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Abstract. One of the goals of this paper is to describe explicitly the generic movement 
of eigenvalues through a one-to-one resonance in a linear Hamiltonian system which is 
equivariant with respect to a symplectic representation of a compact Lie group. We classify 
this movement, and hence answer the question o f  when the collisions are ‘dangerous’ in 
the Sense of Krein by using a combination of group theory and definiteness properties 
of the associated quadratic Hamiltonian. For example, for systems with no symmetry or 
O(2) symmetry generically the eigenvalues split, whereas for systems with S1 symmetry, 
generically the eigenvalues may split or pass. It is in this last case that one has to use 
both group theory and energetics to determine the generic eigenvalue movement. The way 
energetics and group theory are combined is summarized in table 1. The result is to be 
contrasted with the bifurcation of steady states (zero eigenvalue) where one can use either 
group theory alone (Golubitsky and Stewart) or definiteness properties of the Hamiltonian 
(Cartan-Oh) to determine whether the eigenvalues split or pass on the imaginary axis. 

AMS classification scheme numbers: 58FO5, 58F14 

1. Introduction 

Hamiltonian vector fields can undergo a variety of bifurcations as a single bifurcation 
parameter is vaned (see Abraham and Marsden [I]). Consider the following two types 
of local bifurcation from an equilibrium: 

(i) steady-stare bifurcation when the linearized vector field a t  the equilibrium has a 
zero eigenvalue of multiplicity two; and 

(ii) 1-1 resonance when the linearization has a pair of purely imaginary eigenvalues 
of multiplicity two; 

Without loss of generality, we may assume in case (ii) that these eigenvalues are 
ki. 

Let w denote the symplectic form. In case (i), the kernel of the linearization 
is a two-dimensional symplectic subspace. As the bifurcation parameter is varied, 
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generically the eigenvalues go from purely imaginary to real (or Dice versa). In case 
(ii), the sum of the eigenspaces of the eigenvalues 5 can he written as the sum of 
two o-orthogonal two-dimensional symplectic subspaces. This time, generically the 
eigenvalues go from purely imaginary into the right- and left-hand complex plane (or 
vice versa). We describe the behaviour of the eigenvalues in each of these cases by 
saying that the eigenvalues split, see figure 1. The 1-1 resonance with splitting is often 
called the Hamiltonian Hopf bifurcation, see [SI. 

It transpires that in many applications the eigenvalues do not behave in the manner 
described by the generic theory above. Rather than split at 0 or i i ,  the eigenvalues 
remain on the imaginary axis and pass, see figure 2. However it follows from the work 
of Galin [4], that at  least three parameters are required for passing to be expected. 

A20 A - 0  i:0 

Figure 1. The splitting case: ((I) for the steady-state bifurcation; (6) for the 1-1 resonance. 

i ;0  A - 0  r:o 

Figure 2. The passing case: ((I) for the steady-state bifurcation; (b)  for the 1-1 resonance. 

The reason that passing is seen so often in bifurcations of Ham~ltonian vector fields 
is that in many applications there is symmetry present. As is well known in bifurcation 
theory (see for example [6]) the presence of symmetry can greatly influence the generic 
behaviour. Indeed, for certain symmetry groups (the most notable example being the 
circle group SI), the passing of eigenvalues may be generic in a one-parameter family. 

In the steady-state case, the dichotomy in eigenvalue movements can be understood 
using definiteness properties of the Hamiltonian, a method we shall call energetics, or 
group-theoretically (see Golubitsky and Stewart [5]). For the energetics method, see 
Oh [12] and for examples of the use of this criterion, see Oh et af [13]. We note that 
Krein theory primarily uses the energetics approach, hut in a different way from that 
used in this paper. It turns out that energetics or group theory alone is not sufficient 
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to characterize the movement of eigenvalues in the 1-1 resonance. One of the main 
purposes of this paper is to show that a combination of group theory and energetics 
yields a particularly clean characterization of the splitting and passing cases. 

A more basic effect of the symmetry is to force multiplicity of certain eigenvalues, so 
that the dimensions given above for the various eigenspaces are often invalid. We prove 
results on the generic structure of the eigenspaces corresponding to the steady-state 
bifurcation and the 1-1 resonance (cf Golubitsky and Stewart [5, theorem 3.31 and van 
der Meer [9, p 10461). Assume that the Hamiltonian is invariant under the symplectic 
action of a compact Lie group r. Theorem 3.2 states that in the case of a steady-state 
bifurcation, generically the generalized zero eigenspace E, is either non-absolutely 
irreducible or the direct sum of two isomorphic absolutely irreducible subspaces. (A 
r-invariant subspace V is absolutely irreducible if the only linear mappings V + V 
that commute with the action of r are real multiples of the identity. An irreducible 
subspace that is not absolutely irreducible is called non-absolutely irreducible.) 

In the case of 1-1 resonance, theorem 3.3 states that generically the sum of 
the generalized eigenspaces of ki ,  denoted by E+i, can be written as the sum of 
two symplectic w-orthogonal subspaces U ,  and C&, where each of the U, is either 
non-absolutely irreducible or the direct sum of two isomorphic absolutely irreducible 
subspaces. 

Although neither of these results is new, this is the first time that a complete proof 
has been given. (The proof in [ 5 ]  of the first result contains non-trivial gaps, and the 
second result is stated but not proved in [9].) 

The heart of the paper is concerned with the generic movement of eigenvalues in 
steady-state bifurcation and 1-1 resonance with symmetry. The steady-state bifurcation 
is well understood both group-theoretically [5] and in terms of energetics [12]. We 
combine these results in theorem 4.1. Recall that E,  is generically either the direct sum 
of two isomorphic absolutely irreducible subspaces or is non-absolutely irreducible. 
These possibilities correspond precisely to the splitting or passing of eigenvalues. On 
the other hand, the linearization of the Hamiltonian vector field induces a quadratic 
form on E,. This quadratic form changes from definite to indefinite in the splitting 
case but remains definite in the passing case. 

The movement of eigenvalues in the 1-1 resonance is rather more delicate. The 
results are summarized in theorem 4.4, see also table 1 .  We show that it is necessary 
to combine the group-theoretic and energetic approaches in order to characterize the 
dichotomy, splitting or passing, in the eigenvalue movements. The interesting cases are 
when U ,  and U, are isomorphic, since if U ,  and U, carry distinct representations of r 
then the resonance decouples and the eigenvalues move independently along the imag- 
inary axis. In order to understand the cases where U ,  and U ,  are isomorphic, we make 
use of the results of Montaldi et a/ [lo] on the interrelationship between the symmetry 
and the symplectic structure. At this stage it becomes necessary to distinguish between 
the two types of non-absolutely irreducible representations: complex and quaternionic. 
Provided U ,  and U ,  are not complex irreducibles, generically the eigenvalues split. 
This is accompanied by indefiniteness of the quadratic form induced on U ,  tB U ,  by 
the linearization of the Hamiltonian vector field. If  the U, are isomorphic complex 
irreducibles, then in the terminology of [lo] they are either of the same type or dual. If 
U ,  and U ,  are complex of the same type, then generically the eigenvalues pass though 
the induced quadratic form is still indefinite. Finally, in the case of complex duals the 
eigenvalues can generically pass or split and these possibilities correspond precisely to 
definiteness and indefiniteness of the induced quadratic form. 
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The paper is organized as follows. First, in section 2 we review the non-symmetric 
case. Using the Galin normal forms listed in [4], it is easy to verify that splitting is 
generic in the steady-state bifurcation and in the 1-1 resonance. We also describe the 
energetic viewpoint in this context. 

In section 3 we formulate results on the generic structure of E,  and Eti for a 
one-parameter family of linear Hamiltonian vector fields. Then, in section 4 we give 
group-theoretic and energetic characterizations of the movement of eigenvalues in 
the steady-state bifurcation. We also state and prove our main theorem, where we 
combine the group-theoretic and energetic methods to give a complete characterization 
of eigenvalue movements in the 1-1 resonance. We illustrate the results with some 
examples in section 5. 

Finally in section 6, we discuss a possible source of confusion arising from the 
presence of additional symmetries when the Hamiltonian vector field is in Birkhoff 
normai iorm. -We stress that our resuits are to be interpreted independently of any 
symmetries due to normal form so that r consists only of external symmetries. Indeed, 
if normal form symmetries were included in r, then our results would become less 
sharp. 

2. The non-symmetric case 

In this section, we review the situation when there is no symmetry present. The 
results follow easily from work of Galin [4]. The codimension formula of Galin 
(see also Arnold [2, appendix 61) implies that in a generic one-parameter family, each 
eigenvalue is precisely associated with one Jordan block of dimension at mosl two. Since 
zero eigenvalues of symplectic matrices have even multiplicity, it follows that in the 
steady-state bifurcation generically dim E, = 2 and the restriction of the linearization is 
nilpotent. In the 1-1 resonance, by definition dim E*i 2 4 so generically this dimension 
is precisely four. Again, the restriction of the linearization is non-semisimple. 

Let A ( i )  denote a one-parameter family of linear Hamiltonian vector fields under- 
going one of these bifurcations at A = 0. In each case we can write A@)  in Galin 
normal form and explicitly compute the eigenvalues. The relevant normal forms in [4] 
are (36) and (35) respectiveiy. 

In the steady-state bifurcation, the Galin normal form of the linearized vector field 
contains the block 

The eigenvalues are given by kfi, so as i increases through zero the eigenvalues move 
together along the imaginary axis and split onto the real axis. 

In the 1-1 resonance, the Galin normal form with respect to the canonical symplectic 
structure contains the block 

/ 0  -1  0 0-\ 

where p = *I. This time a computation yields the eigenvalues 

J; {-W. + 2 )  * ,/;ic.l.sp)>. 
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In particular, for 1 close to 0, the eigenvalues are purely imaginary precisely when the 
expression 1(A + 8p) is positive. Thus the eigenvalues split as required. 

We now give a description in terms of energetics. An infinitessimally symplectic 
linear map M on a symplectic space 2 induces a quadratic form Q on Z via the 
formula 

Q(z)  = o ( z ,  M z ) .  (2.1) 
Moreover Q(z)  = ( z , J M z )  so that the quadratic form is represented by the symmetric 
matrix B = J M .  

Generalized eigenspaces are symplectic ([I41 and proposition 3.7) and so we may 
speak of the quadratic form Q induced on E, or E+i by M ( 0 ) .  In the steady-state 
case we will denote by Q,  the quadratic form which is induced on the generalized 
eigenspaces of the eigenvalues going through 0 for 1 = 0. Note that Q,  is degenerate 
if and only if M ( A )  has a zero eigenvalue. In particular, in the case of 1-1 resonance, 
Q is non-degenerate. In the steady-state bifurcation, Q, is degenerate, but Q, is 
non-degenerate for A close but not equal to zero. 

The following ‘stability’ theorem is a basic part of Krein theory, see Krein [7] and 
Moser [ll]. 

Theorem 2.1 (Krein) .  Suppose that M is an infinitessimally symplectic matrix defined 
on a symplectic vector space Z .  Let Q be the quadratic form induced on Z by M .  If 
Q is definite, then M is semisimple and the eigenvalues of M lie on the imaginary axis. 

Suppose that A(1) undergoes a steady-state bifurcation with dim& = 2. Then 
definiteness or indefiniteness of the quadratic form Q,  is governed by the sign (positive 
or negative) of det B(1). But in canonical coordinates, det J = 1 so that det B(1) = 

det M(A). It follows that definiteness corresponds to purely imaginary eigenvalues and 
indefiniteness to real eigenvalues. Thus we have proved the following result. 

Theorem 2.2. Suppose that a Hamiltonian system undergoes a steady-state bifurca- 
tion. Let Q, denote the quadratic form induced on the corresponding generalized 
eigenspaces via equation (2.1). Then generically dimE, = 2, and the eigenvalues move 
together along the imaginary axis and then split along the real axis (or vice versa). 
Simultaneously, the quadratic form Q, changes from definite to indefinite (or vice 
versa). 

The analogous result for the 1-1 resonance is as follows: 

Theorem 2.3. Suppose that a Hamiltonian system undergoes a 1-1 resonance. Let Q 
denote the quadratic form induced on E+i via equation (2.1). Generically dim E+i = 4, 
Q is indefinite, and we have the splittingcase. 

Proof: It only remains to show that Q is indefinite. But if Q were definite, then by 
theorem 2.1 the eigenvalues would be constrained to lie on the imaginary axis and 

- 

could not split. 0 

3. The generic structure of eigenspaces 

In this section, we describe the group-theoretic structure of the generalized eigenspaces 
E ,  and E,i in a generic one-parameter family of linear Hamiltonian vector fields with 
symmetry. In section 3.1 we state the main results; they are proved in section 3.2. 
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3.1. Statement of results 

Let Z be a symplectic vector space with symplectic form 0. Assume that a compact 
Lie group r is acting symplectically on Z, that is 

O ( Y U , ~ W )  = W ( U ,  W )  vy E r E Z. (3.1) 

Let spr(Z) denote the Lie algebra of linear infinitessimally symplectic maps (or linear 
Hamiltonian vector fields) commuting with r: 

(i) B : Z -+ Z is linear 
B E sp,(Z) es (ii) o ( B u ,  w )  + w(u,Bw)  = 0 Vu,  w E Z { (iii) yB = By Vy E r. 

Suppose that A is an element of spr(Z). Let Eo and Eki denote the generalized 
eigenspaces of A corresponding to the eigenvalues 0 and ki respectively. 

In this paper we are primarily interested in the behaviour associated with E, or E+i 
that is generic, or to be expected, in a one-parameter family. However, the situation 7s 
non-trivial even when there are no parameters. A zero eigenvalue may be perturbed 
away so generically E ,  = 0. On the other hand, purely imaginary eigenvalues occur 
generically in the context of Hamiltonian systems. Moreover, these eigenvalues may 
have multiplicities forced by r equivariance. Now we still have generically that E+i = 0 
since we can simply scale the eigenvalues along the imaginary axis. However, it is 
convenient to disregard such scalings, since we can always normalize and bring the 
eigenvalues back to ki.  In this framework, it may be that E+i - is non-trivial. 

Theorem 3.1. 
of scaling the eigenvalue, generically either 

(a) E+i is non-absolutely irreducible; or 
(b) Eki = V @ V ,  V absolutely irreducible. 

Now we can state our results for the case where A is an element of a one-parameter 
family. It is now possible to have zero eigenvalues or resonant purely imaginary 
eigenvalues. Purely imaginary eigenvalues are in resonance when Eki does not have 
one of the forms listed in theorem 3.1. 

Theorem 3.2. 
family, either 

Suppose that A has an eigenvalue i. Then, disregarding the possibility 

Suppose that A has a zero eigenvalue. Generically in a one-parameter 

(a) E, is non-absolutely irreducible; or 
(b) E, = V @ V ,  V absolutely irreducible. 

Theorem 3.3. 
paranieter family, Eki = U, @ U, where for j = 1,2 either 

Suppose that A has a resonant eigenvalue i. Generically in a one- 

(a) Uj is non-absolutely irreducible; or 
(b) U j  = V @ V ,  V absolutely irreducible. 

Remark 3 4 a ) .  In theorem 3.1 the generalized eigenspace E+i is symplectic, that is 
, is non-degenerate (see proposition 3.7). Similarly E ,  is symplectic in theorem 3.2. 

In tieorem 3.3 the subspaces U, and Uz may be chosen to be symplectic and also to be 
w-orthogonal. Recall that two subspaces U ,  and U ,  are w-orthogonal if w(uI ,u2)  = 0 
for all U, E U ,  and U, E U,. 
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(b) When there is no symmetry present, we may take r to be the trivial group. The 
irreducible representations are absolutely irreducible and one-dimensional. Hence we 
recover the expected dimensions of the relevant generalized eigenspaces, as described 
in section 2. 

(c) The results in this section are proved in the following subsection using ad hoc 
techniques. Alternatively, they may be derived by generalizing Galin's codimension 
formula to the equivariant setting, see [15]. 

3.2. Proofi 

3.2.1. Preliminaries. Let ( , ) be a r-invariant inner product on Z .  We may define a 
linear map J : Z + Z uniquely by 

o(u, w) = (U, Jw) for all U, w E Z .  (3.2) 

Then J is an isomorphism that commutes with r and is skew-symmetric, that is 
J T  = -J. Conversely, given such a J ,  we may use equation (3.2) to define a symplectic 
form w that satisfies (3.1). 

A r-invariant subspace W c Z that is symplectic is called r-symplectic. The 
restricted symplectic form wlw induces an isomorphism J ,  : W + W .  Note that J, 
is not the same as Jlw. Indeed, J will not in general leave the subspace W invariant. 
Finally, we recall that a subspace W c 2 is isotropic if w(wI, w2) = 0 for all w,, w2 E W .  

We now state several basic results from Golubitsky and Stewart [ 5 ] .  The first four 
,CS",L> a,= LLICULGlLl L . l ,  yruyusllrull A,, y,upu",,,u,, J.1 LLl'U l C l l l l l l D  L.,(U, U1 L l " l  yay=,. 
The fifth result is implicit in the proof of [5, theorem 2.11, although our choice of J V  
is more constructive. 

---..IA- ---<L" 1 3  __^__ ":.:.... 1 2  --̂ _̂ ":L:-.. , I ^.--I ,^--" ,",I., -c*L"*.."--- 

Proposition 3.5. Z has the decomposition 

z = @ q  (3.3) 

into r-symplectic o-orthogonal subspaces. Each Ui is either non-absolutely irreducible 
or has the form V 8 V where V is absolutely irreducible. 

Proposition 3.6. 
complement F so that Z = E 8 F .  

If E c Z is r-symplectic, then there is an o-orthogonal, r-symplectic 

Proposition 3.7. The generalized eigenspaces of a linear map A E spr(Z) are r- 
symplectic. 

Proposition 3.8. If V is I--irreducible, then V is either isotropic or symplectic. 

Proposition 3.9. (a) If V is isotropic, then V n J V = { O )  and V 8 J V is r-symplectic. 
(b) If V is absolutely r-irreducible, then V is isotropic. 
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3.2.2. Proof of the theorems. We shall begin with the proof of theorem 3.2. Then 
the proofs of theorems 3.1 and 3.3 are similar. Almost all of this can be done 
in a coordinate-free setting. However, a computation is required to exclude certain 
possibilities in theorems 3.2 and 3.1. 

Lemma 3.10. Let A(A) be a one-parameter family in sp,(Z) such that A = A(0) has a 
zero eigenvalue. Generically either 

(a) E, = V or (b) Eo = V @ JEo V 

where V is a r-irreducible subspace of ker A 

Prooj Since the kernel of A is r-invariant it possesses an irreducible subspace V .  
If V is symplectic, set U = V .  Otherwise, V is isotropic and we take U = V @ J V ,  
(-here J = JEo):  !E each case C' is T-symp!ectic axd has ax c-e:th=gaxe!, r=syz-p!ectic 
complement Y In E,, (propositions 3.7 and 3.8). Also, Eo has an orthogonal symplectic 
complement Z, in Z .  In symbols we have 

Z = E , @ Z ,  E , = U @ Y .  

If Y = 0, there is nothing to do. Otherwise, define B E sp,(Z) in block-diagonal 
iorm.as foiiows: 

B1, = Elzo = 0 B / ,  = J, 

Set A, = A + EB. Clearly, we have 

E,(A,) c E, V c kerA, 

We claim that E,(A,) is a proper subspace of E, for E in a full deleted neighbourhood 
of zero. If the claim is true then we may proceed inductively until Y = 0 thus proving 
the lemma. Note that V is fixed throughout the induction, but in general U may vary 
since J = J 

It remains to verify the claim. Choose a non-zero vector y E Y. It is sufficient to 
she- tha! y i. "et a genera!ized eigexvector c=::espending to the eigenva!ce 0 for a!! 
E in a deleted neighbourhood of the origin. Suppose for contradiction that Aby = 0 for 
infinitely many E, where k = dim E,, say. Expanding At, we have 

depends on E,, 

(Pk-I(~)  + E'B')~ = 0 

for infinitely many E, where Pk- I (~ )  is a matrix valued polynomial of degree k - 1 in 
E. Equating components in the vector equation, and using properties of poiynomiais, 
we see that equality holds for all E. Moreover, comparing coefficients of E', we have 

B'y = 0. 

But ker E' n Y = {0} so we have the required contradiction. U 

Proof of theorem 3.2. We must show that V is generically non-absolutely irreducible 
in case (a) of the lemma and absolutely irreducible in case (b). 

Non-absolute irreducibility in case (a) is automatic by proposition 3.9 since E,  = V 
is symplectic and hence cannot be absolutely irreducible. Case (b) follows from a 

U relatively tedious computation, see remark 4.7. 
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Proofoftheorem 3.1. The proof is completely analogous to that of the previous lemma 
and theorem. This time we choose an irreducible subspace I/ in the eigenspace of +i 
and construct U as before. Now write 

z = E r i e  2, E*i = U e Y 
and replace Af by [Af + I ] '  in the proof of the previous lemma. 

~ Aeain U cannot he absolutely irreducih!e: A!sq generically it cannot be the direct 
U 

Lemma 3.11. Let A(A) be a one-parameter family in spr(Z) such that A = A(0) has 
a resonant eigenvalue i. Generically E+i = U ,  8 U ,  where U,  and U ,  are symplectic 
w-orthogonal subspaces and for j = 1,2 either 

sum of two non-absolutely irreducible subspaces, see remark 4.7. 

(a) U j  = V or (b) U, = V 8J,,V 

where V is a r-irreducible subspace of the eigenspace of +i. 

Prooj  The proof is similar to that of the previous lemma. This time we choose 
an irreducible subspace V in the eigenspace of k i  and construct U ,  as before. By 
hypothesis, this is not the full generalized eigenspace, so we may construct a second 
symplectic subspace U,. Write 

z = E*i e z, E*i = U ,  e U, 8 Y 

and as before replace A)  by [A: + I]' in the proof of the previous lemma. 0 

Proofoftheorem 3.3. Again we must show that V must be non-absolutely irreducible 
in case (a) and absolutely irreducible in case (b). 

By construction, the U j  are symplectic, so V must be non-absolutely irreducible 
in case (a). It remains to consider the case E+i = U ,  8 U ,  where U , ,  say, is of type 
V e V and V is non-absolutely irreducible. I n  fact we show that this case reduces to 
LJ @ ri where LJ is of type (a)~ Begin by perturbing U2 away as in the proof of the 
previous lemma. Then E+i = U ,  is the sum of two isomorphic irreducible subspaces, 
so every irreducible subspace of E+i is isomorphic to V.  By proposition 3.5 we may 
write E+i = U 8 U where each copy of U is symplectic and isomorphic to V .  Hence 
this onecopy of U of type (b) in the lemma splits into two isomorphic copies of U of 

0 type (a) in the theorem. 

4. Movement of eigenvalues 

Suppose that A ( i )  is a one-parameter family of linear Hamiltonian vector fields com- 
muting with the action of a compact Lie group r. Suppose further that A ( I )  undergoes 
a steady-state bifurcation or 1-1 resonance at i = 0. Theorems 3.2 and 3.3 give the 
generic structure of the generalized eigenspaces E,  and E+? 

When there is no symmetry present, these structures reduce to those described in 
section 2. Moreover we were able to determine the generic movement of eigenvalues 
and to give an energetic description. In particular, the eigenvalues generically split off 
the imaginary axis in each bifurcation. 
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When there is symmetry present, it is no longer true that the eigenvalues generically 
split. In this section, we show that the eigenvalues split off the imaginary axis or pass 
along the axis. Moreover this movement can be completely characterized in terms of 
group theory and energetics. In fact, in the steady-state bifurcation it is already known 
that the movement can be characterized using group theory alone [5] or by energetics 
alone [12]. We combine these two results in theorem 4.1. 

The movement of eigenvalues in the 1-1 resonance is delicate and cannot be 
characterized by group theory alone or energetics alone. Even the statement of the 
result (theorem 4.4) requires familiarity with the terminology of Montaldi et a /  [IO]. 
In section 4.1 we introduce this terminology and state theorems 4.1 and 4.4. We also 
state some of the results in [lo] that we shall require, including an equivariant version 
of Darboux's theorem. In section 4.2 we prove theorems 4.1 and 4.4. 

4.1.  Statement of results 

We begin by stating the combined results of [5] and [12] for the steady-state bifurcation. 

Theorem 4.1. Suppose that the hypotheses of theorem 3.2 hold. Let Q, denote the 
quadratic form induced on the corresponding generalized eigenspaces via equation (2.1). 
Generically, precisely one of the following occurs: 

(a) Eo is non-absolutely irreducible, Q, is definite for 1 # 0, and the eigenvalues 
pass with non-zero speed; 

(b) E,, is the direct sum of two isomorphic absolutely irreducible subspaces, Q, 
changes from'definite to indefinite, and the eigenvalues split. 

In order to state the corresponding result for the 1-1 resonance, it is necessary to 
recall some terminology and results from Montaldi et al [lo]. 

If U is a symplectic representation then-by ignoring the symplectic structure-we 
obtain an ordinary representation, which is called the underlying representation. A 
r-irreducible symplectic representation is a representation that has no proper non-zero 
r-invariant symplectic subspaces. It follows from propositions 3.5 and 3.9, part (b), 
that irreducible symplectic representations are either non-absolutely irreducible or the 
sum of a pair of isomorphic absolutely irreducible subspaces. Moreover, the following 
theorem holds, which is part of [lo, theorem 2.11. 

Theorem 4.2 .  (a) In the real and quaternionic cases the isomorphism type of the 
irreducible symplectic representation is uniquely determined by that of its underlying 
representation. 

(h) In the complex case there are precisely two isomorphism types of irreducible 
symplectic representations for a given complex irreducible underlying representation. 
They are said to be dual to each other. 

According to the two different possibilities occuring in part (b) we will speak of 
complex irreducibles of the same type and complex duals. 

Remark 4.3. The real, complex and quaternionic cases mentioned in theorem 4.2 refer 
to the following well known fact (see, e.g., [ 6 ] ) :  let U be irreducible and 9 he the space 
of linear mappings U -+ U which commute with r. Then B is isomorphic to either R, 
(c or M, where H denotes the quaternionics. Moreover, U is absolutely irreducible if 
59 2 IR and non-absolutely irreducible if either B (c or 59 "= H. 

After these preparations we state our main theorem of this section. 
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Theorem 4.4. Suppose that the hypotheses of theorem 3.3 hold. Let Q denote the 
quadratic form induced on Eti  via equation (2.1). Generically, precisely one of the 
following occurs: 

(a) U, and U, are not isomorphic and the eigenvalues pass independently along 
the imaginary axis. (Q may be indefinite or definite.) 

(b) ,U t  = U, = V @ I/, V real, or U, = U ,  = W ,  W quaternionic, the eigenvalues 
split, and Q is indefinite. 

,G, "I *U" "* a,c ~ U I I q J ) I C I  U, LllC Sa'IK Lyyc, L'lC crgc1,varucs p a s  all" 

(d) U, and U, are complex duals and the eigenvalues pass or split depending on 
,-, TT ^__I r r  -PAL L .L--; ^_I A : . : - , l - C . . : L "  

1s IIICLCIIIIIIC. 

whether Q is definite or indefinite. 

The statement of the last theorem is roughly summarized in table 1 

Table 1. Generic eigenvalue movement. 

Induced quadratic form 

Definite Indefinite 
Eigenspace structure 

~~ ~ ~~ ~~ 

(a) U, e U, non-isomorphic 'Independent passing' 
(b) Splitting 
(c) W e W complex of the Same type Not generic Passing 
(d) W 63 W complex duals Passing Splitting 

V e V m V @ V real, or W m W quaternionic Not generic 

Remark 4.5. (i) The case where there is no symmetry is contained in part (h) with V 
real and dim V = 1 .  

fact results of [IO] explain why eigenvalues cannot split in part (c). There the so-called 
cyclospecrral representations are classified. These representations have the property 
that all eigenvalues of commuting linear mappings lie on the imaginary axis. A 
representation of the form U, fB U, where U ,  and U ,  are complex of the same type is 
indeed an example of a cyclospectral representation. 

(iii) By extending the results of Galin to the equivariant setting [IS]. it is possible 
to prove theorem 4.4 in a less ad hoc manner. Moreover, the fact that passing occurs 
generically in the complex cases is seen to be transparent from this viewpoint. 

Finally we state an equivariant version of Darboux's theorem, which is implicit in 
theorem 2.4 of [IO]. We will use this result to simplify the computations involved in 
the proof of theorem 4.4. 

Proposition 4.6. Suppose that U is an irreducible symplectic representation. Then, 
U@% isomorphism, there is precisely one symplectic form on U in the real and 
quaternionic cases and precisely two in the complex case. 

4.2. Proofs 

Proof of theorem 4.1. Suppose that E,, is non-absolutely irreducible. By remark 4.3 
A(2)  = a(1)r where a ( i )  E 9, B = (c or M, and a(0)  = 0. The eigenvalues of A(1) are 
the same as the eigenvalues of a(2) repeated with multiplicity equal to dim, E,. By 
proposition 4.6 we may choose coordinates so that J = +i (since these are candidates 
for J and are distinct if W is complex). The quadratic form Qn is represented by the 

(ii! Perhaps the most surprising aspects of theorem 4.4 are parts (c) and (d)~ In 
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symmetric real matrix B(A) = fia(A)l. I t  follows that a(2) = ib(A) where b(d) is real. In 
particular, the eigenvalues of A(A) are purely imaginary. In addition, a’(0) = ib’(0) and 
b’(0) is generically non-zero, so that the eigenvalues pass through zero with non-zero 
speed. Finally B ( 2 )  is a real scalar multiple of the identity and so is definite for d # 0 
as required. 

Now suppose that E - V @ V where V is real. By proposition 4.6 we may choose 
coordinates so that J = ( I a ) .  Again we may work with 2 x 2 matrices provided we 
include multiplicities equal to dim V .  But then we are back in the case where there is 

U 

Proofoftheorem 4.4. (a) Since U, and U ,  are non-isomorphic, there is a corresponding 
block diagonal structure of A(>.) on E+i corresponding to the decomposition E+i = 
U, €3 U,. The eigenvalues on each Cl, aresimple up to multiplicities forced by symmetry 
and it follows that the eigenvalues belonging to each block remain on the imaginary 
axis and behave independently as 2 is vaned. Similarly, the quadratic forms induced 
on the U j  separately are definite. Depending on whether they are definite of the same 
sign or of opposite signs, the quadratic form on E+i is definite or indefinite. 

(h) The case U, = U, = V @ V reduces t o  the four-dimensional situation of 
theorem 2.3. We turn to the quaternionic case which is more difficult since we do 
not have a list of normal forms. Once we have verified that the eigenvalues split, it 
follows that Q is indefinite by theorem 2.1. For simplicity from now on we suppress 
multiplicities forced by the dimension of the underlying irreducible representation, so 
we may reduce to the case where W is isomorphic to El or even Cz. Here it is 
convenient to use the standard representation of the quaternion a + bi + c j  + dk as the 
2 x 2 complex matrix (-c+di a--6i). Choose coordinates so that J ( W )  c W and that 
J ! w  = (‘!;I). 

a 0-1 

no symmetry and we can apply theorem 2.2. 

a+bi efdi 

On E+ the mapping A(>.) has the form 

1 0 4) u,(d)+iu,(A) u , ( 4  +io,(A) 
-44 0 -u,(d) + iuz(A) #,(A) -iu2(A) 

-U,@) - iu,(A) u,(A)  -&(A) 0 bo4 i -u,(d) -iu,(d) -u,(A) +iu2(A) -b(>.) 0 

A @ )  = 

where a, b, U,, U,, U,, u2 are real-valued functions. The computation of the eigenvalues of 
A(d) (using MATHEMATICA) leads to 

4.) = +- 4-J- P ( 4  + 4(4 Jz 
... :*I. W l l l l  

p = - (a’ + b’ + 2(u: - U: + U: - U;)) @ 

q = p z  - 4  (ab- (U: +U: +U: +U:),’ 

= ( ( U  - b)* + 4(u: + U:)) ( (U  + b),  - 4(u: + U:)) 
By assumption u(0) = +i so p ( 0 )  = -2, q(0) = 0. Since the first factor of q is the 

sum of three squares, it is generically the case that the second factor vanishes. We 
compute at  0 that 

q’ = 4((a + b)’)’ - 32(u2u; + uzu;). 
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Now we claim that generically q’(0) # 0 and hence we have the splitting case. It is 
clear that generically q’(0) # 0 provided 

a(0) # -b(O) or  u,(O) # O  or u2(0) # O .  

Suppose that a(0) = -b(O), u2(0) = 0 and u2(0) = 0. We show that this is not a generic 
situation. The matrix A(0) becomes 

and has semisimple eigenvalues *$a2 + uz + u 2 )  
Consider the perturbation 

a + 2 e  u + i e  U 
-U U-ic  

U 0 -a A,(O) = 

-U - u + i e  a 0 

The eigenvalues U, of this perturbed matrix are still purely imaginary, 

U, = k;J-((a + €)Z + U2 + U*) 
but now we have generically that q’(0) # 0 as required. 

the form 
(c)  By proposition 4.6 we may choose coordinates so that J = coy). Then A(A) has 

where a i  is ;I comp!cx-va!ued function and ”; a4 arc rea!, The eigenvalues are 

.(a) = ~ ( 2 )  * 4Zfj 
where 

p = l i a  2 ( I + a4) 

q = - q a  I - a412 - 

The eigenvalues of the matrix B = JA(0) are 

f ( -(a1 + a41 k &FGFGG). 
Generically in a one-parameter family q(0) is non-zero. Hence by hypothesis on the 
eigenvalues we must have p(0)  = 0 and q(0) = -1. Therefore the eigenvalues of A(a) 
pass with non-zero speed provided p’(0) = ii(a’,(O) + d(0)) # 0. In addition a, = -E, 

and so the eigenvalues of B have opposite sign. 
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(d) By theorem 4.2 and proposition 4.6 we may assume that J = (d!i) and we 
have to investigate the eigenvalues of the matrix 

where again a2 is a complex-valued function and a,, a4 are real. These eigenvalues are 

44 = P ( 4  + m 
where 

p = ti(., + a4) 

q = -+(al -a4)’ + (a l (  2 . 

The eigenvalues of the matrix B = JA(0)  are 

f ( (a4 - 01,) * &ZZGG) 
By assumption there are exactly two possibilities, both of which can be realized in a 
generic one-parameter family: 

(i) p ( 0 )  = 0, q(0) = -1. In this case the eigenvalues of B are given by -a, fi 
and B is definite. Hence the eigenvalues of A@) remain on the imaginary axis and pass 
with non-zero speed provided p‘(0) = fi(a’,(O) + ak(0)) # 0. 

(ii) W O ) [  = 1, q(0) = 0. We claim that in this case generically q’(0) # 0 and therefore 
we have the splitting case. We compute 

q’(0) = -+(a,(O) - a4(O))(a’,(o) - ak(0)) + ~~~2(o)~~~2~’(o) 
and the eigenvalues are generically splitting at  +i as long as 

al(0) # a d o )  or # 0. 

But the situation a1 = a4 = 1, a2(0) = 0 can be perturbed to 

since A,(O) still has the eigenvalue i(l  + ;e). Finally B is indefinite since the eigenvalues 
split. U 

Remark 4.7. It is easily seen from the proof of theorem 4.4 that it is not generic in a 
one-parameter family for A(0) to have only zero eigenvalues on the space W W if 
W is complex or quaternionic. For then the polynomials p and q both have to vanish 
yielding at least two independent conditions. This is the computation that was required 
to complete the proof of theorem 3.2. Similarly it is not generic for a matrix A E sp#) 
to have resonant eigenvalues on the space W cB W ,  as required in theorem 3.1. 
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5. Examples 

(a) r = SI x SI.  We consider the following symplectic S' x S1 action on e', 

( e , w I , z 2 )  = (eiBzI,eimz2) 

where the symplectic form o is defined by J = (0". The copies of C are non- 
isomorphic and therefore we know that splitting cannot occur. 

For example, consider the S1 x SI-invariant Hamiltonian 

H ( ~ 1 , ~ 2 , 4  = $ (4z1I2- 1221') 

In real coordinates this takes the form 

H(qi,qz,pi ,Pz,4 = $ ( l ( d + d ) - ( d  +d)). 
A@)  is given by 

i l  0 
4 4  = ( i )  

and independent passing in a 1-1 resonance occurs for l = f l  whereas we have passing 
in the steady-state bifurcation case for 1 = 0. 

Observe that H is aiso invariant under the action of the transformations 

ZI -+z, 2' + L=' 

but these transformations do not commute with J and therefore act non-symplectically. 
(b) r = O(2). We consider the symplectic form J ( z , , z 2 , z 3 , z 4 )  = (-z2,zl,-z4,zj) on 

a?. Let O(2) act on C by 

8 . 2 = eioz K ' Z = z .  

Then the diagonal action on U? is symplectic and the copies of C are isomorphic 

the splitting cases occur-with an eight-dimensional generalized eigenspace in the 1-1 
resonance and a four-dimensional generalized eigenspace in the steady-state bifurcation. 

---l -o--en~..+q*:n~o TharnFnm ..,- L-n.,r h.. -neD &\ nf +hamre- A A +hot ma-nAnnlI.. ,can ' C p " ~ ~ c " L a L 1 " " " .  I l l r L r l Y I C  n u  nll"n " J  CaUC I", "1 L l l r V L r l l l  7.- LLICzL ~*"c"cnrlJ 

For example, the Hamiltonian 

H(zl ,z2,z3,z4,4 = l [fIz1l2 - Re(zlz,)] - [~(Iz21' + Iz4I2) +Re(z1f4) - Re(z2f3)] 

or in real coordinates 

~(q,,q,,q3,q4,P,,P*,P3,P,,~) = A  N 4 :  + 4 : )  - (41PI + q * P 2 ) ]  

- [f + P: + f d )  f (41P3 + 42P4) - (q3PI f 44P2)] 
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A 

Figure 3. Imaginary parts of  the eigenvalues in example (b) against the bifurcation 
parameter 1. The sequence splitting at 0 -spli t t ing at f i  can be observed as i is varied. 
The lasl eigenvalue bifurcation is related to splitting of f  the red  axis, but this does not 
correspond to a dynamic bifurcation. 

is invariant under this O(2) action. 
eigenvalues of multiplicity two is shown in figure 3. 

J = too). A symplectic SI-action on (E2 is given by 

8(z1,z2) = (eiozI,eiozz). 

For -3 I 1 < 3 the movement of the four 

(c) r = SI. We consider the space Cz, where the symplectic form o is induced by 

Since the copies of C are complex of the same type, we have passing, generically with 
non-zero speed. 

As an example we consider the r-invariant Hamiltonian 
. r , ,  ,1 if(zl,z2,ij = A LiizII- + im(t,z,jj + Re(z,z2j 

which in real coordinates has the form 

H(41,4Z,P,,P2.4 = 1 [1 (4: + P:) + (4lP2 - 42Pl)l + (4142 + PIP4  

Here A(1) is 

-1+ i  0 A(1) = 

and the eigenvalues of A(1j  are i1/2 ,/-(Az + ij. A 1-1 resonance occurs for 1 = 0 
and the eigenvalues pass with non-zero speed. 

(d) r = S I .  Again we consider the space Cz, where the symplectic form o is now 
induced by J ( z l , t 2 )  = (zz,-zI). The S’ action on Cz is the same as in the last example, 
namely 

e(z,,z2) = (eiozl,eiozzj 

The -..- r n i ~ ~ r  ” ~ - ~ - ”  c{z,-iz) 2nd Cjz,iz) zrc c o ~ p ! ~ ~  &&, Therefore ,ye gefierica!!y ~ ~ X J C  

definite passing or indefinite splitting. 

orthogonal planar double pendulum as described in Bridges [3] (with m = 3) 

H(zl,z2,1j = ijz11’ + flIm(r,z,) +2(1-  :>.2)1zZ1* 

The following r-invariant quadratic Hamiltonian occurs in the analysis of a rotating 
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I 

Figure 4. Imaginary parts of all four eigenvalues in example (d) against the angular velocity 
2. The sequence indefinite splitting + passing at 0 - definite passing -passing at 0 - 
indefinite splitting can be observed as i, is varied. 

In real coordinates 

ff(ql~qz3Pl>Pz~4 = ~(4:+4:)+~.l(4,P,-q,P,)+2(1- :J3(P:+P:). 

Here 1 corresponds to the angular velocity of the rotation. A more detailed study of 
this example will be performed in subsequent work. For -2  I 2 I 2 the corresponding 
eigenvalue movement is shown in figure 4. 

6. Relationship to normal form theory 

It is well known that at 1-1 resonance there is an approximate phase shift SI symmetry 
introduced by the semisimple part of the linearization (see for example van der Meer 
[9]). More precisely, there are near-identity r-equivariant changes of coordinates so 
that the truncated Hamiltonian vector field (normal form) is r x SI-equivanant. 

It can easily be shown that E+i can be written as the sum of two isomorphic 
complex irreducible subspaces unde;the action of SI. Moreover we have the following: 

Proposition 6.1. Suppose that the hypotheses of theorem 3.3 hold. The decomposition 
of E,, into r x S1-irreducible subspaces is of the form Eji = U l  @ U, where the U,  are 
complex and are: 

(1) non-isomorphic; 
(2) of the same type; or 
(3) dual. 
Possibilities ( l ) ,  (2) and (3) correspond to cases (a), (c) and (d) of theorem 4.4. 

In addition, case (b) of theorem 4.4 reduces to either possibility (2) or (3) above, and 
reduces generically to (3). 

ProoJ The proof is straightforward with the possible exception that case (b) of 
theorem 4.4 reduces generically to (3) rather than (2). But the decomposition in ( 2 )  is 
cyclospectral in the terminology of [IO] and the eigenvalues must lie on the imaginary 
axis. By theorem 4.4 the eigenvalues generically split ruling out possibility (2 ) .  0 
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Remark 6.2. Although the proposition unifies some of the cases in theorem 4.4, it 
does not contain as much information as the theorem. Suppose that we are in case 
(b) of the theorem. Then, by the proposition we can generically pass to the case of 
complex duals by taking into account the additional S' symmetry. But then we can 
only conclude that passing or splitting occurs. However, by ignoring the SI-symmetry, 
we are able to conclude that generically there is splitting. 
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