GENERIC BASES FOR CLUSTER ALGEBRAS AND THE CHAMBER ANSATZ

CHRISTOF GEISS, BERNARD LECLERC, AND JAN SCHRÖER

Contents

1. Introduction and main results 21
2. Reminder on cluster algebras 28
3. Partial flag varieties and quiver Grassmannians 31
4. Categorification of the Chamber Ansatz 45
5. Monomials of twisted minors 49
6. Cluster character identities 55
7. E-invariant and Ext 64
8. Generic bases for cluster algebras 65
9. Categorification of the twist automorphism 72
Acknowledgments 75
References 75

1. Introduction and main results

1.1. In the recent literature on cluster algebras, calculations of Euler characteristics of certain varieties related to quiver representations play a prominent role. In GLS2, GLS3, GLS5, cluster variables of coordinate rings of unipotent cells of algebraic groups and Kac-Moody groups were shown to be expressible in terms of Euler characteristics of varieties of flags of submodules of preprojective algebra representations. In another direction, starting with a formula of Caldero and Chapoton [CC], the coefficients of the Laurent polynomial expansions of cluster variables of some cluster algebras were described as Euler characteristics of Grassmannians of submodules of quiver representations. This was first achieved for acyclic cluster algebras CK, later for cluster algebras admitting a 2-Calabi-Yau categorification [P] FK], and more recently for general antisymmetric cluster algebras of geometric type DWZ2. There is a posterior but essentially different proof in Pl ; see also [N . The first aim of this paper is to compare these two types of formulas for the large class of cluster algebras which can be realized as coordinate rings of unipotent cells of Kac-Moody groups.

To do this, we will return to the very source of cluster algebras, namely to the Chamber Ansatz of Berenstein, Fomin and Zelevinsky BFZ, BZ, which describes parametrizations of Lusztig's totally positive parts of unipotent subgroups and

[^0](C)2011 American Mathematical Society

Reverts to public domain 28 years from publication

Schubert varieties. The second aim of this paper is to provide a new understanding of the Chamber Ansatz formulas in terms of representations of preprojective algebras, together with a generalization to the Kac-Moody case. In particular the mysterious twist automorphisms of the unipotent cells needed in these formulas turn out to be just shadows of the Auslander-Reiten translations of the corresponding Frobenius categories of modules over the preprojective algebras. Our treatment of the Chamber Ansatz shows that the numerators of the twisted minors of BFZ, BZ] form a cluster, and that the Laurent expansions with respect to these special clusters have coefficients equal to Euler characteristics of varieties of flags of submodules of preprojective algebra representations. This provides the desired link between the two types of Euler characteristics mentioned above, and it allows us to show that the cluster characters of Fu and Keller [FK] coincide after an appropriate change of variables with the φ-functions of GLS2, GLS5.

Finally, our third aim is to exploit these results for studying natural bases of cluster algebras containing the cluster monomials. We consider the class of coefficientfree cluster algebras obtained by specializing to 1 the coefficients of the cluster algebra structures on unipotent cells. In GLS5, Section 15.6] we have found such bases, consisting of appropriate subsets of Lusztig's dual semicanonical bases. Here, using the above connection with Fu-Keller cluster characters, we give a new description of the same bases in terms of module varieties of endomorphism algebras of cluster-tilting modules. In the special case when the cluster algebra is acyclic, this proves Dupont's generic basis conjecture D . In general, the elements of these bases are generating functions of Euler characteristics of quiver Grassmannians, at generic points of some particular irreducible components of the module varieties. These special irreducible components can be characterized in terms of the new E-invariant introduced by Derksen, Weyman and Zelevinsky DWZ2 for representations of quivers with potential, and one may therefore conjecture that a similar description of a generic basis can be extended to any antisymmetric cluster algebra.
1.2. To state our results more precisely, we need to introduce some notation. Let Q be a finite quiver with vertex set $\{1, \ldots, n\}$ and without oriented cycles. Denote by Λ the corresponding preprojective algebra. Let \mathfrak{g} be the Kac-Moody Lie algebra with Cartan datum given by Q, and let W be the Weyl group of \mathfrak{g}. The graded dual $U(\mathfrak{n})_{\mathrm{gr}}^{*}$ of the universal enveloping algebra $U(\mathfrak{n})$ of the positive part \mathfrak{n} of \mathfrak{g} can be identified with the coordinate ring $\mathbb{C}[N]$ of an associated pro-unipotent pro-group N with Lie algebra \mathfrak{n}.

For $w \in W$, let $N^{w}:=N \cap\left(B_{-} w B_{-}\right)$be the corresponding unipotent cell in N, where B_{-}denotes the standard negative Borel subgroup of the Kac-Moody group G attached to \mathfrak{g}. Here we use the same notation as in GLS5. For details on Kac-Moody groups we refer to [Ku, Sections 6 and 7.4]. Let $x_{i}(t)$ denote the one-parameter subgroup of N associated to the simple root α_{i}. For each reduced expression $\mathbf{i}=\left(i_{r}, \ldots, i_{1}\right)$ of w, the map

$$
\underline{x}_{\mathbf{i}}:\left(t_{r}, \ldots, t_{2}, t_{1}\right) \mapsto x_{i_{r}}\left(t_{r}\right) \cdots x_{i_{2}}\left(t_{2}\right) x_{i_{1}}\left(t_{1}\right)
$$

gives a birational isomorphism from \mathbb{C}^{r} to N^{w}. In GLS5 we have described a cluster algebra structure on $\mathbb{C}\left[N^{w}\right]$ in terms of the representation theory of the preprojective algebra Λ.

For a nilpotent Λ-module X and $\mathbf{a}=\left(a_{r}, \ldots, a_{1}\right) \in \mathbb{N}^{r}$, let $\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$ be the projective variety of flags

$$
X_{\bullet}=\left(0=X_{r} \subseteq \cdots \subseteq X_{1} \subseteq X_{0}=X\right)
$$

of submodules of X such that $X_{k-1} / X_{k} \cong S_{i_{k}}^{a_{k}}$ for all $1 \leq k \leq r$, where S_{j} denotes the one-dimensional Λ-module supported on the vertex j of Q. The varieties $\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$ were first introduced by Lusztig [11 for his Lagrangian construction of $U(\mathfrak{n})$. Dualizing Lusztig's construction, we can associate with X a regular function $\varphi_{X} \in \mathbb{C}[N]$ satisfying

$$
\varphi_{X}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=\sum_{\mathbf{a} \in \mathbb{N}^{r}} \chi\left(\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}\right) \mathbf{t}^{\mathbf{a}}
$$

Here $\mathbf{t}=\left(t_{r}, \ldots, t_{1}\right) \in \mathbb{C}^{r}, \mathbf{t}^{\mathbf{a}}:=t_{r}^{a_{r}} \cdots t_{2}^{a_{2}} t_{1}^{a_{1}}$, and χ denotes the topological Euler characteristic.

Buan, Iyama, Reiten, and Scott BIRS have attached to w a 2-Calabi-Yau Frobenius subcategory \mathcal{C}_{w} of the category of finite-dimensional nilpotent Λ-modules. (The same categories were studied independently in GLS4 for special elements w called adaptable.) In GLS5 we showed that the \mathbb{C}-span of

$$
\left\{\varphi_{X} \mid X \in \mathcal{C}_{w}\right\}
$$

is a subalgebra of $\mathbb{C}[N]$, which becomes isomorphic to $\mathbb{C}\left[N^{w}\right]$ after localization at the multiplicative subset $\left\{\varphi_{P} \mid P\right.$ is \mathcal{C}_{w}-projective-injective $\}$. Moreover, we showed that $\mathbb{C}\left[N^{w}\right]$ carries a cluster algebra structure, whose cluster variables are of the form φ_{X} for indecomposable modules X in \mathcal{C}_{w} without self-extension. In Section 2 we explain this in more detail.

The category \mathcal{C}_{w} comes with a remarkable module V_{i} for each reduced expression i of w (see [BIRS, Section III.2], GLS5, Section 2.4]). The φ-functions of the indecomposable direct summands of $V_{\mathbf{i}}$ are some generalized minors on N which form a natural initial cluster of $\mathbb{C}\left[N^{w}\right]$. We introduce the new module

$$
W_{\mathbf{i}}:=I_{w} \oplus \Omega_{w}\left(V_{\mathbf{i}}\right)
$$

where $\Omega_{w}=\tau_{w}^{-1}$ is the inverse Auslander-Reiten translation of \mathcal{C}_{w}, and I_{w} is the direct sum of the indecomposable \mathcal{C}_{w}-projective-injectives. For a Λ-module X, the set $\operatorname{Ext}_{\Lambda}^{1}\left(W_{\mathbf{i}}, X\right)$ is in a natural way a left module over the stable endomorphism algebra

$$
\underline{\mathcal{E}}:=\underline{\operatorname{End}}_{\mathcal{C}_{w}}\left(W_{\mathbf{i}}\right)^{\mathrm{op}} \cong \underline{\operatorname{End}}_{\mathcal{C}_{w}}\left(V_{\mathbf{i}}\right)^{\mathrm{op}}
$$

Denote by $\operatorname{Gr}_{\mathbf{d}}^{\mathcal{E}}\left(\operatorname{Ext}_{\Lambda}^{1}\left(W_{\mathbf{i}}, X\right)\right)$ the projective variety of $\underline{\mathcal{E}}$-submodules of $\operatorname{Ext}_{\Lambda}^{1}\left(W_{\mathbf{i}}, X\right)$ with dimension vector \mathbf{d}, a so-called quiver Grassmannian. Our first main result is

Theorem 1. For $X \in \mathcal{C}_{w}$ and all $\mathbf{a} \in \mathbb{N}^{r}$, there is an isomorphism of algebraic varieties

$$
\mathcal{F}_{\mathbf{i}, \mathbf{a}, X} \cong \operatorname{Gr}_{\bar{d}_{\mathbf{i}, X}(\mathbf{a})}^{\mathcal{E}}\left(\operatorname{Ext}_{\Lambda}^{1}\left(W_{\mathbf{i}}, X\right)\right)
$$

where $d_{\mathbf{i}, X}$ is an explicit bijection from $\left\{\mathbf{a} \mid \mathcal{F}_{\mathbf{i}, \mathbf{a}, X} \neq \varnothing\right\}$ to $\left\{\mathbf{d} \mid \operatorname{Gr}_{\mathbf{d}}^{\mathcal{E}}\left(\operatorname{Ext}_{\Lambda}^{1}\left(W_{\mathbf{i}}, X\right)\right)\right.$ $\neq \varnothing\}$.

It follows easily that the set $\left\{\mathbf{a} \mid \chi\left(\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}\right) \neq 0\right\}$ has a unique element if and only if $\operatorname{Ext}_{\Lambda}^{1}\left(W_{\mathbf{i}}, X\right)=0$. Now by construction, $W_{\mathbf{i}}$ is a cluster-tilting module of $\mathcal{C}_{w} ;$ that is, $\operatorname{Ext}_{\Lambda}^{1}\left(W_{\mathbf{i}}, X\right)=0$ if and only if X belongs to the additive hull $\operatorname{add}\left(W_{\mathbf{i}}\right)$
of $W_{\mathbf{i}}$. Moreover, in this case, $\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$ is reduced to a point. Hence Theorem has the following important consequence:
Theorem 2. For $X \in \mathcal{C}_{w}$, the polynomial function $\mathbf{t} \mapsto \varphi_{X}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)$ is reduced to a single monomial $\mathbf{t}^{\mathbf{a}}$ if and only if $X \in \operatorname{add}\left(W_{\mathbf{i}}\right)$.
1.3. Let $W_{\mathbf{i}, 1}, \ldots, W_{\mathbf{i}, r}$ denote the indecomposable direct summands of $W_{\mathbf{i}}$. The r-tuple of regular functions $\left(\varphi_{W_{i, 1}}, \ldots, \varphi_{W_{\mathbf{i}, r}}\right)$ is a cluster of $\mathbb{C}\left[N^{w}\right]$, and it follows from Theorem 2 that the $\varphi_{W_{i}, k}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)$ are monomials in the variables t_{1}, \ldots, t_{r}. Inverting this monomial transformation yields expressions of the t_{k} 's as explicit rational functions on N^{w}, a result originally called the Chamber Ansatz by Berenstein, Fomin and Zelevinsky [BFZ] in type A_{n}, because of a convenient description of these formulas in terms of chambers in a wiring diagram. To present these formulas in the general Kac-Moody setting, we need more notation. By construction, the summands $V_{\mathbf{i}, k}$ of $V_{\mathbf{i}}$ are related to the modules $W_{\mathbf{i}, k}$ by short exact sequences

$$
0 \rightarrow W_{\mathbf{i}, k} \rightarrow P\left(V_{\mathbf{i}, k}\right) \rightarrow V_{\mathbf{i}, k} \rightarrow 0
$$

where for $X \in \mathcal{C}_{w}, P(X)$ denotes the projective cover in \mathcal{C}_{w}. We set

$$
\varphi_{V_{\mathbf{i}, k}}^{\prime}:=\frac{\varphi_{W_{\mathbf{i}, k}}}{\varphi_{P\left(V_{\mathbf{i}, k}\right)}},
$$

a Laurent monomial in the $\varphi_{W_{\mathbf{i}, k}}$ (since $\operatorname{add}\left(W_{\mathbf{i}}\right)$ contains all \mathcal{C}_{w}-projectives). As will be explained in Section 1.6 below, the regular functions $\varphi_{V_{\mathrm{i}, k}}^{\prime}$ on N^{w} are the twisted generalized minors of [BZ] corresponding to \mathbf{i} (in the Dynkin case).

Denote by $q(i, j)$ the number of edges between two vertices i and j of the underlying unoriented graph of the quiver Q. For $1 \leq k \leq r$, put

$$
\begin{equation*}
C_{\mathbf{i}, k}:=\frac{1}{\varphi_{V_{\mathbf{i}, k}}^{\prime} \varphi_{V_{\mathbf{i}, k}-\left(i_{k}\right)}^{\prime}} \cdot \prod_{j=1}^{n}\left(\varphi_{V_{\mathbf{i}, k}-(j)}^{\prime}\right)^{q\left(i_{k}, j\right)} \tag{1.1}
\end{equation*}
$$

where $k^{-}(j):=\max \left\{0,1 \leq s \leq k-1 \mid i_{s}=j\right\}$ and $V_{\mathbf{i}, 0}$ is by convention the zero module.

Theorem 3. For $1 \leq k \leq r$ and $\mathbf{t}=\left(t_{r}, \ldots, t_{1}\right)$ we have $C_{\mathbf{i}, k}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{k}$. Therefore, for $X \in \mathcal{C}_{w}$ we get an equality in $\mathbb{C}\left[N^{w}\right]$:

$$
\begin{equation*}
\varphi_{X}=\sum_{\mathbf{a} \in \mathbb{N}^{r}} \chi\left(\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}\right) C_{\mathbf{i}, r}^{a_{r}} \cdots C_{\mathbf{i}, 2}^{a_{2}} C_{\mathbf{i}, 1}^{a_{1}} \tag{1.2}
\end{equation*}
$$

1.4. Using Theorem [1, we now want to compare Equation (1.2) with similar formulas of Fu and Keller. To simplify our notation, we define

$$
\begin{aligned}
R & :=\{1,2, \ldots, r\} \\
R_{\max } & :=\left\{k \in R \mid \text { there is no } k<s \leq r \text { with } i_{s}=i_{k}\right\} \\
R_{-} & :=R \backslash R_{\max } .
\end{aligned}
$$

Let $T=T_{1} \oplus \cdots \oplus T_{r}$ be a basic cluster-tilting module in \mathcal{C}_{w}, where the numbering is chosen so that T_{k} is \mathcal{C}_{w}-projective-injective for $k \in R_{\text {max }}$. Assume that $\left(\varphi_{T_{1}}, \ldots, \varphi_{T_{r}}\right)$ is a cluster of $\mathbb{C}\left[N^{w}\right]$, i.e., that it can be obtained from $\left(\varphi_{V_{i, 1}}, \ldots\right.$, $\varphi_{V_{\mathrm{i}, r}}$) by a sequence of mutations. In this case, T is called V_{i}-reachable. (One conjectures that this is always the case.) The endomorphism algebra $\mathcal{E}_{T}:=\operatorname{End}_{\Lambda}(T)^{\text {op }}$ has global dimension 3; see [GLS5, Proposition 2.19]. Thus we may consider

$$
B^{(T)}:=\left(B_{k, l}^{(T)}\right)_{k, l \in R}:=\left(\left(\operatorname{dim} \operatorname{Hom}_{\Lambda}\left(T_{k}, T_{l}\right)\right)_{k, l \in R}\right)^{-t}
$$

the matrix of the Ringel bilinear form for \mathcal{E}_{T}. (For a matrix B, we denote the inverse of its transpose by B^{-t}.)

For a general 2-Calabi-Yau Frobenius category \mathcal{C} with a cluster-tilting object, Fu and Keller [FK, Section 3] (extending previous work of Palu (P) have attached to every object of \mathcal{C} a Laurent polynomial called its cluster character. When applied to the category \mathcal{C}_{w} and the cluster-tilting object T, the formula for this cluster character can be written as

$$
\begin{equation*}
\left.\theta_{X}^{T}:=\varphi_{T}^{(\operatorname{dim}} \operatorname{Hom}_{\Lambda}(T, X)\right) \cdot B^{(T)} \cdot \sum_{\mathbf{d} \in \mathbb{N}^{R_{-}}} \chi\left(\operatorname{Gr}_{\mathrm{d}}^{\mathcal{E}_{T}}\left(\operatorname{Ext}_{\Lambda}^{1}(T, X)\right)\right) \hat{\varphi}_{T}^{\mathrm{d}} \quad\left(X \in \mathcal{C}_{w}\right) . \tag{1.3}
\end{equation*}
$$

Here we use the abbreviations

$$
\begin{array}{rll}
\varphi_{T}^{\mathbf{g}} & :=\prod_{k \in R} \varphi_{T_{k}}^{g_{k}} & \text { for } \mathbf{g}=\left(g_{1}, g_{2}, \ldots, g_{r}\right) \in \mathbb{Z}^{r}, \\
\hat{\varphi}_{T, k} & :=\prod_{l \in R} \varphi_{T_{l}}^{B_{l, k}^{(T)}} & \text { for } k \in R_{-}, \\
\hat{\varphi}_{T}^{\mathbf{d}} & :=\prod_{k \in R_{-}} \hat{\varphi}_{T, k}^{d_{k}} & \text { for } \mathbf{d}=\left(d_{k}\right)_{k \in R_{-}} \in \mathbb{N}^{R_{-}} .
\end{array}
$$

By FK, Theorem 4.3] and GLS5, Theorem 3.3], the cluster variables of $\mathbb{C}\left[N^{w}\right]$ are of the form θ_{X}^{T} for indecomposable rigid modules X of \mathcal{C}_{w}, and (1.3) gives therefore a representation-theoretic description of their cluster expansions with respect to the cluster $\left(\varphi_{T_{1}}, \ldots, \varphi_{T_{r}}\right)$. However, for an arbitrary $X \in \mathcal{C}_{w}$, not much is known about the function θ_{X}^{T}. For instance it is a priori only a rational function on N^{w}. Using Theorem $\mathbb{1}$ and the Chamber Ansatz Theorem 3, we prove our next main result:

Theorem 4. For every $X \in \mathcal{C}_{w}$ we have

$$
\theta_{X}^{T}=\varphi_{X} .
$$

In particular, θ_{X}^{T} is a regular function on N^{w} for every $X \in \mathcal{C}_{w}$; that is, the image of the cluster character $X \mapsto \theta_{X}^{T}$ is in the cluster algebra $\mathbb{C}\left[N^{w}\right]$.
1.5. In the last part of this paper, we deduce from Theorem 4 a new description of a generic basis for the coefficient-free cluster algebra obtained from $\mathbb{C}\left[N^{w}\right]$ by specializing to 1 the functions φ_{P} for all \mathcal{C}_{w}-projective-injectives P. (This algebra can be seen as the coordinate ring of the subvariety $N \cap\left(N_{-} w N_{-}\right)$of N^{w}, but we will not use it.) In [GLS5, Section 15.6] we have already described such a basis in terms of generic modules over the preprojective algebra Λ. Here we want to express it in terms of generic modules over the stable endomorphism algebra $\underline{\mathcal{E}}_{T}$ of the cluster-tilting module T.

The quiver $\underline{\Gamma}_{T}$ of $\underline{\mathcal{E}}_{T}$ has the set R_{-}as vertices, with $k \in R_{-}$corresponding to T_{k}, and it has $\left[B_{l, k}^{(T)}\right]_{+}$arrows from k to l, where we write, for short, $[z]_{+}=\max (z, 0)$. We consider the cluster algebra $\mathcal{A}\left(\underline{\Gamma}_{T}\right) \subset \mathbb{C}\left(\left(x_{k}\right)_{k \in R_{-}}\right)$with initial seed $\left(\left(x_{k}\right)_{k \in R_{-}}, \underline{\Gamma}_{T}\right)$. We have a unique ring homomorphism $\Pi_{T}: \mathbb{C}\left[N^{w}\right] \rightarrow$ $\mathbb{C}\left(\left(x_{k}\right)_{k \in R_{-}}\right)$such that $\Pi_{T}\left(\varphi_{T_{k}}\right)=x_{k}$ for $k \in R_{-}$, and $\Pi_{T}\left(\varphi_{T_{k}}\right)=1$ for $k \in R_{\text {max }}$. The homomorphism Π_{T} restricts to an epimorphism $\mathbb{C}\left[N^{w}\right] \rightarrow \mathcal{A}\left(\underline{\Gamma}_{T}\right)$, which we also denote by Π_{T}.

Following Palu \mathbb{P}, for an $\underline{\mathcal{E}}_{T}$-module Y we put

$$
\begin{equation*}
\psi_{Y}:=x^{\mathbf{g}_{Y}} \cdot \sum_{\mathbf{d} \in \mathbb{N}^{R_{-}}} \chi\left(\operatorname{Gr}_{\mathbf{d}}^{\mathcal{E}_{T}}(Y)\right) \hat{x}_{T}^{\mathbf{d}}, \tag{1.4}
\end{equation*}
$$

where

$$
\mathbf{g}_{Y}:=\left(g_{k}\right)_{k \in R_{-}}:=\left(\operatorname{dim} \operatorname{Ext}_{\underline{\mathcal{E}}_{T}}^{1}\left(S_{k}, Y\right)-\operatorname{dim} \operatorname{Hom}_{\underline{\mathcal{E}}_{T}}\left(S_{k}, Y\right)\right)_{k \in R_{-}}
$$

and

$$
x^{\mathbf{g}_{Y}}:=\prod_{k \in R_{-}} x_{k}^{g_{k}}, \quad \hat{x}_{T, k}:=\prod_{l \in R_{-}} x_{l}^{B_{l, k}^{(T)}}, \quad \hat{x}_{T}^{\mathbf{d}}:=\prod_{k \in R_{-}} \hat{x}_{T, k}^{d_{k}}
$$

(Here $S_{k}, k \in R_{-}$are the simple $\underline{\mathcal{E}}_{T}$-modules.) In fact, if $Y=\operatorname{Ext}_{\Lambda}^{1}(T, X)$ for some $X \in \mathcal{C}_{w}$, in view of Theorem 4 we have $\psi_{Y}=\Pi_{T}\left(\varphi_{X}\right)$.

For $\mathbf{d} \in \mathbb{N}^{R_{-}}$let $\bmod \left(\underline{\mathcal{E}}_{T}, \mathbf{d}\right)$ be the affine variety of representations of $\underline{\mathcal{E}}_{T}$ with dimension vector \mathbf{d}. It will be convenient to consider $\bmod \left(\underline{\mathcal{E}}_{T}, \mathbf{d}\right)$ with the right action of

$$
\mathrm{GL}_{\mathbf{d}}:=\prod_{k \in R_{-}} \mathrm{GL}_{\mathbf{d}(k)}(\mathbb{C})
$$

by conjugation. For each irreducible component \mathcal{Z} of $\bmod \left(\underline{\mathcal{E}}_{T}, \mathbf{d}\right)$ there is a dense open subset $\mathcal{U} \subseteq \mathcal{Z}$ such that for all $U, U^{\prime} \in \mathcal{U}$ we have $\psi_{U}=\psi_{U^{\prime}}$. Define $\psi_{\mathcal{Z}}:=\psi_{U}$, where $U \in \mathcal{U}$. An irreducible component \mathcal{Z} of $\bmod \left(\underline{\mathcal{E}}_{T}, \mathbf{d}\right)$ is called strongly reduced if there is a dense open subset $\mathcal{U} \subseteq \mathcal{Z}$ such that

$$
\operatorname{codim}_{\mathcal{Z}}\left(U \cdot \mathrm{GL}_{\mathbf{d}}\right)=\operatorname{dim} \operatorname{Hom}_{\underline{\mathcal{E}}_{T}}\left(\tau_{\underline{\mathcal{E}}_{T}}^{-1}(U), U\right)
$$

for all $U \in \mathcal{U}$, where $\tau_{\underline{\mathcal{E}}_{T}}$ denotes the Auslander-Reiten translation of $\bmod \left(\underline{\mathcal{E}}_{T}\right)$. It follows from Voigt's Lemma [G, Proposition 1.1] that strongly reduced components are (scheme-theoretically) generically reduced, hence the name. But contrary to what the terminology might suggest, being strongly reduced is not a property of the scheme \mathcal{Z} equipped with its $\mathrm{GL}_{\mathbf{d}}$-action, since the definition uses additionally the representation theory of the algebra $\underline{\mathcal{E}}_{T}$. Note also that $\underline{\mathcal{E}}_{T}$ is given by a quiver with potential BIRSm and that

$$
\operatorname{dim} \operatorname{Hom}_{\underline{\mathcal{E}}_{T}}\left(\tau_{\underline{\mathcal{E}}_{T}}^{-1}(U), U\right)=E^{\mathrm{inj}}(U)
$$

is the E-invariant defined in DWZ2.
Let $\operatorname{Irr}\left(\bmod \left(\underline{\mathcal{E}}_{T}, \mathbf{d}\right)\right)$ be the set of irreducible components of $\bmod \left(\underline{\mathcal{E}}_{T}, \mathbf{d}\right)$ and set

$$
\operatorname{Irr}\left(\underline{\mathcal{E}}_{T}\right):=\bigcup_{\mathbf{d} \in \mathbb{N}^{R_{-}}} \operatorname{Irr}\left(\bmod \left(\underline{\mathcal{E}}_{T}, \mathbf{d}\right)\right)
$$

Let $\operatorname{Irr}{ }^{\text {sr }}\left(\underline{\mathcal{E}}_{T}\right)$ denote the set of all strongly reduced irreducible components in $\operatorname{Irr}\left(\underline{\mathcal{E}}_{T}\right)$. For $\mathcal{Z} \in \operatorname{Irr}\left(\underline{\mathcal{E}}_{T}, \mathbf{d}\right)$ define $\operatorname{Null}(\mathcal{Z}):=\left\{\mathbf{m} \in \mathbb{N}^{R_{-}} \mid \mathbf{m}(k)=0\right.$ if $\left.\mathbf{d}(k) \neq 0\right\}$.

Finally, let us denote by $\widetilde{\mathcal{S}}_{w}^{*}$ the dual semicanonical basis of $\mathbb{C}\left[N^{w}\right]$ constructed in GLS5. We can now state
Theorem 5. The set

$$
\mathcal{G}_{w}^{T}:=\left\{x^{\mathbf{m}} \cdot \psi_{\mathcal{Z}} \mid \mathcal{Z} \in \operatorname{Irr}^{\mathrm{sr}}\left(\underline{\mathcal{E}}_{T}\right), \mathbf{m} \in \operatorname{Null}(\mathcal{Z})\right\}
$$

is a basis of the cluster algebra $\mathcal{A}\left(\underline{\Gamma}_{T}\right)$. It is equal to the image of the dual semicanonical basis $\widetilde{\mathcal{S}}_{w}^{*}$ under $\Pi_{T}: \mathbb{C}\left[N^{w}\right] \rightarrow \mathcal{A}\left(\underline{\Gamma}_{T}\right)$.

Each finite-dimensional path algebra is isomorphic to $\underline{\mathcal{E}}_{T}$ for some appropriate Λ, w and T; see GLS5, Section 16]. In this case, $\bmod \left(\mathcal{E}_{T}, \mathbf{d}\right)$ is an (irreducible) affine space for all \mathbf{d}, and it is easy to see that $\bmod \left(\underline{\mathcal{E}}_{T}, \mathbf{d}\right)$ is strongly reduced. Thus Theorem 5 implies Dupont's conjecture [D, Conjecture 6.1]. On the other hand, even if $\underline{\mathcal{E}}_{T}$ is not hereditary but mutation equivalent to an acyclic quiver,
it is quite easy to find examples of irreducible components of varieties $\bmod \left(\mathcal{E}_{T}, \mathbf{d}\right)$ which are not strongly reduced.

Since Theorem 5 gives a description of the generic basis \mathcal{G}_{w}^{T} of $\mathcal{A}\left(\underline{\Gamma}_{T}\right)$ entirely in terms of the varieties of representations of the algebra \mathcal{E}_{T}, it is natural in view of DWZ2] to ask if the first statement of Theorem generalizes to other classes of cluster algebras.
1.6. The paper closes with our categorical interpretation of the twist automorphisms of the unipotent cells, introduced by Berenstein, Fomin and Zelevinsky in connection with the Chamber Ansatz. For $x \in N^{w}$, the intersection $N \cap\left(B_{-} w x^{T}\right)$ consists of a unique element, which, following BFZ, BZ, GLS5, we denote by $\eta_{w}(x)$. (The anti-automorphism $g \mapsto g^{T}$ of the Kac-Moody group is defined in GLS5, Section 7.1]. For more details on η_{w}, we refer to GLS5, Section 8].) The map η_{w} is in fact a regular automorphism of N^{w}, and we denote by $\left(\eta_{w}^{*}\right)^{-1}$ the \mathbb{C}-algebra automorphism of $\mathbb{C}\left[N^{w}\right]$, defined by

$$
\left(\left(\eta_{w}^{*}\right)^{-1} f\right)(x)=f\left(\eta_{w}^{-1}(x)\right) \quad\left(f \in \mathbb{C}\left[N^{w}\right]\right)
$$

Theorem 6. For every $X \in \mathcal{C}_{w}$, we have

$$
\left(\eta_{w}^{*}\right)^{-1}\left(\varphi_{X}\right)=\frac{\varphi_{\Omega_{w}(X)}}{\varphi_{P(X)}}
$$

Moreover, η_{w}^{*} preserves the dual semicanonical basis $\widetilde{\mathcal{S}}_{w}^{*}$ of $\mathbb{C}\left[N^{w}\right]$ and permutes its elements.

Thus, the regular functions $\varphi_{V_{\mathbf{i}, k}}^{\prime}$ occurring in Theorem 3 are obtained by twisting the generalized minors $\varphi_{V_{\mathrm{i}, k}}$ with η_{w}^{-1}, in agreement with BFZ, BZ in the Dynkin case. We believe that Theorem 6 provides a conceptual explanation of the existence of the automorphism η_{w}, and of its compatibility with total positivity [BZ, Proposition 5.3].
1.7. The article is organized as follows: In Section 2 we give a short reminder on cluster algebras and some previous results. In Section 3 we construct isomorphisms between flag varieties and quiver Grassmannians in a very general setup. The isomorphisms stated in Theorem 1 turn out to be special cases. Section 4 contains the proofs of Theorems 1 and 2 and of the Chamber Ansatz Theorem 3 together with some illustrating examples. The proof of the cluster character identities stated in Theorem 4 and a detailed example are in Sections 5and 6. The proof of Theorem 5 is in Sections 7 and 8. Finally, Section 9 contains the proof of Theorem 6 .
1.8. Notation. Throughout, we work over the field \mathbb{C} of complex numbers. For a \mathbb{C}-algebra A let $\bmod (A)$ be the category of finite-dimensional left A-modules. By an A-module we always mean a module in $\bmod (A)$, unless stated otherwise. Often we do not distinguish between a module and its isomorphism class. Let $D:=\operatorname{Hom}_{\mathbb{C}}(-, \mathbb{C})$ be the usual duality functor.

For a quiver Q, let $\operatorname{rep}(Q)$ be the category of finite-dimensional representations of Q over \mathbb{C}. It is well known that we can identify $\operatorname{rep}(Q)$ and $\bmod (\mathbb{C} Q)$.

By a subcategory we always mean a full subcategory. For an A-module M let $\operatorname{add}(M)$ be the subcategory of all A-modules which are isomorphic to finite direct sums of direct summands of M. A subcategory \mathcal{U} of $\bmod (A)$ is an additive subcategory if any finite direct sum of modules in \mathcal{U} is again in \mathcal{U}. By $\operatorname{Fac}(M)$ (resp.
$\operatorname{Sub}(M))$ we denote the subcategory of all A-modules X such that there exists some $t \geq 1$ and some epimorphism $M^{t} \rightarrow X$ (resp. monomorphism $X \rightarrow M^{t}$).

For an A-module M let $\Sigma(M)$ be the number of isomorphism classes of indecomposable direct summands of M. An A-module is called basic if it can be written as a direct sum of pairwise non-isomorphic indecomposable modules. An A-module M is called rigid if $\operatorname{Ext}_{A}^{1}(M, M)=0$.

For an A-module M and a simple A-module S let $[M: S]$ be the Jordan-Hölder multiplicity of S in a composition series of M. Let $\underline{\operatorname{dim}(M):=\operatorname{dim}_{A}(M):=([M: ~}$ $S])_{S}$ be the dimension vector of M, where S runs through all isomorphism classes of simple A-modules.

For a set U we denote its cardinality by $|U|$. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are maps, then the composition is denoted by $g f=g \circ f: X \rightarrow Z$.

If U is a subset of a \mathbb{C}-vector space V, then let $\operatorname{Span}_{\mathbb{C}}\langle U\rangle$ be the subspace of V generated by U.

Let $\mathbb{N}=\{0,1,2, \ldots\}$ be the natural numbers, including 0 , and let \mathbb{Z} be the ring of integers. For a domain R let $R\left(X_{1}, \ldots, X_{r}\right), R\left[X_{1}, \ldots, X_{r}\right]$ and $R\left[X_{1}^{ \pm 1}, \ldots, X_{r}^{ \pm 1}\right]$ be the field of rational functions, the polynomial ring, and the ring of Laurent polynomials in the variables X_{1}, \ldots, X_{r} with coefficients in R, respectively.

2. Reminder on cluster algebras

2.1. Let $\mathcal{F}:=\mathbb{Q}\left(X_{1}, \ldots, X_{r}\right)$ be the field of rational functions in r variables. We fix a subset $F \subseteq\{1, \ldots, r\}$.

A seed in \mathcal{F} is a pair (x, Γ), where $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, s, t\right)$ is a finite quiver without loops and without 2-cycles with set of vertices $\Gamma_{0}=\{1, \ldots, r\}$, and $x=\left(x_{1}, \ldots, x_{r}\right)$ with x_{1}, \ldots, x_{r} algebraically independent elements in \mathcal{F}. The vertices in $\{1, \ldots, r\} \backslash F$ are called mutable, and the ones in F are frozen.

Given a seed (x, Γ) in \mathcal{F} and a mutable vertex k of Γ, we define the mutation of (x, Γ) at k as

$$
\mu_{k}(x, \Gamma):=\left(x^{\prime}, \Gamma^{\prime}\right)
$$

The quiver Γ^{\prime} is obtained from Γ by applying the Fomin-Zelevinsky quiver mutation at k, which is defined as follows: For $1 \leq i, j \leq r$ let

$$
\gamma_{i j}:=\mid \text { number of arrows } j \rightarrow i \text { in } \Gamma|-| \text { number of arrows } i \rightarrow j \text { in } \Gamma \mid .
$$

(Recall that there are no 2-cycles in Γ. So at least one of the numbers on the right-hand side is 0 .) By definition also Γ^{\prime} has no loops and no 2-cycles, and the corresponding numbers $\gamma_{i j}^{\prime}$ for Γ^{\prime} are

$$
\gamma_{i j}^{\prime}:= \begin{cases}-\gamma_{i j} & \text { if } i=k \text { or } j=k, \\ \gamma_{i j}+\frac{\left|\gamma_{i k}\right| \gamma_{k j}+\gamma_{i k}\left|\gamma_{k j}\right|}{2} & \text { otherwise. }\end{cases}
$$

Finally, $x^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{r}^{\prime}\right)$ is defined by

$$
x_{s}^{\prime}:= \begin{cases}x_{k}^{-1}\left(\prod_{k \rightarrow i} x_{i}+\prod_{j \rightarrow k} x_{j}\right) & \text { if } s=k \\ x_{s} & \text { otherwise }\end{cases}
$$

where the products are taken over all arrows of Γ which start, respectively end, in k. Set $\mu_{(x, \Gamma)}\left(x_{k}\right):=x_{k}^{\prime}$. It is easy to check that $\left(x^{\prime}, \Gamma^{\prime}\right)$ is again a seed in \mathcal{F} and that $\mu_{k}^{2}(x, \Gamma)=(x, \Gamma)$.

Two seeds (x, Γ) and (y, Σ) are mutation equivalent if there is a sequence $\left(k_{1}, \ldots\right.$, $\left.k_{t}\right)$ with $k_{i} \in\{1, \ldots, r\} \backslash F$ for all i such that

$$
\mu_{k_{t}} \ldots \mu_{k_{2}} \mu_{k_{1}}(x, \Gamma)=(y, \Sigma)
$$

In this case, we write $(y, \Sigma) \sim(x, \Gamma)$.
For a seed (x, Γ) in \mathcal{F} let

$$
\mathcal{X}_{(x, \Gamma)}:=\bigcup_{(y, \Sigma) \sim(x, \Gamma)}\left\{y_{1}, \ldots, y_{r}\right\},
$$

where the union is over all seeds (y, Σ) with $(y, \Sigma) \sim(x, \Gamma)$. By definition, the cluster algebra $\mathcal{A}(x, \Gamma)$ associated to (x, Γ) is the subalgebra of \mathcal{F} generated by $\mathcal{X}_{(x, \Gamma)}$.

We call (y, Σ) a seed in $\mathcal{A}(x, \Gamma)$ if $(y, \Sigma) \sim(x, \Gamma)$. In this case, y is a cluster in $\mathcal{A}(x, \Gamma)$, the elements y_{1}, \ldots, y_{r} are cluster variables and $y_{1}^{m_{1}} \cdots y_{r}^{m_{r}}$ with $m_{i} \geq 0$ for all i are cluster monomials in $\mathcal{A}(x, \Gamma)$.

For any seed of the form (y, Γ) in \mathcal{F} we obtain an isomorphism $\mathcal{A}(x, \Gamma) \rightarrow \mathcal{A}(y, \Gamma)$ given by $x_{i} \mapsto y_{i}$ for all $1 \leq i \leq r$. So one sometimes writes just $\mathcal{A}(\Gamma)$ instead of $\mathcal{A}(x, \Gamma)$.

Note that for any cluster y in $\mathcal{A}(x, \Gamma)$ we have $y_{i}=x_{i}$ for all $i \in F$. These cluster variables are also called coefficients of $\mathcal{A}(x, \Gamma)$. Localizing $\mathcal{A}(x, \Gamma)$ at $\prod_{i \in F} x_{i}$ yields an algebra $\mathcal{A}\left(x, \Gamma, F^{ \pm}\right)$, which we also call a cluster algebra.

There are algebra epimorphisms

$$
\mathcal{A}(x, \Gamma) \rightarrow \mathcal{A}(\underline{x}, \underline{\Gamma}) \quad \text { and } \quad \mathcal{A}\left(x, \Gamma, F^{ \pm}\right) \rightarrow \mathcal{A}(\underline{x}, \underline{\Gamma})
$$

defined by

$$
x_{i} \rightarrow\left\{\begin{array}{lc}
1 & \text { if } i \in F \\
x_{i} & \text { otherwise }
\end{array}\right.
$$

where $\mathcal{A}(\underline{x}, \underline{\Gamma}) \subseteq \mathbb{Q}\left(\left(x_{i}\right)_{i \in\{1, \ldots, r\} \backslash F}\right)$ is again a cluster algebra with $\underline{x}:=$ $\left(x_{i}\right)_{i \in\{1, \ldots, r\} \backslash F}$, and the quiver $\underline{\Gamma}$ is obtained from Γ by deleting all vertices in F and all arrows starting or ending in one of the vertices in F. We say that the cluster algebra $\mathcal{A}(\underline{x}, \underline{\Gamma})$ is obtained from $\mathcal{A}(x, \Gamma)$ by specialization of coefficients to 1 , and the two epimorphisms defined above are called specialization morphisms. Clearly, the specialization morphisms induce a surjective map $\mathcal{X}_{(x, \Gamma)} \backslash\left\{x_{i} \mid i \in F\right\} \rightarrow \mathcal{X}_{(\underline{x}, \underline{\Gamma})}$.

Using the identification $\mathbb{C}\left[N^{w}\right] \equiv \mathcal{A}\left(\Gamma_{T}\right)$, the epimorphism Π_{T} defined in Section 1.5, can be seen as a specialization morphism. Thus the cluster algebra $\mathcal{A}\left(\underline{\Gamma}_{T}\right)$ is obtained from $\mathbb{C}\left[N^{w}\right]$ by the specialization of coefficients to 1 .
2.2. Cluster algebra structures for coordinate rings of unipotent cells. In a series of papers GLS1, GLS2, GLS5 we constructed a map

$$
\varphi: \operatorname{nil}(\Lambda) \rightarrow \mathbb{C}[N]
$$

which maps a nilpotent Λ-module X to a function $\varphi_{X} \in \mathbb{C}[N]$. This map satisfies the following properties:
(i) For all $X, Y \in \operatorname{nil}(\Lambda)$ we have

$$
\varphi_{X} \varphi_{Y}=\varphi_{X \oplus Y}
$$

(ii) Let $X, Y \in \operatorname{nil}(\Lambda)$ with $\operatorname{dim} \operatorname{Ext}_{\Lambda}^{1}(X, Y)=\operatorname{dim} \operatorname{Ext}_{\Lambda}^{1}(Y, X)=1$, and let

$$
0 \rightarrow X \rightarrow E^{\prime} \rightarrow Y \rightarrow 0 \quad \text { and } \quad 0 \rightarrow Y \rightarrow E^{\prime \prime} \rightarrow X \rightarrow 0
$$

be non-split short exact sequences. Then we have

$$
\varphi_{X} \varphi_{Y}=\varphi_{E^{\prime}}+\varphi_{E^{\prime \prime}}
$$

(iii) Restriction yields a map

$$
\varphi: \mathcal{C}_{w} \rightarrow \mathbb{C}\left[N^{w}\right]
$$

(Again we identified $\mathbb{C}\left[N^{w}\right]$ with the localization of the \mathbb{C}-span of $\left\{\varphi_{X} \mid\right.$ $\left.X \in \mathcal{C}_{w}\right\}$ at $\left\{\varphi_{P} \mid P\right.$ is \mathcal{C}_{w}-projective-injective $\left.\}.\right)$
(iv) Let $\mathbf{i}=\left(i_{r}, \ldots, i_{1}\right)$ be a reduced expression of w, and let $\Gamma:=\Gamma_{\mathbf{i}}$ and $F:=R_{\max }$. (The definitions of $\Gamma_{\mathbf{i}}$ and $R_{\max }$ can be found in Sections 3.6 and 1.4 respectively.) Then there is an algebra isomorphism

$$
\eta_{\mathbf{i}}: \mathcal{A}\left(x, \Gamma, F^{ \pm}\right) \rightarrow \mathbb{C}\left[N^{w}\right]
$$

with $\eta_{\mathbf{i}}\left(x_{k}\right)=\varphi_{V_{\mathbf{i}, k}}$ for all $1 \leq k \leq r$.
Using the isomorphism $\eta_{\mathbf{i}}$ one can now speak of cluster variables and cluster monomials in $\mathbb{C}\left[N^{w}\right]$. For example, an r-tuple $\left(\varphi_{T_{1}}, \ldots, \varphi_{T_{r}}\right)$ is a cluster in $\mathbb{C}\left[N^{w}\right]$ if and only if there is a seed (y, Σ) in $\mathcal{A}\left(x, \Gamma, F^{ \pm}\right)$with $\eta_{\mathbf{i}}\left(y_{i}\right)=\varphi_{T_{i}}$ for all i. In this case, let $T:=T_{1} \oplus \cdots \oplus T_{r}$. The vertices of the quiver Γ_{T} of the endomorphism algebra $\operatorname{End}_{\Lambda}(T)^{\mathrm{op}}$ are naturally parametrized by $1, \ldots, r$ and the following hold:
(v) With the exception of arrows between coefficients $c, d \in F$, the quivers Σ and Γ_{T} coincide. The seed (y, Σ) in $\mathcal{A}(x, \Gamma)$ is already determined by y.
(vi) The module T is a basic cluster-tilting module in \mathcal{C}_{w}. For any mutable vertex k there is a unique indecomposable $T_{k}^{\prime} \in \mathcal{C}_{w}$ with $T_{k}^{\prime} \neq T_{k}$ such that

$$
\mu_{k}(T):=T_{k}^{\prime} \oplus T / T_{k}
$$

is a basic cluster-tilting module in \mathcal{C}_{w}. For $y_{k}^{\prime}:=\mu_{(y, \Sigma)}\left(y_{k}\right)$ we have

$$
\eta_{\mathbf{i}}\left(y_{k}^{\prime}\right)=\varphi_{T_{k}^{\prime}}
$$

We say that $\left(\varphi_{T_{1}}, \ldots, \varphi_{T_{k}^{\prime}}, \ldots, \varphi_{T_{r}}\right)$ is obtained from $\left(\varphi_{T_{1}}, \ldots, \varphi_{T_{k}}, \ldots, \varphi_{T_{r}}\right)$ by mutation in direction k. We also say that $\mu_{k}(T)$ is obtained from T by mutation in direction k.
(vii) We have $\operatorname{dim} \operatorname{Ext}_{\Lambda}^{1}\left(T_{k}, T_{k}^{\prime}\right)=\operatorname{dim} \operatorname{Ext}_{\Lambda}^{1}\left(T_{k}^{\prime}, T_{k}\right)=1$, and there are short exact sequences

$$
0 \rightarrow T_{k} \rightarrow \bigoplus_{j \rightarrow k} T_{j} \rightarrow T_{k}^{\prime} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow T_{k}^{\prime} \rightarrow \bigoplus_{k \rightarrow i} T_{i} \rightarrow T_{k} \rightarrow 0
$$

where we sum over all arrows in Γ_{T} ending and starting in k, respectively. Furthermore, the identity

$$
y_{k} y_{k}^{\prime}=\prod_{k \rightarrow i} y_{i}+\prod_{j \rightarrow k} y_{j}
$$

in $\mathcal{A}(x, \Gamma)$ corresponds to the identity

$$
\varphi_{T_{k}} \varphi_{T_{k}^{\prime}}=\prod_{k \rightarrow i} \varphi_{T_{i}}+\prod_{j \rightarrow k} \varphi_{T_{j}}
$$

in $\mathbb{C}\left[N^{w}\right]$. For $i, j \in R$, the number of arrows $k \rightarrow i$ in Γ_{T} equals $\left[B_{i, k}^{(T)}\right]_{+}$ and the number of arrows $j \rightarrow k$ is $\left[-B_{j, k}^{(T)}\right]_{+}$.
(viii) The cluster monomials in $\mathbb{C}\left[N^{w}\right]$ are

$$
\varphi_{T_{1}}^{m_{1}} \cdots \varphi_{T_{r}}^{m_{r}}
$$

where $m_{i} \geq 0$ for all i, and $T:=T_{1} \oplus \cdots \oplus T_{r}$ runs through the set of V_{i}-reachable cluster-tilting modules in \mathcal{C}_{w}.
(ix) All cluster monomials in $\mathbb{C}\left[N^{w}\right]$ belong to the dual semicanonical basis of $\mathbb{C}\left[N^{w}\right]$.

3. Partial flag varieties and quiver Grassmannians

3.1. Basic algebras and nilpotent modules. Let $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, s, t\right)$ be a finite quiver with set of vertices $\Gamma_{0}=\{1, \ldots, n\}$, and set of arrows Γ_{1}. For an arrow $a: i \rightarrow j$ in Γ let $s(a):=i$ and $t(a):=j$ be its start vertex and terminal vertex, respectively.

A path of length m in Γ is an m-tuple $p=\left(a_{1}, \ldots, a_{m}\right)$ of arrows in Γ such that $s\left(a_{i}\right)=t\left(a_{i+1}\right)$ for all $1 \leq i \leq m-1$. We define $s(p):=s\left(a_{m}\right)$ and $t(p):=t\left(a_{1}\right)$. Additionally, for each vertex $i \in \Gamma_{0}$ there is a path e_{i} of length 0 with $s\left(e_{i}\right)=$ $t\left(e_{i}\right)=i$. An arrow a in Γ is a loop if $s(a)=t(a)$. A path $p=\left(a_{1}, a_{2}\right)$ is a 2 -cycle if $s(p)=t(p)$.

The path algebra $\mathbb{C} \Gamma$ of Γ has the paths in Γ as a \mathbb{C}-basis, and the multiplication of two paths p and q is defined by

$$
p q:= \begin{cases}\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{l}\right) & \text { if } s(p)=t(q), p=\left(a_{1}, \ldots, a_{m}\right) \text { and } q=\left(b_{1}, \ldots, b_{l}\right) \\ p & \text { if } q=e_{s(p)} \\ q & \text { if } p=e_{t(q)} \\ 0 & \text { if } s(p) \neq t(q)\end{cases}
$$

Extending this rule linearly turns $\mathbb{C} \Gamma$ into an associative \mathbb{C}-algebra with unit element.

For $m \geq 0$ let $\mathbb{C} \Gamma_{\geq m}$ be the ideal in $\mathbb{C} \Gamma$ generated by all paths of length m. An algebra A is called basic if $A=\mathbb{C} \Gamma / J$, where J is an ideal in $\mathbb{C} \Gamma$ with $J \subseteq \mathbb{C} \Gamma_{\geq 2}$. For the rest of this section, we assume that $A=\mathbb{C} \Gamma / J$ is a basic algebra.

Let S_{1}, \ldots, S_{n} be the 1-dimensional A-modules associated to the vertices of Γ. (If A is finite-dimensional, then S_{1}, \ldots, S_{n} are all simple A-modules up to isomorphism.) We focus on A-modules having only S_{1}, \ldots, S_{n} as composition factors. These modules are called nilpotent. The category of all nilpotent A-modules is denoted by $\operatorname{nil}(A)$. (If A is finite-dimensional, then $\operatorname{nil}(\Lambda)=\bmod (A)$.) Let $\widehat{I}_{1}, \ldots, \widehat{I}_{n}$ be the injective envelopes of S_{1}, \ldots, S_{n}, respectively. (The modules \widehat{I}_{j} are in general infinite-dimensional A-modules.)

Let J_{i} be the maximal ideal of A spanned by all residue classes $\bar{p}:=p+J$ of paths, where p runs through all paths except e_{i}. Thus A / J_{i} is 1-dimensional and (as an A-module) isomorphic to S_{i}. (In the following, we sometimes do not distinguish between a path p in $\mathbb{C} \Gamma$ and its residue class \bar{p}.)

Each (not necessarily finite-dimensional) A-module X can be interpreted as a representation $X=(X(i), X(a))_{i \in \Gamma_{0}, a \in \Gamma_{1}}$ of the quiver Γ, where the vector space $X(i)$ is defined by $e_{i} X$, and the linear map $X(a): X(s(a)) \rightarrow X(t(a))$ is defined by $x \mapsto a x$. Recall that a subrepresentation of X is given by $U=(U(i))_{i \in \Gamma_{0}}$, where $U(i)$ is a subspace of $X(i)$ for all i, and for all $a \in \Gamma_{1}$ we have $X(a)(U(s(a))) \subseteq$ $U(t(a))$. When passing from modules to representations, the submodules obviously
correspond to the subrepresentations. The dimension vector of a representation $X=(X(i), X(a))_{i \in \Gamma_{0}, a \in \Gamma_{1}}$ is by definition $\underline{\operatorname{dim}}_{\Gamma}(X):=(\operatorname{dim} X(i))_{i \in Q_{0}}$.
Definition 3.1. For a dimension vector \mathbf{d}, let $\operatorname{Gr}_{\mathbf{d}}^{A}(X)$ be the projective variety of subrepresentations Y of X with $\underline{\operatorname{dim}}_{\Gamma}(Y)=\mathbf{d}$. Such a variety is called a quiver Grassmannian.

If X is nilpotent, then $\operatorname{dim} X(i)=\left[M: S_{i}\right]$ for all $i \in Q_{0}$. We study Grassmannians $\operatorname{Gr}_{\mathbf{d}}^{A}(X)$ only for nilpotent A-modules X, so there is no danger of confusing the two types of dimension vectors $\underline{\operatorname{dim}}_{\Gamma}(-)$ and $\underline{\operatorname{dim}}_{A}(-)$ associated to X and its submodules.
3.2. Refined socle and top series. For an arbitrary (not necessarily finitedimensional) A-module X and a simple A-module S, let $\operatorname{soc}_{S}(X)$ be the sum of all submodules U of X with $U \cong S$. (If there is no such U, then $\operatorname{soc}_{S}(X)=0$.) Similarly, let $\operatorname{top}_{S}(X)=X / V$, where V is the intersection of all submodules U of X such that $X / U \cong S$. (If there is no such U, then $V=X$ and $\operatorname{top}_{S}(X)=0$.) Define $\operatorname{rad}_{S}(X):=V$.

Let us interpret X as a representation $X=(X(i), X(a))_{i \in \Gamma_{0}, a \in \Gamma_{1}}$ of Γ, and let $1 \leq j \leq n$. Then $\operatorname{soc}_{S_{j}}(X)$ can be seen as a subrepresentation $\left(X^{\prime}(i)\right)_{i \in \Gamma_{0}}$ of X, where

$$
X^{\prime}(i)= \begin{cases}0 & \text { if } i \neq j \\ \bigcap_{a \in \Gamma_{1}, s(a)=j} \operatorname{Ker}(X(a)) & \text { if } i=j\end{cases}
$$

Similarly, $\operatorname{rad}_{S_{j}}(X)$ can be seen as a subrepresentation $\left(X^{\prime}(i)\right)_{i \in \Gamma_{0}}$ of X, where

$$
X^{\prime}(i)= \begin{cases}X(i) & \text { if } i \neq j \\ \sum_{a \in \Gamma_{1}, t(a)=j} \operatorname{Im}(X(a)) & \text { if } i=j\end{cases}
$$

It follows that $\operatorname{soc}_{S_{j}}(X)$ and $\operatorname{top}_{S_{j}}(X)$ are isomorphic to (possibly infinite) direct sums of copies of S_{j}.

Now fix some sequence $\mathbf{i}=\left(i_{r}, \ldots, i_{1}\right)$ with $1 \leq i_{k} \leq n$ for all k. There exists a unique chain

$$
\left(0=X_{r} \subseteq \cdots \subseteq X_{1} \subseteq X_{0} \subseteq X\right)
$$

of submodules X_{k} of X such that $X_{k-1} / X_{k}=\operatorname{soc}_{S_{i_{k}}}\left(X / X_{k}\right)$ for all $1 \leq k \leq r$. We define $\operatorname{soc}_{\mathbf{i}}(X):=X_{0}$,

$$
X_{k}^{+}:=X_{k}^{\mathbf{i},+}:=X_{k}
$$

for all $0 \leq k \leq r$, and $X_{\bullet}^{+}:=X_{\bullet}^{\mathbf{i},+}:=\left(X_{r}^{+} \subseteq \cdots \subseteq X_{1}^{+} \subseteq X_{0}^{+}\right)$. If $\operatorname{soc}_{\mathbf{i}}(X)=X$, then we call this chain the refined socle series of type \mathbf{i} of X. Similarly, there exists a unique chain

$$
\left(0 \subseteq X_{r} \subseteq \cdots \subseteq X_{1} \subseteq X_{0}=X\right)
$$

of submodules X_{k} of X such that $X_{k-1} / X_{k}=\operatorname{top}_{S_{i_{k}}}\left(X_{k-1}\right)$ for all $1 \leq k \leq r$. Set $\operatorname{top}_{\mathbf{i}}(X):=X / X_{r}, \operatorname{rad}_{\mathbf{i}}(X):=X_{r}$, and

$$
X_{k}^{-}:=X_{k}^{\mathbf{i},-}:=X_{k}
$$

for all $0 \leq k \leq r$. Define $X_{\bullet}^{-}:=X_{\bullet}^{\mathbf{i},-}:=\left(X_{r}^{-} \subseteq \cdots \subseteq X_{1}^{-} \subseteq X_{0}^{-}\right)$. If $\operatorname{rad}_{\mathbf{i}}(X)=0$, then X_{\bullet}^{-}is called the refined top series of type \mathbf{i} of X.

The following lemma is straightforward:
Lemma 3.2. For arbitrary (not necessarily finite-dimensional) A-modules X and Y and every A-module homomorphism $f: X \rightarrow Y$ the following hold:
(i) $f\left(\operatorname{soc}_{\mathbf{i}}(X)\right) \subseteq \operatorname{soc}_{\mathbf{i}}(Y)$ and $f\left(\operatorname{rad}_{\mathbf{i}}(X)\right) \subseteq \operatorname{rad}_{\mathbf{i}}(Y)$.
(ii) If f is a monomorphism (resp. epimorphism), then the induced maps

$$
X / \operatorname{soc}_{\mathbf{i}}(X) \rightarrow Y / \operatorname{soc}_{\mathbf{i}}(Y) \quad \text { and } \quad \operatorname{rad}_{\mathbf{i}}(X) \rightarrow \operatorname{rad}_{\mathbf{i}}(Y)
$$

are both monomorphisms (resp. epimorphisms).
(iii) If $\operatorname{soc}_{\mathbf{i}}(Y)=Y$, then $f\left(\operatorname{rad}_{\mathbf{i}}(X)\right)=0$.

For $1 \leq k, s \leq r$ define

$$
J_{k, s}:= \begin{cases}J_{i_{k}} J_{i_{k-1}} \cdots J_{i_{s}} & \text { if } k \geq s \\ A & \text { otherwise }\end{cases}
$$

Also the next lemma is easy to show:
Lemma 3.3. For an arbitrary (not necessarily finite-dimensional) A-module X and $1 \leq k \leq r$ we have $J_{k, 1} X=X_{k}^{-}=\operatorname{rad}_{\left(i_{k}, \ldots, i_{1}\right)}(X)$.

Corollary 3.4. The algebra $A / J_{k, 1}$ is finite-dimensional for all $1 \leq k \leq r$.
Proof. Use Lemma 3.3 and the fact that the quiver Γ of A is finite.
Let $\mathcal{D}_{\mathbf{i}}$ be the category of all A-modules X in $\bmod (A)$ such that $\operatorname{soc}_{\mathbf{i}}(X)=X$.
Lemma 3.5. For an A-module X the following are equivalent:
(i) $X \in \mathcal{D}_{\mathbf{i}}$.
(ii) $\operatorname{soc}_{\mathbf{i}}(X)=X$.
(iii) $\operatorname{rad}_{\mathbf{i}}(X)=0$.

Proof. By definition, (i) and (ii) are equivalent. The equivalence of (ii) and (iii) follows by an obvious induction on the length r of the sequence \mathbf{i}.

Let $A_{\mathbf{i}}:=A / J_{r, 1}$. We identify the category $\bmod \left(A_{\mathbf{i}}\right)$ of finite-dimensional $A_{\mathbf{i}}$ modules with the category of all X in $\operatorname{nil}(A)$ such that $J_{r, 1} X=0$. Under this identification we obviously get the following:
Lemma 3.6. We have $\mathcal{D}_{\mathbf{i}}=\bmod \left(A_{\mathbf{i}}\right)$.

3.3. Partial composition series.

Definition 3.7. For $X \in \mathcal{D}_{\mathbf{i}}$ and $\mathbf{a}=\left(a_{r}, \ldots, a_{1}\right)$ with $a_{j} \geq 0$, let $\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$ be the (possibly empty) set of chains $X_{\bullet}=\left(0=X_{r} \subseteq \cdots \subseteq X_{1} \subseteq X_{0}=X\right)$ of submodules X_{k} of X such that $X_{k-1} / X_{k} \cong S_{i_{k}}^{a_{k}}$ for all $1 \leq k \leq r$. We call $\left(0=X_{r} \subseteq \cdots \subseteq X_{1} \subseteq X_{0}=X\right)$ a partial composition series of type \mathbf{i} of X.

Clearly, $\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$ is a projective variety. The weight of $X_{\bullet} \in \mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$ is defined by

$$
\operatorname{wt}\left(X_{\bullet}\right):=\left(a_{r}, \ldots, a_{2}, a_{1}\right)
$$

If $X_{\bullet}=X_{\bullet}^{-}$(resp. $X=X_{\bullet}^{+}$), we define $\mathbf{a}^{-}(X):=\mathrm{wt}\left(X_{\bullet}^{-}\right)$and $\mathbf{a}_{k}^{-}(X):=a_{k}$ (resp. $\mathbf{a}^{+}(X):=\mathrm{wt}\left(X_{\bullet}^{+}\right)$and $\left.\mathbf{a}_{k}^{+}(X):=a_{k}\right)$ for all $1 \leq k \leq r$.

Lemma 3.8. For $X \in \mathcal{D}_{\mathbf{i}}$ and $\left(X_{r} \subseteq \cdots \subseteq X_{1} \subseteq X_{0}\right) \in \mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$ we have

$$
X_{k}^{-} \subseteq X_{k} \subseteq X_{k}^{+}
$$

for all $1 \leq k \leq r$.

Proof. For $1 \leq k \leq r$ we show that $X_{k} \subseteq X_{k}^{+}$by decreasing induction on k. Clearly, we have $X_{r} \subseteq X_{r}^{+}$. (By definition, $X_{r}=X_{r}^{+}=0$.) Next, assume that $X_{s} \subseteq X_{s}^{+}$ for some $1 \leq s \leq r$. Thus, there is an epimorphism $\pi: X / X_{s} \rightarrow X / X_{s}^{+}$. We have $X_{s-1} / X_{s} \subseteq \operatorname{soc}_{S_{i_{s}}}\left(X / X_{s}\right)$, and by definition $X_{s-1}^{+} / X_{s}^{+}=\operatorname{soc}_{S_{i_{s}}}\left(X / X_{s}^{+}\right)$. This implies that $\pi\left(X_{s-1} / X_{s}\right) \subseteq X_{s-1}^{+} / X_{s}^{+}$. In other words, $x+X_{s}^{+} \in X_{s-1}^{+} / X_{s}^{+}$for all $x \in X_{s-1}$. For each such x there exists some $y \in X_{s-1}^{+}$with $x+X_{s}^{+}=y+X_{s}^{+}$. This implies that $x-y$ is in X_{s}^{+}. Since $X_{s}^{+} \subseteq X_{s-1}^{+}$we get $x \in X_{s-1}^{+}$. Thus we have proved that $X_{k} \subseteq X_{k}^{+}$for all $1 \leq k \leq r$. Similarly, one shows by induction on k that $X_{k}^{-} \subseteq X_{k}$ for all $1 \leq k \leq r$.

The next lemma follows from the uniqueness of refined socle and top series.
Lemma 3.9. Let $X \in \mathcal{D}_{\mathbf{i}}$. If \mathbf{a} is equal to $\mathrm{wt}\left(X_{\bullet}^{-}\right)$or $\mathrm{wt}\left(X_{\bullet}^{+}\right)$, then $\chi\left(\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}\right)=1$.
Corollary 3.10. For every $X \in \mathcal{D}_{\mathbf{i}}$ there exists some \mathbf{a} such that $\chi\left(\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}\right) \neq 0$.
3.4. The modules $V_{\mathbf{i}}$. Let $A=\mathbb{C} \Gamma / J$ be a basic algebra, and let $\mathbf{i}=\left(i_{r}, \ldots, i_{1}\right)$ with $1 \leq i_{k} \leq n$ for all k. Without loss of generality we assume that for each $1 \leq j \leq n$ there exists some k with $i_{k}=j$. For $1 \leq k \leq r$ and $1 \leq j \leq n$, let

$$
\begin{aligned}
k^{-} & :=\max \left\{0,1 \leq s \leq k-1 \mid i_{s}=i_{k}\right\}, \\
k^{+} & :=\min \left\{k+1 \leq s \leq r, r+1 \mid i_{s}=i_{k}\right\}, \\
k_{\max } & :=\max \left\{1 \leq s \leq r \mid i_{s}=i_{k}\right\}, \\
k_{\min } & :=\min \left\{1 \leq s \leq r \mid i_{s}=i_{k}\right\}, \\
k_{j} & :=\max \left\{1 \leq s \leq r \mid i_{s}=j\right\} .
\end{aligned}
$$

For $1 \leq k \leq r$, define

$$
V_{k}:=V_{\mathbf{i}, k}:=\operatorname{soc}_{\left(i_{k}, \ldots, i_{1}\right)}\left(\widehat{I}_{i_{k}}\right)
$$

and $V_{\mathbf{i}}:=V_{1} \oplus \cdots \oplus V_{r}$. We also set $V_{0}:=0$. For every $1 \leq j \leq n$ let $I_{\mathbf{i}, j}:=V_{k_{j}}$ and $I_{\mathbf{i}}:=I_{\mathbf{i}, 1} \oplus \cdots \oplus I_{\mathbf{i}, n}$. The modules in $\operatorname{add}\left(I_{\mathbf{i}}\right)$ are called \mathbf{i}-injective.

Lemma 3.11. For $1 \leq k \leq r$ we have $V_{k} \cong D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right)$. In particular, V_{k} is an indecomposable injective $A / J_{k, 1}$-module.

Proof. Clearly, $J_{k, 1} V_{k}=0$. Thus V_{k} is an $A / J_{k, 1}$-module. We have $\operatorname{soc}_{S_{i_{k}}}\left(V_{k}\right) \cong$ $S_{i_{k}}$. Thus V_{k} can be embedded into the indecomposable injective $A / J_{k, 1}$-module $D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right)$. We have $\operatorname{soc}_{S_{i_{k}}}\left(D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right)\right) \cong S_{i_{k}}$. Therefore $D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right)$ can be embedded into $\widehat{I}_{i_{k}}$. Thus we get two monomorphisms

$$
V_{k} \xrightarrow{\iota_{1}} D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right) \xrightarrow{\iota_{2}} \widehat{I}_{i_{k}} .
$$

Since $\operatorname{soc}_{\left(i_{k}, \ldots, i_{1}\right)}\left(D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right)\right)=D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right)$, we can apply Lemma $3.2(\mathrm{i})$ and get $\iota_{2}\left(D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right)\right) \subseteq \operatorname{soc}_{\left(i_{k}, \ldots, i_{1}\right)}\left(\widehat{I}_{i_{k}}\right)$. Since $D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right)$ is finitedimensional by Corollary 3.4, this implies that $V_{k} \cong D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right)$.

Corollary 3.12. $V_{i} \in \mathcal{D}_{\mathbf{i}}$.
Proof. We have $\operatorname{soc}_{\mathbf{i}}\left(V_{\mathbf{i}}\right)=V_{\mathbf{i}}$, and $V_{\mathbf{i}}$ is finite-dimensional by Corollary 3.4 and Lemma 3.11

Lemma 3.13. An $A_{\mathbf{i}}$-module X is injective if and only if $X \in \operatorname{add}\left(I_{\mathbf{i}}\right)$.

Proof. One easily checks that $e_{j} J_{r, 1}=e_{j} J_{k_{j}, 1}$. This implies $D\left(e_{j}\left(A / J_{r, 1}\right)\right)=$ $D\left(e_{j}\left(A / J_{k_{j}, 1}\right)\right)$. But $D\left(e_{j}\left(A / J_{k_{j}, 1}\right)\right)=I_{\mathbf{i}, j}$ by Lemma 3.11. Thus the modules in $\operatorname{add}\left(I_{\mathbf{i}}\right)$ are the injective $A_{\mathbf{i}}$-modules.

Lemma 3.14. For every $1 \leq k \leq r$ there is a monomorphism $V_{k^{-}} \rightarrow V_{k}$.
Proof. We have $J_{k, 1} \subseteq J_{k^{-}, 1}$. Thus there is a short exact sequence

$$
0 \rightarrow J_{k^{-}, 1} / J_{k, 1} \rightarrow A / J_{k, 1} \rightarrow A / J_{k^{-}, 1} \rightarrow 0
$$

Applying $e_{i_{k}}$. and then the duality D yields a short exact sequence

$$
0 \rightarrow D\left(e_{i_{k}}\left(A / J_{k^{-}, 1}\right)\right) \rightarrow D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right) \rightarrow D\left(e_{i_{k}}\left(J_{k^{-}, 1} / J_{k, 1}\right)\right) \rightarrow 0
$$

Now the result follows from Lemma 3.11 .

The following lemma is well known and easy to prove:
Lemma 3.15. For any A-module X and any idempotent e in A the following hold:
(i) There is an isomorphism of $(e A e)^{\mathrm{op}}$-modules

$$
D(e X) \cong \operatorname{Hom}_{A}(X, D(e A))
$$

defined by $\eta \mapsto f_{\eta}:=[x \mapsto(e a \mapsto \eta(e a x))]$.
(ii) Assume that X is finite-dimensional. Then there is an isomorphism of eAe-modules

$$
e X \cong D \operatorname{Hom}_{A}(X, D(e A))
$$

defined by ex $\mapsto[f \mapsto f(x)(e)]$.
The vector space $D \operatorname{Hom}_{A}(X, D(e A))$ is an $\operatorname{End}_{A}(D(e A))^{\text {op }}$-module in an obvious way, and we have $e A e \cong \operatorname{End}_{A}(D(e A))^{\mathrm{op}}$. Under the isomorphisms $e X \cong$ $D \operatorname{Hom}_{A}(X, D(e A))$ and $e A e \cong \operatorname{End}_{A}(D(e A))^{\mathrm{op}}$, the action of $\operatorname{End}_{A}(D(e A))^{\mathrm{op}}$ on $D \operatorname{Hom}_{A}(X, D(e A))$ turns into the action eae $e x:=e a e x$ of $e A e$ on $e X$.

Lemma 3.16. For any A-module X we have

$$
\operatorname{Hom}_{A}\left(X, V_{k}\right)=\operatorname{Hom}_{A}\left(X / X_{k}^{-}, V_{k}\right)=\operatorname{Hom}_{A / J_{k, 1}}\left(X / X_{k}^{-}, V_{k}\right)
$$

Proof. We have $\operatorname{soc}_{\left(i_{k}, \ldots, i_{1}\right)}\left(V_{k}\right)=V_{k}$, and $\operatorname{rad}_{\left(i_{k}, \ldots, i_{1}\right)}(X)=X_{k}^{-}$. By Lemma3.2(iii) this implies that $f\left(X_{k}^{-}\right)=0$ for every $f \in \operatorname{Hom}_{A}\left(X, V_{k}\right)$. This yields the identification $\operatorname{Hom}_{A}\left(X, V_{k}\right)=\operatorname{Hom}_{A}\left(X / X_{k}^{-}, V_{k}\right)$. Now X / X_{k}^{-}and V_{k} are annihilated by $J_{k, 1}$. Thus X / X_{k}^{-}and V_{k} are $A / J_{k, 1}$-modules. This implies that $\operatorname{Hom}_{A}\left(X / X_{k}^{-}, V_{k}\right)$ $=\operatorname{Hom}_{A / J_{k, 1}}\left(X / X_{k}^{-}, V_{k}\right)$.

Corollary 3.17. For any finite-dimensional A-module X we have

$$
D \operatorname{Hom}_{A}\left(X, V_{k}\right) \cong e_{i_{k}}\left(X / X_{k}^{-}\right)
$$

Proof. The A-modules X / X_{k}^{-}and V_{k} can be regarded as an $A / J_{k, 1}$-module, since both are annihilated by $J_{k, 1}$, and V_{k} is injective as an $A / J_{k, 1}$-module. Now we apply Lemma 3.15 .
3.5. Balanced modules. An A-module X is called \mathbf{i}-balanced if $X \in \mathcal{D}_{\mathbf{i}}$ and $X_{\bullet}^{-}=X_{\bullet}^{+}$. Thus, X is i-balanced if and only if $X_{k}^{-}=X_{k}^{+}$for all $0 \leq k \leq r$.

Proposition 3.18. Let $X \in \mathcal{D}_{\mathbf{i}}$. Then the following are equivalent:
(i) X is \mathbf{i}-balanced.
(ii) There is a unique \mathbf{b} such that $\mathcal{F}_{\mathbf{i}, \mathbf{b}, X} \neq \varnothing$.
(iii) There is a unique \mathbf{b} such that $\chi\left(\mathcal{F}_{\mathbf{i}, \mathbf{b}, X}\right) \neq 0$.

Proof. (i) \Longrightarrow (ii): Since $X \in \mathcal{D}_{\mathbf{i}}$, we know that $\operatorname{soc}_{\mathbf{i}}(X)=X$ and $\operatorname{rad}_{\mathbf{i}}(X)=$ 0 . This implies that $\mathcal{F}_{\mathbf{i}, \mathrm{wt}\left(X_{\bullet}^{-}\right), X}$ and $\mathcal{F}_{\mathbf{i}, \mathrm{wt}\left(X_{\bullet}^{+}\right), X}$ are both non-empty. Set $\mathbf{b}:=$ $\mathrm{wt}\left(X_{\bullet}^{+}\right)$. Since X is \mathbf{i}-balanced, we have $X_{k}^{-}=X_{k}^{+}$for all k. In other words, $\mathbf{b}=\mathrm{wt}\left(X_{\bullet}^{-}\right)=\mathrm{wt}\left(X_{\bullet}^{+}\right)$. The uniqueness of \mathbf{b} follows now from Lemma 3.8.
(ii) \Longrightarrow (iii): This follows directly from Lemma 3.9.
(iii) \Longrightarrow (i): Since $X \in \mathcal{D}_{\mathbf{i}}$, Lemma 3.9 implies $\chi\left(\mathcal{F}_{\mathbf{i}, \mathrm{wt}\left(X_{0}^{-}\right), X}\right)=\chi\left(\mathcal{F}_{\mathbf{i}, \mathrm{wt}\left(X_{\mathbf{0}}^{+}\right), X}\right)=$ 1. Since we assume \mathbf{b} to be unique, we get $\mathrm{wt}\left(X_{\bullet}^{-}\right)=\mathrm{wt}\left(X_{\bullet}^{+}\right)$. Now (i) follows from Lemma 3.8

Lemma 3.19. Let X and Y be A-modules. Then the following hold:
(i) If X and Y are \mathbf{i}-balanced, then $X \oplus Y$ is \mathbf{i}-balanced.
(ii) If X is \mathbf{i}-balanced, then each direct summand of X is \mathbf{i}-balanced.

Proof. One easily checks that for every direct sum decomposition $M=M_{1} \oplus M_{2}$ of an A-module M and every sequence $\mathbf{j}=\left(j_{t}, \ldots, j_{1}\right)$ with $1 \leq j_{s} \leq n$ for all s, we have $\operatorname{soc}_{\mathbf{j}}(M)=\operatorname{soc}_{\mathbf{j}}\left(M_{1}\right) \oplus \operatorname{soc}_{\mathbf{j}}\left(M_{2}\right)$ and $\operatorname{rad}_{\mathbf{j}}(M)=\operatorname{rad}_{\mathbf{j}}\left(M_{1}\right) \oplus \operatorname{rad}_{\mathbf{j}}\left(M_{2}\right)$. This implies both (i) and (ii).

We say that the pair (A, \mathbf{i}) is balanced if for each $1 \leq k \leq r$ the A-module $V_{k}=V_{\mathbf{i}, k}$ is $\left(i_{k}, \ldots, i_{1}\right)$-balanced. The following lemma follows directly from the definitions:

Lemma 3.20. Assume that (A, \mathbf{i}) is balanced. For $1 \leq k \leq r$ and $0 \leq s<k$ we have
$\operatorname{rad}_{\left(i_{s}, \ldots, i_{1}\right)}\left(V_{\mathbf{i}, k}\right)=\left(V_{\mathbf{i}, k}\right)_{s}^{\mathbf{i},-}=\left(V_{\mathbf{i}, k}\right)_{s}^{\left(i_{k}, \ldots, i_{1}\right),-}=\left(V_{\mathbf{i}, k}\right)_{s}^{\left(i_{k}, \ldots, i_{1}\right),+}=\operatorname{soc}_{\left(i_{k}, \ldots, i_{s+1}\right)}\left(V_{\mathbf{i}, k}\right)$.
Lemma 3.21. Assume that (A, \mathbf{i}) is balanced. Then the modules $V_{\mathbf{i}, 1}, \ldots, V_{\mathbf{i}, r}$ are pairwise non-isomorphic.

Proof. Assume $V_{\mathbf{i}, k} \cong V_{\mathbf{i}, s}$ with $k>s$. By definition $V_{\mathbf{i}, k}=\operatorname{soc}_{\left(i_{k}, \ldots, i_{s}, \ldots, i_{1}\right)}\left(\widehat{I}_{i_{k}}\right)$ and $V_{\mathbf{i}, s}=\operatorname{soc}_{\left(i_{s}, \ldots, i_{1}\right)}\left(\widehat{I}_{i_{s}}\right)$. Clearly, $\operatorname{rad}_{\left(i_{s}, \ldots, i_{1}\right)}\left(V_{\mathbf{i}, s}\right)=0$. Since $V_{\mathbf{i}, k} \cong V_{\mathbf{i}, s}$ we also get $\operatorname{rad}_{\left(i_{s}, \ldots, i_{1}\right)}\left(V_{\mathbf{i}, k}\right)=0$. But $V_{\mathbf{i}, k}$ is $\left(i_{k}, \ldots, i_{1}\right)$-balanced. By Lemma 3.20 this implies that $\operatorname{soc}_{\left(i_{k}, \ldots, i_{s+1}\right)}\left(V_{\mathbf{i}, k}\right)=\operatorname{rad}_{\left(i_{s}, \ldots, i_{1}\right)}\left(V_{\mathbf{i}, k}\right)=0$. But we have $\operatorname{soc}_{S_{i_{k}}}\left(V_{\mathbf{i}, k}\right) \cong S_{i_{k}}$. This implies that $\operatorname{soc}_{\left(i_{k}, \ldots, i_{s+1}\right)}\left(V_{\mathbf{i}, k}\right) \neq 0$, a contradiction.

Proposition 3.22. Assume that (A, \mathbf{i}) is balanced. For $1 \leq k, s \leq r$ we have

$$
\operatorname{Hom}_{A}\left(V_{k}, V_{s}\right) \cong e_{i_{k}}\left(J_{k, s+1} / J_{k, 1}\right) e_{i_{s}} .
$$

Proof. Recall that $V_{k}=D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right)$ and $V_{s}=D\left(e_{i_{s}}\left(A / J_{s, 1}\right)\right)$. By Lemma 3.16 we have $\operatorname{Hom}_{A}\left(V_{k}, V_{s}\right)=\operatorname{Hom}_{A}\left(V_{k} /\left(V_{k}\right)_{s}^{-}, V_{s}\right)$. We have

$$
\left(V_{k}\right)_{s}^{-}=J_{s, 1} V_{k}=D\left(e_{i_{k}}\left(A / J_{k, s+1}\right)\right)
$$

For the second equality we used that V_{k} is $\left(i_{k}, \ldots, i_{1}\right)$-balanced. Note that $\left(V_{k}\right)_{s}^{-}=$ 0 if $k \leq s$. We get

$$
\begin{aligned}
\operatorname{Hom}_{A}\left(V_{k} /\left(V_{k}\right)_{s}^{-}, V_{s}\right) & \cong D\left(e_{i_{s}}\left(V_{k} /\left(V_{k}\right)_{s}^{-}\right)\right) \\
& =D\left(e_{i_{s}}\left(D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right) / D\left(e_{i_{k}}\left(A / J_{k, s+1}\right)\right)\right)\right)
\end{aligned}
$$

For the first isomorphism we used Lemma 3.15. Now we first apply $e_{i_{k}}$. and then the duality D to the short exact sequence

$$
0 \rightarrow J_{k, s+1} / J_{k, 1} \rightarrow A / J_{k, 1} \rightarrow A / J_{k, s+1} \rightarrow 0
$$

and we obtain

$$
D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right) / D\left(e_{i_{k}}\left(A / J_{k, s+1}\right)\right) \cong D\left(e_{i_{k}}\left(J_{k, s+1} / J_{k, 1}\right)\right)
$$

Now $D\left(e_{i_{s}} D\left(e_{i_{k}}\left(J_{k, s+1} / J_{k, 1}\right)\right)\right)=D\left(D\left(e_{i_{k}}\left(J_{k, s+1} / J_{k, 1}\right) e_{i_{s}}\right)\right) \cong e_{i_{k}}\left(J_{k, s+1} / J_{k, 1}\right) e_{i_{s}}$ implies that $\operatorname{Hom}_{A}\left(V_{k}, V_{s}\right) \cong e_{i_{k}}\left(J_{k, s+1} / J_{k, 1}\right) e_{i_{s}}$.

Using Lemma 3.15, the isomorphism $e_{i_{k}} J_{k, s+1} / J_{k, 1} e_{i_{s}} \rightarrow \operatorname{Hom}_{A}\left(V_{k}, V_{s}\right)$ can be described more precisely: Let $e_{i_{k}} \bar{b} e_{i_{s}} \in e_{i_{k}}\left(J_{k, s+1} / J_{k, 1}\right) e_{i_{s}}$. Then $e_{i_{k}} \bar{b} e_{i_{s}}$ is mapped to the homomorphism $V_{k} \rightarrow V_{s}$, which maps a linear form $\eta: e_{i_{k}}\left(A / J_{k, 1}\right) \rightarrow \mathbb{C}$ in $D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right)$ to the linear form $\psi \in D\left(e_{i_{s}}\left(A / J_{s, 1}\right)\right)$ defined by

$$
\psi\left(e_{i_{s}} \bar{a}\right):=\eta\left(e_{i_{k}} \bar{b} e_{i_{s}} \bar{a}\right)
$$

For A-modules X and Y let $\mathcal{I}_{\mathbf{i}}(X, Y)$ be the subspace of $\operatorname{Hom}_{A}(X, Y)$ consisting of the morphisms factoring through a module in $\operatorname{add}\left(I_{\mathbf{i}}\right)$. Define

$$
\overline{\operatorname{Hom}}_{A}(X, Y):=\operatorname{Hom}_{A}(X, Y) / \mathcal{I}_{\mathbf{i}}(X, Y)
$$

Lemma 3.23. Assume that (A, \mathbf{i}) is balanced. Then for each $X \in \mathcal{D}_{\mathbf{i}}$ and $1 \leq k \leq r$ we have

$$
\mathcal{I}_{\mathbf{i}}\left(X, V_{k}\right)=\operatorname{Hom}_{A}\left(X / X_{k}^{+}, V_{k}\right)
$$

Proof. There is a short exact sequence

$$
0 \rightarrow X_{k}^{+} \rightarrow X \rightarrow X / X_{k}^{+} \rightarrow 0
$$

Applying the functor $\operatorname{Hom}_{A}\left(-, V_{k}\right)$ we can identify $\operatorname{Hom}_{A}\left(X / X_{k}^{+}, V_{k}\right)$ with a subspace of $\operatorname{Hom}_{A}\left(X, V_{k}\right)$. Suppose that $f: X \rightarrow V_{k}$ is a homomorphism.

Assume first that $f=h \circ g$ with $g: X \rightarrow I$ and $I \in \operatorname{add}\left(I_{\mathbf{i}}\right)$. It follows from Lemma 3.6 and Lemma 3.13 that we can assume without loss of generality that g is a monomorphism. By Lemma $3.2(\mathrm{i})$ we know that $g\left(X_{k}^{+}\right) \subseteq I_{k}^{+}$. By definition $I_{k}^{-}=$ $\operatorname{rad}_{\left(i_{k}, \ldots, i_{1}\right)}(I)$ and $\operatorname{soc}_{\left(i_{k}, \ldots, i_{1}\right)}\left(V_{k}\right)=V_{k}$. Thus Lemma 3.2(iii) implies $h\left(I_{k}^{-}\right)=0$. Since (A, \mathbf{i}) is balanced, we get $I_{k}^{-}=I_{k}^{+}$. This shows that $f\left(X_{k}^{+}\right)=0$. In other words, $f \in \operatorname{Hom}_{A}\left(X / X_{k}^{+}, V_{k}\right)$. So we proved that $\mathcal{I}_{\mathbf{i}}\left(X, V_{k}\right) \subseteq \operatorname{Hom}_{A}\left(X / X_{k}^{+}, V_{k}\right)$.

To show the other inclusion, let $f: X \rightarrow V_{k}$ be a homomorphism with $f\left(X_{k}^{+}\right)=0$. Thus there is a factorization $f=h_{1} \circ g_{1}$, where $g_{1}: X \rightarrow X / X_{k}^{+}$is the projection. Let $u_{1}: X \rightarrow I$ be a monomorphism with $I \in \operatorname{add}\left(I_{\mathbf{i}}\right)$, and let $u_{2}: I \rightarrow I / I_{k}^{+}$be the projection. By Lemma 3.2(ii) we get a monomorphism $g_{2}: X / X_{k}^{+} \rightarrow I / I_{k}^{+}$such that $u_{2} \circ u_{1}=g_{2} \circ g_{1}$. Now X / X_{k}^{+}and I / I_{k}^{+}are $A / J_{k, 1}$-modules, V_{k} is an injective $A / J_{k, 1}$-module, and g_{2} is a monomorphism. Thus there exists a homomorphism
$u_{3}: I / I_{k}^{+} \rightarrow V_{k}$ such that $u_{3} \circ g_{2}=h_{1}$. The following commutative diagram illustrates the situation:

It follows that

$$
f=h_{1} \circ g_{1}=u_{3} \circ g_{2} \circ g_{1}=u_{3} \circ u_{2} \circ u_{1} .
$$

Thus we have proved that $\operatorname{Hom}_{A}\left(X / X_{k}^{+}, V_{k}\right) \subseteq \mathcal{I}_{\mathbf{i}}\left(X, V_{k}\right)$. Note that for the proof of this inclusion we did not use the assumption that (A, \mathbf{i}) is balanced.

Proposition 3.24. Assume that (A, \mathbf{i}) is balanced, and let $X \in \mathcal{D}_{\mathbf{i}}$. For $1 \leq k \leq r$ we have

$$
D \overline{\operatorname{Hom}}_{A}\left(X, V_{k}\right) \cong e_{i_{k}}\left(X_{k}^{+} / X_{k}^{-}\right)
$$

Proof. There is a short exact sequence

$$
\eta: \quad 0 \rightarrow X_{k}^{+} / X_{k}^{-} \rightarrow X / X_{k}^{-} \rightarrow X / X_{k}^{+} \rightarrow 0
$$

As noted in Lemma 3.16 we have $\operatorname{Hom}_{A}\left(X, V_{k}\right)=\operatorname{Hom}_{A}\left(X / X_{k}^{-}, V_{k}\right)$, and by Lemma 3.23 we know that $\mathcal{I}_{\mathbf{i}}\left(X, V_{k}\right)=\operatorname{Hom}_{A}\left(X / X_{k}^{+}, V_{k}\right)$. Note that X / X_{k}^{+} and X_{k}^{+} / X_{k}^{-}are both annihilated by $J_{k, 1}$. Thus they are $A / J_{k, 1}$-modules, and $V_{k}=D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right)$ is an injective $A / J_{k, 1}$-module. Now we apply $\operatorname{Hom}_{A}\left(-, V_{k}\right)$ to η and obtain $\overline{\operatorname{Hom}}_{A}\left(X, V_{k}\right) \cong \operatorname{Hom}_{A}\left(X_{k}^{+} / X_{k}^{-}, V_{k}\right)$. By Lemma 3.15 we get

$$
\operatorname{Hom}_{A}\left(X_{k}^{+} / X_{k}^{-}, V_{k}\right)=\operatorname{Hom}_{A}\left(X_{k}^{+} / X_{k}^{-}, D\left(e_{i_{k}}\left(A / J_{k, 1}\right)\right)\right) \cong D\left(e_{i_{k}}\left(X_{k}^{+} / X_{k}^{-}\right)\right)
$$

Thus we have proved that $D \overline{\operatorname{Hom}}_{A}\left(X, V_{k}\right) \cong e_{i_{k}}\left(X_{k}^{+} / X_{k}^{-}\right)$.
3.6. The quiver of $\mathcal{E}_{\mathbf{i}}$. Again, let $A=\mathbb{C} \Gamma / J$ be a basic algebra and let us fix some sequence $\mathbf{i}=\left(i_{r}, \ldots, i_{1}\right)$. Define $\mathcal{E}_{\mathbf{i}}:=\operatorname{End}_{A}\left(V_{\mathbf{i}}\right)^{\mathrm{op}}$. Since we work over an algebraically closed field, Lemma 3.21 and a result by Gabriel (see for example DK, Theorem 3.5.4 combined with Theorem 3.6.6]) imply that $\mathcal{E}_{\mathbf{i}}$ is a finite-dimensional basic algebra. We want to determine the quiver $\Gamma_{\mathcal{E}_{\mathbf{i}}}$ of $\mathcal{E}_{\mathbf{i}}$. The vertices of $\Gamma_{\mathcal{E}_{\mathbf{i}}}$ correspond to the indecomposable direct summands V_{1}, \ldots, V_{r} of $V_{\mathbf{i}}$.

Define a quiver $\Gamma_{\mathbf{i}}$ as follows: The set of vertices of $\Gamma_{\mathbf{i}}$ is just $\{1,2, \ldots, r\}$. For each pair (k, s) with $1 \leq s, k \leq r$ and $k^{+} \geq s^{+} \geq k>s$ and each arrow $a: i_{s} \rightarrow i_{k}$ in the quiver Γ of A, there is an arrow $\gamma_{a}^{k, s}: s \rightarrow k$ in $\Gamma_{\mathbf{i}}$. These are called the ordinary arrows of $\Gamma_{\mathbf{i}}$. Furthermore, for each $1 \leq k \leq r$ there is an arrow $\gamma_{k}: k \rightarrow k^{-}$ provided $k^{-}>0$. These are the horizontal arrows of $\Gamma_{\mathbf{i}}$.

Proposition 3.25. Assume that (A, \mathbf{i}) is balanced. Then there is a quiver isomorphism $\Gamma_{\mathbf{i}} \rightarrow \Gamma_{\mathcal{E}_{\mathbf{i}}}$ with $k \mapsto V_{k}$ for all $1 \leq k \leq r$.
Proof. One can almost copy the proof of BIRS, Theorem III.4.1]. One only has to replace the ideals I_{j} used in BIRS by our ideals J_{j}. (We have $I_{j}=J_{j}$ if and only if Γ has no loop at the vertex j.) Furthermore, everything has to be dualized.

In Proposition 3.25 we identify the vertex of $\Gamma_{\mathcal{E}_{\mathrm{i}}}$ corresponding to V_{k} with the vertex k of $\Gamma_{\mathbf{i}}$. Some examples can be found in Section 3.10.
3.7. The $\mathcal{E}_{\mathbf{i}}$-module $D \overline{\operatorname{Hom}}_{A}\left(X, V_{\mathbf{i}}\right)$. Using Lemma 3.15 together with Propositions 3.22 and 3.24 we arrive at the following conclusion: Assume (A, \mathbf{i}) is balanced, and let $X \in \mathcal{D}_{\mathbf{i}}$. Using the identifications

$$
\begin{aligned}
\operatorname{Hom}_{A}\left(V_{k}, V_{s}\right) & =e_{i_{k}}\left(J_{k, s+1} / J_{k, 1}\right) e_{i_{s}} \\
\operatorname{Hom}_{A}\left(V_{s}, V_{k}\right) & =e_{i_{s}}\left(A / J_{s, 1}\right) e_{i_{k}} \\
D \overline{\operatorname{Hom}}_{A}\left(X, V_{k}\right) & =e_{i_{k}}\left(X_{k}^{+} / X_{k}^{-}\right)
\end{aligned}
$$

the algebra $\mathcal{E}_{\mathbf{i}}$ acts on $Y:=D \overline{\operatorname{Hom}}_{A}\left(X, V_{\mathbf{i}}\right)$ as follows: Assume $1 \leq s \leq k \leq r$.

For $e_{i_{k}} \bar{b} e_{i_{s}} \in e_{i_{k}}\left(J_{k, s+1} / J_{k, 1}\right) e_{i_{s}}$ and $\overline{x_{s}} \in e_{i_{s}}\left(X_{s}^{+} / X_{s}^{-}\right)=e_{i_{s}} X_{s}^{+} / e_{i_{s}} X_{s}^{-}$we have

$$
e_{i_{k}} \bar{b} e_{i_{s}} \cdot \overline{x_{s}}=e_{i_{k}} \overline{b x_{s}}
$$

and for $e_{i_{s}} \bar{b} e_{i_{k}} \in e_{i_{s}}\left(A / J_{s, 1}\right) e_{i_{k}}$ and $\overline{x_{k}} \in e_{i_{k}}\left(X_{k}^{+} / X_{k}^{-}\right)=e_{i_{k}} X_{k}^{+} / e_{i_{k}} X_{k}^{-}$we have

$$
e_{i_{s}} \bar{b} e_{i_{k}} \cdot \overline{x_{k}}=e_{i_{s}} \overline{b x_{k}}
$$

We consider Y as a representation $Y=(Y(k), Y(\gamma))_{k, \gamma}$ of the quiver $\Gamma_{\mathbf{i}}$ of $\mathcal{E}_{\mathbf{i}}$. To describe Y, we just need to know how the maps $Y(\gamma)$ act on the vector spaces $Y(k)=e_{i_{k}}\left(X_{k}^{+} / X_{k}^{-}\right)$, where $1 \leq k \leq r$. Again using the description of $\Gamma_{\mathcal{E}_{\mathbf{i}}}$ based on BIRS, Theorem III.4.1] we obtain the following result. First, assume $\gamma_{k}: k \rightarrow k^{-}$ is a horizontal arrow of $\Gamma_{\mathbf{i}}$. Then $Y\left(\gamma_{k}\right)$ acts as left multiplication with $e_{i_{k}}$:

$$
e_{i_{k}}\left(X_{k}^{+} / X_{k}^{-}\right) \xrightarrow{e_{i_{k}} \cdot} e_{i_{k}}\left(X_{k^{-}}^{+} / X_{k^{-}}^{-}\right)
$$

Next, let $\gamma_{a}^{k, s}: s \rightarrow k$ be an ordinary arrow of $\Gamma_{\mathbf{i}}$. Then $Y\left(\gamma_{a}^{k, s}\right)$ acts as left multiplication with a :

$$
e_{i_{k}}\left(X_{k}^{+} / X_{k}^{-}\right) \longleftarrow \quad a \cdot e_{i_{s}}\left(X_{s}^{+} / X_{s}^{-}\right) .
$$

Remark 3.26. For $X \in \mathcal{D}_{\mathbf{i}}$ the following hold:
(i) $\mathcal{I}_{\mathbf{i}}\left(X, V_{\mathbf{i}}\right)$ is a submodule of the $\operatorname{End}_{A}\left(V_{\mathbf{i}}\right)$-module $\operatorname{Hom}_{A}\left(X, V_{\mathbf{i}}\right)$. This implies that $D \overline{\operatorname{Hom}}_{A}\left(X, V_{\mathbf{i}}\right)$ is a submodule of the $\mathcal{E}_{\mathbf{i}}$-module $D \operatorname{Hom}_{A}\left(X, V_{\mathbf{i}}\right)$. Clearly, $D \overline{\operatorname{Hom}}_{A}\left(X, V_{\mathbf{i}}\right)$ is also a module over the algebra $\bar{B}_{\mathbf{i}}:=$ $\left(\overline{\operatorname{End}}_{A}\left(V_{\mathbf{i}}\right)\right)^{\mathrm{op}}$.
(ii) For $X \in \mathcal{D}_{\mathbf{i}}$ we have

$$
\operatorname{Hom}_{A}\left(X, V_{\mathbf{i}}\right)=\operatorname{Hom}_{A_{\mathbf{i}}}\left(X, V_{\mathbf{i}}\right)
$$

Since $\operatorname{add}\left(I_{\mathbf{i}}\right)$ are the injective $A_{\mathbf{i}}$-modules, we can apply the AuslanderReiten formula to obtain an isomorphism of $\bar{B}_{\mathbf{i}}$-modules

$$
D \overline{\operatorname{Hom}}_{A_{\mathbf{i}}}\left(X, V_{\mathbf{i}}\right) \cong \operatorname{Ext}_{A_{\mathbf{i}}}^{1}\left(\tau_{A_{\mathbf{i}}}^{-1}\left(V_{\mathbf{i}}\right), X\right)
$$

where $\tau_{A_{\mathrm{i}}}$ denotes the Auslander-Reiten translation of the finite-dimensional algebra $A_{\mathbf{i}}$.
3.8. An isomorphism between partial flag varieties and quiver Grassmannians. In this section we prove that the varieties $\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$ of partial composition series of modules $X \in \mathcal{D}_{\mathbf{i}}$ are isomorphic to certain quiver Grassmannians $\mathcal{G}_{\mathbf{i}, \mathbf{a}, X}$. In the proof we first construct a (rather trivial) isomorphism between partial flag varieties $\widetilde{\mathcal{F}}_{\mathbf{i}, \mathbf{a}, X}$ of graded vector spaces and the image $\widetilde{\mathcal{G}}_{\mathbf{i}, \mathbf{a}, X}$ of the usual embedding of $\widetilde{\mathcal{F}}_{\mathbf{i}, \mathbf{a}, X}$ into a product of classical subspace Grassmannians. Then we show that the restriction to the subvarieties $\mathcal{F}_{\mathbf{i}, \mathbf{a}, X} \subseteq \widetilde{\mathcal{F}}_{\mathbf{i}, \mathbf{a}, X}$ and $\mathcal{G}_{\mathbf{i}, \mathbf{a}, X} \subseteq \widetilde{\mathcal{G}}_{\mathbf{i}, \mathbf{a}, X}$ yields an isomorphism $\mathcal{F}_{\mathbf{i}, \mathbf{a}, X} \rightarrow \mathcal{G}_{\mathbf{i}, \mathbf{a}, X}$.

Let $X \in \mathcal{D}_{\mathbf{i}}$ for some $\mathbf{i}=\left(i_{r}, \ldots, i_{1}\right)$. We define a map $d_{\mathbf{i}, X}: \mathbb{N}^{r} \rightarrow \mathbb{Z}^{r}$ by $\left(a_{r}, \ldots, a_{1}\right) \mapsto\left(f_{1}, \ldots, f_{r}\right)$, where

$$
f_{k}:=\left(a_{k}^{-}-a_{k}\right)+\left(a_{k^{-}}^{-}-a_{k^{-}}\right)+\cdots+\left(a_{k_{\min }}^{-}-a_{k_{\min }}\right)
$$

for all $1 \leq k \leq r$, and $\left(a_{r}^{-}, \ldots, a_{1}^{-}\right):=\mathbf{a}^{-}(X)$. In the following theorem, if $d_{\mathbf{i}, X}(\mathbf{a}) \notin$ \mathbb{N}^{r}, then $\operatorname{Gr}_{d_{\mathbf{i}, X}(\mathbf{a})}^{\overline{\mathcal{E}_{\mathbf{i}}}}(Y)$ is by definition the empty set.

Theorem 3.27. Assume that (A, \mathbf{i}) is balanced, and let $X \in \mathcal{D}_{\mathbf{i}}$. Then for each $\mathbf{a} \in \mathbb{N}^{r}$ there exists an isomorphism of algebraic varieties

$$
\mathcal{F}: \mathcal{F}_{\mathbf{i}, \mathbf{a}, X} \rightarrow \operatorname{Gr}_{d_{\mathbf{i}, X}(\mathbf{a})}^{\mathcal{E}_{\mathbf{i}}}(Y),
$$

where Y is the $\mathcal{E}_{\mathbf{i}}$-module $D \overline{\operatorname{Hom}}_{A}\left(X, V_{\mathbf{i}}\right)$. Furthermore, the map $\mathbf{a} \mapsto d_{\mathbf{i}, X}(\mathbf{a})$ yields a bijection $\left\{\mathbf{a} \in \mathbb{N}^{r} \mid \mathcal{F}_{\mathbf{i}, \mathbf{a}, X} \neq \varnothing\right\} \rightarrow\left\{\mathbf{f} \in \mathbb{N}^{r} \mid \operatorname{Gr}_{\mathbf{f}}^{\mathcal{E}_{\mathbf{i}}}(Y) \neq \varnothing\right\}$.

Our proof of Theorem 3.27 will show that $\operatorname{dim}_{\mathcal{E}_{\mathbf{i}}}(Y)=d_{\mathbf{i}, X}\left(\mathbf{a}^{+}(X)\right)$. Furthermore, if $\mathcal{F}_{\mathbf{i}, \mathbf{a}, X} \neq \varnothing$, and $X_{\bullet}=\left(X_{r} \subseteq \cdots \subseteq X_{1} \subseteq X_{0}\right) \in \mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$, then $f_{k}=\operatorname{dim}\left(e_{i_{k}}\left(X_{k} / X_{k}^{-}\right)\right)$for all $1 \leq k \leq r$. Note that $f_{k}=0$ if $k^{+}=r+1$.

3.9. Proof of Theorem 3.27 .

3.9.1. Assume that (A, \mathbf{i}) is balanced. For the rest of this section, besides \mathbf{i}, we also fix some $\mathbf{a}=\left(a_{r}, \ldots, a_{1}\right) \in \mathbb{N}^{r}$ and some $X \in \mathcal{D}_{\mathbf{i}}$. With the same notation as in Theorem 3.27, we define

$$
\mathcal{G}_{\mathbf{i}, \mathbf{a}, X}:=\operatorname{Gr}_{\mathbf{f}}^{\mathcal{E}_{\mathbf{i}}}(Y)
$$

where $\mathbf{f}:=d_{\mathbf{i}, X}(\mathbf{a})$.
We consider X as a representation $X=(X(j), X(a))_{j \in \Gamma_{0}, a \in \Gamma_{1}}$ of the quiver Γ of A, and the $\mathcal{E}_{\mathbf{i}}$-module Y is considered as a representation $Y=(Y(k), Y(\gamma))_{k, \gamma}$ of the quiver $\Gamma_{\mathbf{i}}$ of $\mathcal{E}_{\mathbf{i}}$. Given $X_{\bullet}=\left(0=X_{r} \subseteq \cdots \subseteq X_{1} \subseteq X_{0}=X\right)$ in $\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$ we consider each X_{k} as a subrepresentation of X. Thus we have $X_{k}=\left(X_{k}(j)\right)_{j \in \Gamma_{0}}$ such that

$$
X(a)\left(X_{k}(s(a))\right) \subseteq X_{k}(t(a))
$$

for all arrows a of Γ.
Our aim is the construction of two mutually inverse isomorphisms of varieties

$$
\mathcal{F}_{\mathbf{i}, \mathbf{a}, X} \underset{\mathcal{G}}{\underset{\mathcal{F}}{\rightleftarrows}} \mathcal{G}_{\mathbf{i}, \mathbf{a}, X} .
$$

3.9.2. Recall that $\Gamma_{0}=\{1, \ldots, n\}$. We need to work with the category of Γ_{0}-graded vector spaces. Its objects are just tuples $W=(W(j))_{j \in \Gamma_{0}}$ of \mathbb{C}-vector spaces $W(j)$. Set $e_{j} W:=W(j)$ for all $j \in \Gamma_{0}$. The morphisms are defined in the obvious way. The degree of W is $\underline{\operatorname{dim}}(W):=(\operatorname{dim}(W(j)))_{j \in \Gamma_{0}}$. Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ denote the canonical coordinate vectors of \mathbb{Z}^{n}. (Thus the j th entry of \mathbf{e}_{j} is 1 , and all other entries are 0.) Each representation $X=(X(j), X(a))_{j \in \Gamma_{0}, a \in \Gamma_{1}}$ of Γ yields a Γ_{0}-graded vector space $\operatorname{gr}(X):=(X(j))_{j \in \Gamma_{0}}$.

Let $\widetilde{\mathcal{F}}_{\mathbf{i}, \mathbf{a}, X}$ be the projective variety of chains

$$
X_{\bullet}=\left(0=X_{r} \subseteq \cdots \subseteq X_{1} \subseteq X_{0}=\operatorname{gr}(X)\right)
$$

of Γ_{0}-graded subspaces of $\operatorname{gr}(X)$ such that $\operatorname{gr}\left(X_{k}^{-}\right) \subseteq X_{k} \subseteq \operatorname{gr}\left(X_{k}^{+}\right)$and $\underline{\operatorname{dim}}\left(X_{k-1}\right)$ $\left.X_{k}\right)=a_{k} \mathbf{e}_{i_{k}}$ for all $1 \leq k \leq r$.

For a vector space L let $\operatorname{Gr}_{d}(L)$ be the projective variety of d-dimensional subspaces of L. Clearly, the variety of $\left(f_{k}+\operatorname{dim}\left(e_{i_{k}} X_{k}^{-}\right)\right)$-dimensional subspaces U_{k} of $e_{i_{k}} X$ such that $e_{i_{k}} X_{k}^{-} \subseteq U_{k} \subseteq e_{i_{k}} X_{k}^{+}$is isomorphic to $\operatorname{Gr}_{f_{k}}\left(e_{i_{k}}\left(X_{k}^{+} / X_{k}^{-}\right)\right)$. The isomorphism is given by

$$
U_{k} \mapsto \bar{U}_{k}:=U_{k} / e_{i_{k}} X_{k}^{-}
$$

Let $\widetilde{\mathcal{G}}_{\mathbf{i}, \mathbf{a}, X}$ be the projective variety formed by the r-tuples $\bar{U}:=\left(\bar{U}_{k}\right)_{1 \leq k \leq r}$ in

$$
\prod_{k=1}^{r} \operatorname{Gr}_{f_{k}}\left(e_{i_{k}}\left(X_{k}^{+} / X_{k}^{-}\right)\right)
$$

such that $U_{k} \subseteq U_{k^{-}}$for all $1 \leq k \leq r$.
We construct two morphisms

as follows: First, we define $\widetilde{\mathcal{F}}$. Let $X_{\bullet}=\left(0=X_{r} \subseteq \cdots \subseteq X_{1} \subseteq X_{0}=\operatorname{gr}(X)\right)$ be in $\widetilde{\mathcal{F}}_{\mathbf{i}, \mathbf{a}, X}$. To each X_{k} we assign the subspace

$$
\bar{U}_{k}:=e_{i_{k}}\left(X_{k} / X_{k}^{-}\right)
$$

of $e_{i_{k}}\left(X_{k}^{+} / X_{k}^{-}\right)$. Set $\bar{U}:=\left(\bar{U}_{k}\right)_{1 \leq k \leq r}$. Then $\widetilde{\mathcal{F}}\left(X_{\bullet}\right):=\bar{U}$ defines a morphism of varieties

$$
\widetilde{\mathcal{F}}: \widetilde{\mathcal{F}}_{\mathbf{i}, \mathbf{a}, X} \rightarrow \widetilde{\mathcal{G}}_{\mathbf{i}, \mathbf{a}, X}
$$

Second, we define the morphism $\widetilde{\mathcal{G}}$. Let $\bar{U}=\left(\bar{U}_{k}\right)_{1 \leq k \leq r}$ be in $\widetilde{\mathcal{G}_{\mathbf{i}}, \mathbf{a}, X}$. We define a chain

$$
X_{\bullet}:=\left(0=X_{r} \subseteq \cdots \subseteq X_{1} \subseteq X_{0}=\operatorname{gr}(X)\right)
$$

of Γ_{0}-graded vector spaces as follows: For $j \in \Gamma_{0}$ set $X_{k}:=\left(X_{k}(j)\right)_{j \in \Gamma_{0}}$, where

$$
X_{k}(j):=U_{p}
$$

and $p:=\min \left\{k \leq s \leq r, r+1 \mid i_{s}=j\right\}$. (Here we set $U_{r+1}:=0$.) Then $\widetilde{\mathcal{G}}(\bar{U}):=X_{\bullet}$ defines a morphism of varieties

$$
\widetilde{\mathcal{G}}: \widetilde{\mathcal{G}}_{\mathbf{i}, \mathbf{a}, X} \rightarrow \widetilde{\mathcal{F}}_{\mathbf{i}, \mathbf{a}, X}
$$

Just using the definitions of $\widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{G}}$ we obtain the following:
Lemma 3.28. The morphisms $\widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{G}}$ are isomorphisms of algebraic varieties, and we have $\widetilde{\mathcal{G}} \circ \widetilde{\mathcal{F}}=\operatorname{id}_{\widetilde{\mathcal{F}}_{\mathbf{i}, \mathbf{a}, X}}$ and $\widetilde{\mathcal{F}} \circ \widetilde{\mathcal{G}}=\mathrm{id}_{\widetilde{\mathcal{G}}_{\mathbf{i}, \mathbf{a}, X}}$.
3.9.3. The following lemma is needed in order to ensure that the quiver Grassmannian $\mathcal{G}_{\mathbf{i}, \mathbf{a}, X}$ is a subvariety of $\widetilde{\mathcal{G}}_{\mathbf{i}, \mathbf{a}, X}$:

Lemma 3.29. Let $\bar{U}=\left(\bar{U}_{k}\right)_{1 \leq k \leq r}$ be a submodule of the $\mathcal{E}_{\mathbf{i}}$-module Y. Then we have $U_{k} \subseteq U_{k^{-}}$for all $1 \leq k \leq r$.

Proof. Let $\gamma_{k}: k \rightarrow k^{-}$be a horizontal arrow of $\Gamma_{\mathbf{i}}$. We know that $Y\left(\gamma_{k}\right)$ acts on Y as follows:

$$
e_{i_{k}}\left(X_{k}^{+} / X_{k}^{-}\right) \xrightarrow{e_{i_{k}}} e_{i_{k}}\left(X_{k^{-}}^{+} / X_{k^{-}}^{-}\right)
$$

In other words, $Y\left(\gamma_{k}\right)\left(x_{k}+e_{i_{k}} X_{k}^{-}\right)=x_{k}+e_{i_{k}} X_{k^{-}}^{-}$for all $x_{k} \in e_{i_{k}} X_{k}^{+}$. Since \bar{U} is a submodule of Y, we know that $u_{k}+e_{i_{k}} X_{k^{-}}^{-}$is contained in $U_{k^{-}} / e_{i_{k}} X_{k^{-}}^{-}$for all $u_{k} \in U_{k}$. This implies that $u_{k} \in U_{k^{-}}$for all $u_{k} \in U_{k}$. Thus $U_{k} \subseteq U_{k^{-}}$.

Lemma 3.30. The following hold:
(i) $\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$ is a Zariski closed subset of $\widetilde{\mathcal{F}}_{\mathbf{i}, \mathbf{a}, X}$.
(ii) Under the identification

$$
Y=\bigoplus_{k=1}^{r} e_{i_{k}}\left(X_{k}^{+} / X_{k}^{-}\right)
$$

the variety $\mathcal{G}_{\mathbf{i}, \mathbf{a}, X}$ is a Zariski closed subset of $\widetilde{\mathcal{G}}_{\mathbf{i}, \mathbf{a}, X}$.
Proof. For $X_{\bullet} \in \widetilde{\mathcal{F}}_{\mathbf{i}, \mathbf{a}, X}$, the condition that all X_{k} are submodules is closed. This implies (i). Similarly, for $\bar{U} \in \widetilde{\mathcal{G}}_{\mathbf{i}, \mathbf{a}, X}$, the condition that \bar{U} is a subrepresentation is closed. Now (ii) follows directly from Lemma 3.29,

We claim that $\widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{G}}$ restrict to isomorphisms $\mathcal{F}: \mathcal{F}_{\mathbf{i}, \mathbf{a}, X} \rightarrow \mathcal{G}_{\mathbf{i}, \mathbf{a}, X}$ and $\mathcal{G}: \mathcal{G}_{\mathbf{i}, \mathbf{a}, X}$ $\rightarrow \mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$. Thus, we have to show the following:
(a) If $X_{\bullet} \in \mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$, then $\widetilde{\mathcal{F}}\left(X_{\bullet}\right) \in \mathcal{G}_{\mathbf{i}, \mathbf{a}, X}$.
(b) If $\bar{U} \in \mathcal{G}_{\mathbf{i}, \mathbf{a}, X}$, then $\widetilde{\mathcal{G}}(\bar{U}) \in \mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$.

Note that (a) and (b) imply Theorem 3.27
3.9.4. Proof of (a). Let $X_{\bullet}=\left(0=X_{r} \subseteq \cdots \subseteq X_{1} \subseteq X_{0}=X\right)$ be in $\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$. Define $\bar{U}:=\left(\bar{U}_{k}\right)_{1 \leq k \leq r}$, where $\bar{U}_{k}:=e_{i_{k}}\left(X_{k} / X_{k}^{-}\right)$. Thus $\widetilde{\mathcal{F}}\left(X_{\bullet}\right)=\bar{U}$. We have to show that \bar{U} is a subrepresentation of Y.

For each horizontal arrow $\gamma_{k}: k \rightarrow k^{-}$of $\Gamma_{\mathbf{i}}$ we have $Y\left(\gamma_{k}\right)\left(\bar{U}_{k}\right) \subseteq \bar{U}_{k^{-}}$. This holds, since $X_{k} \subseteq X_{k^{-}}$and therefore $e_{i_{k}} X_{k} \subseteq e_{i_{k}} X_{k^{-}}$. Next, let $\gamma_{a}^{k, s}: s \rightarrow k$ be an ordinary arrow of $\Gamma_{\mathbf{i}}$. It follows that $k>s$. We have

$$
X_{k} \subseteq X_{k-1} \subseteq \cdots \subseteq X_{s+1} \subseteq X_{s}
$$

By definition of $\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$ we have $X_{t-1} / X_{t} \cong S_{i_{t}}^{a_{t}}$ for all $1 \leq t \leq r$. By the definition of $\Gamma_{\mathbf{i}}$ we know that $i_{t} \neq i_{s}$ for all $k \geq t \geq s+1$. This implies that $e_{i_{s}} X_{s}=e_{i_{s}} X_{k}$. It follows that

$$
a X_{s}=a e_{i_{s}} X_{s}=a e_{i_{s}} X_{k} \subseteq e_{i_{k}} X_{k}
$$

(To get the inclusion $a e_{i_{s}} X_{k} \subseteq e_{i_{k}} X_{k}$ we used our assumption that X_{k} is an A module.) This implies that $Y\left(\gamma_{a}^{k, s}\right)\left(\bar{U}_{s}\right) \subseteq \bar{U}_{k}$. Thus we proved that $\bar{U} \in \mathcal{G}_{\mathbf{i}, \mathbf{a}, X}$.
3.9.5. Proof of (b). Let $\bar{U}=\left(\bar{U}_{k}\right)_{1 \leq k \leq r}$ be a subrepresentation of the $\mathcal{E}_{\mathbf{i}}$-module Y. Thus we have $\bar{U}_{k}=U_{k} / e_{i_{k}} X_{k}^{-}$. Let $X_{\bullet}:=\widetilde{\mathcal{G}}(\bar{U})$. Recall that

$$
X_{\bullet}=\left(0=X_{r} \subseteq \cdots \subseteq X_{1} \subseteq X_{0}=\operatorname{gr}(X)\right)
$$

is defined as follows: For $1 \leq k \leq r$ and $j \in \Gamma_{0}$ we have $X_{k}(j)=U_{p}$, where $p=\min \left\{k \leq s \leq r, r+1 \mid i_{s}=j\right\}$. (We set $U_{r+1}:=0$.) Clearly, for all $0 \leq s \leq r-1$ we have $X_{s+1} \subseteq X_{s}$, since by Lemma 3.29 we know that $U_{s+} \subseteq U_{s}$. It remains to show that X_{s} is a subrepresentation of X for all $1 \leq s \leq r$.

By induction, we can assume that X_{r}, \ldots, X_{s+1} are subrepresentations of X. So we only have to investigate how A acts on the subspace U_{s} of $e_{i_{s}} X_{s}$. Obviously, $e_{j} X_{t}=X_{t}(j)$ for all $1 \leq t \leq r$ and $j \in \Gamma_{0}$. Next, assume that $\gamma_{a}^{k, s}: s \rightarrow k$ is an ordinary arrow of $\Gamma_{\mathbf{i}}$. We know that $Y\left(\gamma_{a}^{k, s}\right)$ acts on \bar{U}_{s} as follows: For all $u_{s} \in U_{s}$ we have

$$
Y\left(\gamma_{a}^{k, s}\right)\left(u_{s}+e_{i_{s}} X_{s}^{-}\right)=\left(a u_{s}\right)+e_{i_{k}} X_{k}^{-}
$$

Since by our assumption, \bar{U} is a subrepresentation of Y, we get that $\left(a u_{s}\right)+e_{i_{k}} X_{k}^{-}$ is contained in $\bar{U}_{k}=U_{k} / e_{i_{k}} X_{k}^{-}$for all $u_{s} \in U_{s}$. Thus $a u_{s} \in U_{k}$ for all $u_{s} \in U_{s}$. Now it follows from the definition of X_{s} and Lemma 3.29 that $U_{k} \subseteq e_{i_{k}} X_{s}=X_{s}\left(i_{k}\right)$. Thus X_{s} is a subrepresentation of X. It follows that $X_{\bullet} \in \mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$. This finishes the proof of Theorem 3.27.

3.10. Examples.

3.10.1. Let Γ be the quiver with just one vertex 1 and arrows a and b. Set $A:=$ $\mathbb{C} \Gamma / J$, where J is generated by $\{a b, b a\}$. For $\mathbf{i}=\left(i_{4}, \ldots, i_{1}\right)=(1,1,1,1)$ the modules $V_{k}=V_{\mathbf{i}, k}$ look as follows:

$$
V_{1}=1, \quad V_{2}={ }^{1} 1_{1}^{1}, \quad V_{3}={ }^{1} 1_{1} 1^{1}, \quad V_{4}={ }^{1} 1_{1}{ }_{1} 1^{1}{ }^{1} .
$$

Obviously, V_{k} is $\left(i_{k}, \ldots, i_{1}\right)$-balanced. The quiver $\Gamma_{\mathbf{i}}$ of $\mathcal{E}_{\mathbf{i}}$ looks as follows:

Let X be the A-module

(Here $\left\{b_{1}, \ldots, b_{4}\right\}$ is a basis of X, and the arrows show how the generators a and b of A act on this basis.) As a representation of Γ, we have $X=\left(\mathbb{C}^{4}, X(a), X(b)\right)$, where

$$
X(a)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad X(b)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

In the following we just write $\langle\cdots\rangle$ instead of $\operatorname{Span}_{\mathbb{C}}\langle\cdots\rangle$. The chains X_{\bullet}^{+}and X_{\bullet}^{-} look as follows:

$$
\begin{aligned}
& X_{\bullet}^{+}=\left(0 \subseteq\left\langle b_{1}, b_{4}\right\rangle \subseteq\left\langle b_{1}, b_{3}, b_{4}\right\rangle \subseteq\left\langle b_{1}, b_{2}, b_{3}, b_{4}\right\rangle \subseteq\left\langle b_{1}, b_{2}, b_{3}, b_{4}\right\rangle\right) \\
& X_{\bullet}^{-}=\left(0 \subseteq 0 \subseteq\left\langle b_{4}\right\rangle \subseteq\left\langle b_{1}, b_{3}, b_{4}\right\rangle \subseteq\left\langle b_{1}, b_{2}, b_{3}, b_{4}\right\rangle\right)
\end{aligned}
$$

As a representation of $\Gamma_{\mathbf{i}}$, the $\mathcal{E}_{\mathbf{i}}$-module $Y=D \overline{\operatorname{Hom}}_{A}\left(X, V_{\mathbf{i}}\right)$ looks as follows:

More precisely, the four vector spaces in the above quiver representation are (from left to right)

$$
\begin{aligned}
0 & \equiv e_{1}\left(X_{4}^{+} / X_{4}^{-}\right) \\
\mathbb{C}^{2} & \equiv e_{1}\left(X_{3}^{+} / X_{3}^{-}\right)=\left\langle b_{1}, b_{4}\right\rangle \text { with basis }\left(b_{1}, b_{4}\right) \\
\mathbb{C}^{2} & \equiv e_{1}\left(X_{2}^{+} / X_{2}^{-}\right)=\left\langle b_{1}, b_{3}, b_{4}\right\rangle /\left\langle b_{4}\right\rangle \text { with basis }\left(\overline{b_{1}}, \overline{b_{3}}\right) \\
\mathbb{C} & \equiv e_{1}\left(X_{1}^{+} / X_{1}^{-}\right)=\left\langle b_{1}, b_{2}, b_{3}, b_{4}\right\rangle /\left\langle b_{1}, b_{3}, b_{4}\right\rangle \text { with basis }\left(\overline{b_{2}}\right) .
\end{aligned}
$$

(Here $\overline{b_{i}}$ denotes the corresponding residue class of b_{i}.) One easily checks that the elements in $\mathcal{F}_{\mathbf{i},(1,1,1,1), X}$ are

$$
\begin{aligned}
f_{\lambda} & :=\left(0 \subset\left\langle b_{4}\right\rangle \subset\left\langle b_{1}+\lambda b_{3}, b_{4}\right\rangle \subset\left\langle b_{1}, b_{3}, b_{4}\right\rangle \subset X\right), \\
f_{\infty} & :=\left(0 \subset\left\langle b_{4}\right\rangle \subset\left\langle b_{3}, b_{4}\right\rangle \subset\left\langle b_{1}, b_{3}, b_{4}\right\rangle \subset X\right) \\
g_{\lambda} & :=\left(0 \subset\left\langle b_{1}+\lambda b_{4}\right\rangle \subset\left\langle b_{1}, b_{4}\right\rangle \subset\left\langle b_{1}, b_{3}, b_{4}\right\rangle \subset X\right),
\end{aligned}
$$

where $\lambda \in \mathbb{C}$. It follows that the Euler characteristic of $\mathcal{F}_{\mathbf{i},(1,1,1,1), X}$ is 3 . In this example, the isomorphism $\mathcal{F}_{\mathbf{i},(1,1,1,1), X} \rightarrow \operatorname{Gr}_{(0,1,1,0)}^{\mathcal{E}_{\mathbf{i}}}(Y)$ from Theorem 3.27 looks as follows:

$$
\begin{aligned}
f_{\lambda} & \mapsto\left(0,\left\langle b_{4}\right\rangle,\left\langle\overline{b_{1}}+\lambda \overline{b_{3}}\right\rangle, 0\right), \\
f_{\infty} & \mapsto\left(0,\left\langle b_{4}\right\rangle,\left\langle\overline{b_{3}}\right\rangle, 0\right), \\
g_{\lambda} & \mapsto\left(0,\left\langle b_{1}+\lambda b_{4}\right\rangle,\left\langle\overline{b_{1}}\right\rangle, 0\right) .
\end{aligned}
$$

3.10.2. Springer fibres. Let Γ be the quiver with just one vertex 1 and one arrow a. Set $A:=\mathbb{C} \Gamma / J$, where J is generated by a^{m} for some $m \geq 2$. Let $\mathbf{i}=\left(i_{m}, \ldots, i_{2}, i_{1}\right)=(1, \ldots, 1,1)$. For $1 \leq k \leq m$ the module $V_{k}=V_{\mathbf{i}, k}$ is uniserial of length k, and V_{k} is $\left(i_{k}, \ldots, i_{1}\right)$-balanced. We have $\operatorname{add}\left(V_{\mathbf{i}}\right)=\operatorname{nil}(A)=\bmod (A)$. The quiver $\Gamma_{\mathbf{i}}$ of $\mathcal{E}_{\mathbf{i}}$ looks as follows:

Let $\lambda=\left(\lambda_{t}, \ldots, \lambda_{1}\right)$ be a partition of m; i.e., the λ_{j} are integers such that $\lambda_{t} \geq$ $\cdots \geq \lambda_{1} \geq 1$ and $\lambda_{t}+\cdots+\lambda_{1}=m$. Define $V_{\lambda}:=V_{\lambda_{t}} \oplus \cdots \oplus V_{\lambda_{1}}$. This yields a bijection between the set of partitions of m and the set of isomorphism classes of
m-dimensional A-modules. For $\mathbf{a}:=\left(a_{m}, \ldots, a_{2}, a_{1}\right):=(1, \ldots, 1,1)$ the varieties $\mathcal{F}_{\lambda}:=\mathcal{F}_{\mathbf{i}, \mathbf{a}, V_{\lambda}}$ are just the classical Springer fibres of Dynkin type A_{m-1}.

For example, let $m=7$ and $\lambda=(3,2,2)$. Then $V_{\lambda}=V_{3} \oplus V_{2} \oplus V_{2}$. Set $Y:=$ $D \overline{\operatorname{Hom}}_{A}\left(V_{\lambda}, V_{\mathbf{i}}\right)$. By Theorem 3.27 we get $\mathcal{F}_{\lambda} \cong \operatorname{Gr}_{\mathbf{f}}^{\mathcal{E}_{\mathbf{i}}}(Y)$, where $\mathbf{f}=\left(f_{1}, \ldots, f_{7}\right)=$ $(2,4,4,3,2,1,0)$ and $\operatorname{dim}_{\mathcal{E}_{\mathbf{i}}}(Y)=\left(h_{1}, \ldots, h_{7}\right)=(3,6,7,7,6,3,0)$. It is an easy exercise to write Y explicitly as a representation of $\Gamma_{\mathbf{i}}$.
3.10.3. Balanced modules over preprojective algebras. Let Λ be the preprojective algebra associated to a finite connected acyclic quiver Q. Recall that $\Lambda=\mathbb{C} \bar{Q} /(c)$, where \bar{Q} is the double quiver obtained by adding to each arrow $a: i \rightarrow j$ in Q an arrow $a^{*}: j \rightarrow i$ pointing in the opposite direction, and (c) is the ideal generated by the element

$$
c=\sum_{a \in Q_{1}}\left(a^{*} a-a a^{*}\right) .
$$

Let $\mathbf{i}=\left(i_{r}, \ldots, i_{1}\right)$ be a reduced expression for some element w of the Weyl group W of Q. In this situation, the module $V_{\mathbf{i}}$ defined in Section 3.4 coincides with the cluster-tilting module $V_{\mathbf{i}}$ of \mathcal{C}_{w} mentioned in Section 1.2 (see GLS5). The following result is then a direct consequence of GLS5, Proposition 9.6].

Theorem 3.31. (Λ, \mathbf{i}) is balanced.
Let $(-,-)$ denote the usual W-invariant bilinear form on \mathfrak{h}^{*}, the dual of the Cartan subalgebra of the symmetric Kac-Moody Lie algebra \mathfrak{g} associated to Q. For $i \in Q_{0}$ let α_{i} and ϖ_{i} be the corresponding simple root and fundamental weight, respectively. By [GLS5, Proposition 9.6], for $V_{k}=V_{\mathbf{i}, k}$ we have

$$
\mathbf{a}_{l}^{-}\left(V_{k}\right)= \begin{cases}-\left(s_{i_{l}} s_{i_{l+1}} \cdots s_{i_{k}}\left(\varpi_{i_{k}}\right), \alpha_{i_{l}}\right) & \text { if } 1 \leq l \leq k \tag{3.1}\\ 0 & \text { otherwise }\end{cases}
$$

4. Categorification of the Chamber Ansatz

In this section we prove Theorems 1, 2 and 3. The proofs of Theorems 1 and 2 follow rather easily from Theorem 3.27. As a main ingredient for the proof of Theorem 3 we describe the twisted φ-functions $\varphi_{V_{i, k}}^{\prime}$ in Proposition 4.4. These can be seen as module-theoretic versions of the twisted generalized minors introduced by Berenstein and Zelevinsky [BZ] (in the Dynkin case).
4.1. Proof of Theorems 1 and 2, We know from Theorem 3.31 that (Λ, \mathbf{i}) is balanced. Let $X \in \mathcal{C}_{w}$, and let

$$
\mathcal{E}:=\mathcal{E}_{\mathbf{i}}:=\operatorname{End}_{\Lambda}\left(V_{\mathbf{i}}\right)^{\mathrm{op}} \quad \text { and } \quad \underline{\mathcal{E}}:=\underline{\mathcal{E}}_{\mathbf{i}}:=\underline{\operatorname{End}}_{\mathcal{C}_{w}}\left(V_{\mathbf{i}}\right)^{\mathrm{op}} .
$$

As before, let $W_{\mathbf{i}}:=I_{w} \oplus \Omega_{w}\left(V_{\mathbf{i}}\right)$.
Recall that a cluster-tilting module $T \in \mathcal{C}_{w}$ is called V_{i}-reachable if one can obtain T via a finite sequence of mutations starting with the initial cluster-tilting module V_{i}. By GLS5, Proposition 13.4], the module W_{i} is V_{i}-reachable.

Since $\underline{\mathcal{C}}_{w}$ is a triangulated category with shift functor Ω_{w}^{-1}, we get an $\underline{\mathcal{E}}$-module isomorphism

$$
D \overline{\operatorname{Hom}}_{\Lambda}\left(X, V_{\mathbf{i}}\right) \cong D \operatorname{Ext}_{\Lambda}^{1}\left(X, \Omega_{w}\left(V_{\mathbf{i}}\right)\right)
$$

The module I_{w} is \mathcal{C}_{w}-projective-injective; thus $\operatorname{Ext}_{\Lambda}^{1}\left(X, \Omega_{w}\left(V_{\mathbf{i}}\right)\right) \cong \operatorname{Ext}_{\Lambda}^{1}\left(X, W_{\mathbf{i}}\right)$. The category $\underline{\mathcal{C}}_{w}$ is a 2-Calabi-Yau category; see BIRS, Proposition III.2.3] and also

GLS4 for a special case. Thus there is an \mathcal{E}-module isomorphism $D \operatorname{Ext}_{\Lambda}^{1}\left(X, W_{\mathbf{i}}\right) \cong$ $\operatorname{Ext}_{\Lambda}^{1}\left(W_{\mathbf{i}}, X\right)$. Combining these isomorphisms, we have an $\underline{\mathcal{E}}$-module isomorphism

$$
D \overline{\operatorname{Hom}}_{\Lambda}\left(X, V_{\mathbf{i}}\right) \cong \operatorname{Ext}_{\Lambda}^{1}\left(W_{\mathbf{i}}, X\right)
$$

We can regard $D \overline{\operatorname{Hom}}_{\Lambda}\left(X, V_{\mathbf{i}}\right)$ and $\operatorname{Ext}_{\Lambda}^{1}\left(W_{\mathbf{i}}, X\right)$ as modules over \mathcal{E} and $\operatorname{End}_{\Lambda}\left(W_{\mathbf{i}}\right)^{\mathrm{op}}$, which are annihilated by the ideals $\mathcal{I}_{\Lambda}\left(V_{\mathbf{i}}, V_{\mathbf{i}}\right)$ and $\mathcal{I}_{\Lambda}\left(W_{\mathbf{i}}, W_{\mathbf{i}}\right)$, respectively. Since $\Omega_{w}: \underline{\mathcal{C}}_{w} \rightarrow \underline{\mathcal{C}}_{w}$ is an equivalence, we have an isomorphism of stable endomorphism algebras

$$
\underline{\mathcal{E}} \cong \underline{\operatorname{End}}_{\mathcal{C}_{w}}\left(W_{\mathbf{i}}\right)^{\mathrm{op}}
$$

Recall that $W_{\mathbf{i}}$ is a cluster-tilting module in \mathcal{C}_{w}. In particular, we have $\operatorname{Ext}_{\Lambda}^{1}\left(W_{\mathbf{i}}, X\right)$ $=0$ for some $X \in \mathcal{C}_{w}$ if and only if $X \in \operatorname{add}\left(W_{\mathbf{i}}\right)$.

By Theorem 3.27, the varieties $\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}$ and $\operatorname{Gr}_{d_{\mathbf{i}, X}(\mathbf{a})}^{\mathcal{E}}(Y)$ are isomorphic for all $\mathbf{a} \in \mathbb{N}^{r}$, where $Y:=D \overline{\operatorname{Hom}}_{\Lambda}\left(X, V_{\mathbf{i}}\right)$. Furthermore, the map $\mathbf{a} \mapsto d_{\mathbf{i}, X}(\mathbf{a})$ yields a bijection

$$
\left\{\mathbf{a} \in \mathbb{N}^{r} \mid \mathcal{F}_{\mathbf{i}, \mathbf{a}, X} \neq \varnothing\right\} \rightarrow \mathcal{U}:=\left\{\mathbf{f} \in \mathbb{N}^{r} \mid \operatorname{Gr}_{\mathbf{f}}^{\mathcal{E}}(Y) \neq \varnothing\right\}
$$

(If $\operatorname{Gr}_{\mathbf{f}}^{\mathcal{E}}(Y) \neq \varnothing$, then $f_{k}=0$ for all $k \in R_{\text {max }}$, where $R_{\text {max }}$ is defined as in Section 1.4. Thus we can identify $\operatorname{Gr}_{\mathbf{f}}^{\mathcal{E}}(Y)$ and $\operatorname{Gr}_{\mathbf{d}}^{\mathcal{E}}(Y)$, where $\mathbf{d}:=\left(f_{k}\right)_{k \in R_{-}}$. Being a bit sloppy, we often just write $\operatorname{Gr}_{\mathbf{f}}^{\mathcal{E}}(Y)$ instead of $\operatorname{Gr}_{\mathbf{d}}^{\mathcal{E}}(Y)$.) Clearly, \mathcal{U} contains always the elements $\mathbf{f}=\operatorname{dim}(Y)$ and the 0 -dimension vector $\mathbf{f}=(0, \ldots, 0)$. (In both cases, $\operatorname{Gr}_{\mathbf{f}}^{\mathcal{E}}(Y)$ is a single point.) Thus there is a unique $\mathbf{a} \in \mathbb{N}^{r}$ with $\mathcal{F}_{\mathbf{i}, \mathbf{a}, X} \neq \varnothing$ if and only if $Y=0$. This finishes the proof of Theorems 1 and 2 ,
4.2. Example. Let Q be a quiver with underlying graph $1-2-3-4$ and let $\mathbf{i}:=\left(i_{10}, \ldots, i_{1}\right):=(1,3,2,4,1,3,2,4,1,3)$, which is a reduced expression of the longest element in the Weyl group W_{Q}. It follows that $\mathcal{C}_{w}=\operatorname{nil}(\Lambda)=\bmod (\Lambda)$. Let $V_{\mathbf{i}}=V_{1} \oplus \cdots \oplus V_{10}$ and $W_{\mathbf{i}}=I_{w} \oplus \Omega_{w}\left(V_{\mathbf{i}}\right)=W_{1} \oplus \cdots \oplus W_{10}$. We first display the indecomposable direct summands which are not \mathcal{C}_{w}-projective-injective:

$$
\begin{aligned}
& V_{1}=3, \quad V_{2}=1, \quad V_{3}={ }^{3}{ }_{4}, \quad V_{4}={ }_{1}^{1}{ }_{2}^{3}, \quad V_{5}={ }_{2}^{1}{ }_{3}^{3} 4, \quad V_{6}=1_{1} 2^{3}, \\
& W_{1}=1{\underset{2}{3}}_{2}^{4}, \quad W_{2}={ }^{2}{ }_{4}, \quad W_{3}=1{\underset{2}{3}}_{2}, \quad W_{4}=1{\underset{2}{33}}_{2}^{4}, \quad W_{5}=1{\underset{2}{3}}_{4}^{2}, \quad W_{6}={ }_{2} 3^{4} .
\end{aligned}
$$

Finally, the indecomposable \mathcal{C}_{w}-projective-injectives look as follows:

$$
V_{7}=W_{7}={ }^{1} 2_{3}{ }_{4}, \quad V_{8}=W_{8}=1_{2}^{2}{\underset{2}{3}}_{4}^{4}, \quad V_{9}=W_{9}=1_{2}^{2}{ }_{3}^{3}, \quad V_{10}=W_{10}={ }_{1} 3^{4}
$$

Using our language of φ-functions, the functions Z_{a} and T_{J} appearing in BFZ, Example 3.2.2] can be written as follows:

$$
\begin{array}{lll}
Z_{1}=\varphi_{V_{7}}, & Z_{2}=\varphi_{V_{9}}, & Z_{3}=\varphi_{V_{8}}, \\
T_{2}=\varphi_{W_{2}}, & T_{4}=\varphi_{W_{6}}, & T_{124}=\varphi_{W_{1}}, \\
T_{1245}=\varphi_{W_{3}}, & T_{245}=\varphi_{W_{5}}, \quad T_{24}=\varphi_{W_{4}}
\end{array}
$$

and the equality $T_{24}=\Delta^{1345}(x) \Delta^{25}(x)-\Delta^{2345}(x) \Delta^{15}(x)$ translates to $\varphi_{W_{4}}=$ $\varphi_{W_{2}} \varphi_{X}-\varphi_{W_{7}} \varphi_{Y}$, where

$$
X:=1_{2} 3^{4} \quad \text { and } \quad Y:={ }_{2} 3^{4}
$$

4.3. Proof of Theorem 3. As before, let $\mathbf{i}=\left(i_{r}, \ldots, i_{2}, i_{1}\right)$ be a reduced expression of w. Define $\mathbf{j}:=\left(i_{r}, \ldots, i_{2}\right)$. (This is a reduced expression of $v:=w s_{i_{1}}$.) By Theorem 3.31 we have

$$
\operatorname{rad}_{S_{i_{1}}}\left(V_{\mathbf{i}, k}\right) \cong V_{\mathbf{j}, k-1}
$$

This yields the following result:
Lemma 4.1. If P is \mathcal{C}_{w}-projective-injective, then $\operatorname{rad}_{S_{i_{1}}}(P)$ is \mathcal{C}_{v}-projective-injective.

Corollary 4.2. If $X \in \mathcal{C}_{w}$, then $\operatorname{rad}_{S_{i_{1}}}(X) \in \mathcal{C}_{v}$.
Proof. There is an epimorphism $P \rightarrow X$, where P is \mathcal{C}_{w}-projective-injective. This yields an epimorphism $\operatorname{rad}_{S_{i_{1}}}(P) \rightarrow \operatorname{rad}_{S_{i_{1}}}(X)$; see Lemma 3.2(ii). Now apply Lemma 4.1

For $1 \leq k \leq r$ with $k^{+} \neq r+1$ we have a short exact sequence

$$
\eta: 0 \rightarrow W_{\mathbf{i}, k} \rightarrow P\left(V_{\mathbf{i}, k}\right) \rightarrow V_{\mathbf{i}, k} \rightarrow 0
$$

in \mathcal{C}_{w}. The module $S_{i_{1}}$ is a direct summand of the rigid module $V_{\mathbf{i}}$. Thus applying $\operatorname{Hom}_{\Lambda}\left(-, S_{i_{1}}\right)$ to η yields

$$
\operatorname{top}_{S_{i_{1}}}\left(W_{\mathbf{i}, k}\right) \oplus \operatorname{top}_{S_{i_{1}}}\left(V_{\mathbf{i}, k}\right) \cong \operatorname{top}_{S_{i_{1}}}\left(P\left(V_{\mathbf{i}, k}\right)\right)
$$

Thus by restriction we obtain a short exact sequence

$$
0 \rightarrow \operatorname{rad}_{S_{i_{1}}}\left(W_{\mathbf{i}, k}\right) \rightarrow \operatorname{rad}_{S_{i_{1}}}\left(P\left(V_{\mathbf{i}, k}\right)\right) \rightarrow \operatorname{rad}_{S_{i_{1}}}\left(V_{\mathbf{i}, k}\right) \rightarrow 0
$$

By Lemma4.1, the module $\operatorname{rad}_{S_{i_{1}}}\left(P\left(V_{\mathbf{i}, k}\right)\right)$ is \mathcal{C}_{v}-projective-injective, and by Corollary 4.2 we know that $\operatorname{rad}_{S_{i_{1}}}\left(W_{\mathbf{i}, k}\right) \in \mathcal{C}_{v}$. Since

$$
\operatorname{rad}_{S_{i_{1}}}\left(V_{\mathbf{i}, k}\right) \cong V_{\mathbf{j}, k-1}
$$

we get $\operatorname{rad}_{S_{i_{1}}}\left(W_{\mathbf{i}, k}\right) \cong P \oplus W_{\mathbf{j}, k-1}$ for some \mathcal{C}_{v}-projective-injective module P. (Here we just use the basic properties of the syzygy functor Ω_{v}; see [H].) Thus we have proved the following:

Lemma 4.3. If we apply $\operatorname{rad}_{S_{i_{1}}}(-)$ to η, we get a short exact sequence

$$
0 \rightarrow P \oplus W_{\mathbf{j}, k-1} \rightarrow P \oplus P\left(V_{\mathbf{j}, k-1}\right) \rightarrow V_{\mathbf{j}, k-1} \rightarrow 0
$$

where P is \mathcal{C}_{v}-projective-injective.
For $1 \leq l \leq k \leq r$ define

$$
b_{\mathbf{i}}(l, k):=-\left(s_{i_{l}} s_{i_{l+1}} \cdots s_{i_{k}}\left(\varpi_{i_{k}}\right), \alpha_{i_{l}}\right)
$$

(For $l>k$ we define $b(l, k):=0$.) Note that if $l>1$, then $b_{\mathbf{i}}(l, k)=b_{\mathbf{j}}(l-1, k-1)$.
Proposition 4.4. For $1 \leq k \leq r$ we have

$$
\varphi_{V_{\mathbf{i}, k}}^{\prime}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=\prod_{l=1}^{k} t_{l}^{-b_{\mathbf{i}}(l, k)}=\mathbf{t}^{-\mathbf{a}^{-}\left(V_{k}\right)}
$$

Proof. Let $1 \leq k \leq r$. If $k^{+}=r+1$, then the statement follows directly from GLS5, Proposition 9.6]. Thus assume $k^{+} \leq r$. By induction we get

$$
\varphi_{V_{\mathbf{j}, k-1}}^{\prime}\left(\underline{x}_{\mathbf{j}}\left(t_{r}, \ldots, t_{2}\right)\right)=\prod_{l=2}^{k} t_{l}^{-b_{\mathbf{j}}(l-1, k-1)}=\prod_{l=2}^{k} t_{l}^{-b_{\mathbf{i}}(l, k)}
$$

Now Lemma 4.3 together with Theorem 2 and [GLS5, Proposition 9.6] yield the result.

The following statement is a direct consequence by Proposition 4.4 ,
Corollary 4.5. For $1 \leq k \leq r$ we have

$$
\mathbf{a}^{+}\left(W_{\mathbf{i}, k}\right)-\mathbf{a}^{+}\left(P\left(V_{\mathbf{i}, k}\right)\right)=-\mathbf{a}^{-}\left(V_{\mathbf{i}, k}\right)=-\left(0, \ldots, 0, b_{\mathbf{i}}(k, k), \ldots, b_{\mathbf{i}}(2, k), b_{\mathbf{i}}(1, k)\right)
$$

Now we can finish the proof of Theorem 3, For $1 \leq k \leq r$ we have to show that $t_{k}=C_{\mathbf{i}, k}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)$, where

$$
C_{\mathbf{i}, k}:=\frac{1}{\varphi_{V_{\mathbf{i}, k}}^{\prime} \varphi_{V_{\mathbf{i}, k}-\left(i_{k}\right)}^{\prime}} \cdot \prod_{j=1}^{n}\left(\varphi_{V_{\mathbf{i}, k}-(j)}^{\prime}\right)^{q\left(i_{k}, j\right)}
$$

and $k^{-}(j):=\max \left\{0,1 \leq s \leq k-1 \mid i_{s}=j\right\}$. We know from Proposition 4.4 that

$$
\begin{equation*}
\varphi_{V_{\mathbf{i}, k}}^{\prime}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=\prod_{l=1}^{k} t_{l}^{-b_{\mathbf{i}}(l, k)} \tag{4.1}
\end{equation*}
$$

We insert (1.1) in the right-hand side of equation (4.1) and obtain

$$
\prod_{l=1}^{k} C_{\mathbf{i}, l}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)^{-b_{\mathbf{i}}(l, k)}
$$

To prove Theorem 3 we need to show that for all $1 \leq k \leq r$ we have

$$
\begin{equation*}
\varphi_{V_{i, k}}^{\prime}=\prod_{l=1}^{k} C_{\mathbf{i}, l}^{-b_{\mathbf{i}}(l, k)} \tag{4.2}
\end{equation*}
$$

This is done in exactly the same way as in [BZ, Section 4]. Namely, one first shows that the exponent of $\varphi_{V_{i, k}}^{\prime}$ on the right-hand side of equation (4.2) is equal to $b(k, k)=1$. Then one shows that for $1 \leq s<k$ the exponent of $\varphi_{V_{i, s}}^{\prime}$ on the right-hand side of (4.2) is equal to

$$
\zeta(s):=b(s, k)+b\left(s^{+}, k\right)-\sum_{s^{+}>m>s} q\left(i_{m}, i_{s}\right) b(m, k) .
$$

A straightforward calculation shows that $\zeta(s)=0$ for all $1 \leq s<k$. Finally, by [GLS5, Corollary 15.7] we know that a function $\varphi_{X} \in \mathbb{C}[N]$ with $X \in \mathcal{C}_{w}$ is already uniquely determined by its values on $\operatorname{Im}\left(\underline{x}_{\mathbf{i}}\right)$. This finishes the proof of Theorem 3

Remark 4.6. Recall that the module $W_{\mathbf{i}}$ is $V_{\mathbf{i}}$-reachable. This shows that $\left(\varphi_{W_{\mathbf{i}, 1}}, \ldots\right.$, $\varphi_{W_{i, r}}$) is a cluster of the cluster structure on $\mathbb{C}\left[N^{w}\right]$ defined by the initial seed $\left(\left(\varphi_{V_{\mathbf{i}, 1}}, \ldots, \varphi_{V_{\mathbf{i}, r}}\right), \Gamma_{\mathbf{i}}\right)$. By Theorem 3, the cluster $\left(\varphi_{W_{\mathbf{i}, 1}}, \ldots, \varphi_{W_{\mathbf{i}, r}}\right)$ gives a total positivity criterion for N^{w} in the sense of [BFZ, BZ]. Therefore, every V_{i}-reachable cluster-tilting module of \mathcal{C}_{w} also provides a total positivity criterion.
4.4. Example. Let Q be a quiver with underlying graph $1-2-3$ and let $\mathbf{i}:=\left(i_{6}, \ldots, i_{1}\right):=(1,2,1,3,2,1)$, which is a reduced expression of the longest element in the Weyl group W_{Q}. It follows that $\mathcal{C}_{w}=\operatorname{nil}(\Lambda)=\bmod (\Lambda)$. The modules $V_{\mathbf{i}}=V_{1} \oplus \cdots \oplus V_{6}$ and $W_{\mathbf{i}}=W_{1} \oplus \cdots \oplus W_{6}$ look as follows:

$$
\begin{aligned}
& V_{1}=1, \quad V_{2}={ }_{2}{ }_{2}, \quad V_{3}={ }^{1}{ }_{2}{ }_{3}, \quad V_{4}=1_{1}{ }^{2}, \quad V_{5}=1_{2}^{2}{ }_{3}, \quad V_{6}=1_{1}{ }^{3}, \\
& W_{1}={ }_{3}^{2}, \quad W_{2}=3, \quad W_{3}=V_{3}, \quad W_{4}={ }_{2}{ }^{3}, \quad W_{5}=V_{5}, \quad W_{6}=V_{6} .
\end{aligned}
$$

Besides the modules V_{k} and W_{k} there are only three other indecomposable Λ modules:

$$
L_{1}={ }_{2}^{1}{ }_{2}^{3}, \quad L_{2}=2, \quad L_{4}={ }_{1}{ }^{2}{ }_{3} .
$$

(The reason for naming the third module L_{4} and not L_{3} will become clear in Section [8.6]) Here we used the same conventions for displaying Λ-modules as explained in GLS5. The φ-functions of the indecomposable Λ-modules are the following:

$$
\begin{array}{ll}
\varphi_{V_{1}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{6}+t_{4}+t_{1}, & \varphi_{W_{1}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{3} t_{2} \\
\varphi_{V_{2}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{5} t_{4}+t_{5} t_{1}+t_{2} t_{1}, & \varphi_{W_{2}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{3} \\
\varphi_{V_{3}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{3} t_{2} t_{1}, & \varphi_{W_{4}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{5} t_{3} \\
\varphi_{V_{4}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{6} t_{5}+t_{6} t_{2}+t_{4} t_{2}, & \varphi_{L_{1}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{5} t_{4} t_{3}+t_{5} t_{3} t_{1} \\
\varphi_{V_{5}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{5} t_{4} t_{3} t_{2}, & \varphi_{L_{2}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{5}+t_{2} \\
\varphi_{V_{6}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{6} t_{5} t_{3}, & \varphi_{L_{4}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{6} t_{3} t_{2}+t_{4} t_{3} t_{2}
\end{array}
$$

The modules $P\left(V_{k}\right)$ are the following:

$$
P\left(V_{1}\right)=V_{3}, \quad P\left(V_{2}\right)=V_{3}, \quad P\left(V_{3}\right)=V_{3}, \quad P\left(V_{4}\right)=V_{5}, \quad P\left(V_{5}\right)=V_{5}, \quad P\left(V_{6}\right)=V_{6} .
$$

Thus, we obtain the twisted minors $\varphi_{V_{k}}^{\prime}=\varphi_{\Omega_{w}\left(V_{k}\right)} \varphi_{P\left(V_{k}\right)}^{-1}$:

$$
\begin{array}{ll}
\varphi_{V_{1}}^{\prime}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=\frac{t_{3} t_{2}}{t_{3} t_{2} t_{1}}, & \varphi_{V_{2}}^{\prime}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=\frac{t_{3}}{t_{3} t_{2} t_{1}},
\end{array} \quad \varphi_{V_{3}}^{\prime}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=\frac{1}{t_{3} t_{2} t_{1}}, ~ \begin{array}{ll}
\varphi_{V_{4}}^{\prime}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=\frac{t_{5} t_{3}}{t_{5} t_{4} t_{3} t_{2}}, & \varphi_{V_{5}}^{\prime}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=\frac{1}{t_{5} t_{4} t_{3} t_{2}},
\end{array} \varphi_{V_{6}}^{\prime}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=\frac{1}{t_{6} t_{5} t_{3}} .
$$

Finally, we compute the maps $C_{\mathbf{i}, k}$:

$$
\begin{array}{lll}
C_{\mathbf{i}, 1}=\frac{1}{\varphi_{V_{1}}^{\prime}}, & C_{\mathbf{i}, 2}=\frac{1}{\varphi_{V_{2}}^{\prime}} \cdot \varphi_{V_{1}}^{\prime}, & C_{\mathbf{i}, 3}=\frac{1}{\varphi_{V_{3}}^{\prime}} \cdot \varphi_{V_{2}}^{\prime} \\
C_{\mathbf{i}, 4}=\frac{1}{\varphi_{V_{4}}^{\prime} \varphi_{V_{1}}^{\prime}} \cdot \varphi_{V_{2}}^{\prime}, & C_{\mathbf{i}, 5}=\frac{1}{\varphi_{V_{5}}^{\prime} \varphi_{V_{2}}^{\prime}} \cdot \varphi_{V_{4}}^{\prime} \varphi_{V_{3}}^{\prime}, & C_{\mathbf{i}, 6}=\frac{1}{\varphi_{V_{6}}^{\prime} \varphi_{V_{4}}^{\prime}} \cdot \varphi_{V_{5}}^{\prime}
\end{array}
$$

5. Monomials of twisted minors

As defined before, let $V:=V_{\mathbf{i}}=V_{1} \oplus \cdots \oplus V_{r}$ and $W:=W_{\mathbf{i}}=W_{1} \oplus \cdots \oplus W_{r}$. For a cluster-tilting module T in \mathcal{C}_{w} and any $X \in \mathcal{C}_{w}$, we consider $\operatorname{Hom}_{\Lambda}(T, X)$ as a module over $\mathcal{E}_{T}:=\operatorname{End}_{\Lambda}(T)^{\text {op }}$. The Ext-group $\operatorname{Ext}_{\Lambda}^{1}(T, X)$ is a module over \mathcal{E}_{T} and over $\underline{\mathcal{E}}_{T}:=\underline{\operatorname{End}}_{\mathcal{C}_{w}}(T)^{\mathrm{op}}$. By dim $\operatorname{Ext}_{\Lambda}^{1}(T, X)$ we mean the dimension vector of $\operatorname{Ext}_{\Lambda}^{1}(T, X)$ as an \mathcal{E}_{T}-module.

From now on, for the reduced expression $\mathbf{i}=\left(i_{r}, \ldots, i_{1}\right)$ we assume without loss of generality that for each $1 \leq j \leq n$ there is some k with $i_{k}=j$. We can also
assume that for at least one such j there are indices $k \neq s$ with $i_{k}=i_{s}=j$. (Otherwise all direct summands of T are \mathcal{C}_{w}-projective-injective, i.e., $R_{-}=\varnothing$.)
5.1. Apart from the definitions for Theorem 4 the following will be useful:

$$
\begin{aligned}
\varphi_{k}^{\prime} & :=\varphi_{V_{k}}^{\prime}=\varphi_{\Omega_{w}\left(V_{k}\right)} \varphi_{P\left(V_{k}\right)}^{-1} & & \text { for } k \in R, \text { in particular, } \\
\varphi_{l}^{\prime} & =\varphi_{l}^{-1} & & \text { for } l \in R_{\max }, \\
\hat{\varphi}_{k}^{\prime} & :=\prod_{l \in R}\left(\varphi_{l}^{\prime}\right)^{B_{l, k}^{(V)}} & & \text { for } k \in R_{-}, \\
\left(\varphi_{\bullet}^{\prime}\right)^{\mathbf{g}} & :=\prod_{k \in R}\left(\varphi_{k}^{\prime}\right)^{g_{k}} & & \text { for } \mathbf{g}=\left(g_{1}, \ldots, g_{r}\right) \in \mathbb{Z}^{r}, \\
\left(\hat{\varphi}_{\bullet}^{\prime}\right)^{\mathbf{d}} & :=\prod_{k \in R_{-}}\left(\hat{\varphi}_{k}^{\prime}\right)^{d_{k}} & & \text { for } \mathbf{d}=\left(d_{l}\right)_{l \in R_{-}} \in \mathbb{N}^{R_{-}} .
\end{aligned}
$$

Recall from GLS5, Proposition 9.1] that the functions $\varphi_{V_{k}}$ can be seen as generalized minors. The functions $\varphi_{V_{k}}^{\prime}$ are the twisted generalized minors. The following proposition describes some special monomials in the functions $\varphi_{V_{k}}^{\prime}$. These results play a crucial role in the proof of Theorem 4.

Proposition 5.1. For $\mathbf{t}=\left(t_{r}, \ldots, t_{1}\right) \in\left(\mathbb{C}^{*}\right)^{r}$ and $k \in R_{-}$we have

$$
\begin{equation*}
\hat{\varphi}_{W, k}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=\hat{\varphi}_{k}^{\prime}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{k^{+}} t_{k}^{-1} \tag{5.1}
\end{equation*}
$$

Moreover, for $X \in \mathcal{C}_{w}$ we have

$$
\begin{align*}
t^{\mathbf{a}^{-}(X)} & =\varphi_{W}^{\left(\underline{(\operatorname{dim}} \operatorname{Hom}_{\Lambda}(W, X)\right) \cdot B^{(W)}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right) \tag{5.2}\\
& =\left(\varphi_{\bullet}^{\prime}\right) \underline{\left(\underline{\operatorname{dim}} \operatorname{Ext}_{\Lambda}^{1}(V, X)-\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}(V, X)\right) \cdot B^{(V)}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)} . \tag{5.3}
\end{align*}
$$

Remark 5.2. It seems to be in general quite cumbersome to calculate the ingredients $\mathbf{a}^{-}\left(W_{k}\right)=\mathbf{a}^{+}\left(W_{k}\right)$ and $B^{(W)}$ of equation (5.2). In contrast, by Corollary 4.5 we have

$$
\varphi_{k}^{\prime}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=\mathbf{t}^{-\mathbf{a}^{-}\left(V_{k}\right)}
$$

Similarly, $B^{(V)}=\left(\operatorname{dim} \operatorname{Hom}_{\Lambda}\left(V_{k}, V_{l}\right)_{1 \leq k, l \leq r}\right)^{-t}$ can be determined by our results in GLS5. Moreover, the dimension vector $\operatorname{dim} \operatorname{Hom}_{\Lambda}(V, X)$ depends linearly on the multiplicities in the $\operatorname{add}\left(M_{\mathbf{i}}\right)$-filtration of \bar{X}, so that equation (5.3) appears to be much more convenient for practical purposes; see GLS5, Section 11].

The rest of this section is dedicated to the proof of Proposition 5.1.
5.2. Proof of Equation (5.1). For $k \in R_{-}$we have by definition (see equation (1.1))

$$
\begin{aligned}
& C_{\mathbf{i}, k^{+}}=\frac{1}{\varphi_{k^{+}}^{\prime} \varphi_{k}^{\prime}} \prod_{j \in Q_{0}}\left(\varphi_{\left(k^{+}\right)^{-}(j)}^{\prime}\right)^{q\left(i_{k}, j\right)} \\
& =\frac{1}{\varphi_{k^{+}}^{\prime} \varphi_{k}^{\prime}} \prod_{\substack{j \in Q_{0} \\
k^{+}>\left(k^{+}\right)^{-}(j)>k}}\left(\varphi_{\left(k^{+}\right)-(j)}^{\prime}\right)^{q\left(i_{k}, j\right)} \prod_{\substack{j \in Q_{0} \\
k>\left(k^{+}\right)^{-}(j)}}\left(\varphi_{\left(k^{+}\right)^{-}(j)}^{\prime}\right)^{q\left(i_{k}, j\right)}, \\
& C_{\mathbf{i}, k}=\frac{1}{\varphi_{k}^{\prime} \varphi_{k^{-}}^{\prime}} \prod_{j \in Q_{0}}\left(\varphi_{k^{-}(j)}^{\prime}\right)^{q\left(i_{k}, j\right)} \\
& =\frac{1}{\varphi_{k}^{\prime} \varphi_{k^{-}}^{\prime}} \prod_{\substack{j \in Q_{0} \\
k^{+}>\left(k^{-}(j)\right)^{+}>k}}\left(\varphi_{k}^{\prime}(j)\right)^{q\left(i_{k}, j\right)} \prod_{\substack{j \in Q_{0} \\
\left(k^{-}(j)\right)^{+}>k^{+}}}\left(\varphi_{k^{-}(j)}^{\prime}\right)^{q\left(i_{k}, j\right)} .
\end{aligned}
$$

For $(k, j) \in R_{-} \times Q_{0}$ we have $k>\left(k^{+}\right)^{-}(j)$ if and only if $\left(k^{-}(j)\right)^{+}>k^{+}$, and in this case $\left(k^{+}\right)^{-}(j)=k^{-}(j)$. Thus

$$
\prod_{\substack{j \in Q_{0} \\ k>\left(k^{+}\right)^{-}(j)}}\left(\varphi_{\left(k^{+}\right)^{-}(j)}^{\prime}\right)^{q\left(i_{k}, j\right)}=\prod_{\substack{j \in Q_{0} \\\left(k^{-}(j)\right)^{+}>k^{+}}}\left(\varphi_{k}^{\prime}(j)\right)^{q\left(i_{k}, j\right)}
$$

Using Theorem 3 we conclude that

$$
\begin{aligned}
& t_{k^{+}} t_{k}^{-1}=\left(C_{\mathbf{i}, k^{+}} C_{\mathbf{i}, k}^{-1}\right)\left(x_{\mathbf{i}}(\mathbf{t})\right) \\
& =\binom{\varphi_{k^{-}}^{\prime}\left(\varphi_{k^{+}}^{\prime}\right)^{-1} \prod_{\substack{j \in Q_{0} \\
\left(\left(k^{+}\right)^{-}(j)\right)^{+}>k^{+}>\left(k^{+}\right)^{-}(j)>k}}\left(\varphi_{\left.\left(k^{+}\right)^{-}(j)\right)^{\prime}}^{q\left(i_{k}, j\right)} \prod_{j \in Q_{0}}\left(\varphi_{k^{-}(j)}^{\prime}\right)^{-q\left(i_{k}, j\right)}\right)\left(x_{\mathbf{i}}(\mathbf{t})\right)}{=\hat{\varphi}_{k}^{\prime}\left(x_{\mathbf{i}}(\mathbf{t})\right)}
\end{aligned}
$$

where the last equality follows from the description of the quiver of $\operatorname{End}_{\Lambda}(V)^{\text {op }}$ in Section 3.6 and the definition of $\hat{\varphi}_{k}^{\prime}$. This shows the second equality of equation (5.1).

For the first equality of (5.1) we compare mutations of V and W in direction k. Thus, for $k \in R_{-}$we consider the short exact sequences

$$
0 \rightarrow V_{k} \rightarrow \bigoplus_{l \in R} V_{l}^{\left[-B_{l, k}^{(V)}\right]_{+}} \rightarrow V_{k}^{\prime} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow V_{k}^{\prime} \rightarrow \bigoplus_{l \in R} V_{l}^{\left[B_{l, k}^{(V)}\right]_{+}} \rightarrow V_{k} \rightarrow 0
$$

as well as similar sequences for W. Since the stable endomorphism rings of V and W are isomorphic, we have $B_{k, l}^{(V)}=B_{k, l}^{(W)}$ for all $k, l \in R_{-}$. Thus, if we write

$$
\begin{array}{ll}
\bar{V}_{+}^{(k)}=\bigoplus_{l \in R_{-}} V_{l}^{\left[-B_{l, k}^{(V)}\right]_{+}}, & P_{+}^{(k)}=\bigoplus_{l \in R_{\max }} V_{l}^{\left[-B_{l, k}^{(V)}\right]_{+}}, \\
\bar{V}_{-}^{(k)}=\bigoplus_{l \in R_{-}} V_{l}^{\left[B_{l, k}^{(V)}\right]_{+}}, & P_{-}^{(k)}=\bigoplus_{l \in R_{\max }} V_{l}^{\left[B_{l, k}^{(V)}\right]_{+}}, \\
\bar{W}_{+}^{(k)}=\bigoplus_{l \in R_{-}} W_{l}^{\left[-B_{l, k}^{(W)}\right]_{+}}, & Q_{+}^{(k)}=\bigoplus_{l \in R_{\max }} W_{l}^{\left[-B_{l, k}^{(W)}\right]_{+}}, \\
\bar{W}_{-}^{(k)}=\bigoplus_{l \in R_{-}} W_{l}^{\left[B_{l, k}^{(W)}\right]_{+}}, & Q_{-}^{(k)}=\bigoplus_{l \in R_{\max }} W_{l}^{\left[B_{l, k}^{(W)}\right]_{+}}
\end{array}
$$

we obtain by the Snake Lemma two commutative diagrams with exact rows and columns:

and

Since in both diagrams the end term of the respective middle row is projective, both of them split, i.e.,

$$
P\left(\bar{V}_{+}^{(k)}\right) \oplus P_{+}^{(k)} \oplus Q_{+}^{(k)} \cong P\left(V_{k}^{\prime}\right) \oplus P\left(V_{k}\right) \cong P\left(\bar{V}_{-}^{(k)}\right) \oplus P_{-}^{(k)} \oplus Q_{-}^{(k)}
$$

It follows that

$$
\begin{equation*}
\varphi_{Q_{-}^{(k)}} \varphi_{Q_{+}^{(k)}}^{-1}=\varphi_{P\left(\bar{V}_{+}^{(k)}\right)} \varphi_{P_{+}^{(k)}}\left(\varphi_{P\left(\bar{V}_{-}^{(k)}\right)} \varphi_{P_{-}^{(k)}}\right)^{-1} \tag{5.4}
\end{equation*}
$$

On the other hand, since $B_{k, l}^{(V)}=B_{k, l}^{(W)}$ for $k, l \in R_{-}$we can write, with the above definitions,

$$
\hat{\varphi}_{k}^{\prime}=\frac{\varphi_{\bar{W}_{-}^{k}}}{\varphi_{P\left(\bar{V}_{-}^{k}\right)}} \cdot \frac{\varphi_{P\left(\bar{V}_{+}^{k}\right)}}{\varphi_{\bar{W}_{+}^{k}}} \cdot \frac{\varphi_{P_{+}^{(k)}}}{\varphi_{P_{-}^{(k)}}} \quad \text { and } \quad \hat{\varphi}_{W, k}=\varphi_{\bar{W}_{-}^{k}} \cdot \frac{1}{\varphi_{\bar{W}_{+}^{k}}} \cdot \frac{\varphi_{Q_{-}^{(k)}}}{\varphi_{Q_{+}^{(k)}}}
$$

Thus $\hat{\varphi}_{k}^{\prime}=\hat{\varphi}_{W, k}$ by equation (5.4).
5.3. Proof of Equation (5.2). Since W is a cluster-tilting module, for each $X \in$ \mathcal{C}_{w} we have a short exact sequence

$$
0 \rightarrow \bigoplus_{k \in R} W_{k}^{g_{k}^{\prime \prime}} \rightarrow \bigoplus_{k \in R} W_{k}^{g_{k}^{\prime}} \xrightarrow{p} X \rightarrow 0
$$

for certain $\mathbf{g}^{\prime}=\left(g_{1}^{\prime}, \ldots, g_{r}^{\prime}\right) \in \mathbb{N}^{r}$ and $\mathbf{g}^{\prime \prime}=\left(g_{1}^{\prime \prime}, \ldots, g_{r}^{\prime \prime}\right) \in \mathbb{N}^{r}$. Note, that we can assume $g_{k}^{\prime \prime}=0$ for $k \in R_{\max }$ since W_{k} is \mathcal{C}_{w}-projective-injective in this case. Write $W^{\prime \prime}$ resp. W^{\prime} for the first two terms of this sequence. Since W is rigid, the sequence remains exact under $\operatorname{Hom}_{\Lambda}(W,-)$. We conclude that

$$
\left(\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}(W, X)\right) \cdot B^{(W)}=\mathbf{g}^{\prime}-\mathbf{g}^{\prime \prime} .
$$

We know from Theorem 2 that there is a matrix $A \in \mathbb{N}^{r \times r}$ such that for $1 \leq k \leq r$ we have

$$
\varphi_{W_{k}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=\prod_{l=1}^{r} t_{l}^{A_{k, l}} .
$$

By Theorem 1, the modules W^{\prime} resp. $W^{\prime \prime}$ have a unique partial composition series $W_{\bullet}^{\prime}=\left(W^{\prime}\right)_{\bullet}^{-}$resp. $W_{\bullet}^{\prime \prime}=\left(W^{\prime \prime}\right)_{\bullet}^{-}$of type \mathbf{i} with

$$
\mathbf{a}^{\prime}:=\mathrm{wt}\left(W_{\bullet}^{\prime}\right)=\mathbf{g}^{\prime} \cdot A \quad \text { resp. } \quad \mathbf{a}^{\prime \prime}:=\mathrm{wt}\left(W_{\bullet}^{\prime \prime}\right)=\mathbf{g}^{\prime \prime} \cdot A
$$

It follows that $W_{k}^{\prime \prime}=W^{\prime \prime} \cap W_{k}^{\prime}$ for $1 \leq k \leq r$. With $X_{k}:=p\left(W_{k}^{\prime}\right)$ we obtain for all $k \in R$ a commutative diagram with exact rows

and the vertical maps being the natural inclusions. By the Snake Lemma we obtain a short exact sequence

$$
0 \rightarrow S_{i_{k}}^{a_{k}^{\prime \prime}} \rightarrow S_{i_{k}}^{a_{k}^{\prime}} \rightarrow X_{k} / X_{k-1} \rightarrow 0
$$

and conclude that $X_{k} / X_{k-1} \cong S_{i_{k}}^{a_{k}^{\prime}-a_{k}^{\prime \prime}}$. Thus, X_{\bullet} is a partial composition series of type \mathbf{i} for X with $w t\left(X_{\bullet}\right)=\left(\mathbf{g}^{\prime}-\mathbf{g}^{\prime \prime}\right) \cdot A$. Applying $\operatorname{Hom}_{\Lambda}\left(-, S_{i_{k}}\right)$ to the bottom row of the above diagram shows that $\operatorname{top}_{S_{i_{k}}}\left(X_{k}\right)=0$ for all $k \in R$, since $W_{\bullet}^{\prime}=\left(W^{\prime}\right)_{\bullet}^{-}$.

This shows that X_{\bullet} is the refined top series of type \mathbf{i} of X. All together we now have

$$
\varphi_{W}^{\left(\operatorname{dim}_{W} \operatorname{Hom}_{\Lambda}(W, X)\right) \cdot B^{(W)}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=\varphi_{W}^{\mathbf{g}^{\prime}-\mathbf{g}^{\prime \prime}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=\mathbf{t}^{\left(\mathbf{g}^{\prime}-\mathbf{g}^{\prime \prime}\right) A}=\mathbf{t}^{\mathrm{wt}\left(X_{\bullet}\right)}=\mathbf{t}^{\mathbf{a}^{-}(X)},
$$

which is our claim.
5.4. Proof of Equation (5.3). For a \mathcal{C}_{w}-projective-injective module $X \in \mathcal{C}_{w}$ the claim is clear by the definition of φ_{k}^{\prime} for $k \in R_{\max }$. So we can assume that X has no non-zero \mathcal{C}_{w}-projective-injective summands. Then we have a short exact sequence

$$
0 \rightarrow X \rightarrow P\left(\Omega_{w}^{-1}(X)\right) \rightarrow \Omega_{w}^{-1}(X) \rightarrow 0
$$

in \mathcal{C}_{w} with $\Omega_{w}^{-1}(X)$ having no non-zero \mathcal{C}_{w}-projective-injective summands. Now we apply $\operatorname{Hom}_{\Lambda}(V,-)$ and obtain

$$
\begin{aligned}
& \underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}\left(V, \Omega_{w}^{-1}(X)\right)-\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}\left(V, P\left(\Omega_{w}^{-1}(X)\right)\right) \\
& \quad=\underline{\operatorname{dim}} \operatorname{Ext}_{\Lambda}^{1}(V, X)-\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}(V, X)
\end{aligned}
$$

Thus, we have to show that

Using that Ω_{w}^{-1} is an autoequivalence of the stable category $\underline{\mathcal{C}}_{w}$ we obtain again by the Snake Lemma a commutative diagram with exact rows and columns:

where \bar{W}^{\prime} and $W^{\prime \prime}$ have no non-zero \mathcal{C}_{w}-projective-injective summands, P is $\mathcal{C}_{w^{-}}$ projective-injective, and $\bar{W}^{\prime} \oplus P=W_{X}^{\prime} \in \operatorname{add}(W)$. Similarly, we have $\Omega_{w}^{-1}\left(\bar{W}^{\prime}\right)$ without non-zero \mathcal{C}_{w}-projective-injective summands, Q is \mathcal{C}_{w}-projective-injective, and

$$
\Omega_{w}^{-1}\left(\bar{W}^{\prime}\right) \oplus Q=V_{\Omega_{w}^{-1}(X)}^{\prime} \in \operatorname{add}(V)
$$

From this it is already clear that the components corresponding to R_{-}of the three vectors

$$
\begin{aligned}
& \left(\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}(W, X)\right) \cdot B^{(W)} \\
& \left(\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}\left(V, \Omega_{w}^{-1}(X)\right)\right) \cdot B^{(V)} \\
& \left(\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}\left(V, \Omega_{w}^{-1}(X)\right)-\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}\left(V, P\left(\Omega_{w}^{-1}(X)\right)\right)\right) \cdot B^{(V)}
\end{aligned}
$$

coincide. Since $P\left(\Omega_{w}^{-1}(X)\right)$ is \mathcal{C}_{w}-projective-injective, the middle row of our diagram splits. Thus we have

$$
P\left(\Omega_{w}^{-1}(X)\right) \oplus P\left(\Omega_{w}^{-1}\left(W^{\prime \prime}\right)\right) \cong P\left(\Omega_{w}^{-1}\left(\bar{W}^{\prime}\right)\right) \oplus P \oplus Q
$$

Finally, from the above diagram we conclude that

$$
\varphi_{W}^{\left(\operatorname{dim} \operatorname{Hom}_{\Lambda}(W, X)\right) \cdot B^{(W)}}=\varphi_{\bar{W}^{\prime}} \varphi_{W^{\prime \prime}}^{-1} \varphi_{P}
$$

and

$$
\begin{aligned}
&\left(\varphi_{\bullet}^{\prime}\right) \stackrel{\left(\operatorname{dim} \operatorname{Hom}_{\Lambda}\left(V, \Omega_{w}^{-1}(X)\right)-\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}\left(V, P\left(\Omega_{w}^{-1}(X)\right)\right)\right) \cdot B^{(V)}}{ } \\
&=\frac{\varphi_{\bar{W}^{\prime}}}{\varphi_{P\left(\Omega_{w}^{-1}\left(\bar{W}^{\prime}\right)\right)}} \cdot \frac{\varphi_{P\left(\Omega_{w}^{-1}\left(W^{\prime \prime}\right)\right)}}{\varphi_{W^{\prime \prime}}} \cdot \frac{\varphi_{P\left(\Omega_{w}^{-1}(X)\right)}}{\varphi_{Q}} .
\end{aligned}
$$

Thus (5.6) follows from the above isomorphism of \mathcal{C}_{w}-projective-injectives.

6. Cluster character identities

6.1. Quivers with potential and mutations. We review some material from [DWZ2, Section 4], which in turn is a review of DWZ1]. Let $\mathcal{P}(\Gamma, W):=$ $\mathbb{C}\langle\langle\Gamma\rangle\rangle / J(W)$ be the Jacobian algebra associated to a quiver $\Gamma=\left(\Gamma_{0}, \Gamma_{1}, s, t\right)$ and a potential $W \in \mathfrak{m}_{\mathrm{cyc}} \subset \mathbb{C}\langle\langle\Gamma\rangle\rangle$. For $k \in \Gamma_{0}$ we set

$$
\begin{aligned}
\Gamma^{(-, k)} & :=\left\{b \in \Gamma_{1} \mid s(b)=k\right\} \\
\Gamma^{(k,+)} & :=\left\{a \in \Gamma_{1} \mid t(a)=k\right\} \\
\Gamma^{(2, k)} & :=\Gamma^{(-, k)} \times \Gamma^{(k,+)}
\end{aligned}
$$

For a reduced quiver potential (Γ, W) and Γ without 2-cycles at the vertex $k \in \Gamma_{0}$ let $\mu_{k}(\Gamma, W)$ be the mutation of (Γ, W) in direction k, as defined in DWZ1. For convenience, we briefly recall the construction. First, a possibly non-reduced quiver potential $\tilde{\mu}_{k}(\Gamma, W):=(\widetilde{\Gamma}, \widetilde{W})$ is defined as follows. The quiver $\widetilde{\Gamma}$ is obtained from Γ by inserting for each pair of arrows $(b, a) \in \Gamma^{(2, k)}$ a new arrow [ba] from $s(a)$ to $t(b)$ and replacing each arrow c with $s(c)=k$ or $t(c)=k$ by a new arrow c^{*} in the opposite direction. Then $\widetilde{W}:=[W]+\Delta$, where

$$
\Delta:=-\sum_{(b, a) \in \Gamma^{(2, k)}}[b a] a^{*} b^{*}
$$

and $[W]$ is obtained by substituting each occurrence of a path $b a$ with $(b, a) \in$ $\Gamma^{(2, k)}$ by the arrow [ba] (after some rotation, if necessary). Our definition of Δ deviates from the original one by a sign. However the resulting quiver potential is right equivalent to the original one and more convenient for our purpose. Finally, $\mu_{k}(\Gamma, W)$ is by definition the reduced part of $(\widetilde{\Gamma}, \widetilde{W})$.

For a representation M of $\mathcal{P}(\Gamma, W)$ and $k \in \Gamma_{1}$ we need the following notation:

$$
\begin{aligned}
& M^{+}(k):=\bigoplus_{a \in \Gamma^{(k,+)}} M(s(a)) \\
& M^{-}(k):=\bigoplus_{b \in \Gamma^{(-, k)}} M(t(b)) \\
& M\left(\alpha_{k}\right):=(M(a))_{a \in \Gamma^{(k,+)}}: M^{+}(k) \rightarrow M(k), \\
& M\left(\beta_{k}\right):=(M(b))_{a \in \Gamma^{(-, k)}}: M(k) \rightarrow M^{-}(k), \\
& M\left(\gamma_{k}\right):=\left(M\left(\partial_{b, a} W\right)\right)_{(b, a) \in \Gamma^{(2, k)}}: M^{-}(k) \rightarrow M^{+}(k) .
\end{aligned}
$$

For an indecomposable representation M of $\mathcal{P}(\Gamma, W)$, which is not the simple representation S_{k}, the "premutation" $\tilde{\mu}_{k}(M):=\widetilde{M}$ is a representation of $\mathcal{P}(\widetilde{\Gamma}, \widetilde{W})$ which can be described as follows DWZ1]:

- $\widetilde{M}(j):=M(j)$ for all $j \in \Gamma_{0} \backslash\{k\}$ and $\widetilde{M}(a):=M(a)$ for all arrows $a \in \widetilde{\Gamma}_{1} \cap \Gamma_{1}$.
- $\widetilde{M}([b a]):=M(b) M(a)$ for all pairs of arrows $(b, a) \in \Gamma^{(2, k)}$.
- It remains to define the maps

$$
\begin{aligned}
& \widetilde{M}\left(\alpha_{k}\right): \widetilde{M}^{+}(k) \rightarrow \widetilde{M}(k), \\
& \widetilde{M}\left(\beta_{k}\right): \widetilde{M}(k) \rightarrow \widetilde{M}^{-}(k),
\end{aligned}
$$

where $\widetilde{M}^{+}(k):=M^{-}(k)$ and $\widetilde{M}^{-}(k):=M^{+}(k)$.
Remark 6.1. It is an elementary exercise to verify that \widetilde{M} is up to isomorphism uniquely determined by the following properties of those maps:

$$
\begin{align*}
\operatorname{Ker}\left(\widetilde{M}\left(\alpha_{k}\right)\right) & =\operatorname{Im}\left(M\left(\beta_{k}\right)\right) \tag{6.1}\\
\operatorname{Im}\left(\widetilde{M}\left(\beta_{k}\right)\right) & =\operatorname{Ker}\left(M\left(\alpha_{k}\right)\right) \tag{6.2}\\
\operatorname{Ker}\left(\widetilde{M}\left(\beta_{k}\right)\right) & \subseteq \operatorname{Im}\left(\widetilde{M}\left(\alpha_{k}\right)\right) \tag{6.3}\\
\widetilde{M}\left(\beta_{k}\right) \widetilde{M}\left(\alpha_{k}\right) & =M\left(\gamma_{k}\right) \tag{6.4}
\end{align*}
$$

A concrete choice of a triple $\left(\widetilde{M}(k), \widetilde{M}\left(\alpha_{k}\right), \widetilde{M}\left(\beta_{k}\right)\right)$ with properties (6.1)-(6.4) can be found in DWZ2, p.765].

Next, we need to extract some material from BIRSm. Let $T=T_{1} \oplus \cdots \oplus T_{r}$ be a $V_{\mathbf{i}}$-reachable cluster-tilting module in \mathcal{C}_{w}. We consider the quiver Γ_{T} of the endomorphism algebra $\mathcal{E}_{T}:=\operatorname{End}_{\Lambda}(T)^{\mathrm{op}}$ and the quiver $\underline{\Gamma}_{T}$ of the corresponding stable endomorphism algebra $\underline{\mathcal{E}}_{T}:=\operatorname{End}_{\mathcal{C}_{w}}(T)^{\mathrm{op}}$.

We have $\left(\Gamma_{T}\right)_{0}=R=\{1,2, \ldots, r\}$ with the vertex i corresponding to the direct summand T_{i} of T. We identify $\underline{\Gamma}_{T}$ with the full subquiver of Γ_{T} with vertices R_{-} corresponding to the non- \mathcal{C}_{w}-projective-injective indecomposable direct summands of T. Thus we get a surjective algebra homomorphism

$$
\psi: \mathbb{C}\left\langle\left\langle\underline{\Gamma}_{T}\right\rangle\right\rangle \rightarrow \underline{\mathcal{E}}_{T}
$$

such that $\psi(c) \in \underline{\operatorname{Hom}}_{\mathcal{C}}\left(T_{t(c)}, T_{s(c)}\right)$ for all $c \in\left(\underline{\Gamma}_{T}\right)_{1}$.
We fix some $k \in R_{-}$. Then there are short exact sequences

$$
\begin{equation*}
0 \rightarrow T_{k} \xrightarrow{\alpha_{k}} \bigoplus_{a \in \Gamma_{T}^{(k,+)}} T_{s(a)} \xrightarrow{\beta_{k}^{\prime}} T_{k}^{\prime} \rightarrow 0 \tag{6.5}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \rightarrow T_{k}^{\prime} \xrightarrow{\alpha_{k}^{\prime}} \bigoplus_{b \in \Gamma_{T}^{(-, k)}} T_{t(b)} \xrightarrow{\beta_{k}} T_{k} \rightarrow 0 \tag{6.6}
\end{equation*}
$$

such that $\mu_{k}(T):=T_{k}^{\prime} \oplus T / T_{k}$ is also a basic cluster-tilting module in \mathcal{C}_{w}. It is convenient to label the components of the above maps as follows:

$$
\begin{array}{ll}
\alpha_{k}=\left(\alpha_{a, k}\right)_{a \in \Gamma_{T}^{(k,+)}}, & \beta_{k}^{\prime}=\left(\beta_{k, a}^{\prime}\right)_{a \in \Gamma_{T}^{(k,+)}}, \\
\alpha_{k}^{\prime}=\left(\alpha_{b, k}^{\prime}\right)_{b \in \Gamma_{T}^{(-, k)}}, & \beta_{k}=\left(\beta_{k, b}\right)_{b \in \Gamma_{T}^{(-, k)}} .
\end{array}
$$

Lemma 6.2. With the above notation the following hold:
(a) One can choose ψ such that $\operatorname{Ker}(\psi)=J\left(W_{T}\right)$ for some potential $W_{T} \in$ $\mathfrak{m}_{\text {cyc }} \subset \mathbb{C}\left\langle\left\langle\underline{\Gamma}_{T}\right\rangle\right\rangle$ and

$$
\begin{aligned}
\psi(a) & =\alpha_{a, k} \in \underline{\operatorname{Hom}}_{\mathcal{C}_{w}}\left(T_{k}, T_{s(a)}\right) & & \text { for all } a \in \underline{\Gamma}_{T}^{(k,+)}, \\
\psi(b) & =\beta_{k, b} \in \underline{\operatorname{Hom}}_{\mathcal{C}_{w}}\left(T_{t(b)}, T_{k}\right) & & \text { for all } b \in \underline{\Gamma}_{T}^{(-, k)}, \\
\psi\left(\partial_{b, a} W\right) & =\alpha_{b, k}^{\prime} \beta_{k, a}^{\prime} & & \text { for all }(b, a) \in \underline{\Gamma}_{T}^{(2, k)} .
\end{aligned}
$$

(b) We have a surjective algebra homomorphism

$$
\psi^{\prime}: \mathbb{C}\left\langle\left\langle\widetilde{\underline{\Gamma}}_{T}\right\rangle\right\rangle \rightarrow \underline{\mathcal{E}}_{\mu_{k}(T)}
$$

such that

$$
\begin{aligned}
\psi^{\prime}\left(a^{*}\right) & =\beta_{k, a}^{\prime} \in \underline{\operatorname{Hom}}_{\mathcal{C}_{w}}\left(T_{s(a)}, T_{k}^{\prime}\right) & & \text { for all } a \in \underline{\Gamma}_{T}^{(k,+)}, \\
\psi^{\prime}\left(b^{*}\right) & =\alpha_{b, k}^{\prime} \in \underline{\operatorname{Hom}}_{\mathcal{C}_{w}}\left(T_{k}^{\prime}, T_{t(b)}\right) & & \text { for all } b \in \underline{\Gamma}_{T}^{(-, k)}, \\
\psi^{\prime}([b a]) & =\alpha_{a, k} \beta_{k, b} & & \text { for all }(b, a) \in \underline{\Gamma}_{T}^{(2, k)}, \\
\psi^{\prime}(c) & =\psi(c) & & \text { for all } c \in\left(\widetilde{\Gamma}_{T}\right)_{1} \cap\left(\underline{\Gamma}_{T}\right)_{1} .
\end{aligned}
$$

Moreover, $\operatorname{Ker}\left(\psi^{\prime}\right)=J\left(\widetilde{W}_{T}\right)$.
Proof. By applying recursively BIRSm, Theorem 5.3] it follows from BIRSm, Theorem 6.6] and [BIRSm, Theorem 4.6] that we can find a liftable (in the sense of [BIRSm 5.1]) isomorphism

$$
\bar{\psi}: \mathcal{P}\left(\underline{\Gamma}_{T}, W_{T}\right) \rightarrow \underline{\mathcal{E}}_{T} .
$$

Thus, by BIRSm, Lemma 5.7] the conditions (O)-(IV) described in BIRSm, Section 5.2] hold for our ψ. This shows (a). Part (b) follows from BIRSm Theorem 5.6] and the construction of ψ^{\prime} (denoted by Φ^{\prime} in BIRSm); see also [BIRSm, Theorem 4.5].

We now consider the following special case of the above: For an indecomposable module $X \in \mathcal{C}_{w} \backslash \operatorname{add}\left(T \oplus T_{k}^{\prime}\right)$ we consider the indecomposable $\underline{\mathcal{E}}_{T}$-module $\operatorname{Ext}_{\Lambda}^{1}(T, X)$ via $\bar{\psi}$ as a representation M of $\mathcal{P}\left(\underline{\Gamma}_{T}, W_{T}\right)$. Similarly, we consider $\operatorname{Ext}_{\Lambda}^{1}\left(\mu_{k}(T), X\right)$ via $\bar{\psi}^{\prime}$ as a representation M^{\prime} of $\mathcal{P}\left(\widetilde{\underline{\Gamma}}_{T}, \widetilde{W}_{T}\right)$.

Proposition 6.3. With the above notation, the representations M^{\prime} and $\tilde{\mu}_{k}(M)$ of the Jacobian algebra $\mathcal{P}\left(\widetilde{\underline{T}}_{T}, \widetilde{W}_{T}\right)$ are isomorphic. Thus, we can consider the $\underline{\mathcal{E}}_{\mu_{k}(T)}{ }^{-}$ module $\operatorname{Ext}_{\Lambda}^{1}\left(\mu_{k}(T), X\right)$ as the mutation of the $\underline{\mathcal{E}}_{T}$-module $\operatorname{Ext}_{\Lambda}^{1}(T, X)$ in direction k.

Proof. Note that $M\left(\alpha_{k}\right)=\operatorname{Ext}_{\Lambda}^{1}\left(\alpha_{k}, X\right)$ and $M\left(\beta_{k}\right)=\operatorname{Ext}_{\Lambda}^{1}\left(\beta_{k}, X\right)$ by the first two equations in Lemma 6.2(a). Similarly, by Lemma 6.2(b) we have $M^{\prime}\left(\alpha_{k}\right)=$ $\operatorname{Ext}_{\Lambda}^{1}\left(\alpha_{k}^{\prime}, X\right), M^{\prime}\left(\beta_{k}\right)=\operatorname{Ext}_{\Lambda}^{1}\left(\beta_{k}^{\prime}, X\right)$, and $M^{\prime}(k)=\operatorname{Ext}_{\Lambda}^{1}\left(T_{k}^{\prime}, X\right)$. According to Remark 6.1] it is sufficient to verify (6.1)-(6.4) for this data. Indeed, (6.1) resp. (6.2) follows since $\operatorname{Ext}_{\Lambda}^{1}(-, X)$ is exact at the middle term of the short exact sequences (6.5) resp. (6.6). Next, (6.3) is clear, since $\operatorname{Ext}_{\Lambda}^{1}\left(\mu_{k}(T), X\right)$ is an indecomposable $\underline{\mathcal{E}}_{\mu_{k}(T)}$-module. Finally,

$$
M^{\prime}\left(\beta_{k}\right) \circ M^{\prime}\left(\alpha_{k}\right)=\operatorname{Ext}_{\Lambda}^{1}\left(\alpha_{k}^{\prime} \beta_{k}^{\prime}, X\right)=\operatorname{Ext}_{\Lambda}^{1}\left(\psi\left(\partial_{b, a} W\right)_{(b, a) \in \underline{\Gamma}_{T}^{(2, k)}}, X\right)=M^{\prime}\left(\gamma_{k}\right)
$$

by the last equation in Lemma 6.2(a). Thus also (6.4) holds.
6.2. Transformation of g-vectors and F-polynomials. We fix a V_{i}-reachable cluster-tilting module T in \mathcal{C}_{w}, and define for any $X \in \mathcal{C}_{w}$ the (extended) index of X with respect to T as

$$
\begin{equation*}
\mathbf{g}_{X}^{T}:=\left(\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}(T, X)\right) \cdot B^{(T)} \in \mathbb{Z}^{r} \tag{6.7}
\end{equation*}
$$

and the F-polynomial of X with respect to T as

$$
F_{X}^{T}\left(\left(y_{l}\right)_{l \in R_{-}}\right):=\sum_{\mathbf{d} \in \mathbb{N}^{R_{-}}} \chi\left(\operatorname{Gr}_{\mathbf{d}}^{\frac{\mathcal{E}_{T}}{T}}\left(\operatorname{Ext}_{\Lambda}^{1}(T, X)\right)\right) y^{\mathbf{d}}
$$

Moreover, we will need the \mathbf{h}-vector of X with respect to T :

$$
\mathbf{h}_{X}^{T}:=\left(h_{k}\right)_{k \in R_{-}} \text {where } h_{k}:=-\operatorname{dim} \operatorname{Hom}_{\underline{E}_{T}}\left(S_{k}, \operatorname{Ext}_{\Lambda}^{1}(T, X)\right)
$$

Fix $k \in R_{-}$and write $T^{\prime}:=\mu_{k}(T)=T_{k}^{\prime} \oplus T / T_{k}$ for the cluster-tilting module obtained from T by mutation in direction k. Thus we have short exact sequences:

$$
\begin{equation*}
0 \rightarrow T_{k} \rightarrow \bigoplus_{l \in R} T_{l}^{\left[-B_{l, k}^{(T)}\right]_{+}} \rightarrow T_{k}^{\prime} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow T_{k}^{\prime} \rightarrow \bigoplus_{l \in R} T_{l}^{\left[-B_{k, l}^{(T)}\right]_{+}} \rightarrow T_{k} \rightarrow 0 \tag{6.8}
\end{equation*}
$$

Let us recall the following observation from [FK, Section 3]. We have a short exact sequence

$$
0 \rightarrow \bigoplus_{k \in R_{-}} T_{k}^{-\tilde{h}_{k}} \rightarrow \bigoplus_{k \in R} T_{k}^{-\tilde{h}_{k}^{\prime}} \xrightarrow{\pi_{X}} X \rightarrow 0
$$

such that π_{X} is a minimal right $\operatorname{add}(T)$-approximation for certain non-positive integers \tilde{h}_{k} and \tilde{h}_{k}^{\prime}. It will be convenient to define $\tilde{h}_{l}:=0$ for $l \in R_{\max }$. From this we obtain the short exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Hom}_{\Lambda}\left(T, \bigoplus_{k \in R_{-}} T_{k}^{-\tilde{h}_{k}}\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(T, \bigoplus_{k \in R} T_{k}^{-\tilde{h}_{k}^{\prime}}\right) \rightarrow \operatorname{Hom}_{\Lambda}(T, X) \rightarrow 0 \tag{6.9}
\end{equation*}
$$

which can be viewed as a projective resolution of $\operatorname{Hom}_{\Lambda}(T, X)$ over $\operatorname{End}_{\Lambda}(T)^{\text {op }}$, and

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}_{\Lambda}^{1}(T, X) \rightarrow \operatorname{Ext}_{\Lambda}^{1}\left(T, \bigoplus_{k \in R_{-}} \Omega_{w}^{-1}\left(T_{k}\right)^{-\tilde{h}_{k}}\right) \rightarrow \operatorname{Ext}_{\Lambda}^{1}\left(T, \bigoplus_{k \in R_{-}} \Omega_{w}^{-1}\left(T_{k}\right)^{-\tilde{h}_{k}^{\prime}}\right) \tag{6.10}
\end{equation*}
$$

which is a minimal injective copresentation of $M:=\operatorname{Ext}_{\Lambda}^{1}(T, X)$ over the stable endomorphism ring \mathcal{E}_{T}. Thus, it follows from (6.9) that

$$
\mathbf{g}_{X}^{T}=\left(g_{k}\right)_{1 \leq k \leq r}=\left(\tilde{h}_{k}-\tilde{h}_{k}^{\prime}\right)_{1 \leq k \leq r}
$$

In particular, $g_{k} \geq 0$ for all $k \in R_{\max }$. On the other hand, we conclude from (6.10) that

$$
\tilde{h}_{k}=h_{k}:=-\operatorname{dim} \operatorname{Hom}_{\underline{\mathcal{E}}_{T}}\left(S_{k}, M\right) \quad \text { and } \quad \tilde{h}_{k}^{\prime}=-\operatorname{dim} \operatorname{Ext}_{\underline{\mathcal{E}}_{T}}^{1}\left(S_{k}, M\right)
$$

for $k \in R_{-}$.
We have the following easy application of deep results in BIRSm and DWZ2:
Lemma 6.4. Let

$$
\begin{aligned}
\mathbf{g}_{X}^{T} & =\left(g_{k}\right)_{k \in R}, & \mathbf{h}_{X}^{T}=\left(h_{l}\right)_{l \in R_{-}}, & F
\end{aligned}=F_{X}^{T}, ~\left(\mathbf{h}_{X}^{T^{\prime}}=\left(h_{l}^{\prime}\right)_{l \in R_{-}}, \quad ~ F^{\prime}=F_{X}^{T^{\prime}} .\right.
$$

Moreover, let $B=\left(B_{l, m}^{(T)}\right)_{l, m \in R_{-}}$, and let $\left(B^{\prime},\left(\hat{y}_{l}^{\prime}\right)_{l \in R_{-}}\right)$be obtained from $\left(B,\left(\hat{y}_{l}\right)_{l \in R_{-}}\right)$ by Y-seed mutation in direction k in $\mathbb{Q}_{s f}\left(\left(y_{l}\right)_{l \in R_{-}}\right)$. Then for $M:=\operatorname{Ext}_{\Lambda}^{1}(T, X)$ and $k \in R_{-}$we get

$$
\begin{equation*}
h_{k}^{\prime}=-\operatorname{dim} \operatorname{Ext}_{\underline{\mathcal{E}}}^{1}\left(S_{k}, M\right) \quad \text { and therefore } \quad g_{k}=h_{k}-h_{k}^{\prime} \tag{6.11}
\end{equation*}
$$

Moreover, for $k \in R_{-}$we have

$$
\begin{equation*}
\left(\hat{y}_{k}+1\right)^{h_{k}} F\left(\left(\hat{y}_{l}\right)_{l \in R_{-}}\right)=\left(\hat{y}_{k}^{\prime}+1\right)^{h_{k}^{\prime}} F^{\prime}\left(\left(\hat{y}_{l}^{\prime}\right)_{l \in R_{-}}\right) \tag{6.12}
\end{equation*}
$$

and for $l \in R$ we have

$$
g_{l}^{\prime}= \begin{cases}g_{l}-h_{k} B_{l, k}^{(T)}+g_{k}\left[B_{l, k}^{(T)}\right]_{+} & \text {if } l \neq k, \tag{6.13}\\ -g_{k} & \text { if } l=k\end{cases}
$$

Remark 6.5. Observe that (6.13) is just DWZ2, (2.11)] (proved in DWZ2, Lemma 5.2]) extended to our situation with coefficients. Our independent proof for this situation is quite different.

Proof. We know from BIRSm, Theorems 5.3 and 6.4] that the stable endomorphism algebra $\underline{\mathcal{E}}_{T}$ is given by a quiver with potential, and $\underline{\mathcal{E}}_{T^{\prime}}$ is obtained from $\underline{\mathcal{E}}_{T}$ by a mutation of quiver potentials in direction k. Then by Proposition 6.3 the $\mathcal{E}_{T^{\prime \prime}}$ module $M^{\prime}:=\operatorname{Ext}_{\Lambda}^{1}\left(T^{\prime}, X\right)$ is obtained from the $\underline{\mathcal{E}}_{T}$-module $M=\operatorname{Ext}_{\Lambda}^{1}(T, X)$ by mutation in direction k in the sense of [DWZ2, (4.16) and (4.17)].

Now, equation (6.11) follows from the description of the minimal injective presentation of M in DWZ2, Remark 10.8]. In fact, with the notation used there, we have obviously $\operatorname{dim} U_{k}^{*}=\operatorname{dim} \operatorname{Ext}_{\mathcal{E}_{T}}^{1}\left(S_{k}, M\right)=\tilde{h}_{k}^{\prime}$. On the other hand, by the definition of the mutation procedure for M in direction k and the construction of U_{k}^{*} we have $\operatorname{dim} U_{k}^{*}=\operatorname{dim} \operatorname{Hom}_{\underline{E}_{T^{\prime}}}\left(S_{k}, M^{\prime}\right)=h_{k}^{\prime}$.

Similarly, equation (6.12) follows now from the "Key-Lemma" DWZ2, Lemma 5.2].

Next, let Z_{k} be the $r \times r$ matrix defined by

$$
Z_{k}:=\left(\begin{array}{ccccccc}
1 & & 0 & 0 & 0 & & 0 \\
& \ddots & & & & \ddots & \\
0 & & 1 & 0 & 0 & & 0 \\
{\left[-B_{k, 1}^{(T)}\right]_{+}} & \cdots & {\left[-B_{k, k-1}^{(T)}\right]_{+}} & -1 & {\left[-B_{k, k+1}^{(T)}\right]_{+}} & \cdots & {\left[-B_{k, r}^{(T)}\right]_{+}} \\
0 & & 0 & 0 & 1 & & 0 \\
& \ddots & & & & \ddots & \\
0 & & 0 & 0 & 0 & & 1
\end{array}\right)
$$

To prove equation (6.13), note that $B^{\left(T^{\prime}\right)}=Z_{k}^{t} B^{(T)} Z_{k}$; see GLS2, Proposition 7.5]. Moreover, if we apply $\operatorname{Hom}_{\Lambda}(-, X)$ to the second short exact sequence in (6.8) we obtain with $M=\operatorname{Ext}_{\Lambda}^{1}(T, X)$ the following exact sequence:

$$
\begin{aligned}
0 \rightarrow \operatorname{Hom}_{\Lambda}\left(T_{k}, X\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(\bigoplus_{l \in R} T_{l}^{\left[B_{l, k}^{(T)}\right]_{+}}, X\right) & \rightarrow \operatorname{Hom}_{\Lambda}\left(T_{k}^{\prime}, X\right) \\
& \rightarrow M(k) \xrightarrow{M\left(\beta_{k}\right)} \bigoplus_{l \in R_{-}} M(l)^{\left[-B_{k, l}^{(T)}\right]_{+}},
\end{aligned}
$$

where $\operatorname{dim} \operatorname{Ker}\left(M\left(\beta_{k}\right)\right)=-h_{k}$. Thus

$$
\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}\left(T^{\prime}, X\right)=\left(\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}(T, X)\right) \cdot Z_{k}^{t}-h_{k} \mathbf{e}_{k},
$$

where \mathbf{e}_{k} is the k th standard coordinate vector of \mathbb{Z}^{r}. Now, using $Z_{k}=Z_{k}^{-1}$ and $B_{k, k}^{(T)}=0$, we find $\mathbf{g}^{\prime}=\mathbf{g} Z_{k}+h_{k} \mathbf{e}_{k} B^{(T)}$. This implies our claim since $-B_{k, l}^{(T)}=B_{l, k}^{(T)}$ for all $(k, l) \in R_{-} \times R$.
6.3. Proof of Theorem 4. Again, let $W:=W_{\mathbf{i}}$. We show in a first step that

$$
\varphi_{X}=\theta_{X}^{W}
$$

for all $X \in \mathcal{C}_{w}$. It is well known that the morphism $\underline{x}_{\mathrm{i}}:\left(\mathbb{C}^{*}\right)^{r} \rightarrow N^{w}$ is dominant. In fact, by [L2, Proposition 2.7] it is injective, and N^{w} is irreducible and of dimension r. Since $\varphi_{X} \in \mathbb{C}\left[N^{w}\right]$ and θ_{X}^{W} is a rational function, it is sufficient to verify this equality on $\underline{x}_{\mathbf{i}}(\mathbf{t})$; see also GLS5, Corollary 15.7]. Now, we have:

$$
\begin{aligned}
\varphi_{X}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right) & =\sum_{\mathbf{a} \in \mathbb{N}^{r}} \chi\left(\mathcal{F}_{\mathbf{i}, \mathbf{a}, X}\right) \mathbf{t}^{\mathbf{a}} \\
& =\mathbf{t}^{\mathbf{a}^{-}(X)} \sum_{\mathbf{a} \in \mathbb{N}^{r}} \chi\left(\operatorname{Gr}_{d_{\mathbf{i}, X}(\mathbf{a})}^{\mathcal{E}}\left(\operatorname{Ext}_{\Lambda}^{1}(W, X)\right)\right) \mathbf{t}^{\mathbf{a}-\mathbf{a}^{-}(X)} \\
& \left.=\varphi_{W}^{\left(\operatorname{dim}_{W}^{\operatorname{Hom}}\right.}{ }_{\Lambda}(W, X)\right) \cdot B^{(W)} \\
& \left.\underline{x}_{\mathbf{i}}(\mathbf{t})\right) \sum_{\mathbf{d} \in \mathbb{N}^{R-}} \chi\left(\operatorname{Gr}_{\mathbf{d}}^{\mathcal{E}_{W}}\left(\operatorname{Ext}_{\Lambda}^{1}(W, X)\right)\right) \hat{\varphi}_{W}^{\mathbf{d}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right) \\
& =\theta_{X}^{W}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)
\end{aligned}
$$

The first equality is just the description of φ_{X} given in [GLS5, Proposition 6.1], and the second equality follows directly from Theorem 1. To prove the third equality, we have to show that $\mathbf{t}^{\mathbf{a - -} \mathbf{a}^{-}(X)}=\hat{\varphi}_{W}^{\mathbf{d}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)$ for all $\mathbf{a} \in \mathbb{N}^{r}$ and $\mathbf{d}=\left(d_{k}\right)_{k \in R_{-}}:=$ $d_{\mathbf{i}, X}(\mathbf{a})$. Proposition 5.1 yields

$$
\hat{\varphi}_{W}^{\mathbf{d}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=\prod_{k \in R_{-}}\left(t_{k}+t_{k}^{-1}\right)^{d_{k}}
$$

and by Theorem 3.27 we have

$$
d_{k}=\left(a_{k}^{-}-a_{k}\right)+\left(a_{k^{-}}^{-}-a_{k^{-}}\right)+\cdots+\left(a_{k_{\min }}^{-}-a_{k_{\min }}\right)
$$

for all $k \in R_{-}$, where $\mathbf{a}^{-}(X)=\left(a_{r}^{-}, \ldots, a_{1}^{-}\right)$. Observe that for $k \in R_{\max }$ we have $d_{k^{-}}=a_{k}-a_{k}^{-}$. Now an easy calculation yields the result. The last equality is just the definition of θ_{X}^{W}. Since the image of $\underline{x}_{\mathbf{i}}$ is dense in N^{w} and φ_{X} is regular (and thus continuous), we get $\varphi_{X}=\theta_{X}^{W}$.

Since W is V_{i}-reachable, it remains to show the following: If a new cluster-tilting module T^{\prime} is obtained from a cluster-tilting module T by mutation in direction k,
then $\theta_{X}^{T^{\prime}}=\theta_{X}^{T}$ for all $X \in \mathcal{C}_{w}$. This follows from Lemma 6.4 with the notation used there and a calculation inspired from the proof of [FZ2, Proposition 6.8]:

$$
\begin{aligned}
\theta_{X}^{T} & =\varphi_{T}^{\mathbf{g}} F\left(\hat{\varphi}_{T}\right) \\
& =\varphi_{T}^{\mathbf{g}}\left(\hat{\varphi}_{T, k}+1\right)^{-h_{k}} F^{\prime}\left(\hat{\varphi}_{T^{\prime}}\right)\left(\hat{\varphi}_{T^{\prime}, k}+1\right)^{h_{k}^{\prime}} \\
& =\varphi_{T}^{\mathbf{g}}\left(\hat{\varphi}_{T, k}+1\right)^{-h_{k}}\left(\frac{\hat{\varphi}_{T, k}+1}{\hat{\varphi}_{T, k}}\right)^{h_{k}^{\prime}} F^{\prime}\left(\hat{\varphi}_{T^{\prime}}\right) \\
& =\varphi_{T}^{\mathbf{g}}\left(\hat{\varphi}_{T, k}+1\right)^{-g_{k}} \hat{\varphi}_{T, k}^{-h_{k}^{\prime}} F^{\prime}\left(\hat{\varphi}_{T^{\prime}}\right) \\
& =\varphi_{T}^{\mathbf{g}}\left(\varphi_{T_{k}} \varphi_{T_{k}^{\prime}} \prod_{l \in R} \varphi_{T_{l}}^{-\left[-B_{l, k}^{(T)}\right]_{+}}\right)^{-g_{k}}\left(\prod_{l \in R} \varphi_{T_{l}}^{B_{l, k}^{(T)}}\right)^{-h_{k}^{\prime}} F^{\prime}\left(\hat{\varphi}_{T^{\prime}}\right) \\
& =\left(\prod_{l \in R} \varphi_{T_{l}}^{g_{l}+\left[-B_{l, k}^{(T)}\right]+g_{k}-B_{l, k}^{(T)} h_{k}^{\prime}}\right)\left(\varphi_{T_{k}} \varphi_{T_{k}^{\prime}}\right)^{-g_{k}} F^{\prime}\left(\hat{\varphi}_{T^{\prime}}\right) \\
& =\left(\prod_{l \in R} \varphi_{T_{l}}^{g_{l}+\left[B_{l, k}^{(T)}\right]+g_{k}-B_{l, k}^{(T)} h_{k}}\right)\left(\varphi_{T_{k}} \varphi_{T_{k}^{\prime}}\right)^{-g_{k}} F^{\prime}\left(\hat{\varphi}_{T^{\prime}}\right) \quad\left(\text { since } g_{k}=h_{k}-h_{k}^{\prime}\right) \\
& =\varphi_{T^{\prime}}^{\mathrm{g}^{\prime}} F^{\prime}\left(\hat{\varphi}_{T^{\prime}}\right) \quad(\text { by (6.13) }) \\
& =\theta_{X}^{T^{\prime}}
\end{aligned}
$$

(Here we set $\mathbf{g}:=\mathbf{g}_{X}^{T}$ and $\mathbf{g}^{\prime}:=\mathbf{g}_{X}^{T^{\prime}}$.) At the beginning, we used that the Y seed $\left(\left(B_{k, l}^{\left(T^{\prime}\right)}\right)_{k, l \in R_{-}}, \hat{\varphi}_{T^{\prime}}\right)$ is obtained from $\left(\left(B_{k, l}^{(T)}\right)_{k, l \in R_{-}}, \hat{\varphi}_{T}\right)$ by Y-seed mutation in direction k by [FZ2, Proposition 3.9].
6.4. An example. Let Q be the Kronecker quiver

$$
1 \underset{b}{\stackrel{a}{\longrightarrow}} 2
$$

and let $\Lambda=\mathbb{C} \bar{Q} /(c)$ be the corresponding preprojective algebra. Then $\mathbf{i}=(2,1,2,1)$ is a reduced expression for the Weyl group element $w=s_{2} s_{1} s_{2} s_{1}$. (The stable category $\underline{\mathcal{C}}_{w}$ is equivalent to the cluster category of $\mathbb{C} Q$; see [GLS5, Section 16].)

The following picture describes the module $V:=V_{\mathbf{i}}=V_{1} \oplus \cdots \oplus V_{4}$ and the quiver Γ_{V} of $\mathcal{E}_{V}:=\operatorname{End}_{\Lambda}(V)^{\mathrm{op}}$. (The numbers 1 and 2 in the picture are basis vectors of the modules V_{k}. The solid edges show how the arrows a and b of \bar{Q} act on these vectors, and the dotted edges illustrate the actions of a^{*} and b^{*}.)

From the well-known description of \mathcal{E}_{V} by a quiver with relations, we obtain $B^{(V)}$, the matrix of the Ringel form of \mathcal{E}_{V} and its inverse:

$$
B^{(V)}=\left(\begin{array}{cccc}
0 & -2 & 1 & 0 \\
2 & 0 & -2 & 1 \\
-1 & 2 & 1 & -2 \\
0 & -1 & 0 & 1
\end{array}\right) \quad \text { and } \quad\left(B^{(V)}\right)^{-1}=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
1 & 2 & 4 & 6 \\
0 & 1 & 2 & 4
\end{array}\right)
$$

Note that the entries of $\left(B^{(V)}\right)^{-1}$ describe the dimensions of $\operatorname{Hom}_{\Lambda}\left(V_{j}, V_{i}\right)$. Observe also that $\underline{\mathcal{E}}_{V}:=\underline{\operatorname{End}}_{\mathcal{C}_{w}}(V)^{\text {op }}$ is isomorphic to $\mathbb{C} Q$. Next, we describe

$$
W:=W_{\mathbf{i}}=I_{w} \oplus \Omega_{w}\left(V_{\mathbf{i}}\right)=W_{1} \oplus \cdots \oplus W_{4}
$$

Note that $I_{w}=V_{3} \oplus V_{4}, W_{3}=V_{3}$ and $W_{4}=V_{4}$. We have short exact sequences

$$
0 \rightarrow W_{1} \rightarrow V_{3}^{3} \rightarrow V_{1} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow W_{2} \rightarrow V_{3}^{2} \rightarrow V_{2} \rightarrow 0
$$

Thus

In our situation, we have $W=\left(\mu_{1} \circ \mu_{2}\right)(V)$. Using GLS2, Section 7] we get

$$
B^{(W)}=\left(\begin{array}{cccc}
0 & -2 & 3 & 0 \\
2 & 0 & -4 & -1 \\
-3 & 4 & 1 & 0 \\
0 & 1 & -2 & 1
\end{array}\right) \quad \text { and } \quad\left(B^{(W)}\right)^{-1}=\left(\begin{array}{cccc}
25 & 14 & 9 & 14 \\
16 & 9 & 6 & 9 \\
11 & 6 & 4 & 6 \\
6 & 3 & 2 & 4
\end{array}\right)
$$

The quiver Γ_{W} of $\mathcal{E}_{W}:=\operatorname{End}_{\Lambda}(W)^{\text {op }}$ looks as follows:

(Here we write $i \xrightarrow{m} j$ in case there are m arrows from i to j.)
For $\lambda \in \mathbb{C}$ we consider the following Λ-module in \mathcal{C}_{w} :

Note that $X_{\lambda} \cong \Omega_{w}\left(X_{\lambda}\right)$. A direct calculation shows that $\operatorname{Ext}_{\Lambda}^{1}\left(V, X_{\lambda}\right)$ is an (indecomposable) regular $\mathbb{C} Q$-module with dimension vector $(1,1)$ and that $\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}\left(V, X_{\lambda}\right)=(1,2,3,5)$. This implies that

$$
\left(\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}\left(V, X_{\lambda}\right)\right) \cdot B^{(V)}=(1,-1,0,1)
$$

Using the exact sequences
$0 \rightarrow \operatorname{Hom}_{\Lambda}\left(V_{k}, X_{\lambda}\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(P\left(V_{k}\right), X_{\lambda}\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(W_{k}, X_{\lambda}\right) \rightarrow \operatorname{Ext}_{\Lambda}^{1}\left(V_{k}, X_{\lambda}\right) \rightarrow 0$ for $k=1,2$, we obtain $\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}\left(W, X_{\lambda}\right)=(9,5,3,5)$, and therefore

$$
\left(\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}\left(W, X_{\lambda}\right)\right) \cdot B^{(W)}=(1,-1,0,0)
$$

Finally, since $\Omega_{w}^{-1}\left(X_{\lambda}\right) \cong X_{\lambda}$, we get that also $\operatorname{Ext}_{\Lambda}^{1}\left(W, X_{\lambda}\right)$ is an indecomposable regular $\mathbb{C} Q$-module with dimension vector $(1,1)$.

It is straightforward to calculate (using the Euler characteristics of the corresponding varieties of partial composition series) the following:

$$
\begin{aligned}
\varphi_{X_{\lambda}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right) & =t_{3} t_{2}^{3} t_{1}^{4}+t_{4} t_{3} t_{2}^{2} t_{1}^{4}+t_{4} t_{3}^{2} t_{2}^{2} t_{1}^{3} \\
\varphi_{V_{1}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right) & =t_{3}+t_{1} \\
\varphi_{V_{2}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right) & =t_{4}\left(t_{3}^{2}+2 t_{3} t_{1}+t_{1}^{2}\right)+t_{2} t_{1}^{2} \\
\varphi_{V_{3}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right) & =t_{3} t_{2}^{2} t_{1}^{3} \\
\varphi_{V_{4}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right) & =t_{4} t_{3}^{2} t_{2}^{3} t_{1}^{4} \\
\varphi_{W_{1}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right) & =t_{3}^{3} t_{2}^{6} t_{1}^{8} \\
\varphi_{W_{2}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right) & =t_{3}^{2} t_{2}^{3} t_{1}^{4}
\end{aligned}
$$

Note that the φ-functions of the direct summands of W evaluate on $\underline{x}_{\mathbf{i}}(\mathbf{t})$ to monomials.

The F-polynomial of each indecomposable representation of

$$
\operatorname{End}_{\mathcal{C}_{w}}(V)^{\mathrm{op}} \cong \operatorname{End}_{\mathcal{C}_{w}}(W)^{\mathrm{op}} \cong \mathbb{C} Q
$$

with dimension vector $(1,1)$ is $1+y_{2}+y_{1} y_{2}$. Thus, from the definitions we get

$$
\begin{aligned}
\theta_{X_{\lambda}}^{W} & =\varphi_{W_{1}} \varphi_{W_{2}}^{-1}\left(1+\hat{\varphi}_{W, 2}+\hat{\varphi}_{W, 1} \hat{\varphi}_{W, 2}\right) \\
\theta_{X_{\lambda}}^{V} & =\varphi_{V_{1}} \varphi_{V_{2}}^{-1} \varphi_{V_{4}}\left(1+\hat{\varphi}_{V, 2}+\hat{\varphi}_{V, 1} \hat{\varphi}_{V, 2}\right)
\end{aligned}
$$

Thus, by Theorem 4 we should have

$$
\begin{equation*}
\varphi_{X_{\lambda}}=\theta_{X_{\lambda}}^{V}=\theta_{X_{\lambda}}^{W} \tag{6.14}
\end{equation*}
$$

From the matrices $B^{(V)}$ resp. $B^{(W)}$ we get

$$
\begin{array}{ll}
\hat{\varphi}_{V, 1}=\varphi_{V_{2}}^{2} \varphi_{V_{3}}^{-1}, & \hat{\varphi}_{W, 1}=\varphi_{W_{2}}^{2} \varphi_{V_{3}}^{-3} \\
\hat{\varphi}_{V, 2}=\varphi_{V_{1}}^{-2} \varphi_{V_{3}}^{2} \varphi_{V_{4}}^{-1}, & \hat{\varphi}_{W, 2}=\varphi_{W_{1}}^{-2} \varphi_{V_{3}}^{4} \varphi_{V_{4}}
\end{array}
$$

We verify equation (6.14) by evaluation on $\underline{x}_{\mathbf{i}}(\mathbf{t})$. First, we observe that

$$
\hat{\varphi}_{W, 1}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{3} t_{1}^{-1} \quad \text { and } \quad \hat{\varphi}_{W, 2}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{4} t_{2}^{-1}
$$

This implies that
$\left(\varphi_{W_{1}} \varphi_{W_{2}}^{-1}\left(1+\hat{\varphi}_{W, 2}+\hat{\varphi}_{W, 1} \hat{\varphi}_{W, 2}\right)\right)\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)=t_{3} t_{2}^{3} t_{1}^{4}\left(1+t_{4} t_{2}^{-1}+t_{4} t_{3} t_{2}^{-1} t_{1}^{-1}\right)=\varphi_{X_{\lambda}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)$.
On the other hand, from the definitions we get

$$
\varphi_{V_{1}} \varphi_{V_{2}}^{-1} \varphi_{V_{4}}\left(1+\hat{\varphi}_{V, 2}+\hat{\varphi}_{V, 1} \hat{\varphi}_{V, 2}\right)=\varphi_{V_{1}}^{-1} \varphi_{V_{2}}^{-1}\left(\varphi_{V_{1}}^{2} \varphi_{V_{4}}+\varphi_{V_{3}}^{2}+\varphi_{V_{2}}^{2} \varphi_{V_{3}}\right)
$$

Evaluation at $\underline{x}_{\mathbf{i}}(\mathbf{t})$ yields

$$
\begin{aligned}
\frac{t_{3} t_{2}^{2} t_{1}^{3}\left(t_{4}\left(t_{3}+t_{1}\right)^{2}+t_{2} t_{1}^{2}\right)^{2}+t_{4} t_{3}^{2} t_{2}^{3} t_{1}^{4}\left(t_{3}+t_{1}\right)^{2}+t_{3}^{2} t_{2}^{4} t_{1}^{6}}{\left(t_{3}+t_{1}\right)\left(t_{4}\left(t_{3}+t_{1}\right)^{2}+t_{2} t_{1}^{2}\right)} & =t_{4}\left(t_{3}^{2} t_{2}^{2} t_{1}^{3}+t_{3} t_{2}^{2} t_{1}^{4}\right)+t_{3} t_{2}^{3} t_{1}^{4} \\
& =\varphi_{X_{\lambda}}\left(\underline{x}_{\mathbf{i}}(\mathbf{t})\right)
\end{aligned}
$$

7. E-invariant and Ext

For a cluster-tilting module T in \mathcal{C}_{w}, and $\underline{\mathcal{E}}:=\underline{\mathcal{E}}_{T}$, let $E: \mathcal{C}_{w} \rightarrow \bmod (\underline{\mathcal{E}})$ be the functor defined by $X \mapsto \operatorname{Ext}_{\Lambda}^{1}(T, X)$. This functor is known to be dense (i.e. up to isomorphism, all objects in $\bmod (\underline{\mathcal{E}})$ are in the image of E); see for example KR, Proposition 2.1(c)].

The following proposition shows that, for an $\underline{\mathcal{E}}$-module of the form $E X$, the E invariant defined in DWZ2] has a nice geometric description as the codimension of the orbit of X in the nilpotent variety. This result plays a crucial role in the proof of Proposition 8.6 and of Theorem 5.

Proposition 7.1. Let $T \in \mathcal{C}_{w}$ be a $V_{\mathbf{i}}$-reachable cluster-tilting module. Then for any $X, Y \in \mathcal{C}_{w}$ there is a short exact sequence

$$
0 \rightarrow D \operatorname{Hom}_{\underline{\mathcal{E}}}\left(Y, \tau_{\underline{\mathcal{E}}}(X)\right) \rightarrow \operatorname{Ext}_{\Lambda}^{1}(X, Y) \rightarrow \operatorname{Hom}_{\underline{\mathcal{E}}}\left(X, \tau_{\underline{\mathcal{E}}}(Y)\right) \rightarrow 0
$$

In particular, if $\underline{\operatorname{dim}}_{\Lambda}(X)=\mathbf{d}$ we have

$$
\operatorname{codim}_{\Lambda_{\mathrm{d}}^{w}}\left(\mathrm{GL}_{\mathrm{d}} \cdot X\right)=\operatorname{dim} \operatorname{Hom}_{\underline{\mathcal{E}}}\left(E X, \tau_{\underline{\mathcal{E}}}(E X)\right)=\operatorname{dim} \operatorname{Hom}_{\underline{\mathcal{E}}}\left(\tau_{\underline{\mathcal{E}}}^{-1}(E X), E X\right)
$$

Proof. The stable endomorphism algebra $\underline{\mathcal{E}}$ of T is the Jacobian algebra of a quiver with potential; see BIRSm. Denote by G_{T} the corresponding Ginzburg dg-algebra and by $\mathcal{D}_{\text {perf }}\left(G_{T}\right)$ resp. $\mathcal{D}_{\text {f.d. }}\left(G_{T}\right)$ the corresponding subcategory of perfect complexes resp. of complexes with total finite-dimensional cohomology of the derived category. The shift in $\mathcal{D}_{\text {perf }}\left(G_{T}\right)$ is denoted by Σ. Following Amiot A we have the generalized cluster category as the triangulated quotient

$$
\mathcal{C}_{T}:=\mathcal{D}_{\text {perf }}\left(G_{T}\right) / \mathcal{D}_{\text {f.d. }}\left(G_{T}\right)
$$

It follows from ART that $\mathcal{C}_{w} \cong \mathcal{C}_{V}$ as triangulated categories, and then from BIRSm and KY that $\mathcal{C}_{V} \cong \mathcal{C}_{T}$. Next, denote by $\mathcal{F} \subseteq \mathcal{D}_{\text {perf }}\left(G_{T}\right)$ the subcategory which consists of the cones of maps in $\operatorname{add}\left(G_{T}\right)$. Then the canonical projection $\mathcal{D}_{\text {perf }}\left(G_{T}\right) \rightarrow \mathcal{C}_{T}$ induces an equivalence of additive categories $\mathcal{F} \rightarrow \mathcal{C}_{T}$ A Proposition 2.9, Lemma 2.10]; see also [KY, Remark 4.1]. By [A, Proposition 2.12] we have for $X, Y \in \mathcal{F}$ a short exact sequence

$$
0 \rightarrow \operatorname{Ext}_{\mathcal{D}_{\mathrm{perf}}\left(G_{T}\right)}^{1}(X, Y) \rightarrow \operatorname{Ext}_{\mathcal{C}_{T}}^{1}(X, Y) \rightarrow D \operatorname{Ext}_{\mathcal{D}_{\text {perf }}\left(G_{T}\right)}^{1}(Y, X) \rightarrow 0
$$

We have to show that $D \operatorname{Ext}_{\mathcal{D}_{\text {perf }}\left(G_{T}\right)}^{1}(X, Y) \cong \operatorname{Hom}_{\underline{\mathcal{E}}}\left(H^{0}(Y), \tau_{\underline{\mathcal{E}}}\left(H^{0}(X)\right)\right)$, since $H^{0}(X) \cong \operatorname{Hom}_{\mathcal{D}_{\text {perf }}\left(G_{T}\right)}\left(G_{T}, X\right)=\operatorname{Hom}_{\mathcal{C}_{T}}(T, X)$ for $X \in \mathcal{F}$.

To this end we choose a minimal presentation

$$
\begin{equation*}
P_{1} \xrightarrow{p} P_{0} \rightarrow X \rightarrow \Sigma P_{1} \text { with } P_{0}, P_{1} \in \operatorname{add}\left(G_{T}\right) \tag{7.1}
\end{equation*}
$$

Now, for $P \in \operatorname{add}\left(G_{T}\right)$ and $Y \in \mathcal{D}_{\text {perf }}\left(G_{T}\right)$ we have

$$
\operatorname{Hom}_{\mathcal{D}_{\mathrm{perf}}\left(G_{T}\right)}(P, Y)=\operatorname{Hom}_{\underline{\mathcal{E}}}\left(H^{0}(P), H^{0}(Y)\right)
$$

and $\operatorname{Hom}_{\mathcal{D}_{\text {perf }}}(P, \Sigma Y)=0$ if $Y \in \mathcal{F}$. Thus,

$$
\operatorname{Ext}_{\mathcal{D}_{\text {perf }}\left(G_{T}\right)}^{1}(X, Y)=\operatorname{Hom}_{\mathcal{D}_{\text {perf }}\left(G_{T}\right)}(X, \Sigma Y) \cong \operatorname{Coker}\left(\operatorname{Hom}_{\underline{\mathcal{E}}}\left(H^{0}(p), H^{0}(Y)\right)\right)
$$

Next, the sequence

$$
H^{0}\left(P_{1}\right) \xrightarrow{H^{0}(p)} H^{0}\left(P_{0}\right) \rightarrow H^{0}(X) \rightarrow 0
$$

is a minimal projective presentation in $\bmod (\underline{\mathcal{E}})$ because of the minimality of (7.1). Since we have $\operatorname{Hom}_{\underline{\mathcal{E}}}\left(H^{0}(P), L\right) \cong D \operatorname{Hom}_{\underline{\mathcal{E}}}\left(L, \nu_{\underline{\mathcal{E}}}\left(H^{0}(P)\right)\right)$ for $L \in \bmod (\underline{\mathcal{E}})$ and $P \in \operatorname{add}\left(G_{T}\right)$ we conclude that

$$
\begin{aligned}
D \operatorname{Hom}_{\mathcal{D}_{\operatorname{perf}}\left(G_{T}\right)}(X, \Sigma Y) & \cong \operatorname{Ker}\left(\operatorname{Hom}_{\underline{\mathcal{E}}}\left(H^{0}(Y), \nu_{\underline{\mathcal{E}}}\left(H^{0}(p)\right)\right)\right) \\
& =\operatorname{Hom}_{\underline{\mathcal{E}}}\left(H^{0}(Y), \tau_{\underline{\mathcal{E}}}\left(H^{0}(X)\right)\right) .
\end{aligned}
$$

Here $\nu_{\mathcal{E}}$ is the usual Nakayama functor. Finally, by Lemma 8.1 below, we have $\operatorname{dim} \operatorname{Ext}_{\Lambda}^{1}(X, X)=2 \operatorname{codim}_{\Lambda_{\mathrm{d}}^{w}}\left(\mathrm{GL}_{\mathbf{d}} \cdot X\right)$. This yields the result.

8. GENERIC BASES FOR CLUSTER ALGEBRAS

8.1. Generically reduced components. For a $V_{\mathbf{i}}$-reachable cluster-tilting module T in \mathcal{C}_{w}, the algebra $\mathcal{E}:=\underline{\mathcal{E}}_{T}$ is given by a quiver with potential BIRSm. Then by DWZ2, Corollary 10.8],

$$
\operatorname{dim} \operatorname{Hom}_{\underline{\mathcal{E}}}\left(\tau_{\underline{\mathcal{E}}}^{-1}(Y), Y\right)=E^{\mathrm{inj}}(Y)
$$

is the E-invariant defined in DWZ2. Since this translates into a simple rank condition [DWZ2, Equation (1.17)], for each irreducible component $\mathcal{Z} \in \operatorname{Irr}(\underline{\mathcal{E}})$ the following hold:
(i) There is a dense open subset $\mathcal{U}^{\prime} \subseteq \mathcal{Z}$ and a unique $h(\mathcal{Z}) \in \mathbb{N}$ such that

$$
\operatorname{dim} \operatorname{Hom}_{\underline{\mathcal{E}}}\left(\tau_{\underline{\mathcal{E}}}^{-1}(U), U\right)=h(\mathcal{Z})
$$

for all $U \in \mathcal{U}^{\prime}$.
(ii) There is a dense open subset $\mathcal{U}^{\prime \prime} \subseteq \mathcal{Z}$ and a unique $e(\mathcal{Z}) \in \mathbb{N}$ such that

$$
\operatorname{dim} \operatorname{Ext}_{\underline{\mathcal{E}}}^{1}(U, U)=e(\mathcal{Z})
$$

for all $U \in \mathcal{U}^{\prime \prime}$.
(iii) There is a dense open subset $\mathcal{U}^{\prime \prime \prime} \subseteq \mathcal{Z}$ and a unique $c(\mathcal{Z}) \in \mathbb{N}$ such that

$$
\operatorname{codim}_{\mathcal{Z}}\left(U \cdot \mathrm{GL}_{\mathbf{d}}\right)=c(\mathcal{Z})
$$

for all $U \in \mathcal{U}^{\prime \prime \prime}$.
It is well known that

$$
c(\mathcal{Z}) \leq e(\mathcal{Z}) \leq h(\mathcal{Z})
$$

(For the second inequality, one uses the Auslander-Reiten formula

$$
\left.\operatorname{Ext}_{\underline{\mathcal{E}}}^{1}(U, U) \cong D \underline{\operatorname{Hom}_{\underline{\mathcal{E}}}}\left(\tau_{\underline{\mathcal{E}}}^{-1}(Y), Y\right) .\right)
$$

For an algebra A and A-modules M and $N, \underline{\operatorname{Hom}}_{A}(M, N)$ denotes the homomorphism space $\operatorname{Hom}_{A}(M, N)$ modulo the subspace of homomorphisms factoring through projectives.) It follows from Voigt's Lemma [G, Proposition 1.1] that \mathcal{Z} is (scheme-theoretically) generically reduced if and only if $c(\mathcal{Z})=e(\mathcal{Z})$. Recall that \mathcal{Z} is strongly reduced if $c(\mathcal{Z})=h(\mathcal{Z})$. So, strongly reduced components are in particular generically reduced.
8.2. Open subsets of nilpotent varieties. For $\mathbf{d} \in \mathbb{N}^{n}$ let $\Lambda_{\mathbf{d}}$ be the affine variety of nilpotent representations with dimension vector \mathbf{d} of the preprojective algebra Λ. Following Lusztig [L1, Section 12], Λ_{d} is equidimensional with

$$
\begin{equation*}
\operatorname{dim}\left(\Lambda_{\mathbf{d}}\right)=\sum_{a \in Q_{1}} \mathbf{d}(s(a)) \mathbf{d}(t(a)) \tag{8.1}
\end{equation*}
$$

On $\Lambda_{\mathbf{d}}$ acts the group $\mathrm{GL}_{\mathbf{d}}=\prod_{i \in Q_{0}} \mathrm{GL}_{\mathbf{d}(i)}(\mathbb{C})$ from the left by conjugation. We have the following surprising result, which we borrow from [GLS4, Lemma 4.3].
Lemma 8.1. Let M be a nilpotent Λ-module with $\underline{\operatorname{dim}}_{\Lambda}(M)=\mathbf{d}$. Then

$$
2 \operatorname{codim}_{\Lambda_{\mathrm{d}}}\left(\mathrm{GL}_{\mathbf{d}} \cdot M\right)=\operatorname{dim} \operatorname{Ext}_{\Lambda}^{1}(M, M)
$$

Proof. We have
$2 \operatorname{codim}_{\Lambda_{\mathbf{d}}}\left(\mathrm{GL}_{\mathbf{d}} \cdot M\right)=2\left(\operatorname{dim}\left(\Lambda_{\mathbf{d}}\right)-\operatorname{dim}\left(\mathrm{GL}_{\mathbf{d}}\right)+\operatorname{dim} \operatorname{End}_{\Lambda}(M)\right)=\operatorname{dim} \operatorname{Ext}_{\Lambda}^{1}(M, M)$, where the last equality holds by (8.1) and (CB Lemma 1].

Using the notation from Section 3, let $J_{w}:=J_{r, 1}$, where $\Lambda=A$ and $\mathbf{i}=$ $\left(i_{r}, \ldots, i_{1}\right)$ is a reduced expression of w. This definition does not depend on the choice of \mathbf{i}; see BIRS Proposition III.1.8].
Lemma 8.2. We have

$$
\mathcal{C}_{w}=\left\{X \in \bmod (\Lambda) \mid \operatorname{Ext}_{\Lambda}^{1}\left(D\left(\Lambda / J_{w}\right), X\right)=0=\operatorname{Hom}_{\Lambda}\left(X, D\left(J_{w}\right)\right)\right\}
$$

Thus, the subset $\Lambda_{\mathbf{d}}^{w}:=\left\{X \in \Lambda_{\mathbf{d}} \mid X \in \mathcal{C}_{w}\right\}$ is open in $\Lambda_{\mathbf{d}}$.
Proof. Since Λ / J_{w} is Gorenstein [BIRS, III Proposition 2.2 and Corollary 3.6] we have

$$
\mathcal{C}_{w}:=\operatorname{Fac}\left(\Lambda / J_{w}\right)=\left\{X \in \bmod \left(\Lambda / J_{w}\right) \mid \operatorname{Ext}_{\Lambda / J_{w}}^{1}\left(D\left(\Lambda / J_{w}\right), X\right)=0\right\}
$$

We consider the short exact sequence

$$
0 \rightarrow D\left(\Lambda / J_{w}\right) \xrightarrow{i} D(\Lambda) \xrightarrow{p} D\left(J_{w}\right) \rightarrow 0 .
$$

Since $\operatorname{Hom}_{\Lambda}(X, D(\Lambda)) \cong D(X)$ and $\operatorname{Hom}_{\Lambda}\left(X, D\left(\Lambda / J_{w}\right)\right) \cong D\left(X / J_{w} X\right)$ naturally, we conclude that $X \in \bmod \left(\Lambda / J_{w}\right)$ if and only if $\operatorname{Hom}_{\Lambda}(X, p)$ is an isomorphism.

For $X \in \operatorname{Fac}\left(\Lambda / J_{w}\right)$ we have by [BIRS, III.2.3],

$$
0=\operatorname{Ext}_{\Lambda}^{1}\left(D\left(\Lambda / J_{w}\right), X\right) \cong D \operatorname{Ext}_{\Lambda}^{1}\left(X, D\left(\Lambda / J_{w}\right)\right)
$$

It follows that

$$
0 \rightarrow \operatorname{Hom}_{\Lambda}\left(X, D\left(\Lambda / J_{w}\right)\right) \xrightarrow{\operatorname{Hom}_{\Lambda}(X, i)} \operatorname{Hom}_{\Lambda}(X, D(\Lambda)) \rightarrow \operatorname{Hom}_{\Lambda}\left(X, D\left(J_{w}\right)\right) \rightarrow 0
$$

is exact. Now, $\operatorname{Hom}_{\Lambda}(X, i)$ is an isomorphism since $X \in \bmod \left(\Lambda / J_{w}\right)$. This implies that $\operatorname{Hom}_{\Lambda}\left(J_{w}, X\right)=0$.

Conversely, if $X \in \bmod (\Lambda)$ fulfills the conditions of the lemma we conclude from $\operatorname{Hom}_{\Lambda}\left(X, D\left(J_{w}\right)\right)=0$ that $\operatorname{Hom}_{\Lambda}(X, i)$ is an isomorphism. Thus $X \in \bmod \left(\Lambda / J_{w}\right)$, and we infer $\operatorname{Ext}_{\Lambda / J_{w}}^{1}\left(D\left(\Lambda / J_{w}\right), X\right)=0$ from $\operatorname{Ext}_{\Lambda}^{1}\left(D\left(\Lambda / J_{w}\right), X\right)=0$.

If Λ is of Dynkin type, i.e. finite-dimensional, the conditions of the lemma define obviously an open subset in $\Lambda_{\mathbf{d}}$. Otherwise, J_{w} is as a tilting module a finitely presented Λ-module BIRS, Section III.1]. Thus we get an injective resolution

$$
0 \rightarrow D\left(\Lambda / J_{w}\right) \rightarrow \bigoplus_{i \in Q_{0}} D\left(e_{i} \Lambda\right)^{m_{i}} \rightarrow \bigoplus_{i \in Q_{0}} D\left(e_{i} \Lambda\right)^{n_{i}} \rightarrow 0
$$

so that $\operatorname{Hom}_{\Lambda}\left(X, D\left(J_{w}\right)\right)=0$ represents also in this case an open condition.
8.3. The syzygy functor preserves irreducible components. The results of this subsection will only be used in Section 9.1 where we prove the second part of Theorem 6] We consider for $\mathbf{e} \in \mathbb{N}^{R}$ the subset

$$
\Lambda_{\mathbf{d}, \mathbf{e}}^{w}:=\left\{X \in \Lambda_{\mathbf{d}}^{w} \mid \underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}(V, X)=\mathbf{e}\right\}
$$

By the upper semicontinuity of $\operatorname{dim} \operatorname{Hom}_{\Lambda}\left(V_{k},-\right)$ and Lemma 8.2, $\Lambda_{\mathbf{d}, \mathrm{e}}^{w}$ is a locally closed (possibly empty) subset of $\Lambda_{\mathbf{d}}$. Note that for a given e there is at most one $\mathbf{d}=\mathbf{d}(\mathbf{e})$ such that $\Lambda_{\mathbf{d}, \mathbf{e}}^{w} \neq \varnothing$. We showed in [GLS5, Section 14] that in case $\Lambda_{\mathbf{d}, \mathrm{e}}^{w} \neq \varnothing$, it is irreducible and of the same dimension as Λ_{d}. In particular, if $\Lambda_{\mathbf{d}, \mathbf{e}}^{w,} \neq \varnothing$ its Zariski closure is an irreducible component of $\Lambda_{\mathbf{d}}^{w}$ and each irreducible component of Λ_{d}^{w} is of this form.

Proposition 8.3. For $X \in \Lambda_{\mathbf{d}, \mathbf{e}}^{w}$ let $h: P \rightarrow X$ be a \mathcal{C}_{w}-admissible epimorphism (i.e. $P, X \in \mathcal{C}_{w}$ and h is an epimorphism with $\operatorname{Ker}(h) \in \mathcal{C}_{w}$), where P is \mathcal{C}_{w} -projective-injective. Then for $\mathbf{d}^{\prime}:=\operatorname{dim}_{\Lambda}(P)-\mathbf{d}$ and a unique $\mathbf{e}^{\prime} \in \mathbb{N}^{R}$ there exists an irreducible variety $\mathcal{E}_{\mathbf{e}^{\prime}, \mathbf{e}}$ together with open morphisms

such that for each $E \in \mathcal{E}_{\mathbf{e}^{\prime}, \mathbf{e}}$ there exists a short exact sequence

$$
0 \rightarrow \pi^{\prime}(E) \xrightarrow{i} P \xrightarrow{p} \pi(E) \rightarrow 0
$$

Proof. The proof consists of four steps.
(i) Let $\tilde{\mathbf{e}}$ be the (componentwise) minimum value of the map $\Lambda_{\mathbf{d}, \mathbf{e}}^{w} \rightarrow \mathbb{N}^{R_{-}}$defined by $X \mapsto \underline{\operatorname{dim}}\left(\underline{\operatorname{Hom}}_{\mathcal{C}_{w}}(V, X)\right)=\underline{\operatorname{dim}}\left(D \operatorname{Ext}_{\Lambda}^{2}(X, V)\right)$. Let $\Lambda_{\mathbf{d}, \mathbf{e}}^{w,-}$ be the open subset of $\Lambda_{\mathbf{d}, \mathrm{e}}^{w}$ defined by

$$
\Lambda_{\mathbf{d}, \mathbf{e}}^{w,-}:=\left\{X \in \Lambda_{\mathbf{d}, \mathbf{e}}^{w} \mid \underline{\operatorname{dim}}\left(\underline{\operatorname{Hom}}_{\mathcal{C}_{w}}(V, X)\right)=\tilde{\mathbf{e}}\right\}
$$

Suppose that $P \in \Lambda_{\mathbf{d}^{\prime \prime}, \mathbf{e}^{\prime \prime}}^{w}$ and set $\mathbf{e}^{\prime}:=\mathbf{e}^{\prime \prime}-\mathbf{e}+\tilde{\mathbf{e}}$. It is easy to see that for a short exact sequence

$$
0 \rightarrow X^{\prime} \rightarrow P \rightarrow X \rightarrow 0
$$

in \mathcal{C}_{w} with $X \in \Lambda_{\mathbf{d}, \mathbf{e}}^{w}$, we have $X^{\prime} \in \Lambda_{\mathbf{d}^{\prime}, \mathbf{e}^{\prime}}^{w}$ if and only if $X \in \Lambda_{\mathbf{d}, \mathbf{e}}^{w,-}$, since $\operatorname{Ext}_{\Lambda}^{1}\left(V, X^{\prime}\right) \cong \operatorname{Hom}_{\mathcal{C}_{w}}(V, X)$.
(ii) We claim that

$$
\begin{array}{r}
\mathcal{E}_{\mathbf{e}^{\prime}, \mathbf{e}}:=\left\{\left(X^{\prime}, i, p, X\right) \in \Lambda_{\mathbf{d}^{\prime}, \mathbf{e}^{\prime}}^{w} \times \operatorname{Hom}_{Q_{0}}\left(\mathbb{C}^{\mathbf{d}^{\prime}}, \mathbb{C}^{\mathbf{d}^{\prime \prime}}\right) \times \operatorname{Hom}_{Q_{0}}\left(\mathbb{C}^{\mathbf{d}^{\prime \prime}}, \mathbb{C}^{\mathbf{d}}\right) \times \Lambda_{\mathbf{d}, \mathbf{e}}^{w}\right. \\
\left.i \in \operatorname{Hom}_{\Lambda}\left(X^{\prime}, P\right) \text { injective } p \in \operatorname{Hom}_{\Lambda}(P, X) \text { surjective }, p \circ i=0\right\},
\end{array}
$$

together with the obvious projections has the required properties. By construction, we only have to show that π and π^{\prime} are open.
(iii) As for the openness of π, consider the vector bundle

$$
\mathcal{V}_{\mathbf{e}}:=\left\{(p, X) \in \operatorname{Hom}_{Q_{0}}\left(\mathbb{C}^{\mathbf{d}^{\prime \prime}}, \mathbb{C}^{\mathbf{d}}\right) \times \Lambda_{\mathbf{d}, \mathbf{e}}^{w} \mid p \in \operatorname{Hom}_{\Lambda}(P, X)\right\}
$$

This is a subbundle of the trivial vector bundle $\operatorname{Hom}_{Q_{0}}\left(\mathbb{C}^{\mathbf{d}^{\prime \prime}}, \mathbb{C}^{\mathbf{d}}\right) \times \Lambda_{\mathbf{d}, \mathbf{e}}^{w}$. In particular, the projection $\pi_{2}: \mathcal{V}_{\mathbf{e}} \rightarrow \Lambda_{\mathbf{d}, \mathrm{e}}^{w},(p, X) \mapsto X$ is an open morphism. The
set

$$
\mathcal{V}_{\mathbf{e}}^{\text {sur }}:=\left\{(p, X) \in \mathcal{V}_{\mathbf{e}} \mid p \text { surjective }\right\}
$$

is a dense open subset of \mathcal{V}_{e}.
It is a standard argument to check that

$$
\begin{aligned}
& \mathcal{E}_{\mathbf{e}}:=\left\{\left(X^{\prime}, i, p, X\right) \in \Lambda_{\mathbf{d}^{\prime}} \times \operatorname{Hom}_{Q_{0}}\left(\mathbb{C}^{\mathbf{d}^{\prime}}, \mathbb{C}^{\mathbf{d}^{\prime \prime}}\right) \times \operatorname{Hom}_{Q_{0}}\left(\mathbb{C}^{\mathbf{d}^{\prime \prime}}, \mathbb{C} \mathbb{C}^{\mathbf{d}}\right) \times \Lambda_{\mathbf{d}, \mathbf{e}}^{w} \mid\right. \\
&\left.i \in \operatorname{Hom}_{\Lambda}\left(X^{\prime}, P\right) \text { injective }, p \in \operatorname{Hom}_{\Lambda}(P, X) \text { surjective }, p \circ i=0\right\}
\end{aligned}
$$

together with the obvious projection

$$
\pi_{34}: \mathcal{E}_{\mathbf{e}} \rightarrow \mathcal{V}_{\mathbf{e}}^{\text {sur }},\left(X^{\prime}, i, p, X\right) \mapsto(p, X)
$$

is a $\mathrm{GL}_{\mathbf{d}^{\prime}}$-principal bundle. In particular, π_{34} is open, and $\mathcal{E}_{\mathbf{e}}$ is an irreducible variety.

Now, by Lemma 8.2, and step (i) of the proof, $\mathcal{E}_{\mathbf{e}^{\prime}, \mathbf{e}}$ is a dense open subset of $\mathcal{E}_{\mathbf{e}}$. Thus π, as a composition of the open morphisms $\pi_{2} \circ \pi_{34}: \mathcal{E}_{\mathbf{e}} \rightarrow \Lambda_{\mathbf{d}, \mathbf{e}}^{w}$ and the inclusion $\mathcal{E}_{\mathrm{e}^{\prime}, \mathrm{e}} \hookrightarrow \mathcal{E}_{\mathrm{e}}$, is open.
(iv) Let

$$
\Lambda_{\mathbf{d}^{\prime}, \mathbf{e}^{\prime}}^{w,+}:=\left\{X^{\prime} \in \Lambda_{\mathbf{d}^{\prime}, \mathbf{e}^{\prime}}^{w} \mid \underline{\operatorname{dim}} \operatorname{Ext}_{\Lambda}^{1}\left(V, X^{\prime}\right)=\tilde{\mathbf{e}}\right\} .
$$

This is a locally closed subset of $\Lambda_{\mathbf{d}^{\prime}, \mathbf{e}^{\prime}}^{w}$. A similar argument as in step (iii) shows that the restriction

$$
\mathcal{E}_{\mathbf{e}^{\prime}, \mathbf{e}} \rightarrow \Lambda_{\mathbf{d}^{\prime}, \mathbf{e}^{\prime}}^{w,}
$$

of π^{\prime} is open. It remains to show that $\Lambda_{\mathbf{d}^{\prime}, \mathbf{e}^{\prime}}^{w,+}$ is dense in $\Lambda_{\mathbf{d}^{\prime}, \mathbf{e}^{\prime}}^{w}$. To this end we note that there exist constants $f, f^{\prime} \in \mathbb{N}$ such that

$$
\operatorname{dim}\left(\pi^{-1}(\pi(E))\right)=f \quad \text { and } \quad \operatorname{dim}\left(\left(\pi^{\prime}\right)^{-1}\left(\pi^{\prime}(E)\right)\right)=f^{\prime}
$$

for all $E \in \mathcal{E}_{\mathbf{e}^{\prime}, \mathbf{e}}$; see step (iii) of the proof. Moreover, by Schanuel's Lemma, for $X \in \operatorname{Im}(\pi)$ we have $\pi^{\prime}\left(\pi^{-1}\left(\mathrm{GL}_{\mathbf{d}} \cdot X\right)\right)=\mathrm{GL}_{\mathbf{d}^{\prime}} \cdot X^{\prime}$ for some $X^{\prime} \in \operatorname{Im}\left(\pi^{\prime}\right)$. Thus, we have in this situation

$$
\begin{align*}
& \operatorname{codim}_{\Lambda_{\mathbf{d}}}\left(\mathrm{GL}_{\mathbf{d}} \cdot X\right)=\operatorname{codim}_{\Lambda_{\mathrm{d}, \mathbf{e}}^{w}}\left(\mathrm{GL}_{\mathbf{d}} \cdot X\right) \tag{8.2}\\
&=\operatorname{codim}_{\Lambda_{\mathrm{d}^{\prime}, \mathrm{e}^{\prime}}^{w,+}}\left(\mathrm{GL}_{\mathbf{d}^{\prime}} \cdot X^{\prime}\right) \leq \operatorname{codim}_{\Lambda_{\mathbf{d}^{\prime}}}\left(\mathrm{GL}_{\mathbf{d}^{\prime}} \cdot X^{\prime}\right)
\end{align*}
$$

On the other hand, since $\operatorname{Ext}_{\Lambda}^{1}(X, X) \cong \operatorname{Ext}_{\Lambda}^{1}\left(X^{\prime}, X^{\prime}\right)$, we have by Lemma 8.1 that $\operatorname{codim}_{\Lambda_{\mathbf{d}}}\left(\mathrm{GL}_{\mathbf{d}} \cdot X\right)=\operatorname{codim}_{\Lambda_{\mathbf{d}^{\prime}}}\left(\mathrm{GL}_{\mathbf{d}^{\prime}} \cdot X^{\prime}\right)$. This implies by (8.2) that

$$
\operatorname{dim}\left(\Lambda_{\mathbf{d}^{\prime}, \mathbf{e}^{\prime}}^{w,+}\right)=\operatorname{dim}\left(\Lambda_{\mathbf{d}^{\prime}, \mathbf{e}^{\prime}}^{w}\right)=\operatorname{dim}\left(\Lambda_{\mathbf{d}^{\prime}}\right)
$$

8.4. Bongartz's bundle construction. By Lemma 8.2, we know that $\Lambda_{\mathbf{d}}^{w}$ is an open subset of Λ_{d} for all \mathbf{d}. The varieties Λ_{d} and Λ_{d}^{w} are equidimensional, and we know that their irreducible components for all possible dimension vectors \mathbf{d} parametrize the dual semicanonical bases \mathcal{S}^{*} of $\mathbb{C}[N]$, and \mathcal{S}_{w}^{*} of $\mathbb{C}[N]^{N^{\prime}(w)}$, respectively.

Given $\mathbf{e} \in \mathbb{N}^{R_{-}}$and $c \in \mathbb{N}$ we consider the locally closed subset
$\Lambda_{\mathbf{d}}^{(\mathbf{e}, c)}:=\left\{X \in \Lambda_{\mathbf{d}}^{w} \mid \operatorname{dim} \operatorname{Ext}_{\Lambda}^{1}\left(T_{k}, X\right)=\mathbf{e}(k)\right.$ for $k \in R_{-}$and $\left.\operatorname{dim} \operatorname{End}_{\Lambda}(X)=c\right\}$.
We say that a subset $\mathcal{Y} \subseteq \Lambda_{\mathbf{d}}^{w}$ is a T-sheet of type \mathbf{e} if it is an irreducible component of some $\Lambda_{\mathrm{d}}^{(\mathbf{e}, c)}$. In this case, we say that \mathcal{Y} is dense if the Zariski closure $\overline{\mathcal{Y}}$ in $\Lambda_{\mathbf{d}}^{w}$ is an irreducible component of $\Lambda_{\mathbf{d}}^{w}$.

Clearly, $\Lambda_{\mathbf{d}}^{w}$ is a finite union of T-sheets, and each irreducible component contains a unique dense T-sheet.

Remark 8.4. (1) Let us recall some definitions and results from CBS. We write $\mathcal{Z}=\mathcal{Z}^{\prime} \oplus \mathcal{Z}^{\prime \prime}$ for irreducible components, say $\mathcal{Z}^{\prime} \subseteq \Lambda_{\mathbf{d}^{\prime}}^{w}$ and $\mathcal{Z}^{\prime \prime} \subseteq \Lambda_{\mathbf{d}^{\prime \prime}}^{w}$, if and only if $\mathcal{Z} \subseteq \Lambda_{\mathbf{d}^{\prime}+\mathbf{d}^{\prime \prime}}^{w}$ is an irreducible component which contains a dense open subset \mathcal{U} such that for all $X \in \mathcal{U}$ we have $X \cong X^{\prime} \oplus X^{\prime \prime}$ for some $X^{\prime} \in \mathcal{Z}^{\prime}$ and $X^{\prime \prime} \in \mathcal{Z}^{\prime \prime}$. This is possible if and only if $\operatorname{Ext}_{\Lambda}^{1}\left(\mathcal{Z}^{\prime}, \mathcal{Z}^{\prime \prime}\right)=0$, i.e. if there are dense open subsets $\mathcal{U}^{\prime} \subseteq \mathcal{Z}^{\prime}$ and $\mathcal{U}^{\prime \prime} \subseteq \mathcal{Z}^{\prime \prime}$ such that $\operatorname{Ext}_{\Lambda}^{1}\left(X^{\prime}, X^{\prime \prime}\right)=0$ for all $X^{\prime} \in \mathcal{U}^{\prime}$ and $X^{\prime \prime} \in \mathcal{U}^{\prime \prime}$. (Note, since $\underline{\mathcal{C}}_{w}$ is 2-Calabi-Yau, the conditions $\operatorname{Ext}_{\Lambda}^{1}\left(\mathcal{Z}^{\prime}, \mathcal{Z}^{\prime \prime}\right)=0$ and $\operatorname{Ext}_{\Lambda}^{1}\left(\mathcal{Z}^{\prime \prime}, \mathcal{Z}^{\prime}\right)=0$ are equivalent.) On the other hand, $\mathcal{Z} \subseteq \Lambda_{\mathrm{d}}^{w}$ is by definition indecomposable if it contains a dense open subset \mathcal{U} such that all $X \in \mathcal{U}$ are indecomposable. For example, since $\operatorname{Ext}_{\Lambda}^{1}\left(T_{k}, T_{k}\right)=0$, one can apply Voigt's Lemma to show that

$$
\mathcal{T}_{k}:=\overline{\mathrm{GL}_{\mathbf{d}} \cdot T_{k}}
$$

is an indecomposable irreducible component. (Here we set $\mathbf{d}:=\underline{\operatorname{dim}}_{\Lambda}\left(T_{k}\right)$.)
With these definitions, each irreducible component \mathcal{Z} admits an essentially unique decomposition into indecomposable irreducible components; see CBS.
(2) We say that an irreducible component $\mathcal{Z} \subseteq \Lambda_{\mathrm{d}}^{w}$ is generically T-free if in the decomposition into indecomposable components, there is no summand of the form \mathcal{T}_{k} for any $1 \leq k \leq r$. As a consequence of (1), each irreducible component $\mathcal{Z} \subseteq \Lambda_{\mathbf{d}}^{w}$ can be written uniquely as

$$
\mathcal{Z}=\mathcal{Z}^{\prime} \oplus \bigoplus_{k \in R} \mathcal{T}_{k}^{m_{k}}
$$

with \mathcal{Z}^{\prime} generically T-free. If $\mathbf{e} \in \mathbb{N}^{R_{-}}$is the type of the unique dense T-sheet $\mathcal{Y}^{\prime} \subseteq \mathcal{Z}^{\prime}$, then in the above decomposition $m_{k}=0$ in case $\mathbf{e}(k) \neq 0$ by the definition of type. Moreover, the unique dense T-sheet $\mathcal{Y} \subseteq \mathcal{Z}$ has the same type as \mathcal{Y}^{\prime}.

We have the following variant of a construction by Bongartz Bo, Section 4.3]:
Lemma 8.5. Let $\mathcal{Y} \subseteq \Lambda_{\mathbf{d}}^{w}$ be a T-sheet of type \mathbf{e}. Then there exists a $\mathrm{GL}_{\mathbf{d}}-\mathrm{GL}_{\mathbf{e}}-$ variety $\mathcal{B}_{\mathcal{Y}}$ together with morphisms

such that

- π_{1} is a GL_{d}-equivariant $\mathrm{GL}_{\mathbf{e}}$-principal bundle,
- π_{2} is $\mathrm{GL}_{\mathbf{e}}$-equivariant and $\mathrm{GL}_{\mathbf{d}}$-invariant,
- if $Y \in \mathcal{Y}$, then $\pi_{2}(B) \cong \operatorname{Ext}_{\Lambda}^{1}(T, Y)$ for all $B \in \pi_{1}^{-1}(Y)$.

Proof. It is easy to derive from [Bo, Section 2.4] that for any $k \in R_{-}$, the set

$$
\mathcal{E}_{\mathcal{Y}, k}:=\left\{(Y, e) \mid Y \in \mathcal{Y} \text { and } e \in \operatorname{Ext}_{\Lambda}^{1}\left(T_{k}, Y\right)\right\}
$$

can be given the structure of an algebraic vector bundle of $\operatorname{rank} \mathbf{e}(k)$ over \mathcal{Y}. It follows that

$$
\begin{aligned}
\mathcal{B}_{\mathcal{Y}}:=\left\{\left(Y,\left(v_{k, l}\right)_{k \in R_{-}, 1 \leq l \leq \mathbf{e}(k)}\right) \mid Y \in\right. & \mathcal{Y} \text { and }\left(v_{k, l}\right)_{1 \leq l \leq \mathbf{e}(k)} \\
& \text { is a basis of } \left.\operatorname{Ext}_{\Lambda}^{1}\left(T_{k}, Y\right) \text { for all } k \in R_{-}\right\}
\end{aligned}
$$

is together with the obvious projection π_{1} a GL_{d}-equivariant $\mathrm{GL}_{\mathbf{e}}$-principal bundle over \mathcal{Y}. Then one proceeds as in GLS5, Section 14].

Proposition 8.6. For $\mathcal{Z} \in \operatorname{Irr}(\bmod (\underline{\mathcal{E}}, \mathbf{e}))$ the following are equivalent:
(i) \mathcal{Z} is strongly reduced.
(ii) $\mathcal{Z}=\overline{\pi_{2}\left(\mathcal{B}_{\mathcal{Y}}\right)}$ for some dense, generically T-free T-sheet of type \mathbf{e}.

In this case, \mathcal{Y} is uniquely determined, and $\mathcal{Z}=\overline{\pi_{2}\left(\mathcal{B}_{\mathcal{Y}^{\prime}}\right)}$ precisely for the dense T-sheets

$$
\mathcal{Y}^{\prime} \subseteq \overline{\mathcal{Y}} \oplus \bigoplus_{k \in \operatorname{Null}(\mathcal{Z})} \mathcal{T}_{k}^{m_{k}}
$$

with $m_{k} \in \mathbb{N}$.
Proof. Since each $M \in \bmod (\underline{\mathcal{E}})$ is of the form $M \cong \operatorname{Ext}_{\Lambda}^{1}(T, X)$ for some $X \in \mathcal{C}_{w}$ we conclude that \mathcal{Z} is a countable union of constructible sets of the form $\pi_{2}\left(\mathcal{B}_{\mathcal{Y}}\right)$ for certain T-sheets \mathcal{Y} of type \mathbf{e}. Since \mathbb{C} is not countable, the Baire category theorem implies that $\mathcal{Z}=\overline{\pi_{2}\left(\mathcal{B}_{\mathcal{Y}}\right)}$ for one of these T-sheets, say $\mathcal{Y} \subseteq \Lambda_{\mathrm{d}}^{w}$.

There is some $c \in \mathbb{N}$ such that $\operatorname{codim}_{\mathcal{Y}}\left(\mathrm{GL}_{\mathbf{d}} . Y\right)=c$ for all $Y \in \mathcal{Y}$ by the definition of the T-sheets. We claim that then $\pi_{2}\left(\mathcal{B}_{\mathcal{Y}}\right)$ contains a dense open subset \mathcal{M} such that $\operatorname{codim}_{\mathcal{Z}}\left(M . \mathrm{GL}_{\mathbf{e}}\right)=c$ for all $M \in \mathcal{M}$. Indeed, for any $M \in \pi_{2}\left(\mathcal{B}_{\mathcal{Y}}\right)$ we have $\operatorname{codim}_{\mathcal{B}_{\mathcal{Y}}}\left(\pi_{2}^{-1}\left(M . \mathrm{GL}_{\mathbf{e}}\right)\right)=c$ since there are only finitely many orbits, say $\mathrm{GL}_{\mathbf{d}} \cdot Y_{s}$ for $1 \leq s \leq t$ in \mathcal{Y}, such that $\operatorname{Ext}_{\Lambda}^{1}\left(T, Y_{s}\right) \cong M$, so that

$$
\pi_{2}^{-1}\left(M . \mathrm{GL}_{\mathbf{e}}\right)=\bigcup_{s=1}^{t} \pi_{1}^{-1}\left(\mathrm{GL}_{\mathbf{d}} \cdot Y_{s}\right)
$$

Now, $\operatorname{codim}_{\mathcal{B}_{\mathcal{Y}}}\left(\pi_{1}^{-1}\left(\mathrm{GL}_{\mathbf{d}} . Y\right)\right)=\operatorname{codim}_{\mathcal{Y}}\left(\mathrm{GL}_{\mathbf{d}} . Y\right)=c$ for all $Y \in \mathcal{Y}$ since π_{1} is a principal bundle. So our claim follows from Chevalley's theorem.

Finally, let $h:=\operatorname{codim}_{\Lambda_{\mathrm{d}}^{w}}(\mathcal{Y})$. Then $\operatorname{codim}_{\Lambda_{\mathrm{d}}^{w}}\left(\mathrm{GL}_{\mathrm{d}} \cdot Y\right)=c+h$ for all $Y \in \mathcal{Y}$. Thus, since each $M \in \pi_{2}\left(\mathcal{B}_{\mathcal{Y}}\right)$ is of the form $M \cong \operatorname{Ext}_{\Lambda}^{1}(T, Y)$ for some $Y \in \mathcal{Y}$, we have by Proposition 7.1 ,

$$
c+h=\operatorname{dim} \operatorname{Hom}_{\underline{\mathcal{E}}}\left(M, \tau_{\underline{\mathcal{E}}}(M)\right)
$$

Thus, \mathcal{Z} is strongly reduced if and only if $h=0$. The rest is clear by Remark 8.4(2).
8.5. Proof of Theorem 5. Consider the epimorphism

$$
\Pi_{T}: \mathbb{C}\left[N^{w}\right] \rightarrow \mathcal{A}\left(\underline{\Gamma}_{T}\right)
$$

defined in Section 1.5. Then, by Theorem 4 and our results from Section 6.2, for $X \in \mathcal{C}_{w}$ we get

$$
\Pi_{T}\left(\varphi_{X}\right)=\Pi_{T}\left(\theta_{X}^{T}\right)=x^{\mathbf{m}} \cdot \psi_{\operatorname{Ext}_{\Lambda}^{1}\left(T, X^{\prime}\right)}
$$

where we write

$$
X=X^{\prime} \oplus \bigoplus_{k=1}^{r} T_{k}^{m_{k}}
$$

in such a way that X^{\prime} has no direct summand from $\operatorname{add}(T)$, and we set $\mathbf{m}:=$ $\left(m_{k}\right)_{k \in R_{-}}$. Thus, by Proposition 8.6, the image of the dual semicanonical basis of $\mathbb{C}\left[N^{w}\right]$ under Π_{T} is just the generic basis \mathcal{G}_{w}^{T}. (This is indeed a basis by GLS5, Section 15].) This finishes the proof.
8.6. An example. We continue with the example from Section 4.4. Let $W:=$ $W_{\mathbf{i}}=W_{1} \oplus \cdots \oplus W_{6}$. The quiver Γ_{W} of \mathcal{E}_{W} looks as follows:

An easy computation yields

$$
B^{(W)}=\left(\begin{array}{cccccc}
0 & -1 & 1 & 1 & -1 & 0 \\
1 & 0 & 0 & -1 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 1 & -1 \\
1 & 0 & -1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 1
\end{array}\right) \quad \text { and }\left(B^{(W)}\right)^{-1}=\left(\begin{array}{cccccc}
1 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 2 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

Note that $\underline{\mathcal{E}}:=\underline{\mathcal{E}}_{W}$ is the path algebra of the quiver $\underline{\Gamma}_{W}$

modulo the ideal generated by $\{b a, c b, a c\}$. We have

$$
\underline{B}^{(W)}=\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right)
$$

Let S_{1}, S_{2}, S_{4} be the simple $\underline{\mathcal{E}}$-modules corresponding to the vertices of $\underline{\Gamma}_{W}$, and let P_{1}, P_{2}, P_{4} and I_{1}, I_{2}, I_{4} be their projective covers and injective envelopes, respectively. One easily checks that $I_{1}=P_{4}, I_{2}=P_{1}$ and $I_{4}=P_{2}$, and that $S_{1}, S_{2}, S_{4}, I_{1}, I_{2}, I_{4}$ are the only indecomposable \mathcal{E}-modules up to isomorphism. Let us write these modules as representations of $\underline{\Gamma}_{W}$:

Next, we determine the $\underline{\mathcal{E}}$-modules $\operatorname{Ext}_{\Lambda}^{1}(W, X)$, where X runs through all 12 indecomposable Λ-modules.

$$
\begin{array}{ll}
\operatorname{Ext}_{\Lambda}^{1}\left(W, V_{1}\right)=I_{1}, & \operatorname{Ext}_{\Lambda}^{1}\left(W, V_{2}\right)=I_{2}, \\
\operatorname{Ext}_{\Lambda}^{1}\left(W, L_{1}\right)=S_{1}, & \operatorname{Ext}_{\Lambda}^{1}\left(W, V_{4}\right)=I_{3} \\
\operatorname{Ext}_{\Lambda}^{1}\left(W, L_{2}\right)=S_{2}, & =S_{4}
\end{array}
$$

and we have $\operatorname{Ext}_{\Lambda}^{1}\left(W, W_{k}\right)=0$ for all $1 \leq k \leq 6$. Since $\underline{\mathcal{E}}$ is a representationfinite algebra (it has only 6 indecomposable modules), each irreducible component in $\operatorname{Irr}(\underline{\mathcal{E}}, \mathbf{e})$ is the closure of some $\mathrm{GL}_{\mathbf{e}}$-orbit. For an $\underline{\mathcal{E}}$-module Y in $\bmod (\underline{\mathcal{E}}, \mathbf{e})$ let $\mathcal{O}_{Y}:=Y$. GL $\mathbf{e}_{\mathbf{e}}$ be its $\mathrm{GL}_{\mathbf{e}}$-orbit, and let $\overline{\mathcal{O}_{Y}}$ be the Zariski closure of \mathcal{O}_{Y}. We get

$$
\operatorname{Irr}(\underline{\mathcal{E}})=\left\{\overline{\mathcal{O}_{Y}}\left|Y=I_{1}^{a_{1}} \oplus I_{2}^{a_{2}} \oplus I_{4}^{a_{4}} \oplus S_{k}^{s_{k}}\right| a_{1}, a_{2}, a_{4}, s_{k} \geq 0, k=1,2,4\right\}
$$

An easy calculation shows that

$$
\left.\begin{array}{rl}
\operatorname{Irr}^{\mathrm{sr}}(\underline{\mathcal{E}})=\left\{\overline{\mathcal{O}_{Y}}\left|Y=I_{1}^{a_{1}} \oplus I_{2}^{a_{2}} \oplus I_{4}^{a_{4}} \oplus S_{k}^{s_{k}}\right| a_{1}, a_{2}, a_{4}, s_{k} \geq 0, k\right. & =1,2,4 \\
s_{1} a_{4} & =s_{2} a_{1}
\end{array}=s_{4} a_{2}=0\right\} .
$$

Next, we compute the functions ψ_{Y}, where Y runs through the 6 indecomposable $\underline{\mathcal{E}}$-modules. Observe that $\hat{x}_{W, 1}=x_{2} x_{4}^{-1}, \hat{x}_{W, 2}=x_{1}^{-1} x_{4}$ and $\hat{x}_{W, 4}=x_{1} x_{2}^{-1}$. We obtain

$$
\begin{aligned}
& \left.\psi_{S_{1}}=x_{1}^{-1} x_{4}\left(1 \cdot \hat{x}_{W}^{(0,0,0)}\right)+1 \cdot \hat{x}_{W}^{(1,0,0)}\right)=x_{1}^{-1} x_{4}\left(1+x_{2} x_{4}^{-1}\right) \\
& \left.\psi_{S_{2}}=x_{1} x_{2}^{-1}\left(1 \cdot \hat{x}_{W}^{(0,0,0)}\right)+1 \cdot \hat{x}_{W}^{(0,1,0)}\right)=x_{1} x_{2}^{-1}\left(1+x_{1}^{-1} x_{4}\right) \\
& \left.\psi_{S_{4}}=x_{2} x_{4}^{-1}\left(1 \cdot \hat{x}_{W}^{(0,0,0)}\right)+1 \cdot \hat{x}_{W}^{(0,0,1)}\right)=x_{2} x_{4}^{-1}\left(1+x_{1} x_{2}^{-1}\right) \\
& \left.\psi_{I_{1}}=x_{1}^{-1}\left(1 \cdot \hat{x}_{W}^{(0,0,0)}\right)+1 \cdot \hat{x}_{W}^{(1,0,0)}+1 \cdot \hat{x}_{W}^{(1,0,1)}\right)=x_{1}^{-1}\left(1+x_{2} x_{4}^{-1}+x_{2} x_{4}^{-1} x_{1} x_{2}^{-1}\right), \\
& \left.\psi_{I_{2}}=x_{2}^{-1}\left(1 \cdot \hat{x}_{W}^{(0,0,0)}\right)+1 \cdot \hat{x}_{W}^{(0,1,0)}+1 \cdot \hat{x}_{W}^{(1,1,0)}\right)=x_{1}^{-1}\left(1+x_{1}^{-1} x_{4}+x_{2} x_{4}^{-1} x_{1}^{-1} x_{4}\right), \\
& \left.\psi_{I_{4}}=x_{4}^{-1}\left(1 \cdot \hat{x}_{W}^{(0,0,0)}\right)+1 \cdot \hat{x}_{W}^{(0,0,1)}+1 \cdot \hat{x}_{W}^{(0,1,1)}\right)=x_{1}^{-1}\left(1+x_{1} x_{2}^{-1}+x_{1}^{-1} x_{4} x_{1} x_{2}^{-1}\right) .
\end{aligned}
$$

The basis \mathcal{G}_{w}^{W} consists then of the following 14 sets of monomials:

$$
\begin{array}{rlll}
x_{1}^{a} x_{2}^{b} x_{3}^{c}, & \psi_{I_{1}}^{a} \psi_{I_{2}}^{b} \psi_{I_{4}}^{c}, & \\
\psi_{S_{1}}^{a} \psi_{I_{1}}^{b} \psi_{I_{2}}^{c}, & x_{2}^{a} \psi_{S_{1}}^{b} \psi_{I_{1}}^{c}, & x_{4}^{a} \psi_{S_{1}}^{b} \psi_{I_{2}}^{c}, & x_{2}^{a} x_{4}^{b} \psi_{S_{1}}^{c}, \\
\psi_{S_{2}}^{a} \psi_{I_{2}}^{b} \psi_{I_{4}}^{c}, & x_{4}^{a} \psi_{S_{2}}^{b} \psi_{I_{2}}^{c}, & x_{1}^{a} \psi_{S_{2}}^{b} \psi_{I_{4}}^{c}, & x_{1}^{a} x_{4}^{b} \psi_{S_{2}}^{c}, \\
\psi_{S_{4}}^{a} \psi_{I_{4}}^{b} \psi_{I_{1}}^{c}, & x_{1}^{a} \psi_{S_{4}}^{b} \psi_{I_{4}}^{c}, & x_{2}^{a} \psi_{S_{4}}^{b} \psi_{I_{1}}^{c}, & x_{1}^{a} x_{2}^{b} \psi_{S_{4}}^{c},
\end{array}
$$

where $a, b, c \geq 0$.
For example, from our calculations in Section 4.4 we get

$$
\varphi_{V_{1}}=\varphi_{W_{6}} \varphi_{W_{4}}^{-1}+\varphi_{W_{4}}^{-1} \varphi_{W_{5}} \varphi_{W_{1}}^{-1} \varphi_{W_{2}}+\varphi_{W_{3}} \varphi_{W_{1}}^{-1}
$$

As predicted by Theorem we get

$$
\left(\Pi_{T} \circ \Phi_{T}\right)\left(\varphi_{V_{1}}\right)=x_{4}^{-1}+x_{4}^{-1} x_{1}^{-1} x_{2}+x_{1}^{-1}=\psi_{I_{1}}
$$

9. Categorification of the twist automorphism

9.1. We define an isomorphism

$$
\kappa_{\mathbf{i}}: \mathbb{C}\left[\varphi_{V_{\mathbf{i}, 1}}^{ \pm 1}, \ldots, \varphi_{V_{\mathbf{i}, r}}^{ \pm 1}\right] \rightarrow \mathbb{C}\left[\varphi_{W_{\mathbf{i}, 1}}^{ \pm 1}, \ldots, \varphi_{W_{\mathbf{i}, r}}^{ \pm 1}\right]
$$

of Laurent polynomial rings by

$$
\varphi_{V_{i, k}} \mapsto \varphi_{V_{i, k}}^{\prime}
$$

for $1 \leq k \leq r$. By the Laurent phenomenon [FZ1], each cluster variable of a cluster algebra is a Laurent polynomial in the cluster variables of any given cluster. It follows that $\mathbb{C}\left[N^{w}\right]$ is a subalgebra of both $\mathbb{C}\left[\varphi_{V_{\mathbf{i}, 1}}^{ \pm 1}, \ldots, \varphi_{V_{\mathbf{i}, r}}^{ \pm 1}\right]$ and $\mathbb{C}\left[\varphi_{W_{\mathbf{i}, 1}}^{ \pm 1}, \ldots, \varphi_{W_{\mathbf{i}, r}}^{ \pm 1}\right]$. Here we use that $W_{\mathbf{i}}$ is $V_{\mathbf{i}}$-reachable.

By Theorem 4 and the definition of $\kappa_{\mathbf{i}}$ we have for $X \in \mathcal{C}_{w}$,

Here we also used that $\operatorname{Ext}_{\Lambda}^{1}\left(V_{\mathbf{i}}, X\right)$ and $\operatorname{Ext}_{\Lambda}^{1}\left(W_{\mathbf{i}}, \Omega_{w}(X)\right)$ are isomorphic as modules over End $\underline{\mathcal{C}}_{w}\left(V_{\mathbf{i}}\right)^{\mathrm{op}} \cong$ End $_{\mathcal{C}_{w}}\left(W_{\mathbf{i}}\right)^{\mathrm{op}}$. Now, using the short exact sequence

$$
0 \rightarrow \Omega_{w}(X) \rightarrow P(X) \rightarrow X \rightarrow 0
$$

where $P(X)$ is \mathcal{C}_{w}-projective-injective, we get

Here we used that

$$
\left(\varphi_{\bullet}^{\prime}\right)^{\left(\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}\left(V_{\mathbf{i}}, P(X)\right)\right) \cdot B^{\left(V_{\mathbf{i}}\right)}}=\varphi_{P(X)}^{-1} .
$$

Thus, we can continue with the help of Proposition 5.1 and Theorem 4 .

$$
\begin{aligned}
\left(\varphi_{\bullet}^{\prime}\right) \underline{\left(\underline{\operatorname{dim}} \operatorname{Hom}_{\Lambda}\left(V_{\mathbf{i}}, X\right)\right) \cdot B^{\left(V_{\mathbf{i}}\right)}} F_{\Omega_{w}(X)}^{W_{\mathbf{i}}}\left(\hat{\varphi}_{\bullet}^{\prime}\right) & =\varphi_{W_{\mathbf{i}}}^{\left(\frac{\operatorname{dim}}{\operatorname{Hom}} \operatorname{Hom}_{\Lambda}\left(W_{\mathbf{i}}, \Omega_{w}(X)\right)\right) \cdot B^{\left(W_{\mathbf{i}}\right)} F_{X}^{W_{\mathbf{i}}}\left(\hat{\varphi}_{W_{\mathbf{i}}}\right) \varphi_{P(X)}^{-1}} \\
& =\varphi_{X} \varphi_{P(X)}^{-1}
\end{aligned}
$$

This proves that $\kappa_{\mathbf{i}}$ does not depend on the choice of the reduced word \mathbf{i}. Thus we can denote by κ_{w} the restriction of $\kappa_{\mathbf{i}}$ to $\mathbb{C}\left[N^{w}\right] \subset \mathbb{C}\left[\varphi_{V_{\mathrm{i}, 1}}^{ \pm 1}, \ldots, \varphi_{V_{\mathrm{i}, \mathrm{r}}}^{ \pm 1}\right]$. Moreover, the fact that κ_{w} permutes the elements of the dual semicanonical basis follows directly from Proposition 8.3 and our results in GLS5, Section 15]. It now remains to prove that $\kappa_{w}=\left(\eta_{w}^{*}\right)^{-1}$.
9.2. Definitions and known results. Before we proceed, we recall some definitions and known results. For more details we refer to GLS5.

Let $u \in W$. We denote by $D_{\varpi_{i}, u\left(\varpi_{i}\right)}$ the restriction to N of the generalized minor $\Delta_{\varpi_{i}, u\left(\varpi_{i}\right)}$. Let O_{w} be the open subset of N defined by

$$
O_{w}:=\left\{x \in N \mid D_{\varpi_{j}, w^{-1}\left(\varpi_{j}\right)}(x) \neq 0 \text { for all } 1 \leq j \leq n\right\} .
$$

Following [BZ] and [GLS5], we introduce a map $\widetilde{\eta}_{w}: N \cap O_{w} \rightarrow N^{w}$ by

$$
\tilde{\eta}_{w}(x)=\left[w z^{T}\right]_{+} .
$$

Here, for g in the Kac-Moody group of \mathfrak{g} admitting a Birkhoff decomposition, $[g]_{+}$stands for the factor of this decomposition belonging to N. Let $N(w)=$ $N \cap\left(w^{-1} N _w\right)$ and $N^{\prime}(w)=N \cap\left(w^{-1} N w\right)$ be the unipotent groups associated to w GLS5, Sections 5.2 and 8.2]. Multiplication in N induces a bijective map $N(w) \times N^{\prime}(w) \rightarrow N$. The ring of $N^{\prime}(w)$-invariant functions on N, denoted by $\mathbb{C}[N]^{N^{\prime}(w)}$, is thus isomorphic to $\mathbb{C}[N(w)]$.

The restriction of $\widetilde{\eta}_{w}$ to $N(w) \cap O_{w}$ is an isomorphism from $N(w) \cap O_{w}$ to N^{w}. Also, $N^{w} \subset O_{w}$, and the restriction of $\widetilde{\eta}_{w}$ to N^{w} is precisely the automorphism η_{w} of N^{w} mentioned in Section 1.6.

Fix $x \in N^{w}$, and set $z=\eta_{w}^{-1}(x) \in N^{w}$. Also let y be the unique element of $N(w) \cap O_{w}$ such that $\widetilde{\eta}_{w}(y)=x$. It is known that $z^{-1} y \in N^{\prime}(w)$. Hence, for every $\varphi \in \mathbb{C}[N]$ invariant by right translation by $N^{\prime}(w)$, we have $\varphi(z)=\varphi(y)$.

Finally, let $\mathbf{i}=\left(i_{r}, \ldots, i_{1}\right)$ be a reduced word for w. We know that when \mathbf{t} varies over $\left(\mathbb{C}^{*}\right)^{r}, \underline{x}_{\mathbf{i}}(\mathbf{t})$ goes over a dense subset of N^{w}. For $1 \leq l \leq k \leq r$, we set $w_{k}:=s_{i_{k}} \cdots s_{i_{1}}$ and

$$
\beta_{\mathbf{i}}(k):=w_{k-1}^{-1}\left(\alpha_{i_{k}}\right)=s_{i_{1}} \cdots s_{i_{k-1}}\left(\alpha_{i_{k}}\right)
$$

As before, let $b_{\mathbf{i}}(l, k):=-\left(s_{i_{l}} \cdots s_{i_{k}}\left(\varpi_{i_{k}}\right), \alpha_{i_{l}}\right)$. Note that $b_{\mathbf{i}}(l, k) \geq 0$.
9.3. End of the proof of Theorem 6. To prove that $\kappa_{w}=\left(\eta_{w}^{*}\right)^{-1}$, we have to show that

$$
\left(\eta_{w}^{-1}\right)^{*}\left(\varphi_{V_{k}}\right)=\frac{\varphi_{\Omega_{w}\left(V_{k}\right)}}{\varphi_{P\left(V_{k}\right)}}=\varphi_{V_{k}}^{\prime}
$$

for all $1 \leq k \leq r$.
We know that $\varphi_{V_{k}}=D_{\varpi_{i_{k}}, w_{k}^{-1}\left(\varpi_{i_{k}}\right)}$. Let $x:=\underline{x}_{\mathbf{i}}(\mathbf{t})$ where $\mathbf{t} \in\left(\mathbb{C}^{*}\right)^{r}$, and attach to x the elements y and z as above. By Proposition 4.4 we have

$$
\varphi_{V_{k}}^{\prime}(x)=\prod_{1 \leq l \leq k} t_{l}^{-b_{\mathbf{i}}(l, k)}
$$

Hence, it is enough to show that

$$
\begin{equation*}
D_{\varpi_{i_{k}}, w_{k}^{-1}\left(\varpi_{i_{k}}\right)}(z)=D_{\varpi_{i_{k}}, w_{k}^{-1}\left(\varpi_{i_{k}}\right)}(y)=\prod_{1 \leq l \leq k} t_{l}^{-b_{\mathbf{i}}(l, k)}, \tag{9.1}
\end{equation*}
$$

where the first equality follows from the fact that $D_{\varpi_{i_{k}}, w_{k}^{-1}\left(\varpi_{i_{k}}\right)}$ is $N^{\prime}(w)$-invariant for $1 \leq k \leq r$.

The proof is very similar to that of [BZ, so we just recall the main ideas, referring to appropriate places in $\overline{\mathrm{BZ}}$ for some simple calculations. There are two steps.
(a) We first show (9.1) in the particular case when $k=k_{j}:=\max \left\{s \in R \mid i_{s}=j\right\}$ for a given $1 \leq j \leq n$. In this case, (9.1) can be written as

$$
\begin{equation*}
D_{\varpi_{j}, w^{-1}\left(\varpi_{j}\right)}(y)=\prod_{1 \leq l \leq k} t_{l}^{-b_{\mathbf{i}}(l, k)} \tag{9.2}
\end{equation*}
$$

Since $\varphi_{I_{\mathrm{i}, j}}^{\prime}=1 / \varphi_{I_{\mathrm{i}, j}}$, we already know by Proposition4.4 that

$$
D_{\varpi_{j}, w^{-1}\left(\varpi_{j}\right)}(x)=\varphi_{I_{\mathbf{i}, j}}(x)=\prod_{1 \leq l \leq k} t_{l}^{b_{i}(l, k)}
$$

Hence it is enough to check that

$$
\begin{equation*}
D_{\varpi_{j}, w^{-1}\left(\varpi_{j}\right)}(y) D_{\varpi_{j}, w^{-1}\left(\varpi_{j}\right)}(x)=1 \tag{9.3}
\end{equation*}
$$

This is proved in exactly the same way as in [BZ] Lemma 6.4 (a)], using some basic properties of generalized minors.
(b) We then show (9.1) for any $1 \leq k \leq r$. We write $x=x^{\prime \prime} x^{\prime}$, where

$$
x^{\prime}:=x_{i_{k}}\left(t_{k}\right) \cdots x_{i_{1}}\left(t_{1}\right) \quad \text { and } \quad x^{\prime \prime}:=x_{i_{r}}\left(t_{r}\right) \cdots x_{i_{k+1}}\left(t_{k+1}\right)
$$

Let $N\left(\beta_{\mathbf{i}}(k)\right)=\exp \left(\mathfrak{n}_{\beta_{\mathbf{i}}(k)}\right)$ denote the root subgroup of $N(w)$ associated to the root $\beta_{\mathbf{i}}(k)$. The product map gives an isomorphism of affine varieties

$$
N\left(\beta_{\mathbf{i}}(1)\right) \times \cdots \times N\left(\beta_{\mathbf{i}}(r)\right) \rightarrow N(w)
$$

Therefore we can write $y=y^{(1)} \cdots y^{(r)}$ with $y^{(k)} \in N\left(\beta_{\mathbf{i}}(k)\right)$. Arguing as in BZ, Propositions 5.3 and 5.4], one shows that

$$
\tilde{\eta}_{w_{k}}\left(y^{(1)} \cdots y^{(k)}\right)=x_{i_{k}}\left(t_{k}\right) \cdots x_{i_{1}}\left(t_{1}\right)=x^{\prime}
$$

Moreover, $y^{\prime}:=y^{(1)} \cdots y^{(k)} \in N\left(w_{k}\right)$ and $y^{(k+1)}, \ldots, y^{(r)} \in N^{\prime}\left(w_{k}\right)$. Therefore, since $D_{\varpi_{i_{k}}, w_{k}^{-1}\left(\varpi_{i_{k}}\right)}$ is $N^{\prime}\left(w_{k}\right)$-invariant, we have

$$
D_{\varpi_{i_{k}}, w_{k}^{-1}\left(\varpi_{i_{k}}\right)}(y)=D_{\varpi_{i_{k}}, w_{k}^{-1}\left(\varpi_{i_{k}}\right)}\left(y^{\prime}\right) .
$$

Now, using (a) with w replaced by w_{k}, we obtain that

$$
D_{\varpi_{i_{k}}, w_{k}^{-1}\left(\varpi_{i_{k}}\right)}\left(y^{\prime}\right)=\prod_{1 \leq l \leq k} t_{l}^{-b_{\mathbf{i}}(l, k)}
$$

This finishes the proof.

Acknowledgments

The authors thank Bernhard Keller for his help with Proposition 7.1 The authors thank the Sonderforschungsbereich/Transregio SFB 45 and the Hausdorff Center for Mathematics in Bonn for financial support. The first author was partially supported by PAPIIT grant IN103507-2.

References

[A] C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential. Ann. Inst. Fourier (Grenoble) 59 (2009), no. 6, 2525-2590. MR2640929 (2011c:16026)
[ART] C. Amiot, I. Reiten, G. Todorov, The ubiquity of generalized cluster categories. Adv. Math. 226 (2011), no. 4, 3813-3849. arXiv:0911.4819v1 [math.RT]. MR2764906
[BFZ] A. Berenstein, S. Fomin, A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), 49-149. MR1405449 (98j:17008)
[BZ] A. Berenstein, A. Zelevinsky, Total positivity in Schubert varieties. Comment. Math. Helv. 72 (1997), no. 1, 128-166. MR1456321 (99g:14064)
[Bo] K. Bongartz, Minimal singularities for representations of Dynkin quivers. Comment. Math. Helv. 69 (1994), no. 4, 575-611. MR1303228(96f:16016)
[BIRS] A. Buan, O. Iyama, I. Reiten, J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups. Compos. Math. 145 (2009), 1035-1079. MR2521253 (2010h:18021)
[BIRSm] A. Buan, O. Iyama, I. Reiten, D. Smith, Mutation of cluster-tilting objects and potentials. Amer. J. Math. (to appear), 41pp., Preprint (2008), arXiv:0804.3813v4 [math.RT].
[CC] P. Caldero, F. Chapoton, Cluster algebras as Hall algebras of quiver representations. Comment. Math. Helv. 81 (2006), 595-616. MR2250855 (2008b:16015)
[CK] P. Caldero, B. Keller, From triangulated categories to cluster algebras. Invent. Math. 172 (2008), 169-211. MR 2385670 (2009f:16027)
[CB] W. Crawley-Boevey, On the exceptional fibres of Kleinian singularities. Amer. J. Math. 122 (2000), 1027-1037. MR 1781930 (2001f:14009)
[CBS] W. Crawley-Boevey, J. Schröer, Irreducible components of varieties of modules. J. Reine Angew. Math. 553 (2002), 201-220. MR1944812 (2004a:16020)
[DWZ1] H. Derksen, J. Weyman, A. Zelevinsky, Quivers with potentials and their representations. I. Mutations. Selecta Math. (N.S.) 14 (2008), no. 1, 59-119. MR2480710 (2010b:16021)
[DWZ2] H. Derksen, J. Weyman, A. Zelevinsky, Quivers with potentials and their representations II: applications to cluster algebras. J. Amer. Math. Soc. 23 (2010), no. 3, 749-790. MR 2629987
[DK] Y. Drozd, V. Kirichenko, Finite-dimensional algebras. Translated from the 1980 Russian original and with an appendix by Vlastimil Dlab. Springer-Verlag, Berlin, 1994. xiv+249pp. MR $1284468(95 \mathrm{i}: 16001)$
[D] G. Dupont, Generic variables in acyclic cluster algebras. 63pp, Preprint (2008), arXiv:0811.2909v1 [math.RT].
[FZ1] S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundations. J. Amer. Math. Soc. 15 (2002), no. 2, 497-529. MR 1887642 (2003f:16050)
[FZ2] S. Fomin, A. Zelevinsky, Cluster algebras. IV. Coefficients. Compositio Math. 143 (2007), no. 1, 112-164. MR2295199 (2008d:16049)
[FK] Changjian Fu, B. Keller, On cluster algebras with coefficients and 2-Calabi-Yau categories. Trans. Amer. Math. Soc. 362 (2010), no. 2, 859-895. MR2551509 (2011b:13076)
[G] P. Gabriel, Finite representation type is open. Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Paper No. 10, 23pp. Carleton Math. Lecture Notes, No. 9, Carleton Univ., Ottawa, Ont., 1974. MR 0376769 (51:12944)
[GLS1] C. Geiß, B. Leclerc, J. Schröer, Semicanonical bases and preprojective algebras. Annales Scient. l'École Normale Supérieure 38 (2005), 193-253. MR 2144987 (2007h:17018)
[GLS2] C. Geiß, B. Leclerc, J. Schröer, Rigid modules over preprojective algebras. Invent. Math. 165 (2006), no. 3, 589-632. MR2242628 (2007g:16023)
[GLS3] C. Geiß, B. Leclerc, J. Schröer, Partial flag varieties and preprojective algebras. Ann. Institut Fourier, 58 (2008), 825-876. MR2427512 (2009f:14104)
[GLS4] C. Geiß, B. Leclerc, J. Schröer, Cluster algebra structures and semicanonical bases for unipotent groups. 121pp., Preprint (2007), arXiv:math/0703039.
[GLS5] C. Geiß, B. Leclerc, J. Schröer, Kac-Moody groups and cluster algebras. Adv. Math. 228 (2011), no. 1, 329-433. arXiv:1001.3545v2 [math.RT].
[H] D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras. London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988. x+208pp. MR 935124 (89e:16035)
[KR] B. Keller, I. Reiten, Cluster tilted algebras are Gorenstein and stably Calabi-Yau. Adv. Math. 211 (2007), 123-151. MR2313531 (2008b:18018)
[KY] B. Keller, D. Yang, Derived equivalences from mutations of quivers with potential. Adv. Math. 226 (2011), no. 3, 2118-2168. arXiv:0906.0761v3 [math.RT]. MR 2739775
[Ku] S. Kumar, Kac-Moody groups, their flag varieties and representation theory. Progress in Mathematics, 204. Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1923198 (2003k:22022)
[L1] G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras. J. Amer. Math. Soc. 4 (1991), no. 2, 365-421. MR 1088333 (91m:17018)
[L2] G. Lusztig, Total positivity in reductive groups, in: Lie Theory and Geometry, Progress in Math. 123 (1994), 531-568. MR1327548 (96m:20071)
[N] K. Nagao, Donaldson-Thomas theory and cluster algebras. 33pp., Preprint (2010), arXiv:1002.4884 [math.AG].
[P] Y. Palu, Cluster characters for triangulated 2-Calabi-Yau categories. Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2221-2248. MR2473635 (2009k:18013)
[Pl] P.-G. Plamondon, Cluster algebras via cluster categories with infinite-dimensional morphism spaces. Compositio Math. (to appear), 32pp, Preprint (2010), arXiv:1004.0830 [math.RT].

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México D.F., México

E-mail address: christof@math.unam.mx
LMNO, Université de Caen, CNRS, UMR 6139, F-14032 Caen Cedex, France
E-mail address: leclerc@math.unicaen.fr
Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, GerMANY

E-mail address: schroer@math.uni-bonn.de

[^0]: Received by the editors May 13, 2010 and, in revised form, May 13, 2011.
 2010 Mathematics Subject Classification. Primary 13F60, 14M15, 14M99, 16G20, 20 G 44.

