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GENERIC BIFURCATION OF PERIODIC POINTS
BY

K. R. MEYERO)

Abstract. This paper discusses the bifurcation of periodic points of a generic
symplectic diffeomorphism of a two manifold that depends on a parameter. A com-
plete classification of the types of bifurcation that can occur in the generic case is
given.

Introduction. This paper discusses the bifurcation of periodic points of an area
preserving diffeomorphism that depends on a parameter. In the spirit of Thorn
and Smale only the generic case is considered. As in Smale's work on discrete
dynamical systems the present problem was suggested by problems in ordinary
differential equations (see [1]). Whereas Smale modeled his theory on differential
equations with dissipation the present problem was suggested by conservative
differential equations.

Throughout this paper smooth will always mean C°°. Let M be a smooth,
compact, two dimensional, symplectic manifold, S=SX the circle considered
as a smooth manifold and F the space of all smooth mappings <p: MxS-> M
with the property that for each s e S the map <ps=<p(-, s): M-> M is a symplectic
diffeomorphism. Let F have the usual topology of C°° maps. The space F is
complete and therefore is a Baire space. A point (x, s) e M x S is called a periodic
point of least period m if <p™(x)=x and m is the smallest positive integer for which
this holds. Any multiple of m will be called a period of (x, s). If (x, s) is a periodic
point of <p of least period m then each point (<p\ix), s) e M x S is a distinct periodic
point of least period m for i = 1,..., m and the set U™= i (<pl(x), s) is called the orbit
of <p through (x, s).

We wish to discuss the nature of the set of periodic points for <p e F and in
particular the manner in which these periodic points depend on the parameter
seS. Instead of discussing the general element y e F we define a subset ^S^F
and discuss the periodic points for tpe'S. Then by showing 'S is a residual subset of
F insures that the discussion dealt with the generic case.

The problem discussed here is closely related to the following problems in the
theory of differential equations.  Consider Duffing's equation d2xjdt2 + x + x3
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= E cos oit where x is a scalar and F and co are positive parameters. Consider the
map T: R2xR+xR+-+ R2 defined by

T(x, y, co, E) = [cpQirw-1, x, y, w, E), jf cP(2ttoi-1, x, y, co, E) \

where cp(t, x, y, co, E) is the solution of the above equation satisfying the initial
conditions <p(0, x, y, co, E) = x and <p(0, x, y, w, E)=y. It is easy to see that if
(x, y, co, E) is a periodic point of F of least period m then <p(r, x, y, co, E) is a periodic
solution of the above equation with least period m2ir\oi. Moreover for fixed co
and F the map F is area preserving. By holding co fixed and varying F one studies
how the periodic solutions of this equation depend on the amplitude of the forcing
term. By holding F fixed and letting co vary one studies how the periodic solutions
depend on the frequence of the forcing term.

Consider now a Hamiltonian vector field X with Hamiltonian H on the four
dimensional symplectic manifold N. Let T be a periodic solution of X with
H(F) = n0. One can choose cross sections S and £' to F such that (a) ScZ', (b) 2 and
S' are 3 disks, (c) the energy level H=h meets 2 and 2' in the 2 disks a(h) and o'(h)
for n near h0, (d) the cross section map defined by cp carries a(h) into <r'(n). The
cross section map for fixed n is known to be area preserving. Instead of considering
cp as mapping E —> 2' carrying o(h) into a'(h) we can identify all the o(h) and a'(h)
with one 2-disk and consider a one parameter family of area preserving diffeo-
morphisms of the disk.

The local analysis of §1 is based on the standard methods of bifurcation theory
that have been developed by many authors since the time of Poincaré. We have
only selected from this vast theory those cases which are generic. Indeed most of the
phenomena discussed in §1 has been or can be verified for the Duffing's equation
given above by small parameter methods. The present study was motivated by the
results of numerical experiments performed in the restricted, planar three body
problem by Deprit and Henrard [2] and Palmore [3]. These studies contain ex-
amples of all the forms of bifurcation considered in §1 plus some others. The
reader is referred to these works for a further discussion of bifurcation theory
as it applies to a specific example, and for further references.

The global analysis of §2 is based on the transversality theory developed by
Thorn and others. The results of Robinson [5] are closely related to the present
study. Robinson considered Hamiltonian vector fields on an arbitrary symplectic
manifold and has shown that generically periodic solutions lie on smooth two-
dimensional submanifolds. He has also established that certain irrationality
conditions normally used in the study of Hamiltonian systems are generic.

By comparing our formulation and the two examples given above one sees
that we have idealized the problem by assuming the basic space M and the parameter
space S are compact. In both the above examples the basic and the parameter space
are open. The assumption of compactness can be dropped if one uses the Whitney
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1970] GENERIC BIFURCATION OF PERIODIC POINTS 97

topology on F as was done in the analogous theorem presented in [4]. We have
assumed compactness simply to shorten the proofs. Since bifurcation is basically
local, the classification of periodic points presented in §1 remains the same in the
noncompact case.

The author would like to thank Dr. Julian Palmore for the many enlightening
conversations on the nature of bifurcation in the restricted three body problem.
These conversations determined the course of the present study. The author would
also like to thank Professor J. Moser for several suggestions and corrections to a
preliminary draft of this paper.

1. Local theory. Let ye F and (x, s) e M x S be a periodic point of <p of least
period m. The eigenvalues of dq>? : TXM -*■ TXM are called the multipliers of (x, s).
Since <ps is a symplectic diffeomorphism the multipliers of (x, s) are of the form A
and A "l and so either lie on the unit circle or on the real line.

Definition 1.1. A periodic point of <p e F is called hyperbolic ielliptic) if its
multipliers A and A-1 satisfy | A| ̂  1 (resp. | A| = 1 and A# ± 1).

Since cpm e F when cpeF, often it is sufficient to consider only fixed points.
The following classical lemma follows easily from the implicit function theorem.

Lemma 1.2. Let (x, s) be a fixed point of <p e F. If the multipliers ofiix, s) are not
+1 then there exists neighborhoods U and V, xe U<= M, se V<^S and a smooth

function y.V-^-U such that yis) = x and {(XT)> t) : t e V}<^ Ux V is the fixed
point set of y in UxV.

Thus if the multipliers of the fixed point (x, s) are not +1 then near (x, s) the
fixed points of <p lie on a smooth one dimensional submanifold of M x S para-
metrized by t e V<= S. But if the multipliers of (x, s) are A:th roots of unity one
might expect periodic points of period k arbitrarily near (x, s).

Extremal periodic points. For the present we shall work locally and suppress
the parameter. Let

(1-3) Q=Q(q,p),       P = P(q,p)

define a smooth area preserving diffeomorphism of an open disk centered at
q=p = 0 in the q, p plane into the plane. Following Poincaré [6] one observes that

(1.4) Í1 = iP-p)diQ+q)-iQ-q)diP+p)

is a closed form in q and p and so there exists a generating function Giq, p) such
that dG = £l. Assume (1.3) has a fixed point whose multipliers are not —1. For
simplicity assume this fixed point is at q=p = 0. Since the multipliers of this fixed
point are not — 1 one can introduce new variables

(1.5) î=Q+q,     -n = p+P,
so that

(1.6) dGjdè = P-p,       dGjd-n = q- Q.
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Thus a fixed point of (1.3) whose multipliers are not —1 corresponds to a critical
point of G. Conversely if G(£, rj) is a smooth function with a critical point at
£=■7=0 with Hessian determinants A not equal to —1/4 then the equations (1.5)
and (1.6) can be solved locally to yield an area preserving diffeomorphism of the
form (1.3) with q=p = 0 as a fixed point.

If the quadratic part of G is given by

(1.7) G = i{ae + 2ßCv + yri2},

with 4A = ay-ß2^-l, then the linear part of (1.3) is given by

n 8) lQ\=_L_l(\-ß)2-*V -2?     \(q\
K     } \P)       1+4M 2a (l+ßf-ay)\p)
and conversely.

Let F be the trace of the matrix in (1.8) then F=2(l -4A)(1 +4A)"1. Hence a
hyperbolic fixed point of (1.3) corresponds to a saddle point of G and an elliptic
fixed point of (1.3) corresponds to a maximum or minimum of G.

Of course, if the original map (1.3) depends on a parameter then the function
G depends on a parameter also.

Definition 1.9. Let (x,s)eMxS be a periodic point of least period m of
cpelF. Then (x, s) will be called an extremal periodic point if in some local co-
ordinate system: q, p canonical coordinates in M with q(x)=p(x)=0 and e the
coordinate in S with e(a) = 0; the map <pm is derived by (1.5) and (1.6) from a generat-
ing function G(q, p, e) such that

G = 8G\dq = dG/dp = 82Gjdp2 = d2G/dqdp = 0,
and

d2G\dq2 j= 0,        d2G\dpde £ 0,        83GI8p3 / 0.

The typical example of such a function is G=q2¡2+ep+p3¡3.

Proposition 1.10. Let (x, s) e M x S be an extremal fixed point of cp e M x S.
Then (x, s) lies on a smooth local one parameter family of fixed points of MxS.
The point (x, s) divides this local family into two arcs each of which are parameterized
by se F<= S and one arc is entirely hyperbolic fixed points and the other arc is
entirely elliptic fixed points. Moreover in any coordinate system e: U^S^-R
the function e achieves a nondegenerate maximum or minimum along this family.

Proof. From the preceding remarks it is enough to look at the critical points
of the function G.

The Jacobian of the equations Gp = Gq=0 at q=p = e=0 is

/0   0      G„\
\0   Gqq   GeJ•qq       *->eql

which is of rank 2 by assumption. Thus we can find functions ¿;(p) and r¡(p) such
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that GPip, Up), /?(/>)) = Gaip, £(//), yip)) = 0. From these identities one computes
that

TP ̂  = Tp m = °   and   $(0) = -G^G" * °-

Thus r¡ achieves a nondegenerate maximum or minimum at 0. Using these facts
one computes that

\r      r   )(PA(P),1(P))=\    „       nr        )+o(p).\0-pg (jpp/ \ U P'JpppiO)/

Thus for p = 0 the critical point (//, Up), /?(//)) is nondegenerate and is a saddle
for p on one side of p = 0 and a maximum or minimum for p on the other side of
zero.

Proposition 1.11. Let (x, s) be an extremal fixed point oficpeF. Then there exists
a neighborhood U, xe U<=M, such that for each ye U—{x} either <p£(j)->-x as
a —> oo or for some a0 > 0, <p"°iy) $ U.

Remark. Since not all points can approach x under iteration at least one must
leave the neighborhood U and thus x is unstable. Since not all points can leave the
neighborhood under iteration there must be at least one point y e U—{x} that is
asymptotic to x, i.e. <p"iy) -*■ x as a -h* oo. Moreover the proposition states that U
does not contain the orbit of any other periodic point.

Proof. Let O(n) denote a function defined in a neighborhood of the origin in
the plane which vanishes along with all its partial derivation up to order n — 1 at
the origin. We may assume that G is of the form

G = ej2+arfl3 + brt2Çj2 + CT)e + de + Oi4),
where a^O. By the formulas (1.5) and (1.6)

Q = q-4{aip+q)2 + bip+q)q + cq2} + Oi3),       P = // + 2<7+0(2).
Consider the function V=ßq-qp then

AV= ViQiq,p),Piq,p))-Viq,p)
= -4ß{aip+qy + bip+q)q + cq2}-2q2 + Oi3).

If ß is chosen small enough and with ßa positive then the quadratic part of A F
will be negative definite. Choose a compact neighborhood A of the origin such that
AKis negative definite with respect to the origin in all of A.

Assume there exists a sequence of points {\qu p)} such that (<jr¡, p) e N for all
iH 1> qi+i = Q.(quP), Pi + i=P(qi,P) for ¡'^2 and iqhp) £ A' where A' is an open
neighborhood of q=p=0, N'<=N. Let m be the minimum of £ on A and 8 the
minimum of — AK on A-A'. Note that 8>0. Then

m Ú Viq„Pi) = Viqx,px)+ ¿ AK(Í4,/0 ú Viqx,px)-ii-l)8
i

for all /=2. But this is clearly impossible since 8>0.
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Transitional periodic point. We now describe the local behavior near a periodic
point whose multipliers are — 1.

Definition 1.12. Let (x, s) e M x S he a periodic point of <p e SF of least period
m and multipliers — 1. The point (x, s) will be called a transitional periodic point
if in some coordinate system—q and p coordinates in M with q(x) =p(x) = 0 and e
coordinates in S with e(s) = 0—the map <pm has the form

cp™: (q,p, e) -> (Q, P),       Q = -q+p + 0(2),       P = -p + 0(2),

and yj^O and a2+2r¡j^0 where

82P      . 82P 82P 83P 82Q
W2=      '        dqcTp=ß'        dqcTe = y'        d? =      '        ~W =    ^

andi7 = 8+a£+a/S/2.

Proposition 1.13. Let (x,s)eMxS be a transitional fixed point of <pe3F.
Let U, V and y be as in Lemma 1.2. Then V can be chosen so small that V— {s}
= V+ u V_ where (y(r), T)> t e V+ is a hyperbolic fixed point of cp and (y(r), t),
teF is an elliptic fixed point ofcp.

Moreover if V is small enough either
(A) there exists smooth functions zx and z2: V+ -> U such that {(zx(t), t),

(z2(t), t)}, t es is the orbit of an elliptic periodic point of least period 2 and zx(t) ->- x
as r -> s, or

(B) There exists smooth functions zx and z2: F_ -*■ U such that {(zi(r), t),
(z2(t), t)}, t 6 F_ is the orbit of a hyperbolic periodic point of least period 2 and
zx(t) -> x as t —>- s.

Remark. The proof contains some additional information on the direction and
rate of approach of z{(t) to x.

Proof. Since the determinant of the Jacobian of cp is 1, one can compute that
the trace is —2 — ey + 0(e2) and so the first part of the proposition follows.

Let y(a2+ 2r¡)<0 and consider the case when e>0. Make the substitutions
Q=pR, P=p2T, q=pr, p=p2t where p2 = e. (If y(a2 + 2r¡) > 0 then consider e<0,
let p2 = — e and proceed in the same way.)

Calculate <p : (r, t, p) -*■ (R, T) where

R = - r + p{t + fr2} + 0(p2),       T= -t + ctr2 + p{yr+ßrt+ 8r3} + 0(p2).

One calculates that the eigenvalues of the Jacobian of this map at the origin are
1 ± py112 + 0(p) and so the fixed point at the origin is hyperbolic if y > 0 and elliptic
ify<0.

From these formulas calculate cp2: (r, t, p) -> (R2, T2) where

R2 = r- 2p{t - ar2l2} + 0(p2),       T2 = t- 2p{yr + art + r,r3} + 0(jx2).

Consider the functions F(r, t,p)=p~^R2 -r} and G(r, t,p)=p~\T2 -t}. Applying
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the implicit function theorem to £ and G one finds there exists functions r¡ip),
¡¿p) such that £(r,(ft), tÁjp), p)=0, G(r¡0x), t¡ip), p)=0, i =1,2. Moreover r¡(0)
= -aylia2 + 2V) and ^(0) = ( - 2y/(a2 + 2r?))1'2, r2(0)=-(-2y/(a2 + 21?))1'2. The
functions zt in the coordinates q, p, e are z¡ : e ->■ (e1,2r¡(e1/2), er^e1'2)) for e > 0.

The eigenvalues of the Jacobian of £2, £2 with respect to r and t at these solutions
are 1 ±2^(—y)1/2 + 0(/x2). Hence if y<0 they are hyperbolic and if y>0 they are
elliptic.

Bifurcation points. Now we consider periodic points whose multipliers are kth
roots of unity. By the Birkhoff normalization procedure [7] one has

Lemma 1.14. Let (x, s) e M x S be a fixed point of yeF whose multipliers are
exp ( ± 2-nlijk) where I and k are relatively prime integers, k^3,0<l<k. Then there
exists a symplectic chart iq,p) in M, ç(x) =/z(x) = 0 and a chart e in S, e(s) = 0 such
that cp : iq, p, e) -> (g, £) where

q = r112 cos 6, p = r1/a sin 6,

Q = R1'2 cos 0,       £ = £1/2 sin 0,

0 = e + 2irllk + e*ie)jk + l*ik-2)m{ßjie)lky + {yie)lk}{cOS keyk~^2+ 0^0, r, e)

R = r + {2yie)jk}{sin k6}rkl2 + Rxi6, r, e)

and Rx, &x, are smooth functions of 6, r112 = p, e and 2n periodic in 8 with

-^(0,0,0) = 0,      j = 0,1,2,...,k+l

iïfà^1(0,0,0) = 0,       í = 0,l,2,...,fc-l.

Definition 1.15. A periodic point ix,s)e MxS of least period m of ye F
whose multipliers are A:th roots of unity will be called a k-bifurcation periodic
point if in the chart described in Lemma 1.14 for <pm, a and y are not zero when
k = 3 ; a, y and ß ± y are not zero when k = 4 and a, ß and y are not zero when k > 5.
Here and in what follows we shall write a, ß, y for a(0), ßxi0) and y(0) respectively.

Proposition 1.16. Let (x, s) e M x S be a 3-bifurcation point. Let U and V be
as in Lemma 1.2. If V is small enough there exist smooth functions w\, i=l,2,3,
from V— {s} into U such that \Jl (Wj(t), t), t e V—{s} is the orbit of a hyperbolic
periodic point of least period 3. Moreover w¡Ít) ->x as t-^-s.

Remark. More detailed information on the rate and direction of approach of
wt to x as t tends to s can be gleaned from the proof.

Proof. Consider the chart (x, s) as given in Lemma 1.14. Replace r and £ by
£2r and e2R respectively and compute <p3: (0, r, e) -> (03, £3), where

03 = 0+£{«+y(cos 3d)rll2} + Oie2),       R3 = r+e{2y(sin 30)r3'2} + CV).
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Let ay > 0 (resp. ay < 0) then by the implicit function theorem there exist functions
fiW, nie), i =1,2, 3 such that e-^tíle), •?,(«), e)-^)} = 0 and

e-Wm%(«)»«)-',(l>)} = 0
and ^(0) = 7r/3 + 27r//3 (resp. £(0) = 2.t//3) and rn(0) = a¡y (resp. -r/¡(0)= -a/y).

The functions w¡ in the original coordinates (i.e. before r and R are replaced by
e2r and £2F) are wt : (9, r, e) ->- (£le), e2rjle)). Compute

8(63, R3) _ (i   o\    /       o +M±«/y)-1/2\ ,n(2,
8(6, r)    '{O    l)+e\ + 6y(±aly)3'2 0 J + U^F

Hence the eigenvalues are 1 ± e(3\ay\)112 + 0(e2) and the fixed points are hyperbolic.

Proposition 1.17. Let (x, s) e M x S be a 4-bifurcation fixed point of'<peF and
let U and V be as in Lemma 1.2. If V is small enough either (A) there exists smooth
functions wt, /= 1, 2, 3, 4, from V— {s} into U such that (J$ (wu (t), t); t e V—{s},
is the orbit of a hyperbolic periodic point of least period 4 and wir) —> x as t -^- s or
(B) there exist smooth functions z¡ and wx, /= 1, 2, 3, 4, from V+ into U such that
Ui (wlT), T) is the orbit of a hyperbolic periodic fixed point of least period 4 and
UÍ (zi(T)> T) is the orbit of an elliptic periodic point of least period 4. Moreover
z¡(t) -> x and wx(t) -> x as t ->■ s. The set V+<^V is one of the two connected arcs of
V-{s}.

Proof. The two cases are as (A) |y| > \ß\ or (B) |y| < \ß\. The proof of case (A)
is similar to the proof of the previous proposition, and the proof of case (B) is
similar to the proof of the next proposition. Therefore we shall leave this proof
to the reader and continue to the next proposition.

Proposition 1.18. Let (x, s) e M x S be a k-bifiurcation, k^5, fixed point of
cpelF. Let U and V be as in Lemma 1.2 and let V—{s}=V+ u F_ where V+ and V'_
are connected open arcs. Then if V is small enough there exists smooth functions
zx and wx, i= 1, 2,..., k from V+ (or F_) into U such that (JÍ (Zj(t), t) is the orbit
of an elliptic periodic point of least period k and (J1 (>Ví(t), t) is the orbit of a hyper-
bolic periodic point of least period k. Moreover wx(t) and zx(r) approach x as r
approaches s.

Remark. More detailed information on the rate and direction of approach of
w, and zx to x as t approaches s can be gleaned from the proof.

Proof. For definiteness assume a^<0—the case when a/3>0 is treated in a
similar manner. Compute <pk and make the substitution r^er for e>0. Then
^:(0,r,e)-^(@",Rk),

@k(6,r,e) = e + e{a + ßr} + 0(e3'2),

Rk(6, r, e) = r + e*-2-»2(2y sin ke)rkl2 + 0(e*-™2).
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Since k>4 both ©^ and Rk are at least C1 in r. Since aß<0 the implicit function
theorem gives the existence of a function £(0, e) such that

ÜB, 0) = -a/S"1 > 0   and   0*(0, £(0, e), e)- 0 = 0.

Since y ̂ 0 the implicit function theorem yields the existence of 2k functions f,(e)
and 7?i(e), i'=l, 2,..., k such that £¡(0) = 2m¡k and T7t(0) = (2/ +1 )^/A: and

via*), ««•), '),*)-m*),<) = o
and

Rkir,iie),Îirhie),e),e)-tirliiE),e) = 0.

In this coordinate system the fixed points of <pk are (&(e), £(&(«),e)>E) and

We compute the Jacobian J of yk at these fixed points to be
/ l+O^-"'2) eß + Oie312) \

- \±ek-2^22kyi-aß-1)kl2 + OiE^-1)l2)    l + Oi¿k-1V2))

where the + sign is to be taken for the fixed points at the angles li(e) and the —
sign is to be taken for the fixed points at the angles ^¡(e). One sees that the trace of
J is equal to 2 to a very high order in e. But if one uses the fact that det J= 1 one
can easily compute that trace J=2 + 2ekl2yßki—aß~1)kl2 and so one set of fixed
points are hyperbolic and the other elliptic.

2. The global approximation theorem. In this section the main theorem (2.2)
is stated and proved.

Definition 2.1. Let 'S denote the set of <peF such that (a) each periodic
point of y is either elliptic, hyperbolic, extremal or transitional, and (b) if the
multipliers of a periodic point (x, s) e Mx S of y are kth roots of unity, k^3,
then (x, s) is a ^-bifurcation periodic point.

Theorem 2.2. & is residual in F.

Thus the periodic points discussed in §1 are the only generic periodic points.
The rest of this section is devoted to proving Theorem 2.2.

Lemma 2.3. Let (x, s) e M x S be a fixed point of yeF. Then there exists a
neighborhood U of (x, s) such that for each neighborhood <% of y there is a ^e°U
and ifi has only extremal periodic points or periodic points whose multipliers are not
+1. Moreover for each such ¡ji there exists a neighborhood 'f of </< such that all
t^e'V have periodic points in U whose multipliers are not +1 or are extremal.

Proof. If the multipliers of (x, s) are not +1 then the lemma follows easily
from the implicit function theorem. Let the multipliers of (x, s) be +1. Let U'
be a neighborhood of (x, s) and iq,p, ¿): U' -> £3 be a chart at (x, s) with <?(x)
=//(x) = s(s)=0. Let V be chosen so small that in this coordinate system y takes
the form y. iq,p, e) ->■ (g, £) where Q and £ are given by the formula (1.5) and
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(1.6) and G is defined on all of U'. That <p can be obtained from a generating
function G follows from the implicit function theorem and the linear analysis
of §1. Let U and U" be open sets containing q=p = e = 0 and such that closure of
C/<= U" and closure C/"<= jj' and let a be a smooth function which is identically
one on U and zero outside U". Let L(U', R') be the space of smooth maps from
U' into Rl with the Whitney topology.

There exists a neighborhood W of G such that for all HeW the function
aH+(l — a)G defines a smooth area preserving diffeomorphism defined on all of
U" by the formulas (1.5) and (1.6).

The lemma follows (as given below) by applying the jet transversality theorem
of Thorn to show that there is an open and dense set in L(U', R) whose critical
points with respect to q and p are either nondegenerate or of the form described
in Definition 1.9.

If HeL(U',R) consider the function FeL(U',R2), F: U' -> R2: (q,p,e)^
(H(q, p, e), e). Observe that a point is a singular point of F—i.e. a point where the
rank of F is less than 2—if and only if it is a critical point of H with respect to q
and/?, i.e. 8H\8q = dH\8p = 0.

In the rest of this lemma we shall use the notation of Levine [8], [9]. Let
J'(U', R2) denote the space of ally-jets from U' to R2. Let S&U', R2) be the regular
submanifold of J'(U', R2) as defined in [9]. In particular S\(U', R2) denotes the
set of all 1-jets in J1^', R2) whose Jacobian has rank identically equal to one.
By the jet transversality theorem there is an open and dense set K<^L(U', R2)
such that if Fx e K then the one jet of Fx meets S\(U', R2) transversally. Hence
there is an Fx e AT arbitrarily close to F. Since Fis of the form F(q,p, e) = (H(q,p, e), e)
the function Fx will be of the form (Hx(q, p, e), e + S(q, p, e)) where Hx is close to
H and 8 is small. Define p = e + 8(q, p, e) and so Fx = (H2(q,p, p), p). Again H2 is
close to H. Since Fj e K at each point where 8Fx\8q = 8Fx\8p = 0 one has

/ 82H2\8q2     82H2\8q8p    82H2\8q8p\    _
raïî   \82H2\8p8q     82H2\8p2     82H2\8pdp) ~   '

Moreover the set of such points is either empty or a smooth one-dimensional
submanifold of U'.

Levine has shown [8], [9] that there is a regular submanifold Sf(U', R2) of
J2(U', R2) which has the following property. Let the 1-jet of Fx meet S\(U', R2)
transversally; then the singular points of Fx consist of a regular submanifold
Dc U'. Then the 2-jet of Fx meets S\(U', R2) transversally if and only if the one
jet of Fi/Z) meets S\(D, R2) transversally. Thus as before, we can make a small
change in Fx to F2 so that the 2-jet of F2 meets S\(U', R2) transversally and again
by changing the parameter F2 can be written in the form (H3(q, p, p), p) where H3
is close to H. By the same type of computation as is found in Proposition 1.10
one finds that the critical points of H3 with respect to q and p are either non-
degenerate or of the type describing an extremal fixed point.
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The topology of L(i/', £2) is the C°° Whitney topology since U' is open. Since
U" is interior to £/' one sees that the supremum topology on functions from U" to
£2 has an open and dense set of functions with the desired type of critical points.

Lemma 2.4. Let I be a positive integer and ix,s)e MxS be a fixed point of
y e F. Then there exists a neighborhood U ofix, s) such that for each neighborhood
% of y there is aifi e<% andia) each fixed point of\b in U is either hyperbolic, elliptic,
extremal or transitional, and (b) each fixed point of i/< in U whose multipliers are kth
roots of unity, 3^k^l, are k-bifiurcation fixed points. Moreover for each such tfi
there is a neighborhood "T of <b such that for all £ e V the fixed points of £ in U
satisfy (a) and (b) above.

Proof. In the two-dimensional case an area preserving diffeomorphism can
always be obtained locally from a generating function (see [10, pp. 69-70]). Thus
perturbations can be made locally and then smoothed out by a bump function as
in the previous lemma.

The previous lemma covers the case when the multipliers of (x, s) are +1 since
there exists a neighborhood U of an extremal fixed point such that all fixed points of
y in U have multipliers close to + 1. Thus we may assume the multipliers of (x, s)
are not +1. By Lemma 1.2 the fixed point (x, s) lies in a one parameter family
of fixed points parameterized locally by t e S. Hence one can find charts u: U' -> £2,
x e U'^M, e: V -> R, s e V^S, such that the fixed points of y in U' x V are
given by «_1(0)x V. In local coordinates y has the form <p(«, e) = Aie)u+hiu, e)
where /i(0,e)s0, dhiO, e)/du = 0, and Aie) is a smooth curve in SL(2, R). Here
S£(2, £) is the special linear group of 2 x 2 matrices over the reals or equivalently
the group of 2 x 2 symplectic matrices.

The set of matrices £ e ££(2, £) whose eigenvalues are A and A-1 is given by the
smooth two-dimensional submanifold of matrices B e SL(2, R) such that trace
£ = A + A_1. Let Abe the smooth submanifold of 5£(2, £) given by those matrices
whose eigenvalues are kth roots of unity 2 ¿ k S /. By the elementary transversality
theorem there is a smooth curve C: V^ SL{2, R) arbitrarily close to A such that
C is transversal to A.

The map y can be obtained from a generating function S (see [10] for details).
Make a small change in S to obtain a new generating function S such that the
map £ obtained from S has the form £(w, e) = C(e)w + ln{u, ¿). The fixed points of £
whose multipliers are kth roots of unity, 2^A: = /, are isolated in Ux V. Thus we
can work locally at each of these fixed points.

Let (w0, e0) e U' x V be a fixed point of £ whose multipliers are kth roots of
unity 2 á k 5 /. There exists a neighborhood W of (m0, e0) which contains no other
fixed points whose multipliers arey'th roots of unity 2 a/= / and a function giu, e)
arbitrarily close to hiu, e) on W such that (h0, e0) is a transitional fixed point of
ip = Cie)u+giu, e) if A: = 2 or is a ^-bifurcation fixed point of </i = C(e)w+g(w, e)
if2<kil.
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The map <jj can be patched together using generating functions as was done in
Lemma 2.3. The second part of the lemma, i.e. openness, is obvious.

Remark 2.5. In Lemmas 2.3 and 2.4 we could assume that (x, s) is a periodic
point of least period n and arrive at the same conclusion. Since if (x, s) is a periodic
point of least period n there is a neighborhood U of x and a neighborhood V of s
such that the sets W' = {cpi(U) : se V} are disjoint for 0^j<h. Thus the small
perturbation of <ph can be made by a small perturbation of y on Wh~1xV^- Wh
without effecting the value of cp on W x V, 0^j^h — 2.

Let M x 5 be given some metric. If <p e J5" let K(i, <p) be the set of all fixed points
(x, s) of <p' and let L(i, cp) be the subset of K(i, <p) consisting of all points (x, s)
such that (x, s) is a fixed point of cp' for 0<j<i. Clearly K(i, cp) and L(i, cp) are
compact.

Definition 2.6. Let $(1, h, a) be the set of all <p e IF such that if (x, s) e K(i, cp),
0 < /:£ /, and the distance of (x, s) to K(i, cp) is greater than or equal to a then (x, s)
is either hyperbolic, elliptic, extremal or transitional and if (x, s) has multipliers
that arey'th roots of unity, 2<j^h, then (x, s) is ay-bifurcation periodic point.

Since <S = Ç\n <g(n, n, 1/n), Theorem 2.2 follows from:

Lemma 2.7. rS(l, h, a) is open and dense in !F.

Proof. We let / and a be fixed and use an induction proof on h. As a temporary
definition let us call any periodic point an elementary periodic point if it is hyper-
bolic, elliptic, extremal or transitional and if its multipliers are jth roots of unity
3¿j'á/then it is a y'-bifurcation periodic point.

Let cpeïF and a neighborhood ^ of 95 be given. The set K(l, cp) is compact
and L(l, <p)= 0. Thus K(l, <p) can be covered by a finite number of open sets Um,
m = 1, ...,/• as given in Lemma 2.4. We can suppose that ^ is small enough that
for any £ e °ll the only fixed points of £ lie in Um=i Ut.

Apply Lemma 2.4 to cp in Ux to obtain a function cpxe^l and a neighborhood
ai¿x'~ate of cpx such that <px and any £ e 9¿x have only elementary fixed points in l7x.
Repeat this procedure to find functions cpx and neighborhoods ^ of <p¡ such that
^^^¡-».cf/and^i has only elementary fixed points in í/¡ (and hence in {Jlm m x Um).
Then cpr is the desired function and G(l, 1, a) is dense in ¡F.

Let cp e @(l, 1, a). Then K(l, cp) is compact and so can be covered by a finite
number of open sets Um, m=l,..., r as given in Lemma 2.4. We can choose a
neighborhood W of 99 such that any £ e °U has all its fixed points in Um = i Um. By
the second part of Lemma 2.4 there exists neighborhoods ^ of 95 such that for
each £ e Vm the only fixed points of £ in Um are elementary. % n {P)m=i ^m} is a
neighborhod of cp in r£(l, I, a) and so ^(l, 1, a) is open.

The induction step is the same as the first step since the set of points in K(h, a)
whose distance to L(h, a) is greater than or equal to a is a compact set. See also the
Remark 2.5.

Postscript. One might ask to what extent the low dimensionality of M and S
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restricts the nature of bifurcation. As long as the parameter space is one-dimensional
it is the author's belief that no essentially new forms of bifurcation will occur if the
dimension of M is increased and so hold no further interest.

The general case of a 2n dimensional symplectic manifold M and an m dimensional
parameters space would contain too many essentially different forms of bifurcation
that the dictionary would be too long to comprehend.
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