figure 4.1(a) shows the list of the hash values (shown as the label of the
nodes in the chain) obtained for different messages tried for every node at the level k−3 of
a diamond structure, and Figure 4.1(b) shows the corresponding component of the graph
(a perfect matching is shown by the bold edges). Every edge of the graph corresponds to
a collision. For example, vertex 1 and 2 are connected by an edge in the graph because
Node 1 and Node 2 collides at a hash value 1324.

Based on the analysis given by Kelsey and Kohno [43], we see that the component Gℓ
is precisely a random graph in Gℓ(2ℓ, 2−ℓ+1). Unfortunately, random graph theory tells us
that it is very unlikely that there is a perfect matching in a random graph in Gℓ(2ℓ, 2−ℓ+1).
This is because Erdös and Rényi [23] proved that the threshold function for having a
perfect matching in G(ν, p) is roughly ln ν/ν. The class of random graphs Gℓ(2ℓ, 2−ℓ+1) has
p = 2/ν, which is well below the required threshold.

More precisely, the threshold function for having a perfect matching is any function
having the form

t(ν) =
ln ν + f(ν)

ν
(4.1)

for any f(ν) such that limν→∞ f(ν) =∞.

Note also that the threshold function for not having an isolated vertex is ln ν/ν [22],
and a graph that contains an isolated vertex obviously cannot contain a perfect matching.

4.2 Correct analysis

In our analysis, in order to simplify the assumptions and algebra, we assume that a random
graph in G(ν, ln ν/ν) will have a perfect matching. This is perhaps a tiny bit optimistic in
view of equation (4.1), but it is close enough for our purposes. To be completely rigorous,
we could construct a random graph in G(ν, c ln ν/ν), for any constant c > 1. However, this
would have no impact on our asymptotic computations.

4.2.1 Message complexity

We proceed in a similar manner to [43]. Suppose we construct ν = 2k lists, each containing
L messages. The probability that any two given messages collide under H is 2−n. The
probability that no message in one list collides with a message in another list can be
estimated to be

(

1− 1

2n

)L2

≈ 1− L2

2n
.

45



1324

2314

4323

6534

5432

2454

4237

7345

6534 5634 4323 6535 2346 6435

2354 7324 1324 5242 6452 1246

5242 6234 4252 5223 6253 4212

5634 6234 3423 6324 1352 4242

4524 6235 2462 6423 5634 6234

6223 6246 6235 6534 4252 6223

4252 6234 6231 6445 6623 6236

6424 6234 7364 4524 6115 5623

(a)

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

1 2

3

4

5 6

7

8

(b)

Figure 4.1: Level k − 3 of a 2k-diamond structure
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The probability (which we denote by p) that there is at least one collision between two
given lists is

p ≈ L2

2n
. (4.2)

In view of our analysis above, we want

p ≈ ln ν

ν
.

Recalling that ν = 2k, it is clear that we need to take

L ≈
√
k ln 2× 2(n−k)/2 ≈ 0.83×

√
k × 2(n−k)/2. (4.3)

The message complexity (i.e., the number of hash computations) at level 0 is therefore

2kL ≈ 0.83×
√
k × 2(n+k)/2. (4.4)

From now on, we assume n > ck for some constant c > 1 (as we will see later, a typical
choice of c for the most optimal attack is approximately 3).

Theorem 4.2. [9] The total message complexity required to construct a 2k-diamond struc-
ture using the algorithm of Kelsey and Kohno is Θ(

√
k × 2(n+k)/2).

Proof. The entire diamond structure requires finding collisions at levels 0, 1, . . . , k−1. The
above analysis shows that, at level ℓ, the message complexity is about 0.83 ×

√
k − ℓ ×

2(n+k−ℓ)/2. Therefore the total message complexity is

k−1∑

ℓ=0

0.83×
√
k − ℓ× 2(n+k−ℓ)/2 =

k∑

i=1

0.83×
√
i× 2(n+i)/2

< 0.83×
√
k × 2n/2 ×

k∑

i=1

2i/2

= 0.83×
√
k × 2n/2 × 21/2(2(k+1)/2 − 1)

21/2 − 1

= O(
√
k × 2(n+k)/2). (4.5)
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For the lower bound, we have

k−1∑

ℓ=0

0.83×
√
k − ℓ× 2(n+k−ℓ)/2 =

k∑

i=1

0.83×
√
i× 2(n+i)/2

= 0.83× 2n/2
k∑

i=1

√
i× 2i/2

> 0.83×
√

k

2
× 2n/2 ×

k∑

i=k/2

2i/2

= 0.83×
√

k

2
× 2n/2 × 2k/4(2(k/2+1)/2 − 1)√

2− 1

= Ω(
√
k × 2(n+k)/2).

The result follows.

4.2.2 Computational complexity

In this section, we look at the computational complexity. The computational complexity
of constructing a diamond structure has not been considered until now in the literature.
However, this clearly is an important and relevant issue if these structures are ever going
to be implemented in a real attack.

There are three main steps required to proceed from one level of the diamond structure
to the next. As before, we start by analyzing the work done to go from level 0 to level 1
(the work done at other levels can be analyzed in the same way).

1. Compute L = 0.83×
√
k × 2(n−k)/2 hash values for each of the 2k lists.

2. Construct the associated graph, i.e., for each pair of lists, determine if there is a
common hash value.

3. Determine if the associated graph contains a perfect matching.

Under the assumption that each hash computation takes unit time, the complexity of
step 1 is just the message complexity, which we have already computed to be Θ(2kL) in
equation (4.4).

In step 2, we have to search every pair of lists for a repeated value. Asymptotically,
we do not know how to do better than concatenating all the lists, sorting them, and then
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performing a single pass through the sorted list to detect duplicates. The total time is
therefore

O(2kL log(2kL)).

Recall from equation (4.3) that L = Θ(
√
k × 2(n−k)/2). Then we have

2kL log(2kL) = Θ(
√
k × 2(n+k)/2 × log(

√
k × 2(n+k)/2))

= Θ

(√
k × 2(n+k)/2 ×

(
n+ k

2
+

1

2
log k

))

= Θ(
√
k × 2(n+k)/2 × n), (4.6)

since k < n.

In step 3, we need to find a perfect matching in a graph on 2k vertices. Motwani [56]
proved that finding a maximum matching in a graph on ν vertices, with E edges, and
average degree at least ln ν can be done in time O ((E log ν)/(log log ν)). The algorithm of
Motwani is a randomized algorithm that finds a maximal matching with high probability.
Alternatively, we can use the algorithm due to Micali and Vazirani [55], whose running
time is O(E√ν), and does not require any specific property in the graph. However, for our
purposes, the randomized algorithm of Motwani suffices. In our case, we have a graph that
almost surely contains a perfect matching and the expected number of edges is k × 2k, so
an algorithm that finds a maximum matching will in fact find a perfect matching. This
will take time

O

(
k22k

log k

)

.

Combining the three steps, we see that the total time required at level 0 is

O

(

2kL+ 2kL log(2kL) +
k22k

log k

)

= O

(

2kL log(2kL) +
k22k

log k

)

.

From (4.3), we have L = Θ(
√
k × 2(n−k)/2). Now the total computation time is the sum-

mation of the time for performing all these steps at each level. From equation (4.6), we
can evaluate the total computational time to be,

O

(
k−1∑

ℓ=0

(

n×
√
k − ℓ× 2(n+k−ℓ)/2 +

(k − ℓ)22k−ℓ

log(k − ℓ)

))

. (4.7)

The first part of the sum is just the message complexity multiplied by n. For the second
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part, note that

k−2∑

ℓ=0

(k − ℓ)2 × 2k−ℓ

log(k − ℓ) <

k−2∑

ℓ=0

(
(k − ℓ)2 × 2k−ℓ

)
=

k∑

i=1

(
i2 × 2i

)

︸ ︷︷ ︸

S

−2. (4.8)

We now evaluate the sum S.

S = 12 × 2 + 22 × 22 + 32 × 23 + · · · k2 × 2k (4.9)

2S = 12 × 22 + 22 × 23 + 32 × 24 · · · (k − 1)2 × 2k + k2 × 2k+1. (4.10)

(4.10)−(4.9) yields

S = k2 × 2k+1 −
k∑

i=1

(i2 − (i− 1)2)× 2i = O(k2 × 2k). (4.11)

Since, n > ck and c > 1, combining equations (4.7) and (4.11), we have the total
computation time as,

O(n×
√
k × 2(n+k)/2 + k2 × 2k) = O(n×

√
k × 2(n+k)/2).

We can summarize it as the following theorem.

Theorem 4.3. [9] If each hash computation takes unit time, the computational complexity
of constructing a 2k-diamond structure by the algorithm of Kelsey and Kohno is

O(n×
√
k × 2(n+k)/2). (4.12)

Therefore, the computational complexity is up to n times the message complexity.

Remark 4.4. Before we proceed, we remark that the above analysis was straightforward
but a slight simplification of the real picture. To be specific, the Erdös-Rényi model does not
exactly capture the way in which the diamond structure is constructed. For more rigorous
analysis, one has to reduce the problem of the construction of a diamond structure to the
problem of the construction of a random intersection graph with the property P. However,
none of the results change when we carry out the analysis in the random intersection graph
model. We refer the readers to [9] for details.

Remark 4.5. We can be more precise with our analysis by parameterizing the complexity
of the hash computations. Let each hash computation take t elementary operations. Then
the message complexity of the construction of a 2k-diamond structure is Θ(t×

√
k×2(n+k)/2)
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and the computational complexity is

O(t×
√
k × 2(n+k)/2 + n×

√
k × 2(n+k)/2). (4.13)

However, we will use Theorem 4.12 to compute the computational complexity of the attacks
based on a diamond structure. For more rigorous result, reader can use the equation (4.13).

4.3 Impact on previous attacks

Earlier we made a comment that the diamond structure is an important data structure in
many generic attacks, and therefore it is important to have a correct complexity analysis
of the diamond structure. In this section, we review the complexity of those attacks in the
light of our corrected analysis and compare it with the estimate given in the respective
works. We do not perform the analysis for the herding attack on a simple iterated hash
function because it follows easily from the analysis of the diamond structure. We give a
detailed analysis for the second preimage attack on the dithered hash function and hash
twice constructions, and the herding attack on the hash twice construction.

4.3.1 Herding attack

On the hash twice construction

Andreeva et al. [2] proposed a herding attack on the hash twice function by building a
diamond structure based on multicollisions. Figure 3.5 shows the attack. The attack
constructs Joux’s multicollisions on the first pass of the hash function, and then uses the
messages that caused the multicollisions to build a diamond structure on the second pass.
In total, the attack requires the construction of two diamond structures, one on each of the
two passes. In fact, the adversary performs the following steps during the offline phase:

1. Construct a 2k-diamond structure (let us say D1) for the first pass by randomly
choosing 2k hash values as the label of the leaves. Let the hash value at the root
node of D1 be h′.

2. Construct 2n−k+r-multicollisions (let us say M) starting from the root node of D1,
where the value of r is to be calculated later. Let the hash value at the end of
multicollisions be h1.

3. Construct a diamond structure (let us say D2) on the second pass by randomly
choosing 2k hash values as the label of the leaves, and using the messages from the
last r blocks of messages inM.
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The adversary commits to the hash value at the root of D2.

In the online phase, once the adversary is given a prefix P , she does the following:

1. Calculate H(IV, P ) and then find a linking message, m that links H(IV, P ) to one
of the leaves of D1.

2. Find the path inside D1 to the root of D1. Let the message formed by concatenating
the messages on the edge of the path be σ.

3. Calculate H(h1, P‖m‖σ). She uses the first 2n−k-multicollisions of M to find the
linking message, m∗ that links H(h1, P‖m‖σ) to one of the leaves (say N) of D2.

4. Find the path from N to the root node of D2.

The adversary outputs the concatenation of m, σ‖m∗, and the edge labellings of the path
through D2.

Andreeva et al. [2] calculated the total message complexity of the attack to be O(2n−k+
2(n+k)/2). We perform a more detailed analysis of the attack and compute the message
complexity and the computational complexity of the attack.

Message complexity

Step 1 is the construction of a simple diamond structure for which we gave a detailed
analysis in Section 3.1.2. To calculate the complexity of Step 2, we need to calculate the
value of r, the number of blocks of messages required to construct the second diamond
structure. Since we need 0.83×

√
k − ℓ× 2(n+k−ℓ)/2 messages to herd from level ℓ to level

(ℓ+ 1), the total number of multicollisions required to construct the diamond structure is

C =
k−1∑

ℓ=0

0.83×
√
k − ℓ× 2(n+k−ℓ)/2 = Θ(

√
k × 2(n+k)/2).

The last equality is due to equation (4.5).

Since n > k and r = logC, the message complexity to find a 2n−k+r-multicollisions is

Θ
(
(n− k + logC) 2n/2

)
= Θ(n× 2n/2) (4.14)

For Step 3, we calculate the message complexity to go from level 0 to level 1. The
analysis of the work done for the other levels can be done analogously. Note that every
message that needs to be hashed is in fact a message of block length log 2kL and there are
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2kL such messages, where L ≈ 0.83 ×
√
k × 2(n−k)/2. From equation (4.6), the total hash

computation is
2kL log 2kL = Θ(n×

√
k × 2(n+k)/2).

Therefore, the message complexity to construct D2 is

Θ

(
k−1∑

ℓ=0

√
k − ℓ× 2(n+k−ℓ)/2 × n

)

= Θ(n×
√
k × 2(n+k)/2). (4.15)

For the online phase, the total message complexity is the number of hash computations
required to find the two linking messages (one to D1 and one to D2). The work done to
find the linking message to D1 is simply 2n−k. However, the message complexity to find
the linking message to D2 is O((n − k) × 2n−k), because each message is (n − k) blocks
long. Therefore, the total message complexity in the online phase is

O((n− k)× 2n−k) = O(n× 2n−k) (4.16)

Combining equations (4.5) and (4.14)−(4.16), the message complexity for the attack is

O
(√

k × 2(n+k)/2 + n×
(

2n/2 +
√
k × 2(n+k)/2 + 2n−k

))

= O
(

n×
(√

k × 2(n+k)/2 + 2n−k
))

.

This corrects the result in [2].

Computational complexity

Since D1 is a simple diamond structure, we note that the time required to construct D1 is
the same as equation (4.12). Also, Step 2 is just finding the required number of multicol-
lisions. Therefore, its computational complexity equals the message complexity of finding
the required number of multicollisions, which is equal to equation (4.14). For the final part
of the attack, we analyze each step of Section 4.2.2 for the construction of D2 for level 0
(the other levels are analyzed analogously). Recall that to proceed from one level to the
next in a diamond structure, we first hash certain lists of messages, construct an associated
graph by creating an edge when a pair of lists has a common hash value, and then find a
perfect matching on that graph.

For the construction of D2, we have L lists of messages for each of 2k hash values, but
now all the messages are log(2kL) blocks long. Therefore, the total time required to hash
the 2kL lists is

2kL log(2kL) = Θ(
√
k × 2(n+k)/2 × n).
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The time complexity to construct the associated graph and then to find a perfect
matching in that graph for D2 is the same as in the construction of a simple diamond
structure. This is because we need to sort the same number of hash values (which defines
the complexity of the construction of the graph) and we have the same number of vertices,
the same expected number of edges, and the same average degree (which determines the
complexity of finding a perfect matching). From equation (4.6), the total time required at
level 0 is,

O

(

2kL log(2kL) + 2kL log(2kL) +
k22k

log k

)

= O

(

2kL log(2kL) +
k22k

log k

)

.

Note that this is same as in the construction of simple diamond structure. Hence, the
time complexity of the construction of D2 is the same as equation (4.12).

For the online phase, we need to find the message that links H(P ) to one of the leaf
node of D1. Also, we need to find a linking message to the second diamond structure.
Without loss of generality, we can assume that the hash values at the leaves of either of
the two diamond structure is sorted. If this is not the case, we first sort the hash values,
which takes a computational time of O(k × 2k). This has no effect on the asymptotic
computation as the computational cost for sorting get subsumed in the computational cost
to find the linking message to D2. Therefore, we can perform a binary search on either of
the two diamond structure for each candidate of linking message. Thus the computational
complexity of the online phase is k times the message complexity of the online phase.

Therefore, the total time complexity of the attack (pre-computation and online phase)
is

O
(

n×
(

2n/2 +
√
k × 2(n+k)/2 + k × 2n−k

))

= O
(

n×
(√

k × 2(n+k)/2 + k × 2n−k
))

.

4.3.2 Second preimage attacks

Dithered hash function

The dithered hash construction was proposed by Rivest [64] to counter the second preimage
attack of Kelsey and Schenier [44]. However, recently Andreeva et al. [3] proposed an
attack based on the diamond structure. For a challenge message M of block length 2ℓ, the
adversary first finds a linking message that links the root of the diamond structure to one of
intermediate hash values in the hash computation of M . She then finds a linking message
that hashes to one of the intermediate hash values (say corresponding to the node N0) in
the diamond structure. The adversary then finds the path inside the diamond structure
that leads from N0 to the root.
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The success of the attack depends on the fact that although dithering sequences are
non-periodic, they have many factors of large size. The attack uses such a factor as the
dithering sequence for the messages that are used in the construction of diamond structure.
If Factψ(k) denote the number of factors of size k in the sequence ψ, then Andreeva et al.
evaluated the message complexity of their attack as

O(Factψ(k)× 2n−ℓ + 2n−k + 2(n+k)/2).

They also stated following two lemmas about the two dithering sequences advocated by
Rivest.

Lemma 4.6. For k ≤ 85, for the Keränen sequence [45, 46] ψ, we have

Factψ(k) ≤ 8k + 332.

Lemma 4.7. Let c denote the sequence obtained by diluting the Keränen sequence ψ with
a 13-bit counter [64]. Then for every k ∈ [0, 213], we have

Factc(k) = 8k + 32760.

In other words, if we represent the above dithering sequence by ψ, the number of factors
of size ℓ is bounded by

Factψ(k) = O(k).

Using Lemma 4.6 and Lemma 4.7, the message complexity evaluated by [3] for the second
preimage of a 2l-block message, using a 2k-diamond structure is,

M(k) = O(k × 2n−ℓ + 2n−k + 2(n+k)/2).

We review this analysis in the light of our analysis of diamond structure.

Message complexity

In the attack on the dithered hash function, Andreeva et al. chose a factor of the sequence
that has an appropriate length. They used the same element of the factor to dither the
message on all the edges at the same level of the diamond structure, and the last element
of the factor to dither the message that connects the root of the diamond structure to
M . Thus, for a 2k-diamond structure, they need a factor of size (k + 1). In the worst
case, when all the factors have same size in the dithering sequence, the probability that a
randomly chosen factor of size k + 1 in the sequence ψ is the one used in the construction
of diamond structure is (Factψ(k + 1))−1. Therefore, the message complexity to connect
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the root of the diamond structure to M is

O(Factψ(k + 1)× 2n−ℓ) = O(k × 2n−ℓ). (4.17)

Suppose the root gets linked to the ith iteration of the hashing of M .

We already calculated the message complexity of the construction of diamond structure
in Theorem 4.2. To find the complexity of the attack, note that the attacker needs to hash
a message (let us say M ′) of block length i − 2 − k, where k is the depth of diamond
structure, in order to defy the Merkle-Damg̊ard strengthening. Since k < n, we see that
this has no impact on the asymptotic calculation as it get subsumed by the construction
of the diamond structure (we use this fact later on and never explicitly mention it). The
message complexity to find a linking message that links H(M ′) to one of the leaves of
the diamond structure is O(2n−k). We calculate the message complexity of the second
preimage attack on the dithered hash function as

O
(

2k +
√
k × 2(n+k)/2 + 2n−k + k × 2n−ℓ

)

= O
(√

k × 2(n+k)/2 + 2n−k + k × 2n−l
)

.

Under the assumption that l ≈ k, it can be further simplified to

M(k) = O
(√

k × 2(n+k)/2 + k × 2n−k
)

.

Computational complexity

We note that the attack uses the simple diamond structure as constructed in Section 4.2.
Hence, the total time required to construct the diamond structure is as stated in Theo-
rem 4.3. For the time required in the online phase, the attacker has to find two linking
messages,

1. The message that links the root of the diamond structure to one of the intermediate
hash values in the hash computation of M . We can safely assume that the inter-
mediate hash values in the hash computation of M are sorted and hence we can
perform binary search. If not, then we first sort them in the online phase, which
takes O(ℓ × 2ℓ) time. Note that it does not effect the computational complexity,
because it get subsumed by the construction of the diamond structure (we implicitly
use this fact again in the analysis of second preimage attack on hash twice construc-
tion). Hence, the time taken is a multiplicative factor of ℓ more than the message
complexity (equation (4.17)). This results in O(ℓ×k×2n−ℓ) time to link the message.

2. The message that links the source node of the diamond structure to one of the leaf
node. Arguing in the similar fashion as above, the time complexity to find that leaf
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is O(k × 2n−k).

Therefore, the total time required for the attack is given by

T (k) = O
(

k × 2n−k + k × ℓ× 2n−ℓ + n×
√
k × 2(n+k)/2

)

.

Under the assumption that k ≈ ℓ, we have

M(k) = O
(√

k × 2(n+k)/2 + k × 2n−k
)

.

T (k) = O
(

k2 × 2n−k + n×
√
k × 2(n+k)/2

)

.

It is easy to check that the message complexity is minimized when k is a solution of
the equation

n− 3k + log k = 0,

which is roughly n/3. It is easy to note that the message complexity of the attack is
dominated by O(k × 2n−k) for k < n/3 and therefore it is the same as in [3]. However, for
large values of k, a factor of

√
k comes into the picture.

Also, the time complexity is minimized when k satisfies the following equation:

n− 3k + 3 log k − log n = 0

We present a comparison of the computational complexity of the attack with the message
complexity and compare it with the analysis of [3] in Table 4.1.

n Example k = ⌊n/3⌋ k = ⌊2n/5⌋
[3] Actual [3] Actual

Lower Upper Lower Upper
128 MD5 289 291 291.5 290 293 293.5

160 SHA-1 2111 2113 2113.5 2112 2115 2115.5

192 Tiger 2132 2134 2134.5 2134 2138 2138.5

256 SHA-256 2175 2177 2177.5 2179 2183 2183.5

512 Whirlpool 2347 2349 2349.5 2358 2362 2362.5

Table 4.1: Message complexity of second preimage attack on the dithered hash.

Hash twice construction

Let M be a 2l-block long challenge message for the adversary. The steps followed by the
adversary are similar to the herding attack. The only additional step for the adversary
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is in the online phase when she creates the prefix of the required block length that links
to one of the leaves of D1 and has to find a linking message that links the root of D2 to
one of the intermediate hash values in the second pass of M . In [2], the authors computed
the message complexity of the attack to be O(2n−k + 2(n+k)/2 + 2n−l). We perform a more
detailed analysis and tabulate the effect of the difference in the Table 4.2.

Let M be a 2ℓ-block challenge message for the adversary. The adversary constructs two
diamond structures, D1 and D2, in a similar manner as in the herding attack on the hash
twice construction. The additional steps for the adversary are in the online phase when
she finds a linking message that links the root of D2 to one of the intermediate hash values
in the second pass of M and when she finds a prefix of the required block length that links
to one of the leaves of D1. The total hash computations to find the linking message to D1

is O(2n−k), and to find the linking message from the root of D2 to one of the intermediate
hash values in the second pass of M is O(2n−l). However, every message that the adversary
uses to link the source node of D2 to one of its leaf node is n − k blocks long. Therefore,
the number of hash computations the adversary has to perform is O((n−k)×2n−k). Thus
the total message complexity of the online phase is

O(2n−ℓ + (n− k)× 2n−k + 2n−k) = O(2n−ℓ + n× 2n−k).

Using the above equation and equation (4.15), the message complexity is,

O
(

n× (2n−k +
√
k × 2(n+k)/2) + 2n−ℓ

)

.

Arguing in a similar fashion for online phase as in Section 4.3.2, we can say that the
time complexity for linking the message to the diamond structure is k times the message
complexity, and the time complexity for linking the root of D2 to one of the intermediate
hash value in the hash computation of M is l times its message complexity. Therefore, the
time complexity is,

O
(

n× (
√
k × 2(n+k)/2 + k × 2n−k) + ℓ× 2n−ℓ

)

.

Remark 4.8. We can analyze the time and the message complexity of the herding attack
on concatenated hash functions of the form

Hf1(M)‖Hf2(M),

where f1 and f2 can be the same or different compression functions, in a similar fashion
as in Section 4.3.1. This is because the basic construction is the same as for the hash twice
function. The only difference lies in the commit stage, where the adversary commits to the
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n Example k = ⌊n/3⌋ k = ⌊2n/5⌋
[2] Actual [2] Actual

Lower Upper Lower Upper
128 MD5 285 295 295.5 290 2100 2100.5

160 SHA-1 2107 2117 2117.5 2112 2122 2122.5

192 Tiger 2128 2139 2139.5 2134 2145 2145.5

256 SHA-256 2171 2182 2182.5 2179 2191 2191.5

512 Whirlpool 2341 2354 2354.5 2358 2371 2371.5

Table 4.2: Message complexity of second preimage attack on the hash twice construction.

h1‖h2, where h1 is the hash value as in Step 2 of the herding attack on hash twice, and h2

is the hash value of the root of D2 constructed in the attack.

We list the impact of the revised analysis on the herding attacks and the second preim-
age attacks in Table 4.3 and Table 4.4.

Message Complexity

Herding attack on Merkle-Damg̊ard O(
√
k × 2(n+k)/2 + 2n−k)

Second Preimage on Dithered Hash O(
√
k × 2(n+k)/2 + 2n−k + k × 2n−ℓ)

Herding attack on Hash Twice O(n× (
√
k × 2(n+k)/2 + 2n−k))

Second Preimage on Hash Twice O(n× (
√
k × 2(n+k)/2 + 2n−k) + 2n−ℓ)

Table 4.3: Message complexity for various attacks

Time Complexity

Herding attack on Merkle-Damg̊ard O(n×
√
k × 2(n+k)/2 + k × 2n−k)

Second Preimage on Dithered Hash O(n×
√
k × 2(n+k)/2 + k × 2n−k + ℓ× k × 2n−ℓ)

Herding attack on Hash Twice O(n× (k × 2n−k +
√
k × 2(n+k)/2))

Second Preimage on Hash Twice O(n× (k × 2n−k +
√
k × 2(n+k)/2) + ℓ× 2n−ℓ)

Table 4.4: Time complexity for various attacks

4.4 Conclusion

In this chapter, we pointed out that the analysis of the diamond structure proposed by
Kelsey and Kohno is not complete and almost surely does not yield the desired structure.

59



We also gave a rigorous analysis of the construction of the diamond structure using con-
cepts from the theory of random graphs. We further investigated the consequences of this
analysis. In summary,

1. Our analysis showed that the message complexity of the construction of a 2k-diamond
structure is about

√
k times more than what [43] claimed (Theorem 4.2).

2. We also showed that the computational complexity of the construction of a diamond
structure is up to n times the message complexity (Theorem 4.3).

3. For the Rivest’s construction, the ratio of the computational complexity and the
message complexity of the second preimage attack is k if we choose the value of k to
be strictly less than n/3, and n if we choose k to be larger than n/3.

4. For the herding attack and the second preimage attack on the hash twice construction
and the concatenated hash function, the ratio of the computational and the message
complexity is linear in k when k is strictly less than n/3, and it is constant for larger
values of k.

60



Chapter 5

Diamond structure in

multiple-herding attack

In Chapter 4, we performed a detailed analysis of the generic attacks based on a diamond
structure. However, all the attacks find a single herding message (one suffix for every prefix
given by the challenger) or a single second preimage. Moreover, the attacks are on hash
functions with a specific form, like the hash twice, concatenated hash, and Zipper hash.
In this chapter, we propose an attack that uses the diamond structure to find multiple
herding messages on generalized sequential hash functions (GSHF), defined by Nandi and
Stinson [59]. For this attack, we propose a kite like structure, which is essentially a diamond
structure appended to the binary tree. Our generalization can be viewed as:

1. A generalization of a single herding attack of Andreeva et al. [2] to the case of multiple
herding attack.

2. A generalization of the herding attack on specific hash constructions to a more general
class of iterated hash functions.

Organization of the chapter

In this chapter, we propose 2κ-way herding attack on GSHF proposed by Nandi and Stin-
son [59] (see Definition 2.14). Our attack uses a variant of the diamond structure, called
a kite structure, which we introduce in Section 5.1. We break our attack on GSHF in
following steps:

1. In the first step, we give the basic idea of our attack by extending the herding attack
of Andreeva et al. on the hash twice construction (Section 5.2.1).
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2. We tackle the more general problem in two stages (Section 5.2.2).

(a) We first handle the simple case where every symbol is used exactly twice (The-
orem 5.1).

(b) In the second stage, we give the bound on the number of message blocks that
makes GSHF susceptible to our attack (Theorem 5.2).

5.1 Kite structure

The multiple herding attack on GSHF and the multiple second preimage attack on the
hash twice construction (see Appendix A) requires the construction of a variant of the
diamond structure, which we call kite structure. The kite structure is parameterized by κ,
which defines the size of the data structure.

A 2κ-kite structure is comprised of two binary trees glued together so that the leaves
of the two binary tree are common to both of them. It can also be viewed as a diamond
structure with a unique path of length κ from the source node to every leaf of the diamond
structure.

The source node of a kite structure is at level (−κ) and the root node is at level κ.
There are 2κ−|ℓ| nodes at level ℓ for −κ ≤ ℓ ≤ κ, where |.| denotes the absolute value. A
kite structure is similar to a diamond structure from level 0 to level κ and only differs from
level −κ to level 0. Therefore we just define the labelling of the edges of the kite structure
when the node ν is at level ℓ < 0. For every level ℓ, we pick two strings σℓ and σ∗

ℓ and label
the edge directed to the left child of ν by σℓ and the edge directed to the right child of ν
by σ∗

ℓ . The nodes of the kite structure are labelled similarly as in the diamond structure.

Figure 5.1 shows a 23-kite structure. The source node is h−3 and the root node is h3.
The adversary commits to h3.

5.2 Multiple herding attack on generalized family of

hash functions

In this section, we show how we use the kite structure to find multiple herding messages on
GSHF. Recall that the hash twice construction is a special case of GSHF. To give an idea
of the attack, we start with the multiple herding attack on the hash twice construction.
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Figure 5.1: A 23-kite structure

5.2.1 Multiple herding attack on the hash twice hash function

In this section, we propose a 2κ-way herding attack on the hash twice construction. Let
the challenge prefix be P . On a high level, the attack is based on the herding attack of
Andreeva et al [2] on the hash twice construction. In addition to their construction, we
append a kite structure based on multicollisions. This allows us to have multiple suffixes.
Now we give a more detailed description of the attack.

Offline phase

Let the underlying compression function be f : {0, 1}n × {0, 1}m → {0, 1}n. We construct
the following data structure for 2κ-herding attack on the hash twice construction. In the
context of the following construction, whenever we use the phrase “diamond structure
based on multicollisions”, we mean that the strings on the edges of the diamond structure
are chosen from a set of multicollisions. We covered the construction of such a diamond
structure in Section 4.3.1. We denote the number of message blocks required to construct
such 2k-diamond structure by r(k). Note that in general, k is not equal to κ.

We define the steps followed for the construction of the underlying data structure that
is used in the attack. We show the attack in Figure 5.2.

Construction of the data structure.

• On the first pass:
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1. For some k ≥ κ,randomly pick 2k different hash values and using these hash
values as the labels of nodes at level 0, construct a diamond structure D. Let
the label of the root node of D be h1,1.

2. With h1,1 as the initial hash value, construct a set of 2(n−k)-multicollisions. Let
this set beM1. Construct another set of 2r(k)-multicollisions appended in front
of M1, where r(k) is to be calculated later. Let this set of multicollisions be
M2. Let the common hash value ofM2 be h1,2.

3. With h1,2 as the starting hash value, construct a set of 2κ-multicollisions. Let
this set of multicollisions beM3 := {(m1,m

∗
1)× (m2,m

∗
2)× . . .× (mκ,m

∗
κ)} and

the common hash value of this set by h1,3.

4. With h1,3 as the initial hash value, construct a set of 2r(κ)-multicollisions. Let
the common hash value of this set be h1,4 and the set beM4.

In summary, the adversary constructs four different sets of multicollisions. The ad-
versary usesM2 andM4 to construct two different diamond structures, D1 and D2,
in the second pass. She useM1 during the online phase to find the label of the edge
between the source node of D1 and one of the leaf node of D1, andM3 to construct
a complete binary tree, whose leaves are the nodes at level 0 of D2. We follow up
with the details.

• On the second pass:

1. Randomly pick 2k hash values. With these hash values as the nodes at level 0
and using the multicollision setM2, construct a diamond structure D1. Let the
label of the root node of D1 be h2,2.

2. With h2,2 as the label of the source node, construct a kite structure as below:

(a) Using h2,2 as the label of the root node, construct a complete binary tree
iteratively as follows.
Label the left edge of any node at level i by mi+1 and the right edge by
m∗
i+1. The labelling of the nodes at level (i + 1) is done in the following

manner. If the label of a node at level i is h, then the left child of the node
at level i is f(h,mi+1) and the right child of the node at level i is f(h,m∗

i+1).
At the end of above steps, we get a complete binary tree T , whose root is
labelled by the hash value h2,2, and the leaves are labelled by 2κ different
hash values. We denote this set of hash values of the leaf nodes by H :=
{hj : 1 ≤ j ≤ 2κ}.

(b) Using H as the labelling of the nodes at level 0, complete the kite structure
by constructing a diamond structure D2 based on the multicollision setM4.
Let the label of the root node be h2,4.
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The adversary commits to h2,4.

Assume that we have a set of 2r(k)-multicollisions, where k is the parameter that de-
fines the size of diamond structure. From equation (4.15), the message complexity of the
construction of a diamond structure based on a multicollision set is

Θ(n×
√
k × 2(n+k)/2). (5.1)

Therefore, we can calculate r(k) as

r(k) = Θ
(

log(n×
√
k × 2(n+k)/2)

)

= Θ(n),

for n > k.

Online phase

One can now use the standard method to find the herding messages. By using different
elements from the set {(m1,m

∗
1)× (m2,m

∗
2) . . .× (mi,m

∗
i )× . . .× (mκ,m

∗
κ)}, the adversary

can construct 2κ distinct suffixes for P . The steps followed in the online stage is:

1. Using Hf (IV, P ) as the label of the source node of D, find a message m∗, which acts
as the labelling of the edge between the source node and one of the intermediate
nodes, say ν, of D. Let σ be the string formed by the concatenation of the labelling
of the edges in the path from ν to the root of D.

2. Compute h2,1 = H(h1,4, P‖m∗‖σ).

3. Find a linking message m ∈M1 that links h1,2 to one of the leaves of D1.

4. Find the path through D1 from the leaf node mentioned in Step 3 to the root node.

Using different elements from the set M3, the adversary can find 2κ paths from the root
node of D1 to the root node of D2. Each of these paths corresponds to a distinct suffix.

Analysis

We analyze the message and computational complexity of the attack separately for the two
passes.
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Figure 5.2: Herding attack on the hash twice construction

Message Complexity

We first calculate the message complexity of the offline phase. The first pass requires the
construction of a diamond structure and four sets of multicollisions. From Theorem 4.2,
the message complexity to construct the 2k-diamond structure is Θ(

√
k × 2(n+k)/2). The

total number of multicollisions is

2n−k+r(k)+κ+r(κ) = 2Θ(n). (5.2)

Therefore, the message complexity for the first pass is

O(
√
k × 2(n+k)/2 + n× 2n/2).

The second pass requires construction of two diamond structures, D1 and D2, with k
and κ as the parameter defining the size of the respective diamond structures. From
equation (4.15), the message complexity for the construction of the two diamond structures
is

O
(

n×
√
k × 2(n+k)/2 + n×

√
κ× 2(n+κ)/2

)

.

Since the message complexity for the construction of T is O(2κ), the message complexity
of the offline phase is

O
(

n× 2n/2 + n×
√
k × 2(n+k)/2 + n×

√
κ× 2(n+κ)/2 + 2κ

)

. (5.3)

In the online phase, the adversary has to find two linking messages, m and m∗. The
message complexity to find m∗ is O(2n−k). To find m, the adversary has to hash 2n−k

messages, each being (n − k) blocks long. Hence, the message complexity of the online
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phase is,
O((n− k)× 2n−k + 2n−k) = O((n− k)× 2n−k). (5.4)

Combining equations (5.3) and (5.4), we calculate the message complexity as,

O
(

n× (
√
k × 2(n+k)/2 +

√
κ× 2(n+κ)/2 + 2n−k)

)

.

Note that under the previous assumption that κ ≤ k, the message complexity of this attack
is asymptotically equal to the message complexity of a single herding attack on the hash
twice construction [9].

Computational Complexity

From Section 4.3.1, the computational complexity of the construction of a diamond struc-
ture based on a multicollision set is asymptotically equal to the message complexity. There-
fore, the computational complexity of the offline phase is asymptotically equal to the mes-
sage complexity of the offline phase. In the online phase, the adversary needs to find the
linking messages and then has to find the linked node at level 0. We argue that we can
safely assume that the labelling of the nodes at level 0 is sorted. If not, we sort the list,
which takes a total time of O(k × 2k) for the 2k-diamond structure1. The adversary then
performs a binary search to find the node. Thus, the computational complexity of finding
the linking message, m and m∗, is k times more than the message complexity. Hence, the
computational complexity of the attack is

O
(

n× (
√
k × 2(n+k)/2 +

√
κ× 2(n+κ)/2 + k × 2n−k)

)

.

As in the case of the message complexity, under the assumption that κ ≤ k, the com-
putational complexity of this attack is also asymptotically equal to the computational
complexity of a single herding attack on the hash twice construction [9].

5.2.2 Multiple herding attack on the generalized class of hash

functions

In the previous section, we showed a 2κ-way herding attack on the hash twice construction,
which is a very special type of the GSHF. We next show an attack on a more general form
of GSHF. Throughout this section, we denote the upper bound on the block length of the
challenger’s prefix by p. Let Hf,ψ be a hash function based on the sequence ψ such that
|ψ| = λ and alph(ψ) = [ℓ]. We start with the case, when λ = 2ℓ and ψ[1, ℓ] = π(ψ[ℓ+1, 2ℓ]).

1As with all the analysis done in Section 4.3, the sorting time is subsumed by the computational
complexity of finding the linking message.
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In this case, every element from [ℓ] occurs exactly twice and the first half of the sequence
is a permutation of the second half of the sequence.

Theorem 5.1. Let Πa denote the set of all possible permutations of any set of size a and
ψ be a sequence of length 2ℓ with the entries from [ℓ]. Let the challenge message be p-blocks
long. For R(κ) = c1n+c2κ, where c1 and c2 are constants, the adversary can find a 2κ-way
herding attack on Hf,ψ if

1. ψ[2ℓ−R(κ), 2ℓ] = π(ψ[ℓ−R(κ), ℓ]) for some permutation π ∈ ΠR(κ), and

2. p+ k +R(κ) < ℓ.

Before giving a formal proof of the theorem, let us informally discuss the constraints in
the statement of the proof. The first constraint on the structure of the sequence requires
that the same block of messages is used in the last R(κ) iterations of both the passes of
the hash computation. The second constraint requires that the sequence is long enough
for the attack to be successful. As we will see later, we exploit this nice structure of the
sequence to find multiple herding messages.

Proof. It is easy to see that the construction in Section 5.2.1 can be used by an adversary to
find 2κ herding messages with R(κ) equal to the total number of blocks of colliding messages
in the four sets of multicollisions. This is because ψ[2ℓ− R(k), 2ℓ] = π(ψ[ℓ− R(κ), ℓ]) for
some permutation π and in order to construct the two diamond structures, D1 and D2,
the binary tree T , and to find the linking message m, one does not necessarily require the
multicollisions in the same order as in the first pass. The multicollisions only help in having
a single hash value after the first pass, to provide with enough messages to construct the
diamond structures and binary tree, and to find the linking message. We later show how
to adapt the construction in Section 5.2.1 to construct a 2κ-way herding attack on Hf,ψ.
Now R(κ) can be upper bounded as below.

R(k) = n− k + r(k) + κ+ r(κ)

= n− k + κ+ log(
k∑

i=1

0.83×
√
i× 2(n+i)/2) + log(

κ∑

i=1

0.83×
√
i× 2(n+i)/2)

< n− k + κ+ 2 log 0.83 +
log k + log κ

2
+
n

2
+ log(

k∑

i=1

2i/2) + log(
κ∑

i=1

2i/2) +
n

2

= 2n− k + κ+ 2 log 0.83 +
log k + log κ

2
+
k + κ

2
+ 1.

As in Section 4.3, the message complexity and the computational complexity is minimum
when k ≈ n/3. Fixing k = n/3, and assuming that log k ≪ k and log κ ≪ κ, we can
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approximate the value of R(κ) as,

R(κ) ≈ 11

6
n+

3κ

2
. (5.5)

Note that for κ < n, equation (5.5) matches the asymptotic bound of equation (5.2).

We now give the details of how to adapt the construction in Section 5.2.1 to construct
a 2κ-way herding attack on Hf,ψ. Let the last R(κ) symbols of the sequence in the second
pass be denoted as

(α1, α2, . . . , αn−k, β1, β2, . . . , βr(k), γ1, γ2, . . . , γκ, δ1, δ2, . . . , δr(κ)) = π(ψ[ℓ−R(κ), ℓ]),

for some permutation π ∈ ΠR(κ). It should be noted that the equality is not exact because
we have an approximate estimate of R(κ). However, for the sake of simplicity, we assume
that we have an equality.

We use the same construction of Section 5.2.1 for the first pass. LetM = M1‖M2‖ . . . ‖Mℓ

be the message from the first pass, such that the first p blocks are the challenge message,
the next (k+1) messages are to be found in the online phase, and the last R(κ) blocks are
the four multicollision sets constructed on the first pass. Let M = {(mℓ−R(κ),m

∗
ℓ−R(κ)) ×

. . .× (mℓ,m
∗
ℓ)} denote the set of 2R(κ)-multicollisions on the first pass.

1. Randomly pick 2k hash values, and with these hash values as the nodes at level 0,
construct a diamond structure D1 based on messages from the set {(mβ1 ,m

∗
β1

) ×
(mβ2 ,m

∗
β2

) . . . ,×(mβr(k)
,m∗

βr(k)
)}. Let the diamond structure results in the chaining

value, h2,2.

2. With h2,2 as the label of source node, construct a kite structure as follows.

(a) Using h2,2 as the label of the root node, construct a complete binary tree itera-
tively as follows. Label the left edge of any node at level i by mγi

and the right
edge by m∗

γi
. The labelling of the nodes at level (i+ 1) is done in the following

manner. If the label of any node at level i is h, then the label of the left child
of that node at level i is f(h,mγi

) and the label of the right child of the node
at level i is f(h,m∗

γi
).

In the end, we get a complete binary tree T , whose root is labelled by the hash
value h2,2 and the leaves are labelled by 2κ different hash values. We denote the
set of hash values at the leaf nodes by H := {hj : 1 ≤ j ≤ 2κ}.

(b) Using H as the labelling of nodes at level 0, complete the kite structure by con-
structing a diamond structure D2 based on messages from the set {(mδ1 ,m

∗
δ1

)×
(mδ2 ,m

∗
δ2

) . . . ,×(mδr(κ)
,m∗

δr(κ)
)}. Let the label of the root node be h2,4.
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The adversary commits to h2,4.

In the online phase, the adversary follows the same steps as in Section 5.2.1, except that
the linking messagem is chosen from the set {(mα1 ,m

∗
α1

)×(mα2 ,m
∗
α2

) . . . ,×(mαn−k
,m∗

αn−k
)}.

By choosing different paths in T , the adversary can find a 2κ distinct suffixes, and hence
a 2κ-way herding attack.

We now turn our attention to a more general case when λ 6= 2ℓ. For the general case,
we restrict the freedom given to the challenger. We assume that

1. The adversary knows the upper bound on the block length of challenger’s prefix in
advance.

2. The adversary is allowed a permutation of the sequence on which the hash function
is based.

Note that the two assumptions are not unrealistic. If we do not allow the first assump-
tion to the adversary, then the challenger can provide arbitrary long challenge, and the
adversary does not have enough number of message blocks to construct the required data
structure. For the second assumption, if we do not allow the adversary the freedom to
permute the sequence, the challenger can always win the game. The challenger just uses a
sequence in which the last symbol of the sequence is the first element of the set on which
the sequence is based. This will reduce the problem of finding the herding message to the
problem of finding the second preimage. Note that the attack of Andreeva et al [2] on the
Zipper hash also gave this freedom to the adversary, where the permuation is of a very
special form.

For the rest of this section, let m := max{R(κ), p + k + 1}, where k is the parameter
of the diamond structure and R(κ) is the number of message blocks required to construct
the desired number of multicollsions.

Theorem 5.2. Let Πℓ denote the set of all possible permutations of any set of size ℓ and
ψ be a sequence of length λ, where alph(ψ) = [ℓ]. Let the challenge message be at most
p-blocks long. Then, for all ℓ ≥ 64×m2, we can find a 2κ-way herding attack on Hf,ψ.

Before we give a formal proof of the Theorem 5.2, we give an argument for the bound
on l. For l ≥ 64×m2, Lemma 3.4 guarantees that there is a set of 8m symbols that occurs
at most twice in the whole sequence such that if we restrict the sequence to these symbols,
the resulting sequence is in the form of t ≤ 2 successive permutations. This is because in
the proof of the Lemma 3.4, Shamir and Hoch derived that

ℓ ≥ Cq × xDq ,
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where Cq and Dq are defined recursively as follows:

Cq = ((q − 1)× Cq−1)
Dq−1+1 , C1 = x,

and
Dq = D2

q−1 + 1, D1 = x.

For x = 8m and q = 2, we have ℓ ≥ x2 = 64×m2.

We construct our data structure in a form similar to the construction of Section 5.2.1
with minor changes on the blocks in the two successive permutations. We follow up with
the details:

Proof. For notational simplicity, let X = alph(ψ). By Lemma 3.4, there exists a subset
Y ⊆ X that occurs at most twice in the whole sequence, such that if ψ is restricted to
the symbols from Y , then the resulting sequence is in the form of at most two successive
permutations. Let t denote the number of times any element of Y occurs in the sequence.

If t = 1, the attack reduces to the attack of Kelsey and Kohno. The reason is that the
adversary is allowed a permutation of ψ. The adversary follows the following steps. First,
she finds the set of symbols Y ⊆ X such that they occur just once in the whole sequence.
Let the symbols be (α1, α2, . . . , α8m). The adversary uses these symbols as the index of
the message blocks of prefix, the linking message, and the messages used to construct the
diamond structure in the proper order2. She also fixes the messages indexed by symbols
not in Y by some fixed value, IV . Therefore, without loss of generality, we can assume
that t = 2.

By Lemma 3.4, there exists a set of symbols Y ⊆ X , such that |Y| = 8m and ψ|Y is in
the form of two successive permutations. Let ψ = ψ1‖ψ2 be such that ψ1|Y and ψ2|Y are
permutations of each other. We further break ψ1 = α1‖β1 and ψ2 = α2‖β2 in two parts,
such that α1|Y , α2|Y , β1|Y , and β2|Y have the same cardinality. Let

B1 = α1|Y , B2 = α2|Y ,

C1 = β1|Y , and C2 = β2|Y .

Note that ψ1|Y and ψ2|Y are two permutations of Y . From Lemma 3.6, we have either
of the two cases:

|B1 ∩ B2| ≥ m and |C1 ∩ C2| ≥ m, or

|B1 ∩ C2| ≥ m and |B2 ∩ C1| ≥ m.

2The adversary uses a permutation to get the right order of indexing.
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We analyse both the cases. For both the cases, the adversary permutes the sequence in
such a way so that the symbols in the part of sequence that contains D1 contains the entire
challenger’s prefix.

We first describe the offline phase for the two cases separately.

1. Case 1: |B1 ∩ B2| ≥ m and |C1 ∩ C2| ≥ m.

We build the following structure for the attack:

(a) Fix Mi = IV for all i ∈ X\(B1 ∪ B2 ∪ C1 ∪ C2).
(b) Build a simple diamond structure, D1 on the last k symbols of B1.

(c) Construct a set of 2m-multicollisions, say M, for the messages indexed by the
symbols in C1 and common to C2. The adversary uses M to find the linking
message and to construct a diamond and a kite structure in C2. We can do this
because of the argument used in the proof of Theorem 5.1.

Figure 5.3 shows the description of the attack for case 1.

D D1 T D2

p k R(κ) p+ k + 1 R(κ)Message blocks
we use

α1 β1 α2 β2Sub-sequence

Figure 5.3: Herding attack for Case 1

2. Case 2: |B1 ∩ C2| ≥ m and |B2 ∩ C1| ≥ m. We build the following structure for the
attack:

(a) Fix Mi = IV for all i ∈ X\(B1 ∪ B2 ∪ C1 ∪ C2).
(b) Construct a set of 2m-multicollisions, say M, for the messages indexed by the

symbols in B1 and common to C2. The adversary uses M to find the linking
message and to construct a diamond structure and a kite structure in C2. We
can do this by the arguments in the proof of Theorem 5.1.
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(c) Build a simple diamond structure, D1 on the last k alphabets of B2

Figure 5.4 shows the description of the attack for case 2.

D D1 T D2

R(κ) p k p+ k + 1 R(κ)Message blocks
we use

α1 β1 α2 β2Sub-sequence

Figure 5.4: Herding attack for Case 2

In the online phase, the challenger gives a prefix P , such that the block-length of P is
less than p. The adversary uses the blocks of P corresponding to the first p symbols in B,
where B is either B1 or B2, depending on the case listed above. Then the adversary finds
a linking message that links the hash value to one of the leaves of D. The rest of the steps
are same as in the proof of Theorem 5.1.

Finally, we need to describe how an adversary can efficiently find the subset Y . It is
easy to find the subset Y when t = 1. So, we will consider the case when t = 2. Let
(ψ,≺) be a partial order such that a ≺ b holds if the last occurrence of a is before the first
occurrence of b in the sequence ψ. Let Y be the subset of X such that ψ|Y is in the form of
two successive permutations. It is trivial to see that if a sequence reduced by a set is in the
form of two successive permutations, then every element in the set are incomparable with
respect to the partial order ≺. Therefore, Y forms an antichain with respect to the partial
order ≺. By the equivalence of König’s Theorem and Dilworth’s theorem, we know that
finding an antichain in a sequence is equivalent to finding a vertex cover in the bipartite
graph3 constructed in König’s theorem. We next give a brief description of the method.
For more details, we refer the reader to the lecture notes of Goemans [29].

3For a graph G := (V, E), if we can partition the vertex set into two disjoint set V1 and V2, such that
for every edge (u, v) ∈ E , it is the case that either u ∈ V1 and v ∈ V2, or u ∈ V2 and v ∈ V1, then such
graphs are called bipartite graphs.
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Finding anti-chain of partially ordered set (ψ,≺)

Let (ψ,≺) be a partially ordered set. We define a bipartite graph G with two vertices ai, bi
for every i ∈ ψ, and the edge set E(G) is such that (ai, bj) ∈ E(G) ⇔ i ≺ j. From the
equivalence of the Dilworth’s theorem and König’s theorem, the minimum vertex cover of
G is an antichain in ψ. Now finding a vertex cover in a bipartite graph is easy by using
the construction in the König’s theorem.

We start with the Edmonds-Gallai decomposition of G [29]. This decomposition can be
found by using the Edmonds algorithm [21] to find the maximum matching of a graph. The
decomposition partitions V(G) in three disjoint sets: D(G) is the set of all vertices v such
that there is some maximum matching that leaves v uncovered, A(G) is the neighbor set of
D(G), and C(G) is the set of all remaining vertices. Since we started with Edmonds-Gallai
decomposition, every component, H, of the subgraph induced by D(G) is factor critical,
i.e., the subgraph induced by removing any vertex u from H has a perfect matching. Also,
C(G) has a perfect matching. Using these facts, we find a vertex cover as follows:

1. Take all vertices of A(G).

2. Since C(G) is bipartite, take any one side of C(G) in the vertex cover.

3. From each component of D(G), delete one of the vertices which is adjacent to a vertex
of A(G). Then we take half of the elements from each component of D(G).

An anti-chain is simply the elements of the sequence corresponding to the vertices in
the vertex cover found in the above steps.

For the computational complexity of finding the antichain, we observe that it is exactly
the same as the computational complexity of finding the maximum matching. We use
Micali-Vazirani’s algorithm [55]. We can also assume that the adversary perform this
as a pre-computation. Finding a maximum matching on a graph with V vertices and
E edges can be done in O(|V|

√

|E|). Therefore, this does not have any impact on the
overall computational complexity of the attack. Therefore, the message complexity and
the computational complexity is the same as that in the attack of Theorem 5.1.

5.3 Conclusion

In the last four years, the diamond structure has been used as one of the important data
structures for generic attacks on specific constructions of hash functions. Andreeva et al. [2]
showed that it is easy to herd many other hash constructions, such as the hash twice and
concatenated hash, which seems to be resistant to the then known generic attacks.
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In this chapter, we showed that their attack can be generalized to a very wide variety
of hash functions. We showed that the generalization of iterated hash functions defined by
Nandi and Stinson [59] are also susceptible to the herding attack. We proved a bound on
the size of symbol set that makes any hash function based on that symbol set susceptible
to our attack. However, we are unable to translate the attack to the tree-based construc-
tion, which is possible for Nandi and Stinson’s multicollisions and for Hoch and Shamir’s
multicollisions.
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Chapter 6

Conclusion and future work

In this thesis, we computed the complexity of the construction of the diamond structure
and the attacks based on it. We revisited the construction of Kelsey and Kohno and pointed
out a subtle flaw in it (Chapter 4). We corrected their analysis by using concepts from
the theory of random graphs, showing that the message complexity is asymototically

√
k

times the estimate by Kelsey and Kohno, where k is the parameter defining the size of the
diamond structure. We also calculated the computational complexity of the construction,
thereby pointing out the need of computing the computational complexity in all the attacks
if the attacks are to be of any practical importance. We use this revised analysis in the
analysis of our herding attack on a generalized class of hash functions. For the generalized
class of hash functions, we gave a weaker version of the herding attack, in which we allow
adversary with more power than the herding attack defined in the literature.

In summary, this thesis provides the following contributions:

1. Corrects the analysis of the diamond structure by giving a more concrete and detailed
analysis (Chapter 4).

2. Advocates the need of computing the computational complexity of any generic attack
(Chapter 4).

3. Extends the idea of Andreeva et al. [2] to show that finding multiple herding attacks
on a generalized class of hash functions is not difficult under some weaker notion of
CTFP resistance (Chapter 5).

4. Proves the lower bound on the number of message blocks for the weaker version of
the herding attack (Chapter 5).

This work also leaves some open problems which might be of independent interest. We
enumerate a few of them as follows:
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1. In this work, we proposed a herding attack on a generalized class of hash functions in
which every message block can be used at most twice. One of the future directions of
work can be to find the feasibility of the herding attack on the family of hash functions
in which every message can be used some fixed number of times. An approach can
be to use Lemma 3.4 and Lemma 3.6 for the case when the message is used at most
q times and then somehow use our method of case analysis.

2. There are several combining rules which are not covered in this work. Nandi [57] and
Hirose [35] independently defined a family of such combining rule. In their construc-
tion, one uses the complete message twice, the second time as some permutation of
the bits of the original message. However, this family of hash functions differs from
the Definition 2.3.2 in a way that the permutation is done on the message bits and
not on the message blocks. To our knowledge, no generic attack has been proposed
on such constructions.

3. Gauravaram [25] introduced a new combining rule for hash functions, which he called
iterative halving. In this scheme, the compression function is usually a block cipher,
followed by truncation of the second half of the encrypted message. The user performs
this iteration until the final encrypted message has required bit size. There has been
no generic attack defined on such a construction. At first glance, this construction
seems to be resistant even to Joux’s attack.

4. It is an interesting problem whether we can have a tighter bound (in terms of con-
stant) than the one achieved in the Theorem 5.2 for a generalized class of hash
functions. The bound is asymptotically tight if we assume that Ω(m2) is the lower
bound on the required number of multicollisions [36, 59]. This is because finding a
herding attack on iterated hash functions is at least as hard as finding a collision for
iterated hash functions [43].
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Appendix A

Multiple second preimage on hash

twice construction

In this appendix, we propose a 2κ-way second preimage attack on the hash twice con-
struction, based on the compression function f . Let the challenge message be M =
M1‖M2‖ . . .M2ℓ . On a high level, the attack is based on the second preimage attack
by Andreeva et al. on the hash twice construction [2]. In addition to the construction
proposed by Andreeva et al., we append a kite structure. We next give a more detailed
construction.

Offline phase

The steps followed in the construction of the data structure in the first pass follows the same
steps as in the first pass as described in Section 5.2.1, except that instead of constructing
D, the adversary constructs a (ℓ, 2ℓ + ℓ − 1)-expandable message. By the end of the
construction, we have h1,4 as the chaining value of the first pass, and h2,4 as chaining value
of the second pass.

Online phase

We can now use the standard method to find second preimage attack. By using different
elements from the set {(m1,m

∗
1)×(m2,m

∗
2) . . .×(mi,m

∗
i )×. . .×(mκ,m

∗
κ)}, we can construct

2κ-distinct second preimage for M . The steps followed in the online stage are:

1. Find a linking message, m∗, that links h2,4 to one of the intermediate hash value, hi,
in the second pass of M .
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2. Compute h1,c = H(h1,4,m‖Mi+1‖ . . . ‖M2l).

3. Compute j = i− (n− k + r(k) + κ+ r(κ))

4. Find the message Mexpand from the set of expandable message set, which is j-block
long.

5. With h1,c as initial value, compute h2,1 = Hf (h1,c,Mexpand).

6. Find a linking message m ∈M1 that links h1,2 to one of the node at level 0 of D1.

D

h1,3

h1,1

h2,1

m

D1
h2,2

T D2 h2,4

Expandable message

Mexpand

M1 M2 M3 M4 2ℓ − i

j k + 1 n− k r(κ) κ r(κ)

Messages

Block length

m∗

i

2ℓ

Figure A.1: Multiple Second preimage on the hash twice construction

Analysis

We analyze the message and the computational complexity of the attack for the two passes
separately.
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Message Complexity

We first calculate the message complexity of the offline phase. The first pass requires a
construction of an (ℓ, ℓ+2ℓ−1)-expandable message. The message complexity to construct
the (ℓ, ℓ+2ℓ−1)-expandable message is O(ℓ×2n/2). The rest of the analysis for the offline
phase follows the same line as in Section 5.2.1. Therefore, the message complexity of the
offline phase is

O
(

n× 2n/2 + n×
√
k × 2(n+k)/2 + n×

√
κ× 2(n+κ)/2 + 2κ

)

(A.1)

In the online phase, the adversary needs to find two linking messages, m and m∗. The
message complexity to find m∗ is O(2n−ℓ). In case of m, there are 2n−k messages to be
hashed, each having (n− k) blocks. Hence, the message complexity in the online phase is,

O((n− k)× 2n−k + 2n−l) = O((n− k)× 2n−k + 2n−ℓ) (A.2)

Combining equation (A.1) and (A.2), we calculate the message complexity as

O
(

n× (
√
k × 2(n+k)/2 +

√
κ× 2(n+κ)/2 + 2n−k) + 2n−ℓ

)

,

which is the same as a single preimage attack on hash twice construction [9], under the
assumption that κ ≤ k.

Computational Complexity

Note that the computational complexity of the construction of diamond structure based
on a set of multicollisions is the same as message complexity. Therefore, the computa-
tional complexity of the offline phase is the same as the message complexity of the offline
phase. In the online phase, the adversary needs to find the linking messages m∗ (and m
respectively) and then has to actually find the node (and the chaining value respectively).
As in Section 4.3, we can assume that the chaining values and the labelling of the nodes
at level-0 of D and D1 is sorted. Therefore, the computational complexity of finding the
linking message m∗ (and m respectively) increases by a factor of ℓ (and k respectively).
We thus calculate the computational complexity of the attack as,

O
(

n× (
√
k × 2(n+k)/2 +

√
κ× 2(n+κ)/2 + k × 2n−k) + ℓ× 2n−ℓ

)

,

which is same as a single preimage attack on hash twice construction [9], under the as-
sumption that k = κ.
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