
Generic Constructions of Identity-Based and

Certificateless KEMs

K. Bentahar, P. Farshim, J. Malone-Lee and N.P. Smart

Dept. Computer Science,
University of Bristol,

Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB,
United Kingdom.

{bentahar, farshim, malone, nigel}@cs.bris.ac.uk

Abstract. We extend the concept of key encapsulation mechanisms to
the primitives of ID-based and certificateless encryption. We show that
the natural combination of ID-KEMs or CL-KEMs with data encapsu-
lation mechanisms results in encryption schemes which are secure in a
strong sense. In addition, we give generic constructions of ID-KEMs and
CL-KEMs, as well as specific instantiations, which are provably secure.

1 Introduction

The natural way to perform public key encryption for large messages is to sepa-
rate the encryption into two parts: one part uses public key techniques to encrypt
a one-time symmetric key, the other part uses the symmetric key to encrypt the
actual message. In such a construction, the public part of the algorithm is known
as the key encapsulation mechanism (KEM) while the symmetric part – where
the message is actually encrypted – is known as the data encapsulation mecha-
nism (DEM). The formalisation of this basic approach originates in the work of
Shoup [15]. The resulting KEM/DEM encryption paradigm has received much
attention in recent years [6, 7, 15]. It is very attractive as it gives a clear separa-
tion between the various parts of the cipher allowing for modular design.

In [7] Dent proposes a number of generic constructions of KEMs from stan-
dard public key encryption schemes. The KEMs themselves are secure in a strong
sense, however the encryption schemes from which they are built require only a
weak notion of security. It is this line of work which we aim to extend in this
paper, by applying these techniques to two types of recently introduced, but
closely related, primitives: ID-based encryption and certificateless encryption.

A secure and efficient ID-based encryption algorithm was introduced by
Boneh and Franklin [4], based on pairings on elliptic curves. In [10], Lynn men-
tions that the encryption algorithm proposed by Boneh and Franklin is unlikely
to be used, since in practice one will use a form of key encapsulation. We call such
an encapsulation mechanism an ID-KEM. Lynn proceeds to mention a possible
ID-KEM construction, but he gives no security model or proof.

As mentioned above, one of the contributions of this paper is to formalise
the notion of key encapsulation for the ID-based setting. Having done this, we
show that Lynn’s construction for an ID-KEM can be used to build a fully-
secure ID-based encryption scheme, when combined with an appropriate DEM.
The resulting scheme is computationally more efficient than the original Boneh
and Franklin construction. The security proof at first sight seems tighter for
Lynn’s construction, however, the proof of security relies on a stronger assump-
tion, namely the gap bilinear Diffie–Hellman problem, described in Section 6, as
opposed to the Bilinear Diffie–Hellman problem on which the Boneh–Franklin
scheme is based.

We also present a generic construction of an ID-KEM, which is secure in a
strong sense, from any ID-based encryption scheme, which is secure in a weak
sense. When we instantiate this generic scheme with the BasicIdent scheme
from [4] we obtain an ID-KEM which is as efficient as the Boneh–Franklin con-
struction, and which is based on the, now standard, Bilinear Diffie–Hellman
problem. We feel our construction of an ID-based encryption scheme from an
ID-KEM and a standard DEM is more natural than the construction in [4],
which relies on the Fujisaki–Okamoto transform [8].

Another contribution of this paper is to present a security model for key
encapsulation applied to certificateless encryption. This form of encryption was
introduced and developed in a series of works by Al-Riyami and Paterson [1–3].
The idea is to have the benefit of ID-based encryption (the absence of certifi-
cates) without the drawback (key-escrow). We describe a generic construction of
a certificateless variant of a KEM, which we call a CL-KEM. Our generic con-
struction takes any (weakly secure) ID-based encryption scheme plus a special
form of (weakly secure) public key scheme, such as RSA or ElGamal in certain
groups, and then constructs a CL-KEM from this. The resulting scheme is secure
in a strong sense.

The security model for a certificateless encryption scheme [1–3], and therefore
for a CL-KEM, has two types of adversarial attack. We show that combining
the CL-KEM with a standard DEM results in a secure certificateless encryp-
tion scheme. This generic approach allows one to add certificateless encryption
onto an infrastructure of existing RSA and ElGamal keys, which are either not
certified or whose certificates are not trusted by the sender. In order to prove
our composition result we need to modify the definitions of security for a certifi-
cateless encryption schemes and CL-KEMs slightly. We will discuss this point
further once we have introduced the appropriate security notions.

Our paper proceeds as follows. In Section 3 we give the security definitions
for the primitives that we are interested in: standard public-key encryption,
ID-based and certificateless encryption. In Section 4 we present the analogous
definitions for KEMs. In Section 5 we show a simple generalisation of the hybrid
result of Cramer and Shoup [6], which allows us to combine any KEM meeting
our security definitions in Section 4 with a standard DEM so as to meet the
security definitions of an encryption scheme in Section 3. In Section 6 we give
a brief overview of the pairings needed for some of our later discussion and an

overview of the ID-based encryption scheme of Boneh and Franklin. In Section
7 we present our constructions of ID-KEMs, and we prove them secure under
our definitions in Section 4. In Section 8 we compare the resulting ID-based
encryption schemes with the original ID-based scheme presented in [4]. Finally,
in Section 9 we present our construction of a generic CL-KEM and we prove
that it is secure.

2 Conventions and Notation

In the following sections where we give definitions we do not explicitly define
set-up algorithms which define the domain parameters for the schemes, such as
underlying groups; this is simply to reduce the amount of notation. Our results
can be expanded to cope with this by inserting a domain parameter generation
algorithm which takes as input 1t, where t is a security parameter; the output
of this algorithm would then be passed to and then passing to key-generation
algorithms.

In addition, to simplify our discussion, we assume that all encryption algo-
rithms are sound in that any ciphertext produced by the genuine encryption
algorithm will always decrypt. We make an analogous set of assumptions for
KEMs. All our concrete constructions do indeed satisfy this condition, but our
general results can be extended to cover a schemes with a weaker soundness
definition in the standard way [6].

If S is a set then we write v ← S to denote the action of sampling from
the uniform distribution on S and assigning the result to the variable v. If S
contains one element s we use v ← s as shorthand for v ← {s}.

We shall be concerned with probabilistic polynomial-time (PPT) algorithms.
If A is such an algorithm we denote the action of running A on input I and
assigning the resulting output to the variable v by v ← A(I). Note that since A
is probabilistic, A(I) is a probability space and not a value.

If E is an event defined in some probability space, we denote the probability
that E occurs by Pr[E] (assuming the probability space is understood from the
context).

3 Public Key, Identity-Based and Certificateless

Encryption Schemes

3.1 Public Key Encryption

In this section we recap on some basic definitions of public key encryption
schemes and introduce some additional terminology that we require.

Let the message space be denoted M PK(·), the ciphertext space by C PK(·)
and the space from which randomness used in encryption comes from by R PK(·).
These spaces are all parametrised by a public key, and hence by the security
parameter t. A public key encryption scheme is defined by a triple of PPT
algorithms (GPK, EPK, DPK):

– GPK(1
t) is the key generation algorithm. This takes as input 1t and outputs

a public/private key pair (pk, sk).
– EPK(pk,m; r) is the encryption algorithm. This takes as input pk and a mes-

sage m ∈ M PK(pk), plus possibly a random tape r ∈ R PK(pk), and outputs
the corresponding ciphertext c ∈ C PK(pk).

– DPK(sk, c) is the decryption algorithm. On input of sk and c this outputs the
corresponding value of m or a failure symbol ⊥.

Consider the following two-stage games between an adversary A = (A1, A2) of
the encryption algorithm and a challenger.

OW Adversarial Game
1. (pk, sk)←GPK(1

t).

2. s←A
Opk

1 (pk).
3. m←M PK(pk).
4. c∗←EPK(pk,m; r).

5. m′←A
Opk

2 (pk, c∗, s).

IND Adversarial Game
1. (pk, sk)←GPK(1

t).

2. (s,m0,m1)←A
Opk

1 (pk).
3. b←{0, 1}.
4. c∗←EPK(pk,mb; r).

5. b′←A
Opk

2 (pk, c∗, s, m0,m1).

In the above games s is some state information and Opk denotes the oracles to
which the adversary has access. There are various possibilities for this oracle
depending on the attack model for our game:

– CPA Model: In this model the adversary does not have access to any oracles.
– CCA2 Model: In this model the oracle Opk is a decryption oracle with re-

spect to the public key pk. The adversary has access to Opk, subject to the
restriction that in the second phase, once it has been given c∗, A is not
allowed to call Opk with the challenge encryption c∗.

If we let MOD denote the mode of the attack, namely either CPA and CCA2,
the adversary’s advantage in the first game is defined to be

AdvOW−MOD
PK (A) = Pr[m′ = m],

while the advantage in the second game is given by

AdvIND−MOD
PK (A) = |2 Pr[b′ = b]− 1|.

A public key encryption algorithm is considered to be secure, in the sense of a
given goal and attack model (IND-CCA2 for example) if, for all PPT bounded
adversaries, the advantage in the relevant game above is a negligible function of
the security parameter t.

We also define an attack notion of CPA++, in this model the adversary is
given access to the following oracles:

– A ciphertext validity oracle which checks whether a given ciphertext is valid
or not.

– A plaintext checking oracle, which on input of a message and a ciphertext
checks whether the ciphertext is an encryption of the message, for a given
public key.

– A ciphertext equality oracle, which on input of two ciphertexts checks if they
are encryptions of the same message under a given public key.

Dent [7] calls the attack model in which an adversary has access to only the first
of these oracles a CPA+ model, which motivates our naming. The CPA+ model
was first used in [9] to attack a version of the EPOC-2 cipher; it is sometimes
referred to as a “reaction attack”.

In our generic CL-KEM construction we shall only require a scheme which
is OW-CPA++. Such schemes are readily available, for example, the naive text-
book RSA scheme is such a scheme, assuming the RSA problem is hard. As
another example, one can take text-book ElGamal, on the assumption that the
gap Diffie–Hellman problem [12] is hard.

Public key encryption schemes for which an explicit algorithm exists to im-
plement a plaintext checking oracle will be called verifiable. Note that textbook
RSA is verifiable, as is textbook ElGamal if one implements it in a group on
which there is a bilinear pairing.

To cope with probabilistic ciphers, we require that not too many choices for
r encrypt a given message to a given ciphertext. Let γ(pk) be the least upper
bound

|{r ∈ R PK(pk) : EPK(pk,m; r) = c}| ≤ γ(pk),

for every m ∈ M PK(pk) and c ∈ C PK(pk). Our requirement is that the quantity
γ(pk)/|R PK(pk)| is a negligible function of the security parameter.

3.2 ID-Based Encryption Schemes

Here we give the security notions for an ID-based encryption scheme, as first
introduced by Boneh and Franklin [4].

We define the message, ciphertext and randomness spaces of our ID scheme
by M ID(·), C ID(·), R ID(·). These are parametrised by the master public key
Mpk, and hence by the security parameter t. An ID-based encryption scheme is
specified by four polynomial time algorithms:

– GID(1
t): A PPT algorithm which takes as input 1t and returns the master

public key Mpk and the master secret key Msk.
– XID(Msk, IDA): A deterministic private key extraction algorithm which takes

as input Msk and IDA ∈ {0, 1}∗, an identifier string for A, and returns the
associated private key DIDA

.
– EID(IDA,Mpk,m; r): This is the PPT encryption algorithm. On input of an

identifier IDA, the master public key Mpk, a message m ∈M ID(Mpk) and pos-
sibly some randomness r ∈ R ID(Mpk) this algorithm outputs c ∈ C ID(Mpk).

– DID(DIDA
, c): This is the deterministic decryption algorithm. On input of the

private key DIDA
and a ciphertext c this outputs the corresponding value of

the plaintext m or a failure symbol ⊥.

Consider the following two-stage games between an adversary A of the encryp-
tion algorithm and a challenger.

ID-OW Adversarial Game
1. (Mpk,Msk)←GID(1

t).

2. (s, ID∗)←AOID

1 (Mpk).
3. m←M ID(Mpk).
4. c∗←EID(ID

∗,Mpk,m; r).

5. m′←AOID

2 (Mpk, c
∗, s, ID∗).

ID-IND Adversarial Game
1. (Mpk,Msk)←GID(1

t).

2. (s, ID∗,m0,m1)←AOID

1 (Mpk).
3. b←{0, 1}.
4. c∗←EID(ID

∗,Mpk,mb; r).

5. b′←AOID

2 (Mpk, c
∗, s, ID∗,m0,m1).

In the above, s is some state information and OID are oracles to which the
adversary has access. There are various possibilities for these oracles depending
on the attack model for our game:

– CPA Model: In this model the adversary only has access to a private key
extraction oracle which on input of ID 6= ID∗ will output the corresponding
value of DID.

– CCA2 Model: In this model the adversary has access to the private key
extraction oracle as above, but it also has access to a decryption oracle with
respect to any identity ID of the adversary’s choosing. The adversary has
access to this decryption oracle, subject to the restriction that in the second
phase A is not allowed to call the decryption oracle with the pair (c∗, ID∗).

If we let MOD denote the mode of attack, either CPA or CCA2, the adversary’s
advantage in the first game is defined to be

AdvID−OW−MOD
ID (A) = Pr[m′ = m],

while the advantage in the second game is given by

AdvID−IND−MOD
ID (A) = |2 Pr[b′ = b]− 1|.

An ID-based encryption algorithm is considered to be secure, in the sense of a
given goal and attack model (ID-IND-CCA2 for example) if, for all PPT adver-
saries, the advantage in the relevant game is a negligible function of the security
parameter t.

Again, to cope with probabilistic ciphers, we require that not too many
choices for r encrypt a given message to a given ciphertext. Let γ(Mpk) be
the least upper bound

|{r ∈ R ID(Mpk) : EID(ID,Mpk,m; r) = c}| ≤ γ(Mpk). (1)

for every ID, m ∈ M PK(Mpk) and c ∈ C PK(Mpk). Our requirement is that the
quantity γ(Mpk)/|R PK(Mpk)| is a negligible function of the security parameter.

3.3 Certificateless Encryption Schemes

We now describe certificateless encryption schemes as proposed by Al-Riyami
and Paterson. See [1–3] for further details.

A certificateless scheme makes use of a trusted third party known as a key
generation centre (KGC). Unlike the trusted party in an ID-based setting, the

KGC does not have access to users’ private keys. The KGC uses a global secret
key to compute partial private keys for users from their identities. Partial private
keys are passed from the KGC to the users in a possibly untrusted manner. See
[1] for a discussion of the transmission mechanism in more detail.

Suppose that user A with identity IDA has been supplied with partial private
key DIDA

by the KGC. This user combines DIDA
with some additional secret

information – its secret value – to generate its full private key SA. The secret
value is not known to the KGC and therefore SA is not known to the KGC
either. User A computes its public key from its secret value; it can do this
without knowing DIDA

. We denote the public key pkA.
The system is not identity-based: the public key of a user cannot be derived

from its identity alone. Instead, a user publishes its public key in some publicly
accessible directory. Unlike a traditional PKI, it is not necessary to obtain and
verify certificates for public keys in this scenario.

Formally, a certificateless scheme is specified by seven polynomial time algo-
rithms:

– GCL(1
t). A PPT algorithm which takes as input 1t and returns the master

public key Mpk and the master secret key Msk.
– Partial-Private-Key-Extract. A deterministic algorithm which takes as

input Msk and an identifier string for A, IDA ∈ {0, 1}∗ and returns a partial
private key DIDA

.
– Set-Secret-Value. A PPT algorithm which takes no input (bar the system

parameters) and outputs a secret value skA.
– Set-Public-Key. A deterministic algorithm which takes as input the secret

value skA and outputs a public key pkA.
– Set-Private-Key. A deterministic algorithm which takes as input a partial

private key DIDA
and a secret value skA and returns the (full) private key

SA.
– ECL(pkA, IDA,Mpk,m; r). This is the PPT encryption algorithm. On input of

a public key pkA, an identifier IDA, the master public key Mpk, a message
m ∈M CL(Mpk) and possibly some randomness r ∈ R CL(Mpk), this algorithm
outputs a ciphertext c ∈ C CL(Mpk).

– DCL(SA, c). This is the deterministic decryption algorithm. On input of a
ciphertext c and the full private key SA this algorithm outputs the corre-
sponding value of the plaintext m or a failure symbol ⊥.

Owing to the lack of authenticating information for public keys – certificates for
example – an adversary may be able to replace users’ public keys with public
keys of its choice. This appears to give adversaries enormous power; however, to
compute the full private key of a user, knowledge of the partial private key is
necessary.

To capture the scenario above, Al-Riyami and Paterson [1–3] consider a secu-
rity model in which an adversary is able to adaptively replace users’ public keys
with public keys of its choice. Such an adversary is called a Type-I adversary
below.

Since the KGC is able to produce partial private keys, we must of course
assume that the KGC does not replace users public keys itself. We do however
treat other adversarial behaviour of a KGC: eavesdropping on ciphertexts and
making decryption queries for example. Such an adversarial KGC is referred to
as a Type-II adversary below.

By assuming that a KGC does not replace users public keys itself, a user is
placing the similar level of trust in a KGC that it would in a PKI certificate au-
thority: it is always assumed that a CA does not issue certificates for individuals
on public keys which it has maliciously generated itself!

Below we formally describe the two types of adversary that we have discussed.

Type-I Adversarial Game
1. (Mpk,Msk)←GCL(1

t).
2. (ID∗, s, m0,m1)←A1(Mpk).
3. b←{0, 1}.
4. c∗←ECL(pk∗, ID∗,Mpk,mb; r).
5. b′←A2(Mpk, c

∗, s, ID∗,m0,m1).

Type-II Adversarial Game
1. (Mpk,Msk)←GCL(1

t).
2. (ID∗, s, m0,m1)←A1(Mpk,Msk).
3. b←{0, 1}.
4. c∗←ECL(pk∗, ID∗,Mpk,mb; r).
5. b′←A2(Mpk,Msk, c

∗, s, ID∗,m0,m1).

In the above s is some state information.
When performing the encryption (step 4) in the games, the challenger uses

the current public key pk∗ of the user with identifier ID∗. (Note that a Type-II
adversary is unable to change users’ public keys and so the notion of current
public key is redundant.)

The adversary’s advantage is defined to be

AdvType−X
CL (A) = |2 Pr[b′ = b]− 1|,

where X is either I, I− or II (see below for definition of I−). We now turn to the
various oracle accesses of the adversaries in each game.

Type-I Adversary Oracle Access: This adversary may request public keys,
replace public keys with keys of its choice, extract partial private and private
keys and make decryption queries for all identities of its choosing. We make
natural restrictions on such a Type-I adversary; it is not allowed to do any of
the following.

1. Extract the private key for ID∗ at any point.
2. Request the private key for any identity if the corresponding public key has

been replaced.
3. Replace the public key for ID∗ before its challenge ciphertext has been issued

and extract the partial private key for ID∗ (at any point).
4. Once the challenge ciphertext c∗ has been issued, make a decryption query

on c∗ under ID∗ and the public key pk∗ used to encrypt mb.

Type-I− Adversary Oracle Access: This adversary is very similar to the
Type-I adversary described above. The only difference is that, if it has replaced
a public key and it subsequently requires a decryption query that involves a

decryption with the corresponding secret key, it must supply this key to the
decryption oracle (note that the decryption oracle continues to use Msk which
is unknown to the adversary). We propose this slightly weakened definition to
allow us to prove our composition result and remark that, in any application,
there could never be an oracle that performs decryption with an unknown secret
key for an adversary.

Type-II Adversary Oracle Access: In this game the adversary has access
to the master secret key Msk and so can create partial private keys itself. It is
not allowed to replace public keys of entities, but it can request public keys and
make private key extraction queries for all entities of its choosing. However, it
is not allowed to extract the private key for the challenge identity ID∗ at any
point. In addition, once the challenge ciphertext c∗ has been issued, it cannot
make a decryption query on c∗ for the combination (pk∗, ID∗).

A certificateless system is said to be secure if, for all PPT Type-I and Type-II
adversaries, the advantage in winning the relevant game is a negligible function
of the security parameter. As mentioned above, to prove our composition result,
we must weaken the requirement of Type-I security and replace it with Type-I−.

4 Public Key, Identity-Based and Certificateless Key

Encapsulation Mechanisms

In this section we recall the basic definitions of Key Encapsulation Mechanisms
(KEMs). We then extend this concept to the ID-based and certificateless situa-
tions. We let K KEM(pk), K ID−KEM(Mpk), K CL−KEM(Mpk) denote the space of keys out-
put by our various KEMs, and we let C KEM(pk), C ID−KEM(Mpk), C CL−KEM(Mpk) de-
note the respective space of encapsulations. All of these spaces are parametrised
by a public key and so are indirectly parametrised by a security parameter t.

4.1 Public-Key Key Encapsulation Mechanisms

A standard KEM – one in the traditional public key setting – is defined by a
triple of probabilistic polynomial time (PPT) algorithms (GKEM, EKEM, DKEM):

– GKEM(1
t) is the (randomised) key generation algorithm. This takes as input

1t and outputs a public/private key pair (pk, sk).
– EKEM(pk) is the key encapsulation algorithm. This takes as input pk and out-

puts an encapsulated key pair (k, c) ∈ K KEM(pk) × C KEM(pk). The item c is
called the encapsulation of the key k. The key k is assumed to be uniformly
distributed over the key space K KEM(pk).

– DKEM(sk, c) is the decapsulation algorithm. On input of sk and c this outputs
the corresponding value of k or an invalid encapsulation symbol ⊥.

Consider the following two-stage games between an adversary A of the KEM
and a challenger.

OW Adversarial Game
1. (pk, sk)←GKEM(1

t).

2. s←A
Opk

1 (pk).
3. (k, c∗)←EKEM(pk).

4. k′←A
Opk

2 (pk, c∗, s).

IND Adversarial Game
1. (pk, sk)←GKEM(1

t).

2. s←A
Opk

1 (pk).
3. (k0, c

∗)←EKEM(pk).
4. k1←K KEM(pk).
5. b←{0, 1}.

6. b′←A
Opk

2 (pk, c∗, s, kb).

Here s is some state information and Opk is a decapsulation oracle with respect
to the public key pk. In the CPA attack model the adversary is not allowed
any access to Opk, while in the CCA2 attack model it does have access to Opk,
subject to the restriction that in the second phase A is not allowed to call Opk

with the challenge encapsulation c∗.
We let MOD denote either CPA or CCA2. The adversary’s advantage in the

first game is defined to be

AdvOW−MOD
KEM (A) = Pr[k′ = k],

while the advantage in the second game is given by

AdvIND−MOD
KEM (A) = |2 Pr[b′ = b]− 1|.

A KEM is considered to be secure, with respect to a given goal and attack
model (IND-CCA2 for example) if, for all PPT adversaries, the advantage in the
relevant game above is a negligible function of the security parameter t.

4.2 ID-Based Key Encapsulation Mechanisms

An ID-KEM scheme is specified by four polynomial time algorithms:

– GID−KEM(1
t). A PPT algorithm which takes as input 1t and returns the master

public key Mpk and the master secret key Msk.
– XID−KEM(Msk, IDA). A deterministic algorithm which takes as input Msk and

an identifier string for A, IDA ∈ {0, 1}∗, and returns the associated private
key DIDA

.
– EID−KEM(IDA,Mpk). This is the PPT encapsulation algorithm. On input of

IDA and Mpk this outputs a pair (k, c) where k ∈ K ID−KEM(Mpk) is a key and
c ∈ C ID−KEM(Mpk) is the encapsulation of that key.

– DID−KEM(DIDA
, c). This is the deterministic decapsulation algorithm. On input

of c and DIDA
this outputs k or a failure symbol ⊥.

Consider the following two-stage games between an adversary A of the ID-KEM
and a challenger.

ID-OW Adversarial Game
1. (Mpk,Msk)←GID−KEM(1

t).

2. (s, ID∗)←AOID

1 (Mpk).
3. (k, c∗)←EID−KEM(ID

∗,Mpk).

4. k′←AOID

2 (Mpk, c
∗, s, ID∗).

ID-IND Adversarial Game
1. (Mpk,Msk)←GID−KEM(1

t).

2. (s, ID∗)←AOID

1 (Mpk).
3. (k0, c

∗)←EID−KEM(ID
∗,Mpk).

4. k1←K ID−KEM(Mpk).
5. b←{0, 1}.
6. b′←AOID

2 (Mpk, c
∗, s, ID∗, kb).

In the above s is some state information and OID denotes oracles to which the
adversary has access. There are two possibilities for these oracles depending on
the attack model for our game:

– CPA Model: In this model the adversary only has access to a private key
extraction oracle which, on input of ID 6= ID∗, will output the corresponding
value of DID.

– CCA2 Model: In this model the adversary has access to the private key
extraction oracle as above, but it also has access to a decapsulation oracle
with respect to any identity ID of the adversary’s choosing. The adversary
has access to this decapsulation oracle, subject to the restriction that in the
second phase A is not allowed to call OID with the pair (c∗, ID∗).

The adversary’s advantage in the first game is defined to be

AdvID−OW−MOD
ID−KEM (A) = Pr[k′ = k].

While the advantage in the second game is given by

AdvID−IND−MOD
ID−KEM (A) = |2 Pr[b′ = b]− 1|.

An ID-KEM is considered to be secure, in the sense of a given goal and attack
model (ID-IND-CCA2 for example) if for all PPT adversaries A, the advantage
in the relevant game above is a negligible function of the security parameter t.

4.3 CL-KEM Definition

We now adapt the KEM definition of Section 4.1 to the case of the certificateless
systems of Section 3.3.

A CL-KEM scheme is specified by seven polynomial time algorithms:

– GCL−KEM(1
t). A PPT algorithm which takes as input 1t and returns the master

public keys Mpk and the master secret key Msk.
– Partial-Private-Key-Extract. A deterministic algorithm which takes as

input Msk and an identifier string for A, IDA ∈ {0, 1}∗ and returns a partial
private key DIDA

.
– Set-Secret-Value. A PPT algorithm which takes no input (bar the system

parameters) and outputs a secret value skA.
– Set-Public-Key. A deterministic algorithm which takes as input skA and

outputs a public key pkA.
– Set-Private-Key. A deterministic algorithm which takes as input DIDA

and
skA and returns SA the (full) private key.

– ECL−KEM(pkA, IDA,Mpk). This is the PPT encapsulation algorithm. On input
of pkA, IDA and Mpk this outputs a pair (k, c) where k ∈ K CL−KEM(Mpk) is a
key and c ∈ C CL−KEM(Mpk) is the encapsulation of that key.

– DCL−KEM(SA, c). This is the deterministic decapsulation algorithm. On input
of c and SA this outputs k or a failure symbol ⊥.

To define the security model for CL-KEMs we simply adapt the security model
of Al-Riyami and Paterson into the KEM framework. Again there are three
types of adversary against a CL-KEM, called a Type-I, Type-I− and a Type-II
adversary. Each adversary is trying to win one of the following games, where
the various oracle accesses allowed are identical to those defined in Section 3.3,
where we simply replace the word “decryption” with “decapsulation”.

Type-I Adversarial Game
1. (Mpk,Msk)←GCL−KEM(1

t).
2. (ID∗, s)←A1(Mpk).
3. (k0, c

∗)←ECL−KEM(pk∗, ID∗,Mpk).
4. k1←K CL−KEM(Mpk).
5. b←{0, 1}.
6. b′←A2(c

∗, s, ID∗, kb).

Type-II Adversarial Game
1. (Mpk,Msk)←GCL−KEM(1

t).
2. (ID∗, s)←A1(Mpk,Msk).
3. (k0, c

∗)←ECL−KEM(pk∗, ID∗,Mpk).
4. k1←K CL−KEM(Mpk).
5. b←{0, 1}.
6. b′←A2(c

∗, s, ID∗, kb).

When performing the encapsulation in line three of both games the challenger
uses the current public key pk∗ of the entity with identifier ID∗. The adversary’s
advantage in such a game is defined to be

AdvType−X

CL−KEM(A) = |2 Pr[b′ = b]− 1|

where X is either I, I− or II. A CL-KEM is considered to be secure, in the sense
of IND-CCA2, if for all PPT adversaries A, the advantage is a negligible function
of t in both games. We note that constructing CL-KEMs which are secure in
the Type-I sense is relatively easy, and that such a CL-KEM is automatically
Type-I− secure. Hence, we shall only be using Type-I− secure CL-KEMs in our
security proof for hybrid CL encryption.

5 Combining KEMs, ID-KEMs, CL-KEMs with DEMs

In order to apply our ID-KEM and CL-KEM constructions we will need to
compose them with data encapsulation mechanisms (DEMs). In addition, when
we compare our ID-KEM/DEM construction with that of the original Boneh–
Franklin ID-based encryption scheme, we will need to know the exact security
guarantees we can obtain from our construction. Hence, in this section we first
recap on the definition of DEMs and then we generalise the hybrid construction
of [6, Section 7] to the situation of ID-KEMs and CL-KEMs.

5.1 One-Time Symmetric Encryption

A one-time symmetric encryption scheme is a pair of deterministic polynomial
time secret key (SK) algorithms, ESK and DSK, where key, message and ciphertext
spaces are given by K SK(t), M SK(t), C SK(t) for some security parameter t.

– ESK(k, m). On input of k ∈ K SK(t) and m ∈ M SK(t) this outputs a value
c ∈ C SK(t).

– DSK(k, c). This performs the inverse operation, or outputs ⊥ if c is not the
encryption of a message m under the key k.

We will assume M SK(t) = {0, 1}∗ and that the scheme is sound: for all m we
have DSK(k, ESK(k, m)) = m. We assume that the key length |k| is a polynomial
function of the security parameter t.

Security of one-time symmetric encryption schemes is defined via the follow-
ing game:

1. (s,m0,m1)←A1(1
t).

2. b←{0, 1}.
3. k←K SK(t).
4. c∗←ESK(k,mb).
5. b′←AOk

2 (c∗, s, m0,m1).

In the above s is state information.
We let Ok denote an oracle to which the adversary has access. There two

various possibilities for this oracle depending on the attack model for our game:

– PA Model: In this passive attack model the adversary has no access to any
oracles.

– CCA Model: In this model the oracle Ok is a decryption oracle for the key
k chosen by the challenger in the third step of the above game. This oracle
is only available in the second stage of A’s game and it is not allowed to be
called on the challenge ciphertext c∗.

If we let MOD denote either PA or CCA, the adversary’s advantage in the game,
called Find-Guess or FG, is defined to be

AdvFG−MOD
SK (A) = |2 Pr[b′ = b]− 1|.

A one-time symmetric encryption scheme is considered to be secure, in the sense
of a given attack model if, for all PPT adversaries, the advantage in the above
game is a negligible function of the security parameter t.

For our purposes we will require a one-time symmetric encryption scheme
that is secure in the sense of IND-CCA. We call such a data encapsulation mech-
anism (DEM). The construction of DEMs from PA secure symmetric encryption
schemes and MACs is discussed in [6].

5.2 Hybrid Constructions

We prove secure our hybrid constructions, which allow one to construct ID-IND-
CCA2 secure ID-based encryption schemes from ID-IND-CCA2 secure ID-KEMs
and DEMs, and also how to construct certificateless encryption schemes secure
against Type-I− and Type-II adversaries in a similar manner.

We assume that the key space output by the KEMs corresponds to the key
space required by the DEM. Our construction follows that in [6, Section 7.3]
and consists of the natural concatenation of the key encapsulation followed by

the data encapsulation of the message under the key encapsulated by the first
component. We denote such a ciphertext C = (c1, c2) henceforth, where c1 encap-
sulates the key and c2 encapsulates the data, and we refer to such a construction
as hybrid.

In our proofs we will make use of the following key lemma [6].

Lemma 1. Let U1, U2 and F be events defined on some probability space. Sup-
pose that Pr[U1 ∧ ¬F] = Pr[U2 ∧ ¬F], then

|Pr[U1]− Pr[U2]| ≤ Pr[F].

The following theorem is a natural generalisation of Theorem 5 of [6]. Note
that, unlike the equivalent result in [6], we are implicitly assuming that for all
keys, all encapsulations decapsulate properly. It would be straightforward to
generalise the result; however, the soundness condition that we are assuming
applies to all the primitives that we consider in this paper.

Theorem 1. Let A be a PPT adversary against the hybrid ID-based encryption
scheme (resp. the hybrid certificateless scheme) in the sense of ID-IND-CCA2
(resp. Type-I− and Type-II) adversaries, then there exists PPT adversaries B1

and B2, whose running time is essentially that of A, such that

AdvID−IND−CCA
ID (A) ≤ 2AdvID−IND−CCA

ID−KEM (B1) + AdvFG−CCA
DEM (B2),

AdvType−I
−

CL (A) ≤ 2AdvType−I
−

CL−KEM (B1) + AdvFG−CCA
DEM (B2),

AdvType−II
CL (A) ≤ 2AdvType−II

CL−KEM (B1) + AdvFG−CCA
DEM (B2).

Before proceeding with the proof we note that since a Type-I secure CL-KEM
is clearly Type-I− secure the above result allows us to combine a Type-I secure
CL-KEM with a secure DEM, so as to obtain a Type-I− secure CL encryption
scheme.

Proof. Our proof strategy is as follows. We define a sequence Game0, Game1, Game2

of modified attack games in which A runs. The only difference between games
is how the environment responds to A’s oracle queries.

We fix some notation that we will use throughout. Let C∗ = (c∗1, c
∗
2) be

the challenge ciphertext presented to A by its challenge encryption oracle – the
oracle that encrypts either m0 or m1 according to a bit b. Let k∗ denote the
symmetric key used by the challenge encryption oracle in the generation of the
challenge ciphertext, or alternatively, the decapsulation of c∗1 using the secret
keys associated to ID∗ – the identity chosen by the adversary on which it wishes
to be challenged. For any i = 0, 1, 2, we let Si be the event that b′ = b in
game Gamei, where b is the bit chosen by A’s challenge encryption oracle. This
probability is taken over the random choices of A and those of A’s oracles.

Let Game0 be the genuine attack game played by A. So by definition we have

|Pr[S0]− 1/2| =
1

2
AdvMOD∗ (A).

Game Game0 is now modified so that whenever an identity ID and (c1, c2) is pre-
sented to the decryption oracle after the invocation of the challenge encryption
oracle, if ID = ID∗ and c1 = c∗1, and in the case of a Type-I− adversary, the
public key of ID∗ has not been replaced, then the decryption oracle does not use
the genuine decryption procedure for the hybrid scheme, instead it uses the key
k∗ to decapsulate c2 and returns the result to the adversary. This modification
to Game0 gives us the game Game1. Games Game0 and Game1 are identical – under
the soundness condition that we discussed above – and so Pr[S1] = Pr[S0].

We now modify Game1 by replacing k∗ with a random key k′ from K DEM(t1, t2).
With this modification we have the game Game2. The result then follows from
the following two lemmas.

Lemma 2. There is a PPT algorithm B1, whose running time is essentially the
same as that of A, such that

|Pr[S2]− Pr[S1]| = AdvMOD∗−KEM(B1),

where MOD is Type-I−, Type-II or IND-CCA2 and ∗ is ID or CL as appropriate.

Proof. To prove this we demonstrate how to construct an adversary B1 of the
KEM to violate the assumed security against adaptive chosen ciphertext (resp.
Type-I−/Type-II) attack.

Adversary B1 is constructed by running adversary A. We respond to A’s
queries as follows.

– When A calls any oracle, bar its decryption or challenge encryption oracles,
then B1 simply relays these queries to its own equivalent oracle.

– To respond to A’s decryption oracle query for an identity ID and a ciphertext
(c1, c2) before A has queried its challenge encryption oracle, B1 proceeds as
follows. It first obtains k by calling its own decapsulation oracle with c1. If
k =⊥ then B1 replies to A with ⊥. Otherwise it proceeds to use k to decrypt
c2 and relays the result to A.

– When A calls its challenge encryption oracle with identity ID∗ and messages
(m0,m1), B1 first calls its own challenge encryption oracle with ID∗ to obtain
(k†, c∗1). It then chooses a bit d at random and computes c∗2 ← EDEM(k

†,md).
Finally, it responds to A with (c∗1, c

∗
2).

– To respond to A’s decryption oracle query for an identity ID and a ciphertext
(c1, c2) after A has queried its challenge encryption oracle, B1 proceeds as
follows.
• If (ID, c1) 6= (ID∗, c∗1) then it uses the same procedure that it used before

A’s call to its challenge encryption oracle.
• In the case of a Type-I− adversary against a certificateless encryption

scheme, if (ID, c1) = (ID∗, c∗1) and the public key has been replaced, then
B1 responds by calling the decapsulation oracle provided to it by A with
input (ID∗, c∗1) to obtain k. It then uses k to decrypt c2 and relays the
response to A.

• Otherwise, B1 uses k† to decrypt c2 and relays the result to A.

At the end of the simulation, A outputs a bit d′. If d′ = d, B1 outputs 1, otherwise
it outputs 0.

Let b be the internal bit of B1’s challenge oracle which B1 seeks to determine
and let b′ be the bit output by B1. By construction we see that when b = 1,
so k† is the key encapsulated within c∗1, A is run exactly as it would be run in
Game1. This means that

Pr[S1] = Pr[d′ = d|b = 1] = Pr[b′ = 1|b = 1], (2)

where d is A’s challenge bit and d′ is A’s guess. Also, when b = 0, so a random
k′ is used in the generation of the challenge ciphertext, A is run exactly as it
would be in Game2. This means that

Pr[S2] = Pr[d′ = d|b = 0] = Pr[b′ = 1|b = 0]. (3)

The result follows from (2), (3) and the definitions of security for KEMs when
one observes that

AdvMOD∗−KEM(B1) = |2 Pr[b′ = b]− 1| = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|.

Lemma 3. There is a PPT algorithm B2, whose running time is essentially the
same as that of A, such that

|Pr[S2]− 1/2| =
1

2
AdvFG−CCA

DEM (B2).

Proof. To construct such a B2 we simply run A as it would be run in game Game2.
We run the ID/CL-KEM’s key generation step so we can respond to A’s queries
before it calls its challenge encryption oracle. When A calls its challenge encryp-
tion oracle with identity ID∗ and messages (m0,m1) we simply relay (m0,m1)
to the challenge encryption oracle of B2 to obtain c∗2. We then run the key en-
capsulation mechanism to obtain (k, c1) we discard k and set c∗1 = c1. Finally
we return (c∗1, c

∗
2) to A. We continue to respond to A’s queries as before except

if it a makes decapsulation query ID∗, (c∗1, c2) for some c2. In this instance there
are two cases:

– If we are dealing with a Type-I− adversary A of a certificateless encryption
scheme, and the public key of ID∗ has been replaced, then B2 decapsulates
(ID∗, c∗1) to obtain k, decrypts c2 and relays the response to A.

– Otherwise we query B2’s decryption oracle with c2 and relay the response
to A.

In this simulation A is run by B2 in exactly the same manner as the former would
be run in game Game2; moreover, Pr[S2] corresponds exactly to the probability
that B2 correctly determines the hidden bit of its challenge encryption oracle
since B2 outputs whatever A outputs. The result follows.

6 Review of Pairings and the Boneh–Franklin

Construction

Some of our constructions for CL-KEMs and ID-KEMs require groups equipped
with a bilinear map. We briefly review the necessary facts about bilinear maps
and bilinear groups. Further details may be found in [4, 5]. Having done this,
we go on to discuss the Boneh and Franklin construction of a secure ID-based
encryption scheme based on such pairings.

6.1 Bilinear Groups

Let G1, G2 and GT be groups with the following properties.

– G1 and G2 are additive groups of prime order q.
– G1 has generator P1 and G2 has generator P2.
– There is an isomorphism ρ from G2 to G1, with ρ(P2) = P1.
– There is a bilinear map t̂ : G1 ×G2 → GT .

In many cases one can set G1 = G2 as is done in [4]. When this is so, we can
take ρ to be the identity map; however, to take advantage of certain families of
groups [11], we do not restrict ourselves to this case.

We have stipulated that our groups should have a bilinear map, t̂ : G1×G2 →
GT . This should satisfy the following conditions:

1. Bilinear: Given any Q ∈ G1, W ∈ G2 and a, b ∈ Fq we have

t̂(aQ, bW) = t̂(Q,W)ab

2. Non-degenerate: t̂(P1, P2) 6= 1.
3. Efficiently computable.

The map t̂ is usually derived from the Weil or Tate pairings on an elliptic curve.

Definition 1 (Bilinear groups). We say that G1 and G2 are bilinear groups
if there exists a group GT with |GT | = |G1| = |G2| = q, an isomorphism ρ and
a bilinear map t̂ satisfying the conditions above; moreover, the group operations
in G1, G2 and GT , ρ and t̂ must be efficiently computable.

A group description Γ [G1, G2, GT , t̂, ρ, q, P1, P2] describes a given set of bilinear
groups as above. We abbreviate such a group description to Γ henceforth. There
are several hard problems associated with a group description Γ which we are
interested in for building cryptosystems. These have their origins in the work of
Boneh and Franklin [4].

Bilinear Diffie–Hellman Problem (BDH). Consider the following game, for
a group description Γ and an adversary A,

1. a, b, c←F
∗
q .

2. α←A(aP2, bP2, cP2, Γ).

The advantage of the adversary is defined to be

AdvBDH(A) = Pr[α = t̂(P1, P2)
abc]. (4)

Note, there are various equivalent formulations of this, since one could assume
the input is in G1 × G2 × G1, as if we have xP2 then we can compute xP1 via
the isomorphism ρ.

Decisional Bilinear Diffie-Hellman Problem (DBDH). Consider Γ and
the following two sets

DΓ = {(aP1, bP2, cP1, t̂(P1, P2)
abc) : a, b, c ∈ [1, . . . , q]},

RΓ = G1 ×G2 ×G1 ×GT .

The goal of an adversary is to be able to distinguish between the two sets. This
idea is defined by the following game.

1. a, b, c←F
∗
q .

2. d←{0, 1}.
3. If d = 0 then α←GT .
4. Else α←t̂(P1, P2)

abc.
5. d′←A(aP1, bP2, cP1, α, Γ).

We define the advantage of such an adversary by

AdvDBDH(A) = |2 Pr[d = d′]− 1|.

The Gap Bilinear Diffie–Hellman (GBDH) problem. Informally, the gap
bilinear Diffie-Hellman problem is the problem of solving the BDH problem with
the help of an oracle to solve the DBDH problem. The use of such relative or
“gap” problems was first proposed by Okamoto and Pointcheval [12].

Let O be an oracle that, given β ∈ RΓ , returns 1 if β ∈ DΓ , and 0 otherwise.
For an algorithm A, the advantage in solving the GBDH problem, which we
denote by AdvGBDH(A, qG), is defined as in (4) except that A is granted oracle
access to O and can makes at most qG queries.

6.2 The Boneh–Franklin Construction

Boneh and Franklin give two ID-based encryption schemes, one called BasicIdent
satisfying the ID-OW-CPA security definition, the other called FullIdent satisfy-
ing the ID-IND-CCA2 definition. In our constructions we will use the BasicIdent
system, but will then compare the construction with the FullIdent system.

For a group description Γ we will need to define cryptographic hash functions:

H1 : {0, 1}∗ −→ G2,

H2 : GT −→ {0, 1}n,

H3 : {0, 1}∗ −→ F
∗
q

for an integer n corresponding to the length of messages to be encrypted.
In both schemes the trust authorities keys are given by Mpk = Msk · P1 for

Msk ∈ F
∗
q chosen uniformly at random, and the user private key DID for identity

ID is DID = Msk ·H1(ID).

BasicIdent: We define M ID(Mpk) = {0, 1}n, C ID(Mpk) = G1 × {0, 1}n and
R ID(Mpk) = F

∗
q . We then define

E
BasicIdent
ID (ID,Mpk,m; r)
– U←rP1.
– QID←H1(ID).
– α←t̂(Mpk, QID)

r.
– V←m⊕H2(α).
– Return (U, V).

D
BasicIdent
ID (DID, c)
– (U, V)←c.
– α←t̂(U,DID).
– m←V ⊕H2(α).
– Return m.

Note that γ(Mpk)/|R ID(Mpk)| for BasicIdent is equal to 1/q ≈ 2−t.
Boneh and Franklin prove the following security result about BasicIdent.

Theorem 2. Let H1 and H2 be modelled as random oracles and suppose A is an
adversary against BasicIdent making at most qX private key extraction queries
and q2 queries of H2 then there is an algorithm B with essentially the same
running time of A such that

AdvID−OW−CPA
ID (A) ≤ e · (1 + qX) · q2 ·

(

AdvBDH(B) +
1

q2 · 2n

)

.

Here, and in theorems 4 and 3 below, e ≈ 2.71 is the base of the natural logarithm.

FullIdent: Although not explicitly defined in [4], there are in fact two variants
of FullIdent mentioned in [4]. We shall present both here:

FullIdent-1: We define M ID(Mpk) = {0, 1}n, C ID(Mpk) = G1 × {0, 1}n ×
{0, 1}|m|, R ID(Mpk) = {0, 1}n. We require all the hash functions used by BasicI-
dent and in addition we require a cryptographic hash function H4 : {0, 1}n −→
{0, 1}|m|, to encrypt messages of length |m|. We define the scheme as follow.

E
FullIdent−1
ID (ID,Mpk,m;σ)
– r←H3(σ||m).
– (U, V)←E

BasicIdent
ID (ID,Mpk, σ; r).

– W←m⊕H4(σ).
– Return (U, V,W).

D
FullIdent−1
ID (DID, c)
– (U, V,W)←c.
– σ←D

BasicIdent
ID (DID, (U, V)).

– m←W ⊕H4(σ).
– r←H3(σ||m).
– If rP1 6= U return ⊥.
– Return m.

Using the Fujisaki–Okamoto transform the following result is proved for the
scheme FullIdent-1 in [4].

Theorem 3. Let H1, H2, H3 and H4 be modelled as random oracles and suppose
A is an adversary against FullIdent-1 making at most qX private key extraction
queries, qD decryption queries and q2, q3 and q4 queries of H2, H3 and H4 re-
spectively. Then there is an algorithm B, running in time essentially that of A,
such that

AdvID−IND−CCA2
ID (A) ≤ c1 ·

(

1

c2

(

c3 ·

(

q2 ·AdvBDH(B) +
1

2n

)

+ 1

)

− 1

)

where c1 = e · (1 + qX + qD), c2 = (1− 2/q)qD and c3 = 2 · (q3 + q4).

FullIdent-2: Let ESK, DSK denote a symmetric encryption algorithm, with mes-
sage space M SK(t), ciphertext space C SK(t) and key space K SK(t) for security
parameter t. We assume that this symmetric algorithm is secure in the sense of
FG-PA. The following scheme is mentioned but not analysed in [4]. We define

M ID(Mpk) = M SK(t), C ID(Mpk) = G1×{0, 1}n×C SK(t) and R ID(Mpk) = {0, 1}n

and we let

H5 : {0, 1}∗ −→ K SK(t)

denote a cryptographic hash function.
We then define

E
FullIdent−2
ID (ID,Mpk,m;σ)
– r←H3(σ||m).
– (U, V)←E

BasicIdent
ID (ID,Mpk, σ; r).

– W←ESK(H5(σ),m).
– Return (U, V,W).

D
FullIdent−2
ID (DID, c)
– (U, V,W)←c.
– σ←D

BasicIdent
ID (DID, (U, V)).

– m←DSK(H5(σ),W).
– r←H3(σ||m).
– If rP1 6= U return ⊥.
– Return m.

Using the Fujisaki–Okamoto transform the following result can be proved for the
scheme FullIdent-2 using the same argument as is used in [4] for FullIdent-1.

Theorem 4. If H1, H2, H3 and H5 are modelled as random oracles and suppose
A is an adversary against FullIdent-2 making at most qX private key extraction
queries, qD decryption queries and q2, q3 and q5 queries of H2, H3 and H5 re-
spectively. Then there are algorithms B1 and B2, running in time essentially
that of A, such that

AdvID−IND−CCA2
ID (A) ≤ c1 ·

(

1

c2

(

c3 ·
(

q2 ·AdvBDH(B1) + 1

2n

)

+ AdvFG−PA
SK (B2) + 1

)

− 1

)

where c1 = e · (1 + qX + qD), c3 = 2 · (q3 + q5) and

c2 =

(

1− 2

(

q2 ·AdvBDH(B1) +
1

2n

)

− 2 ·AdvFG−PA
SK (B2)−

1

q
−

1

|M SK(Mpk)|

)qD

.

7 ID-KEM Constructions

We present three constructions, the first two are based on specific computa-
tional problems, namely variants of the bilinear Diffie–Hellman problem on el-
liptic curves, the third construction is generic. Our first construction is due to
Lynn [10]. We note that Lynn only mentions this ID-KEM construction in pass-
ing and did not give a security definition or proof.

In this section we present a security proof of Lynn’s construction by proving
security under the GBDH problem. The second construction is a variant on
Lynn’s construction and is based on the fifth of Dent’s generic constructions [7],
this is secure under the standard BDH problem. Our third construction takes
any probabilistic OW-ID-CPA secure ID-based encryption scheme and produces
an IND-ID-CCA2 secure ID-KEM.

The second construction can be considered as either a strengthening of Lynn’s
construction or as an optimisation of the third generic construction, when in
the third construction we use the BasicIdent algorithm from [4]. The second
construction is less efficient than Lynn’s method, but its security rests on the
BDH problem rather than the GBDH problem. Since the BDH problem is a
more natural and well studied problem than the GBDH problem we see this
extra confidence in the security as more than offsetting the slight performance
reduction compared to Lynn’s construction.

Our first two constructions follow the standard setup for ID-based systems
built on pairings, as first explained in [4]. For completeness, we recall the setup
here. We let H1,H2,H3,H4 and H5 denote cryptographic hash functions as in
Section 6.2. However, now we let (EDEM, DDEM) denote a DEM, and so the codomain
of H5 is the key space of the DEM.

For our first two constructions we adopt the initial set up as in the Boneh–
Franklin scheme by defining the trust authorities keys as Mpk = Msk · P1 for
Msk ∈ F

∗
q chosen uniformly at random, and the user private key DID correspond-

ing to identity ID is DID = Msk ·H1(ID).

7.1 Construction 1 :

This is the construction of Lynn [10].

EID−KEM(ID,Mpk)
– r←F

∗
q .

– C←rP1.
– QID←H1(ID).
– T←t̂(Mpk, QID)

r.
– k←H5(T).
– Return (k,C).

DID−KEM(DID, C)
– T←t̂(C,DID).
– k←H5(T).
– Return k.

7.2 Construction 2 :

EID−KEM(ID,Mpk)
– m←{0, 1}n.
– r←H3(m).
– U←rP1.
– QID←H1(ID).
– V←m⊕H2(t̂(Mpk, QID)

r).
– c←(U, V).
– k←H5(m).
– Return (k, c).

DID−KEM(DID, c)
– (U, V)←c.
– m←V ⊕H2(t̂(U,DID)).
– r←H3(m).
– If U 6= rP1 then output ⊥ and halt.
– k←H5(m).
– Return k.

7.3 Construction 3 :

Here we take a generic probabilistic ID-based encryption scheme, with encryption
algorithm EID(ID,Mpk,m; r) and associated decryption algorithm DID(DID, c),
where DID is the output from the extraction algorithm XID−KEM(Msk, ID). We
assume the message space of EID is given by M ID(Mpk) and the space of ran-
domness is given by R ID(Mpk). We assume a cryptographic hash function H ′

3 :
{0, 1}∗ −→ R ID(Mpk).

In the following construction we make no assumption on how such an ID-
based scheme is constructed only that it exists. In practice one can take the
method BasicIdent from [4].

EID−KEM(ID,Mpk)
– m←M ID(Mpk).
– r←H ′

3(m).
– c←EID(ID,Mpk,m; r).
– k←H5(m).
– Return (k, c).

DID−KEM(DID, c)
– m←DID(DID, c).
– If m =⊥ then output ⊥ and halt.
– r←H ′

3(m).
– If c 6= EID(ID,Mpk,m; r) then out-

put ⊥ and halt.
– k←H5(m).
– Return k.

7.4 Construction 1 : Security Proof

Theorem 5. If the GBDH problem is hard and H5 and H1 are modelled as
random oracles then Construction 1 is secure against adaptive chosen ciphertext
attack.

Specifically, if A is a PPT algorithm that breaks the ID-KEM of Construc-
tion 1 using a chosen ciphertext attack, then there exists a PPT algorithm B,
with

AdvID−IND−CCA2
ID−KEM (A) ≤ 2(q1 + qX + qD) ·AdvGBDH(B, q5(2qD + 1)) +

2q5

q
.

where q1, q5, qD and qX are the number of queries made by A to H1, H5, the
decryption oracle and the private key extraction oracle respectively.

Proof. Let S be the event that A correctly determines the bit chosen by the
challenge encryption oracle during its attack. Let ID∗ be the identity chosen by
A during its attack and let T ∗ be the output of the bilinear map generated by A’s
challenge encapsulation oracle at the third stage of the encapsulation process.
We define the following events.

AskK: The event that A makes the query T ∗ to H5 during its attack.
AskH: The event that A makes the query ID∗ to H1 during its attack or that it

makes a decryption query involving ID∗.

We have

Pr[S] = Pr[S ∧ AskK] + Pr[S ∧ ¬AskK]

≤ Pr[S ∧ AskK] +
1

2
. (5)

This follows from the fact that if A does not query T ∗ to H5 then it can have
no advantage. We can then express

Pr[S ∧ AskK] = Pr[S ∧ AskK ∧ AskH] + Pr[S ∧ AskK ∧ ¬AskH]

≤ Pr[S ∧ AskK ∧ AskH] +
q5

q
. (6)

Here the inequality comes from the fact that, if A does not make the query ID∗

to H1, then QID∗ is completely unknown to A and hence, from A’s view, there
are q equally likely possibilities for T ∗.

Using the definition of A’s advantage with (5) and (6) we have

AdvID−IND−CCA2
ID−KEM (A) ≤ 2 Pr[S ∧ AskK ∧ AskH] +

2q5

q
. (7)

To complete the proof we argue that, in the event S ∧ AskK ∧ AskH, there is
an adversary B that solves the GBDH problem with probability at least 1/(q1 +
qX + qD) while making at most q5(2qD + 1) queries to its DBDH oracle.

Suppose that we have a BDH problem instance (aP2, bP2, cP2) that we wish
to solve. We construct an algorithm B to do this by using A. We set the value
of Mpk for algorithm A to be cP1 = ρ(cP2).

We maintain three lists L1 ⊂ {0, 1}∗ × G2 × Fq, L5 ⊂ GT × K DEM(t) and
LD ⊂ G1×G2×G1×K DEM(t) that allow us to provide consistent answers to A’s
oracle calls. We simulate these oracles as follows.

– H1 Queries: We choose an index i from [1, . . . , q1 + qX + qD]. We respond
to queries to H1 as follows (assuming that the query is not already present
in L1).
• If we are responding to the i-th query, which we denote ID′, we respond

with bP2 and add (ID′, bP2,⊥) to L1.
• If we are responding to any other query ID we choose x← [1, . . . , q] and

respond with xP2. We also add (ID, xP2, x) to L1.

– H5 Queries: We respond to a (non-repeat) query T to H5 as follows. We first
search LD for an entry (C, bP2, cP1, k) such that the DBDH oracle returns
1 when queried with (C, bP2, cP1, T). If such an entry is found we respond
with k. Otherwise, we call the DBDH oracle with (aP1, bP2, cP1, T). If the
oracle returns 1 we output T and terminate the simulation – the solution to
the BDH problem has been found. If the oracle returns 0 we simply choose
a random response kT to respond with and update L5 by adding (T, kT).

– XID−KEM Queries: We respond to an extraction oracle query ID made by A
as follows. We first call the H1-oracle with ID. We then search the list L1 for
the entry corresponding to ID. If this entry has third component equal to ⊥
then we abort. Otherwise we obtain the triple (ID, xP2, x). We then respond
with DID←x(cP2).

– DID−KEM Queries: We respond to a decapsulation oracle query (ID, C) as
follows. We first call the oracle H1. We then look for the entry corresponding
to ID in L1. There are two possibilities.
• If ID = ID′, so the response we get from H1 is bP2. We then search L5 for

an element (T, kT) such that the DBDH oracle returns 1 when queried
with (C, bP2, cP1, T). If such an element is found we respond with kT .
If no such element is found we choose a response k at random and add
(C, bP2, cP1, k) to LD.
• If ID 6= ID′ we obtain the entry corresponding entry (ID, xP2, x) from L1

and we compute DID ← x(cP2). We then compute T ← t̂(C,DID) and
call H5 with T . We relay the response to A.

– Challenge Query: When A makes its challenge encryption oracle query we
choose k′ at random and we set C∗ ← aP1. We respond with (k′, C∗).

In the above simulation what we want is that H1(ID
∗) = bP1. The oracle H1 is

called maximum of (q1 + qX + qD) times in the simulation above; therefore, we
achieve this with probability at least 1/(q1 + qX + qD) in the event AskH. Since
by construction we also have C∗ = aP1 and Mpk = cP1 we conclude that, in the
event AskH, with probability at least 1/(q1 + qX + qD), the value of T ∗ implicit
in the challenge ciphertext is t̂(P1, P2)

abc; this is the value which we wish to
compute. We conclude that

Pr[S ∧ AskK ∧ AskH] ≤ (q1 + qX + qD) ·AdvGBDH(B, q5(2qD + 1)). (8)

The result follows from (7) and (8).

7.5 Construction 3 : Security Proof

We first give the security proof for construction 3, as the security proof for
construction 2 will then follow immediately from Theorem 2.

Theorem 6. If EID is an ID-OW-CPA secure ID-based encryption scheme and
H ′

3 and H5 are modelled as random oracles then Construction 3 is secure against
adaptive chosen ciphertext attack.

Specifically, if A is a PPT algorithm that breaks the ID-KEM of Construction
3 using a chosen ciphertext attack, then there exists a PPT algorithm B, with

AdvID−IND−CCA2
ID−KEM (A) ≤ 2(q3 + q5 + qD) ·AdvID−OW−CPA

ID (B) +
2qDγ(Mpk)

|R ID(Mpk)|
,

where q3, q5 and qD are the number of queries made by A to H ′
3, H5 and the

decryption oracle respectively, and γ(Mpk) is as in (1).

Proof. Let A denote an ID-IND-CCA2 adversary against Construction 3, as
specified in the statement of the theorem. Security is proved via a sequence of
games Game0, Game1. In each game we let Si denote the event that b = b′. We let
Game0 denote the original attack game so that

AdvID−IND−CCA2
ID−KEM (A) = |2 Pr[S0]− 1|.

Let Game1 be the same as Game0 except we simulate the H ′
3, H5, extraction and

decapsulation queries as described below.

– H ′
3 Queries: We maintain a list L3 which contains at most q3 pairs (x, h3).

On input of x, if (x, h3) ∈ L3 then we return h3, otherwise we select h5 at
random append (x, h3) to the list and return h3.

– H5 Queries: We maintain a list L5 of length at most q5 + qD pairs (x, h5).
On input of x, if (x, h5) ∈ L3 then we return h5, otherwise we select h3 at
random append (x, h5) to the list and return h5.

– XID−KEM Queries: These are answered as in the genuine attack game Game0.
– DID−KEM Queries: We respond to such a query (c, ID) as follows:
• If ID 6= ID∗ then we compute the private key DID via the XID−KEM oracle

and respond the real decapsulation oracle would.
• If ID = ID∗ but c 6= c∗ we check for each pair (x, h3) ∈ L3, if

EID(ID,Mpk, x;h3) = c.

If such a pair exists then run the simulator of H5 on input x so as to
obtain h5, we then return h5. If no such pair exists we return ⊥.

Note that Game0 and Game1 are identical, as A operates in the random oracle
model, except if a decapsulation query with input c where x = DID−KEM(DID, c)
and c = EID(ID,Mpk, x;H ′

3(x)) is made but no H ′
3 queries on input x have been

made. Call this event E, hence

Pr[S0 ∧ ¬E] = Pr[S1 ∧ ¬E].

From Lemma 1 we have

|Pr[S0]− Pr[S1]| ≤ Pr[E] ≤
qDγ(Mpk)

R ID(Mpk)
.

This follows from the fact that, for each decryption query for which ID = ID∗

and c 6= c∗ but for no pair (x, h3) ∈ L3 do we have EID(ID,Mpk, x;h3) = c, there

is probability at most γ(Mpk) that for r chosen at random there is an m such
that EID(ID,Mpk,m; r) = c; moreover, there are at most qD such queries.

Let m∗ denote the hidden value encrypted by c∗. We let E′ denote the event
that the attacker queries either H ′

3 or H5 with m∗. Then, since we are in the
random oracle model,

Pr[S1] = Pr[S1 ∧ E
′] + Pr[S2 ∧ ¬E

′]

≤ Pr[S1 ∧ E
′] +

1

2

≤ Pr[S1|E
′] +

1

2
.

The theorem follows if we can describe an algorithm B with

AdvID−OW−CPA
ID (B) = Pr[S1|E

′]/(q3 + q5 + qD).

Algorithm B operates as follows. On input of Mpk it simply relays this onto
algorithm A’s first stage. Algorithm A then responds with an identity ID∗. This
value of ID∗ is passed onto B’s challenger who responds with an encryption c∗

of a random message m∗. The value of c∗ is then passed onto A’s second stage,
along with a random key k∗ from the codomain of H5. All oracle queries are
answered as in Game2, except the private key extraction queries which are now
answered using the oracle given to algorithm B. At the end of the game algorithm
B picks a random value which has been input into H ′

3 or H5 from the L3 or L5

list and returns this as its guess for m∗. It is clear that AdvID−OW−CPA
ID (B) =

Pr[S1|E
′]/(q3 + q5 + qD) and so the result follows.

7.6 Construction 2 : Security Proof

Combining Theorem 2 and Theorem 6 we obtain.

Theorem 7. If H2, H3 and H5 are modelled as random oracles then Construc-
tion 2 is secure against adaptive chosen ciphertext attack.

Specifically, if A is a PPT algorithm that breaks the ID-KEM of Construction
2 using a chosen ciphertext attack, then there exists a PPT algorithm B, with

AdvID−IND−CCA2
ID−KEM (A) ≤ 2e·q2 ·(q3+q5+qD)(1+qX)·

(

AdvBDH(B) +
1

q2 · 2n

)

+
2qD

q
,

where q2, q3, q5, qD and qX are the number of queries made by A to H2, H3,
H5, the decryption oracle and the private key extraction oracle respectively.

8 Comparison with FullIdent

In the following table we count the various operation counts for encryption and
decryption of our ID-based encryption schemes. Note, we make no-distinction
as to in which group exponentiations occur since one can select the group so as

to make the operation more efficient in any given implementation. We let C-1,
denote our Lynn’s KEM construction combined with a DEM, and C-2 denote
our second construction combined with a DEM, which is an optimised version
of construction three.

Pairings Exp’s Hash Fncs Message
Scheme EID DID EID DID EID DID Size

FullIdent-1 1 1 2 1 4 3 |G1|+ n + |m|
FullIdent-2 1 1 2 1 4 3 |G1|+ n + |ESK(m)|

C-1 1 1 2 0 2 1 |G1|+ |EDEM(m)|
C-2 1 1 2 1 4 3 |G1|+ n + |EDEM(m)|

From the table we see that the KEM/DEM approach with Lynn’s method is
marginally more efficient than the technique of Boneh and Franklin, or the ID-
KEM approach of our construction two. We also note that FullIdent-2 requires re-
quires a less stringent definition of security of the symmetric encryption scheme,
this is because chosen-ciphertext security is provided by the Fujisaki–Okamoto
transform rather than the CCA security of the symmetric cipher.

We also need to compare the tightness of the security guarantees offered by
the various constructions. To do this we make an explicit numerical comparison.
We take a security parameter where for our bilinear groups which results in a
value of q ≈ 2λ. We assume adversaries against our schemes exists which make
at most qX ≈ 232 calls to their key extraction oracles and at most qD ≈ 232 calls
to their decryption oracles. For our GBDH adversary we also limit the number of
DBDH queries to 232. We also assume that the number of hash function queries
is bounded, for each hash function, by approximately 232.

We then obtain the following tightness results:

FullIdent-1 :

AdvID−IND−CCA2
ID (A) ≤ 299 ·AdvBDH(B) + 267−n.

FullIdent-2 :

AdvID−IND−CCA2
ID (A) ≤ 299 ·AdvBDH(B) + 267−n + 234AdvFG−PA

SK (C)

C-1 :

AdvID−IND−CCA2
ID (A) ≤ 234 ·AdvGBDH(B, 232) + 233−λ + AdvCCAFG−DEM(C).

C-2 :

AdvID−IND−CCA2
ID−KEM (A) ≤ 2100AdvBDH(B) + 267−n + 233−λ + AdvCCAFG−DEM(C).

Suppose we use an elliptic curve system to implement our bilinear groups,
with MOV embedding degree d. We then know that there exists a sub-exponential
algorithm to solve the BDH and GBDH algorithms with running time essen-
tially [14]

L2dλ(1/3, (64/9)1/3) = exp
(

(64/9)1/3(log 2dλ)1/3(log log 2dλ)2/3

)

.

In addition there is an exponential algorithm [13] with running time essentially

2λ/2.

Hence, we can estimate a lower bound for AdvBDH(B) and AdvGBDH(B, c) via

1/ min(L2dλ(1/3, (64/9)1/3), 2λ/2).

Suppose we wished to obtain a security guarantee of an advantage of the ad-
versary A against our ID-based scheme of 2−80, in addition we assume that our
symmetric cipher is chosen so that it can guarantee an advantage of 2−µ. We
now look at what this implies for the parameters of the pairing based parts of
the scheme.

FullIdent-1 :

n ≥ 147 and λ ≥ max(358, 5700/d) ≈ 950 (if d = 6).

FullIdent-2 :

n ≥ 147, µ ≥ 114 and λ ≥ max(358, 5700/d) ≈ 950 (if d = 6).

C-1 :
µ ≥ 80 and λ ≥ max(112, 226, 1900/d) ≈ 316 (if d = 6).

C-2 :

n ≥ 147, µ ≥ 80 and λ ≥ max(113, 360, 5740/d) ≈ 957 (if d = 6).

Notice, the weaker security requirement on the symmetric cipher in FullIdent-2,
is not such an advantage when one considers the tightness result. Also note, the
tightness of the reduction of our Construction 1, needs to be balanced against
the fact that one is reducing to a possibly easier problem.

9 CL-KEM Construction

Our generic construction of a CL-KEM can now be given as follows.

– Let (GPK, EPK, DPK) be a OW-CPA++ secure public key encryption algorithm
which is verifiable, for example textbook RSA.

– Let (GID, XID, EID, DID) be an ID-OW-CCA2 secure ID-based encryption al-
gorithm.

We define our seven algorithms as follows. The algorithm GCL−KEM is defined
to be equal to GID. The algorithm Partial-Private-Key-Extraction returns DID:
the output from XID(Msk, IDA). The values returned by Set-Secret-Value and
Set-Public-Key are simply the outputs pkA and skA from GPK. The algorithm
Set-Private-Key returns the pair SA = (DID, skA). Finally, using a hash function
H, encapsulation and decapsulation work as follows.

ECL−KEM(pkA, IDA,Mpk):
– m1←M PK(pk), r1←R PK(pk).
– m2←M ID(Mpk),

r2←R ID(Mpk).
– c1←EPK(pkA,m1; r1).
– c2←EID(IDA,Mpk,m2; r2).
– k←H(c1, pkA,m1,m2).
– c←(c1, c2).

DCL−KEM(SA, c):
– (c1, c2)←c.
– (DID, skA)←SA.
– m1←DPK(skA, c1).
– If m1 =⊥ then return ⊥.
– m2←DID(DID, c2).
– If m2 =⊥ then return ⊥.
– k←H(c1, pkA,m1,m2).

9.1 Security Proof: Type-I Adversary

In this section we shall prove that Type-I security of our generic CL-KEM con-
struction rests both on the security of the ID-based component of the scheme
and on the security of the public key component.

Theorem 8. Our generic CL-KEM construction is secure against Type-I ad-
versaries in the random oracle, assuming the identity-based encryption scheme
is secure in the sense of ID-OW-CCA2 and the public key scheme is secure in
the sense of OW-CPA++.

In particular, let A denote a PPT Type-I adversary A against our generic CL-
KEM which makes at most qH calls to the random oracle H, requests up to qPK

public keys, makes at most qR replacements of public keys, makes at most qSK

private key extractions, makes at most qPX partial-private key extractions and
at most qD decapsulation queries. These queries are subject to the restrictions
imposed in the Type-I game definition given above.

Then there exists two PPT adversaries: B1 against the ID-OW-CCA2 secu-
rity of the identity-based encryption system which makes at most qH + qD calls
to the random oracle H, at most qD calls to its decryption oracle and at most
qPX + qSK calls to its private key extraction; and B2 against the OW-CPA++

security of the public key scheme that makes at most qH + qD calls the the ran-
dom oracle H. Both B1 and B2 run for essentially the same time as A and they
are such that

Adv
Type−I

CL−KEM(A) ≤ 2(qH+qD)AdvID−OW−CCA2
ID (B1)+2(qPK+qD+1)AdvOW−CPA

++

PK (B2).

Proof. Let A denote a Type-I adversary against our CL-KEM as specified in the
statement of the theorem.

We let ID∗ denote the challenge identity chosen by A after its first stage. We
shall denote the target encapsulation by c∗ = (c∗1, c

∗
2) which encapsulates the

key k∗
1 . Let m∗

1 denote the message encrypted in c∗1 under pk∗, the public key
of ID∗ at the time the challenge ciphertext is created, and let m∗

2 denote the
message encrypted in c∗2 under ID∗. Let k∗

0 denote a random key selected from
the codomain of H, and let b denote a random bit; both outside the view of the
adversary. In the second stage of the game we let k∗ = k∗

b denote the key given
to the adversary and we let b′ denote the bit returned by the adversary.

Security is proved using two games Game0 and Game1. In each game Gamei we
let Si denote the event that b′ = b. We let Game0 denote the original attack game

and so by definition

Adv
Type−I

CL−KEM(A) = |2 Pr[S0]− 1|. (9)

Game1: In Game1 we replace the public key request oracles, the private key ex-
traction oracles and the hash function H by the following oracle simulations.

– Public Key Request/Private Key Extraction: We keep a list LX =
{(ID, pk, sk)} of length at most qPK +qSK +qPX +qR+qD. When either oracle
is called on an identity ID we check whether this identity already appears
on the list, if so we respond with either pk or sk as appropriate. Otherwise
we call Gpk to obtain a new pair (pk, sk) insert (ID, pk, sk) onto the list and
then return the appropriate value of pk or sk.

– Public Key Replacement: If A wishes to replace the public key for user
ID with pk′ then we search the LX list for an entry corresponding to ID

and replace this entry with (ID, pk′,⊥). If no such entry exists then we add
(ID, pk′,⊥) to the list LX .

– Partial Private Key Extraction: The challenger answers these queries
using the genuine partial private key extraction algorithm.

– Hash Function: We keep a list LH = {(k, c1, pk,m1,m2)} of length at most
qH + qD. If this oracle is called with input (c1, pk,m1,m2) we perform the
following steps:

• If (k, c1, pk,m1,m2) is on LH then we respond with k.

• If there is some (k, c1, pk,⊥,m2) on LH such that c1 is the encryption of
m1 under the key pk we update this entry to make it (k, c1, pk,m1,m2)
and we respond with k. Note, this requires the property that the public
key algorithm is verifiable.

• Otherwise we generate k at random from the codomain of H, we place
(k, c1, pk,m1,m2) onto LH and respond with k.

– Decapsulation Queries: On input of c = (c1, c2) and ID, the simulator for
algorithm A can decapsulate the component c2 to obtain m2, since it knows
the master key for the identity-based scheme. Then, by making a call to the
public key extraction oracle we can obtain the public/private key pair (pk, sk)
from the list LX corresponding to the identity ID. There are two cases:

• sk 6=⊥, in which case the public key has not been replaced. We can
then use sk to decrypt c1 to obtain m1. The simulator for hash function
H can then be called on the input (c1, pk,m1,m2) so as to obtain the
encapsulated key k.

• sk =⊥, in which case the public key has been replaced. We then search
LH to find an entry (k, c1, pk,m1,m2) such that c1 is the encryption of
m1 under the key pk. Note, this requires the property that the public key
algorithm is verifiable. If such an entry exists then we return k. Otherwise
we generate k at random from the codomain of H, place (k, c1, pk,⊥,m2)
onto LH and return k.

Since A is working in the random oracle model then the two games are identical.
We have

Pr[S0] = Pr[S1]. (10)

Before proceeding we define three events.

Replace: The event that A replaces the public key for ID∗ before the challenge
ciphertext is issued.

Extract: The event that A extracts the partial private key for ID∗.
Ask: The event that the simulator for H is called with input (c∗1, pk∗,m∗

1,m
∗
2).

We immediately have the following.

Pr[S1] = Pr[S1 ∧ Replace] + Pr[S1 ∧ ¬Replace]

= Pr[S1|Replace] Pr[Replace]

+Pr[S1|¬Replace](1− Pr[Replace]). (11)

Also,

Pr[S1|Replace] = Pr[S1 ∧ ¬Extract|Replace]. (12)

The last equality above follows from the fact that, by definition of a Type-I
adversary, if Replace occurs then Extract is forbidden.

Now,

Pr[S1 ∧ ¬Extract|Replace] = Pr[S1 ∧ ¬Extract ∧ Ask|Replace]

+Pr[S1 ∧ ¬Extract ∧ ¬Ask|Replace]

≤ Pr[S1 ∧ ¬Extract ∧ Ask|Replace] +
1

2
. (13)

The final inequality follows from the fact that, if the query (c∗1, pk∗,m∗
1,m

∗
2) is

never made to the simulator for H, then A can have no advantage.
We also have

Pr[S1|¬Replace] = Pr[S1 ∧ Ask|¬Replace] + Pr[S1 ∧ ¬Ask|¬Replace]

≤ Pr[S1 ∧ Ask|¬Replace] +
1

2
. (14)

Again, the last inequality follows from the fact that, if the query (c∗1, pk∗,m∗
1,m

∗
2)

is never made to the simulator for H, then A can have no advantage.
We now describe an algorithm B1 to break the assumed ID-OW-CCA2 se-

curity of the identity based encryption scheme used in the construction. This
algorithm runs A in a similar manner to how A is run in Game1. The first differ-
ences is how we respond to A’s decapsulation queries in the construction of B1.
To do this we must introduce an additional list L′

H . This list is initially empty,
it is updated by the new decapsulation oracle as described below.

– Decapsulation Queries: Suppose that we are responding to a query ID,
(c1, c2). If ID 6= ID∗ or c2 6= c∗2 we respond as in Game1 except that, rather
than using knowledge of the master key for the identity-based scheme which
we no longer have, we decapsulate c2 using the decapsulation oracle provided
to B1. Otherwise, we make a call to the public key request oracle to obtain
the public key pk from the list LX corresponding to the identity ID. We then
search L′

H for an entry (k, c1, pk). If such exists we respond with k. Otherwise
we choose k at random from the codomain of H, add (k, c1, pk) to L′

H and
respond with k.

To generate the challenge ciphertext for A we proceed as usual to compute c∗1,
we obtain c∗2 by relaying ID∗ output by A to B1’s challenge oracle and we choose
k∗ at random from the codomain of H.

Finally, at the end of A’s execution, we choose a random input (c1, pk,m1,m2)
from LH and output m2 as B1’s attempt to recover the plaintext within c∗2.

Now, A is run by B1 up until the event Ask occurs in exactly the same manner
as A is run in Game1; moreover, if the event Ask occurs, B1 succeeds to recover
the plaintext within c∗2 with probability at least 1/(qH + qD) since there are at
most (qH + qD) entries in LH . This tells us that

Pr[S1 ∧ ¬Extract ∧ Ask|Replace] ≤ (qH + qD)AdvID−OW−CCA2
ID (B1). (15)

To complete the proof we describe an adversary B2 of the public key scheme
used in our construction. The adversary B2 is given a public key pk∗ for which
it wishes to recover a message from a ciphertext. To construct B2 we run A
in similar manner to how A is run in Game1. The oracles that are modified are
described below.

– Public Key Request/Private Key Extraction: At the very beginning
of the simulation we choose i uniformly at random from [1, . . . , qPK +qD +1].
We maintain a list LX = {(ID, pk, sk)} of length at most qPK + qSK + qPX +
qR + qD + 1. We have two cases when responding to a query ID.
• If we are responding to the i-th public key request, made either by A

directly or by the decapsulation oracle, or made by the challenge encryp-
tion oracle, we respond with pk∗ and add (ID, pk∗,⊥) to LX .
• Otherwise, we check whether this identity already appears on the list,

if so we respond with either pk or sk as appropriate and, if not, we call
Gpk to obtain a new pair (pk, sk) insert (ID, pk, sk) onto the list and then
return the appropriate value of pk or sk.

– Hash Function: We modify how the hash function operates after the chal-
lenge ciphertext has been issued. Suppose that we are responding to a query
(c∗1, pk∗,m1,m2) – where c∗1 is the first component of the challenge encap-
sulation – before proceeding as in Game1 we check whether or not c∗1 is the
encryption under pk∗ of m1. If so we output m1 and terminate the simulation.

To generate the challenge ciphertext for A first call the public key request oracle.
If we do not receive pk∗ in response we abort the simulation. If we do receive

pk∗ we proceed as usual to compute c∗2, we obtain c∗1 by calling B2’s challenge
encryption and k∗ at random from the codomain of H.

Now, when we are generating the challenge ciphertext we obtain pk∗ from the
public key request oracle with probability at least 1/(qPK + qD + 1). Assuming
this is so, A is run by B2 in exactly the same way that A is run in Game1 up
until the event Ask occurs and, moreover, if the event Ask occurs, B2 succeeds.
We conclude that

Pr[S1 ∧ Ask|¬Replace] ≤ (qPK + qD + 1)AdvOW−CPA
++

PK (B2). (16)

The result now follows from (9), (10), (11), (12), (13), (15), (14) and (16).

9.2 Security Proof: Type-II Adversary

In this section we shall prove that Type-II security of our generic CL-KEM
construction rests solely on the security of the public key component of the
scheme.

Theorem 9. Our generic CL-KEM construction is secure against Type-II ad-
versaries in the random oracle, assuming the public key encryption system is
secure in the sense of OW-CPA++.

In particular, let A denote a PPT Type-II adversaries A against our generic
CL-KEM which makes at most qH calls to the random oracle H, at most qSK

calls to its private key extraction oracle, it may request up to qPK public keys
and make at most qD decapsulation queries all for identities of its choice, subject
to the usual restrictions.

Then there exists a PPT adversary B2 against the OW-CPA++ security of
the public key system, whose running time is essentially the same as that of A
and which makes at most qH + qD calls to the random oracle H, such that we
have

AdvType−II

CL−KEM (A) ≤ 2(qH + qD)(qPK + qSK + qD)AdvOW−CPA
++

PK (B2).

Proof. Let A denote a Type-II adversary against our CL-KEM as specified in
the statement of the theorem.

Security is proved via two games Game1 and Game2. We define ID∗, pk∗, c∗ =
(c∗1, c

∗
2), m∗

1, m∗
2, k∗

0 , k∗
1 , b, b′, Si and Ask exactly as in Theorem 8.

We let Game0 denote the original attack game and so

AdvType−II

CL−KEM (A) = |2 Pr[S0]− 1|. (17)

Game1: In Game1 we replace the public key request oracles, the private key ex-
traction oracles and the hash function H by the following oracle simulations.

– Public Key Request/Private Key Extraction: We keep a list LX =
{(ID, pk, sk)} of length at most qPK + qSK + qD. When either oracle is called
on an identity ID we check whether this identity already appears on the list,

if so we respond with either pk or sk as appropriate. Otherwise we call Gpk

to obtain a new pair (pk, sk) insert (ID, pk, sk) onto the list and then return
the appropriate value of pk or sk.

– Hash Function: We keep a list LH = {(k, c1, pk,m1,m2)} of length at most
qH +qD. If this oracle is called with input (c, pk,m1,m2) we see whether this
pair already appears on the list, if so we respond with the appropriate value
of k. Otherwise we generate k at random from the codomain of H, we place
(k, c, pk,m1,m2) onto the list and return k.

– Decapsulation Queries: On input of c = (c1, c2) and ID, the simulator
for algorithm A can decapsulate the component c2 to obtain m2, since it
knows the master key for the ID-based scheme. Then, by making a call to
the public key extraction oracle we can obtain the public/private key pair
(pk, sk) from the list LX corresponding to the identity ID. Using sk we can
then decrypt c1 to obtain m1. The hash function H can then be called on
the input (c, pk,m1,m2) so as to obtain the encapsulated key k, modifying
the list LH as above.

Since A is working in the random oracle model then the two games are identical.
We have

Pr[S0] = Pr[S1]

= Pr[S1 ∧ Ask] + Pr[S1 ∧ ¬Ask]

≤ Pr[S1|Ask] + Pr[S1|¬Ask]

≤ Pr[S1|Ask] +
1

2
. (18)

This last equality holds since H is a random oracle; if A does not make the
critical query then it is able to determine whether or not k∗

b is the encapsulated
key with probability at most 1/2.

Game2: In this game a random value j is chosen from [1, . . . , qPK + qSK + qD].
Without loss of generality we can assume that the adversary makes the call to
the public key request oracle for the challenge identity ID∗. In Game2 we abort the
game if the j-th element of the LX list is not on the identity ID∗. Let F2 denote
the event that Game2 does not abort, then clearly Pr[F2] ≥ 1/(qPK + qSK + qD).
In addition we have Pr[S2|Ask ∧ F2] = Pr[S1|Ask]. Which gives us

Pr[S2|Ask] = Pr[S1|Ask] · Pr[F2] ≥
Pr[S1|Ask]

qPK + qSK + qD
.

We claim that Pr[S2|Ask] = (qH + qD)AdvOW−CPA
++

PK (B2) for an algorithm B2.

Algorithm B2 takes as input a public key pk∗, it has access to a challenge oracle
OEPK

(), which it can call only once. The challenge oracle will produce a ciphertext
c∗1, and the goal of B2 is to deduce the corresponding value of m∗

1.
Algorithm B2 runs as follows

1. (Mpk,Msk)←GID(1
t).

2. (ID∗, s)←A1(Mpk,Msk).
3. c∗1←OEPK

().
4. m2←M ID(Mpk), r←R ID(Mpk).
5. c∗2←EID(ID

∗,Mpk,m2; r).
6. k∗←K CL(Mpk).
7. c∗←(c∗1, c

∗
2).

8. b′′←A2(c
∗, k∗, s, ID∗).

9. Output b′′.

Algorithm B2 answers the oracle calls of the algorithm A just as the oracles do
in Game2. Except we make the following alterations:

– Public Key Request/Private Key Extraction: The j-th entry of the
LX list is replaced by (ID∗, pk∗,⊥), where ID∗ is the challenge identity output
by A1 and pk∗ is the input public key for algorithm B2.

– Decapsulation Queries: We need to modify this when called with input
(c1, c2) and ID∗ as we no longer know sk∗. We then perform the following
steps:

• We decrypt c2 so as to obtain m2.

• If c1 is not a valid ciphertext, which can be determined via the ciphertext
validity oracle provided to the CPA++ adversary B2, we return ⊥.

• If (k, c1, pk,m1,m2) is on the LH then we check whether c1 is a valid en-
cryption of m1, using the plaintext/ciphertext checking oracle provided
to the CPA++ adversary B2. If so we output k.

• Otherwise we check whether (k, c, pk,⊥,m2) is on the LH , for a cipher-
text c which encrypts the same message as c1, if so we output k. This
uses the ciphertext equality oracle provided to the CPA++ adversary B2.

• Else we pick k at random, place (k, c1, pk,⊥,m2) onto the LH and return
k.

– Hash Function: Here we modify the oracle to make it compatible with the
above decapsulation oracle. If H is called with input (c1, pk,m1,m2) then we
respond as follows:

• If (k, c1, pk,m1,m2) is on the LH then we we output k.

• If (k, c1, pk,⊥,m2) is on the LH and c is a valid encryption of m1 then we
output k and update the entry to read (k, c1, pk,m1,m2). This uses the
plaintext/ciphertext checking oracle provided to the CPA++ adversary
B2.

• Else we pick k at random, place (k, c1, pk,m1,m2) onto the LH and
return k.

With these simulations algorithm A cannot notice the difference between running
in Game2 and running as a subroutine for algorithm B2. When algorithm B2

terminates it selects a random element from the LH (k, c1, pk,m1,m2), such
that m1 6=⊥ and returns m1. There are at most qH + qD elements in LH and

therefore, from (17) and (18) we have

AdvOW−CPA
PK (B2) =

Pr[S2|Ask]

qH + qD

≥
Pr[S1|Ask]

(qH + qD)(qPK + qSK + qD)

≥
Pr[S0]−

1

2

(qH + qD)(qPK + qSK + qD)

=
AdvType−II

CL−KEM (A)

2(qH + qD)(qPK + qSK + qD)
.

The result follows.

Acknowledgements

The authors would like to offer their thanks to Alex Dent and Kenny Paterson
for providing detailed and insightful comments on an earlier version of this work.

References

1. S.S. Al-Riyami. Cryptographic schemes based on elliptic curve pairings. Ph.D.
Thesis, University of London, 2004.

2. S.S. Al-Riyami and K.G. Paterson. Certificateless public key cryptography. In
Advances in Cryptology – ASIACRYPT 2003, Springer-Verlag LNCS 2894, 452–
473, 2003.

3. S.S. Al-Riyami and K.G. Paterson. CBE from CL-PKE: A generic construction
and efficient schemes. To appear Public Key Cryptography – PKC 2005.

4. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. SIAM

Journal on Computing, 32, 586–615, 2003.

5. D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil pairing. In
Advances in Cryptology – ASIACRYPT 2001, Springer-Verlag LNCS 2248, 514–
532, 2001.

6. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on

Computing, 33, 167–226, 2003.

7. A. Dent. A designer’s guide to KEMs. In Cryptography and Coding, 2003, Springer-
Verlag LNCS 2898, 133–151, 2003.

8. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Advances in Cryptology – CRYPTO ’99, Springer-Verlag
LNCS 1666, 537–554, 1999.

9. M. Joye, J. Quisquater and M. Yung. On the power of misbehaving adversaries
and security analysis of the original EPOC. In Topics in Cryptography – CT-RSA

2001, Springer-Verlag LNCS 2020, 208–222, 2001.

10. B. Lynn. Authenticated Identity-Based Encryption. Cryptology ePrint Archive,
Report 2002/072, 2002. http://eprint.iacr.org/.

11. A. Miyaji, M. Nakabayashi and S. Takano. New explicit conditions of elliptic curve
traces for FR-reduction. In IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, E84-A, 1234–1243, 2001.
12. T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for

the security of cryptographic schemes. In Public Key Cryptography – PKC 2001,
Springer-Verlag LNCS 1992, 104–118, 2001.

13. J. Pollard. Monte Carlo methods for index computation (mod p). Math. Comp.,
32, 918–924, 1978.

14. O. Schirokauer. Using number fields to compute logarithms in finite fields. Math.

Comp., 69, 1267–1283, 2000.
15. V. Shoup. Using Hash Functions as a Hedge against Chosen Ciphertext Attack.

In Advances in Cryptology - EUROCRYPT 2000, Springer-Verlag LNCS 1807,
275-288, 2000.

